[ALSA] ad1848_lib: replace common delay loop by function
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blob7f7959de4a87b22e013d001b05f0cba4dfe0cefa
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/freezer.h>
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
54 extern void sem_exit (void);
56 static void exit_mm(struct task_struct * tsk);
58 static void __unhash_process(struct task_struct *p)
60 nr_threads--;
61 detach_pid(p, PIDTYPE_PID);
62 if (thread_group_leader(p)) {
63 detach_pid(p, PIDTYPE_PGID);
64 detach_pid(p, PIDTYPE_SID);
66 list_del_rcu(&p->tasks);
67 __get_cpu_var(process_counts)--;
69 list_del_rcu(&p->thread_group);
70 remove_parent(p);
74 * This function expects the tasklist_lock write-locked.
76 static void __exit_signal(struct task_struct *tsk)
78 struct signal_struct *sig = tsk->signal;
79 struct sighand_struct *sighand;
81 BUG_ON(!sig);
82 BUG_ON(!atomic_read(&sig->count));
84 rcu_read_lock();
85 sighand = rcu_dereference(tsk->sighand);
86 spin_lock(&sighand->siglock);
88 posix_cpu_timers_exit(tsk);
89 if (atomic_dec_and_test(&sig->count))
90 posix_cpu_timers_exit_group(tsk);
91 else {
93 * If there is any task waiting for the group exit
94 * then notify it:
96 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
97 wake_up_process(sig->group_exit_task);
98 sig->group_exit_task = NULL;
100 if (tsk == sig->curr_target)
101 sig->curr_target = next_thread(tsk);
103 * Accumulate here the counters for all threads but the
104 * group leader as they die, so they can be added into
105 * the process-wide totals when those are taken.
106 * The group leader stays around as a zombie as long
107 * as there are other threads. When it gets reaped,
108 * the exit.c code will add its counts into these totals.
109 * We won't ever get here for the group leader, since it
110 * will have been the last reference on the signal_struct.
112 sig->utime = cputime_add(sig->utime, tsk->utime);
113 sig->stime = cputime_add(sig->stime, tsk->stime);
114 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
115 sig->min_flt += tsk->min_flt;
116 sig->maj_flt += tsk->maj_flt;
117 sig->nvcsw += tsk->nvcsw;
118 sig->nivcsw += tsk->nivcsw;
119 sig->inblock += task_io_get_inblock(tsk);
120 sig->oublock += task_io_get_oublock(tsk);
121 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
122 sig = NULL; /* Marker for below. */
125 __unhash_process(tsk);
127 tsk->signal = NULL;
128 tsk->sighand = NULL;
129 spin_unlock(&sighand->siglock);
130 rcu_read_unlock();
132 __cleanup_sighand(sighand);
133 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
134 flush_sigqueue(&tsk->pending);
135 if (sig) {
136 flush_sigqueue(&sig->shared_pending);
137 taskstats_tgid_free(sig);
138 __cleanup_signal(sig);
142 static void delayed_put_task_struct(struct rcu_head *rhp)
144 put_task_struct(container_of(rhp, struct task_struct, rcu));
147 void release_task(struct task_struct * p)
149 struct task_struct *leader;
150 int zap_leader;
151 repeat:
152 atomic_dec(&p->user->processes);
153 write_lock_irq(&tasklist_lock);
154 ptrace_unlink(p);
155 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
156 __exit_signal(p);
159 * If we are the last non-leader member of the thread
160 * group, and the leader is zombie, then notify the
161 * group leader's parent process. (if it wants notification.)
163 zap_leader = 0;
164 leader = p->group_leader;
165 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
166 BUG_ON(leader->exit_signal == -1);
167 do_notify_parent(leader, leader->exit_signal);
169 * If we were the last child thread and the leader has
170 * exited already, and the leader's parent ignores SIGCHLD,
171 * then we are the one who should release the leader.
173 * do_notify_parent() will have marked it self-reaping in
174 * that case.
176 zap_leader = (leader->exit_signal == -1);
179 write_unlock_irq(&tasklist_lock);
180 proc_flush_task(p);
181 release_thread(p);
182 call_rcu(&p->rcu, delayed_put_task_struct);
184 p = leader;
185 if (unlikely(zap_leader))
186 goto repeat;
190 * This checks not only the pgrp, but falls back on the pid if no
191 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
192 * without this...
194 * The caller must hold rcu lock or the tasklist lock.
196 struct pid *session_of_pgrp(struct pid *pgrp)
198 struct task_struct *p;
199 struct pid *sid = NULL;
201 p = pid_task(pgrp, PIDTYPE_PGID);
202 if (p == NULL)
203 p = pid_task(pgrp, PIDTYPE_PID);
204 if (p != NULL)
205 sid = task_session(p);
207 return sid;
211 * Determine if a process group is "orphaned", according to the POSIX
212 * definition in 2.2.2.52. Orphaned process groups are not to be affected
213 * by terminal-generated stop signals. Newly orphaned process groups are
214 * to receive a SIGHUP and a SIGCONT.
216 * "I ask you, have you ever known what it is to be an orphan?"
218 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
220 struct task_struct *p;
221 int ret = 1;
223 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
224 if (p == ignored_task
225 || p->exit_state
226 || is_init(p->real_parent))
227 continue;
228 if (task_pgrp(p->real_parent) != pgrp &&
229 task_session(p->real_parent) == task_session(p)) {
230 ret = 0;
231 break;
233 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
234 return ret; /* (sighing) "Often!" */
237 int is_current_pgrp_orphaned(void)
239 int retval;
241 read_lock(&tasklist_lock);
242 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
243 read_unlock(&tasklist_lock);
245 return retval;
248 static int has_stopped_jobs(struct pid *pgrp)
250 int retval = 0;
251 struct task_struct *p;
253 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
254 if (p->state != TASK_STOPPED)
255 continue;
256 retval = 1;
257 break;
258 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259 return retval;
263 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
265 * If a kernel thread is launched as a result of a system call, or if
266 * it ever exits, it should generally reparent itself to kthreadd so it
267 * isn't in the way of other processes and is correctly cleaned up on exit.
269 * The various task state such as scheduling policy and priority may have
270 * been inherited from a user process, so we reset them to sane values here.
272 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
274 static void reparent_to_kthreadd(void)
276 write_lock_irq(&tasklist_lock);
278 ptrace_unlink(current);
279 /* Reparent to init */
280 remove_parent(current);
281 current->real_parent = current->parent = kthreadd_task;
282 add_parent(current);
284 /* Set the exit signal to SIGCHLD so we signal init on exit */
285 current->exit_signal = SIGCHLD;
287 if (task_nice(current) < 0)
288 set_user_nice(current, 0);
289 /* cpus_allowed? */
290 /* rt_priority? */
291 /* signals? */
292 security_task_reparent_to_init(current);
293 memcpy(current->signal->rlim, init_task.signal->rlim,
294 sizeof(current->signal->rlim));
295 atomic_inc(&(INIT_USER->__count));
296 write_unlock_irq(&tasklist_lock);
297 switch_uid(INIT_USER);
300 void __set_special_pids(pid_t session, pid_t pgrp)
302 struct task_struct *curr = current->group_leader;
304 if (process_session(curr) != session) {
305 detach_pid(curr, PIDTYPE_SID);
306 set_signal_session(curr->signal, session);
307 attach_pid(curr, PIDTYPE_SID, find_pid(session));
309 if (process_group(curr) != pgrp) {
310 detach_pid(curr, PIDTYPE_PGID);
311 curr->signal->pgrp = pgrp;
312 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
316 static void set_special_pids(pid_t session, pid_t pgrp)
318 write_lock_irq(&tasklist_lock);
319 __set_special_pids(session, pgrp);
320 write_unlock_irq(&tasklist_lock);
324 * Let kernel threads use this to say that they
325 * allow a certain signal (since daemonize() will
326 * have disabled all of them by default).
328 int allow_signal(int sig)
330 if (!valid_signal(sig) || sig < 1)
331 return -EINVAL;
333 spin_lock_irq(&current->sighand->siglock);
334 sigdelset(&current->blocked, sig);
335 if (!current->mm) {
336 /* Kernel threads handle their own signals.
337 Let the signal code know it'll be handled, so
338 that they don't get converted to SIGKILL or
339 just silently dropped */
340 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
342 recalc_sigpending();
343 spin_unlock_irq(&current->sighand->siglock);
344 return 0;
347 EXPORT_SYMBOL(allow_signal);
349 int disallow_signal(int sig)
351 if (!valid_signal(sig) || sig < 1)
352 return -EINVAL;
354 spin_lock_irq(&current->sighand->siglock);
355 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
356 recalc_sigpending();
357 spin_unlock_irq(&current->sighand->siglock);
358 return 0;
361 EXPORT_SYMBOL(disallow_signal);
364 * Put all the gunge required to become a kernel thread without
365 * attached user resources in one place where it belongs.
368 void daemonize(const char *name, ...)
370 va_list args;
371 struct fs_struct *fs;
372 sigset_t blocked;
374 va_start(args, name);
375 vsnprintf(current->comm, sizeof(current->comm), name, args);
376 va_end(args);
379 * If we were started as result of loading a module, close all of the
380 * user space pages. We don't need them, and if we didn't close them
381 * they would be locked into memory.
383 exit_mm(current);
385 * We don't want to have TIF_FREEZE set if the system-wide hibernation
386 * or suspend transition begins right now.
388 current->flags |= PF_NOFREEZE;
390 set_special_pids(1, 1);
391 proc_clear_tty(current);
393 /* Block and flush all signals */
394 sigfillset(&blocked);
395 sigprocmask(SIG_BLOCK, &blocked, NULL);
396 flush_signals(current);
398 /* Become as one with the init task */
400 exit_fs(current); /* current->fs->count--; */
401 fs = init_task.fs;
402 current->fs = fs;
403 atomic_inc(&fs->count);
405 exit_task_namespaces(current);
406 current->nsproxy = init_task.nsproxy;
407 get_task_namespaces(current);
409 exit_files(current);
410 current->files = init_task.files;
411 atomic_inc(&current->files->count);
413 reparent_to_kthreadd();
416 EXPORT_SYMBOL(daemonize);
418 static void close_files(struct files_struct * files)
420 int i, j;
421 struct fdtable *fdt;
423 j = 0;
426 * It is safe to dereference the fd table without RCU or
427 * ->file_lock because this is the last reference to the
428 * files structure.
430 fdt = files_fdtable(files);
431 for (;;) {
432 unsigned long set;
433 i = j * __NFDBITS;
434 if (i >= fdt->max_fds)
435 break;
436 set = fdt->open_fds->fds_bits[j++];
437 while (set) {
438 if (set & 1) {
439 struct file * file = xchg(&fdt->fd[i], NULL);
440 if (file) {
441 filp_close(file, files);
442 cond_resched();
445 i++;
446 set >>= 1;
451 struct files_struct *get_files_struct(struct task_struct *task)
453 struct files_struct *files;
455 task_lock(task);
456 files = task->files;
457 if (files)
458 atomic_inc(&files->count);
459 task_unlock(task);
461 return files;
464 void fastcall put_files_struct(struct files_struct *files)
466 struct fdtable *fdt;
468 if (atomic_dec_and_test(&files->count)) {
469 close_files(files);
471 * Free the fd and fdset arrays if we expanded them.
472 * If the fdtable was embedded, pass files for freeing
473 * at the end of the RCU grace period. Otherwise,
474 * you can free files immediately.
476 fdt = files_fdtable(files);
477 if (fdt != &files->fdtab)
478 kmem_cache_free(files_cachep, files);
479 free_fdtable(fdt);
483 EXPORT_SYMBOL(put_files_struct);
485 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
487 struct files_struct *old;
489 old = tsk->files;
490 task_lock(tsk);
491 tsk->files = files;
492 task_unlock(tsk);
493 put_files_struct(old);
495 EXPORT_SYMBOL(reset_files_struct);
497 static inline void __exit_files(struct task_struct *tsk)
499 struct files_struct * files = tsk->files;
501 if (files) {
502 task_lock(tsk);
503 tsk->files = NULL;
504 task_unlock(tsk);
505 put_files_struct(files);
509 void exit_files(struct task_struct *tsk)
511 __exit_files(tsk);
514 static inline void __put_fs_struct(struct fs_struct *fs)
516 /* No need to hold fs->lock if we are killing it */
517 if (atomic_dec_and_test(&fs->count)) {
518 dput(fs->root);
519 mntput(fs->rootmnt);
520 dput(fs->pwd);
521 mntput(fs->pwdmnt);
522 if (fs->altroot) {
523 dput(fs->altroot);
524 mntput(fs->altrootmnt);
526 kmem_cache_free(fs_cachep, fs);
530 void put_fs_struct(struct fs_struct *fs)
532 __put_fs_struct(fs);
535 static inline void __exit_fs(struct task_struct *tsk)
537 struct fs_struct * fs = tsk->fs;
539 if (fs) {
540 task_lock(tsk);
541 tsk->fs = NULL;
542 task_unlock(tsk);
543 __put_fs_struct(fs);
547 void exit_fs(struct task_struct *tsk)
549 __exit_fs(tsk);
552 EXPORT_SYMBOL_GPL(exit_fs);
555 * Turn us into a lazy TLB process if we
556 * aren't already..
558 static void exit_mm(struct task_struct * tsk)
560 struct mm_struct *mm = tsk->mm;
562 mm_release(tsk, mm);
563 if (!mm)
564 return;
566 * Serialize with any possible pending coredump.
567 * We must hold mmap_sem around checking core_waiters
568 * and clearing tsk->mm. The core-inducing thread
569 * will increment core_waiters for each thread in the
570 * group with ->mm != NULL.
572 down_read(&mm->mmap_sem);
573 if (mm->core_waiters) {
574 up_read(&mm->mmap_sem);
575 down_write(&mm->mmap_sem);
576 if (!--mm->core_waiters)
577 complete(mm->core_startup_done);
578 up_write(&mm->mmap_sem);
580 wait_for_completion(&mm->core_done);
581 down_read(&mm->mmap_sem);
583 atomic_inc(&mm->mm_count);
584 BUG_ON(mm != tsk->active_mm);
585 /* more a memory barrier than a real lock */
586 task_lock(tsk);
587 tsk->mm = NULL;
588 up_read(&mm->mmap_sem);
589 enter_lazy_tlb(mm, current);
590 /* We don't want this task to be frozen prematurely */
591 clear_freeze_flag(tsk);
592 task_unlock(tsk);
593 mmput(mm);
596 static inline void
597 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
600 * Make sure we're not reparenting to ourselves and that
601 * the parent is not a zombie.
603 BUG_ON(p == reaper || reaper->exit_state);
604 p->real_parent = reaper;
607 static void
608 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
610 if (p->pdeath_signal)
611 /* We already hold the tasklist_lock here. */
612 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
614 /* Move the child from its dying parent to the new one. */
615 if (unlikely(traced)) {
616 /* Preserve ptrace links if someone else is tracing this child. */
617 list_del_init(&p->ptrace_list);
618 if (p->parent != p->real_parent)
619 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
620 } else {
621 /* If this child is being traced, then we're the one tracing it
622 * anyway, so let go of it.
624 p->ptrace = 0;
625 remove_parent(p);
626 p->parent = p->real_parent;
627 add_parent(p);
629 if (p->state == TASK_TRACED) {
631 * If it was at a trace stop, turn it into
632 * a normal stop since it's no longer being
633 * traced.
635 ptrace_untrace(p);
639 /* If this is a threaded reparent there is no need to
640 * notify anyone anything has happened.
642 if (p->real_parent->group_leader == father->group_leader)
643 return;
645 /* We don't want people slaying init. */
646 if (p->exit_signal != -1)
647 p->exit_signal = SIGCHLD;
649 /* If we'd notified the old parent about this child's death,
650 * also notify the new parent.
652 if (!traced && p->exit_state == EXIT_ZOMBIE &&
653 p->exit_signal != -1 && thread_group_empty(p))
654 do_notify_parent(p, p->exit_signal);
657 * process group orphan check
658 * Case ii: Our child is in a different pgrp
659 * than we are, and it was the only connection
660 * outside, so the child pgrp is now orphaned.
662 if ((task_pgrp(p) != task_pgrp(father)) &&
663 (task_session(p) == task_session(father))) {
664 struct pid *pgrp = task_pgrp(p);
666 if (will_become_orphaned_pgrp(pgrp, NULL) &&
667 has_stopped_jobs(pgrp)) {
668 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
669 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
675 * When we die, we re-parent all our children.
676 * Try to give them to another thread in our thread
677 * group, and if no such member exists, give it to
678 * the child reaper process (ie "init") in our pid
679 * space.
681 static void
682 forget_original_parent(struct task_struct *father, struct list_head *to_release)
684 struct task_struct *p, *reaper = father;
685 struct list_head *_p, *_n;
687 do {
688 reaper = next_thread(reaper);
689 if (reaper == father) {
690 reaper = child_reaper(father);
691 break;
693 } while (reaper->exit_state);
696 * There are only two places where our children can be:
698 * - in our child list
699 * - in our ptraced child list
701 * Search them and reparent children.
703 list_for_each_safe(_p, _n, &father->children) {
704 int ptrace;
705 p = list_entry(_p, struct task_struct, sibling);
707 ptrace = p->ptrace;
709 /* if father isn't the real parent, then ptrace must be enabled */
710 BUG_ON(father != p->real_parent && !ptrace);
712 if (father == p->real_parent) {
713 /* reparent with a reaper, real father it's us */
714 choose_new_parent(p, reaper);
715 reparent_thread(p, father, 0);
716 } else {
717 /* reparent ptraced task to its real parent */
718 __ptrace_unlink (p);
719 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
720 thread_group_empty(p))
721 do_notify_parent(p, p->exit_signal);
725 * if the ptraced child is a zombie with exit_signal == -1
726 * we must collect it before we exit, or it will remain
727 * zombie forever since we prevented it from self-reap itself
728 * while it was being traced by us, to be able to see it in wait4.
730 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
731 list_add(&p->ptrace_list, to_release);
733 list_for_each_safe(_p, _n, &father->ptrace_children) {
734 p = list_entry(_p, struct task_struct, ptrace_list);
735 choose_new_parent(p, reaper);
736 reparent_thread(p, father, 1);
741 * Send signals to all our closest relatives so that they know
742 * to properly mourn us..
744 static void exit_notify(struct task_struct *tsk)
746 int state;
747 struct task_struct *t;
748 struct list_head ptrace_dead, *_p, *_n;
749 struct pid *pgrp;
751 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
752 && !thread_group_empty(tsk)) {
754 * This occurs when there was a race between our exit
755 * syscall and a group signal choosing us as the one to
756 * wake up. It could be that we are the only thread
757 * alerted to check for pending signals, but another thread
758 * should be woken now to take the signal since we will not.
759 * Now we'll wake all the threads in the group just to make
760 * sure someone gets all the pending signals.
762 read_lock(&tasklist_lock);
763 spin_lock_irq(&tsk->sighand->siglock);
764 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
765 if (!signal_pending(t) && !(t->flags & PF_EXITING))
766 recalc_sigpending_and_wake(t);
767 spin_unlock_irq(&tsk->sighand->siglock);
768 read_unlock(&tasklist_lock);
771 write_lock_irq(&tasklist_lock);
774 * This does two things:
776 * A. Make init inherit all the child processes
777 * B. Check to see if any process groups have become orphaned
778 * as a result of our exiting, and if they have any stopped
779 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
782 INIT_LIST_HEAD(&ptrace_dead);
783 forget_original_parent(tsk, &ptrace_dead);
784 BUG_ON(!list_empty(&tsk->children));
785 BUG_ON(!list_empty(&tsk->ptrace_children));
788 * Check to see if any process groups have become orphaned
789 * as a result of our exiting, and if they have any stopped
790 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
792 * Case i: Our father is in a different pgrp than we are
793 * and we were the only connection outside, so our pgrp
794 * is about to become orphaned.
797 t = tsk->real_parent;
799 pgrp = task_pgrp(tsk);
800 if ((task_pgrp(t) != pgrp) &&
801 (task_session(t) == task_session(tsk)) &&
802 will_become_orphaned_pgrp(pgrp, tsk) &&
803 has_stopped_jobs(pgrp)) {
804 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
805 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
808 /* Let father know we died
810 * Thread signals are configurable, but you aren't going to use
811 * that to send signals to arbitary processes.
812 * That stops right now.
814 * If the parent exec id doesn't match the exec id we saved
815 * when we started then we know the parent has changed security
816 * domain.
818 * If our self_exec id doesn't match our parent_exec_id then
819 * we have changed execution domain as these two values started
820 * the same after a fork.
822 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
823 ( tsk->parent_exec_id != t->self_exec_id ||
824 tsk->self_exec_id != tsk->parent_exec_id)
825 && !capable(CAP_KILL))
826 tsk->exit_signal = SIGCHLD;
829 /* If something other than our normal parent is ptracing us, then
830 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
831 * only has special meaning to our real parent.
833 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
834 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
835 do_notify_parent(tsk, signal);
836 } else if (tsk->ptrace) {
837 do_notify_parent(tsk, SIGCHLD);
840 state = EXIT_ZOMBIE;
841 if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
842 state = EXIT_DEAD;
843 tsk->exit_state = state;
845 write_unlock_irq(&tasklist_lock);
847 list_for_each_safe(_p, _n, &ptrace_dead) {
848 list_del_init(_p);
849 t = list_entry(_p, struct task_struct, ptrace_list);
850 release_task(t);
853 /* If the process is dead, release it - nobody will wait for it */
854 if (state == EXIT_DEAD)
855 release_task(tsk);
858 #ifdef CONFIG_DEBUG_STACK_USAGE
859 static void check_stack_usage(void)
861 static DEFINE_SPINLOCK(low_water_lock);
862 static int lowest_to_date = THREAD_SIZE;
863 unsigned long *n = end_of_stack(current);
864 unsigned long free;
866 while (*n == 0)
867 n++;
868 free = (unsigned long)n - (unsigned long)end_of_stack(current);
870 if (free >= lowest_to_date)
871 return;
873 spin_lock(&low_water_lock);
874 if (free < lowest_to_date) {
875 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
876 "left\n",
877 current->comm, free);
878 lowest_to_date = free;
880 spin_unlock(&low_water_lock);
882 #else
883 static inline void check_stack_usage(void) {}
884 #endif
886 fastcall NORET_TYPE void do_exit(long code)
888 struct task_struct *tsk = current;
889 int group_dead;
891 profile_task_exit(tsk);
893 WARN_ON(atomic_read(&tsk->fs_excl));
895 if (unlikely(in_interrupt()))
896 panic("Aiee, killing interrupt handler!");
897 if (unlikely(!tsk->pid))
898 panic("Attempted to kill the idle task!");
899 if (unlikely(tsk == child_reaper(tsk))) {
900 if (tsk->nsproxy->pid_ns != &init_pid_ns)
901 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
902 else
903 panic("Attempted to kill init!");
907 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
908 current->ptrace_message = code;
909 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
913 * We're taking recursive faults here in do_exit. Safest is to just
914 * leave this task alone and wait for reboot.
916 if (unlikely(tsk->flags & PF_EXITING)) {
917 printk(KERN_ALERT
918 "Fixing recursive fault but reboot is needed!\n");
920 * We can do this unlocked here. The futex code uses
921 * this flag just to verify whether the pi state
922 * cleanup has been done or not. In the worst case it
923 * loops once more. We pretend that the cleanup was
924 * done as there is no way to return. Either the
925 * OWNER_DIED bit is set by now or we push the blocked
926 * task into the wait for ever nirwana as well.
928 tsk->flags |= PF_EXITPIDONE;
929 if (tsk->io_context)
930 exit_io_context();
931 set_current_state(TASK_UNINTERRUPTIBLE);
932 schedule();
936 * tsk->flags are checked in the futex code to protect against
937 * an exiting task cleaning up the robust pi futexes.
939 spin_lock_irq(&tsk->pi_lock);
940 tsk->flags |= PF_EXITING;
941 spin_unlock_irq(&tsk->pi_lock);
943 if (unlikely(in_atomic()))
944 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
945 current->comm, current->pid,
946 preempt_count());
948 acct_update_integrals(tsk);
949 if (tsk->mm) {
950 update_hiwater_rss(tsk->mm);
951 update_hiwater_vm(tsk->mm);
953 group_dead = atomic_dec_and_test(&tsk->signal->live);
954 if (group_dead) {
955 hrtimer_cancel(&tsk->signal->real_timer);
956 exit_itimers(tsk->signal);
958 acct_collect(code, group_dead);
959 if (unlikely(tsk->robust_list))
960 exit_robust_list(tsk);
961 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
962 if (unlikely(tsk->compat_robust_list))
963 compat_exit_robust_list(tsk);
964 #endif
965 if (group_dead)
966 tty_audit_exit();
967 if (unlikely(tsk->audit_context))
968 audit_free(tsk);
970 tsk->exit_code = code;
971 taskstats_exit(tsk, group_dead);
973 exit_mm(tsk);
975 if (group_dead)
976 acct_process();
977 exit_sem(tsk);
978 __exit_files(tsk);
979 __exit_fs(tsk);
980 check_stack_usage();
981 exit_thread();
982 cpuset_exit(tsk);
983 exit_keys(tsk);
985 if (group_dead && tsk->signal->leader)
986 disassociate_ctty(1);
988 module_put(task_thread_info(tsk)->exec_domain->module);
989 if (tsk->binfmt)
990 module_put(tsk->binfmt->module);
992 proc_exit_connector(tsk);
993 exit_task_namespaces(tsk);
994 exit_notify(tsk);
995 #ifdef CONFIG_NUMA
996 mpol_free(tsk->mempolicy);
997 tsk->mempolicy = NULL;
998 #endif
1000 * This must happen late, after the PID is not
1001 * hashed anymore:
1003 if (unlikely(!list_empty(&tsk->pi_state_list)))
1004 exit_pi_state_list(tsk);
1005 if (unlikely(current->pi_state_cache))
1006 kfree(current->pi_state_cache);
1008 * Make sure we are holding no locks:
1010 debug_check_no_locks_held(tsk);
1012 * We can do this unlocked here. The futex code uses this flag
1013 * just to verify whether the pi state cleanup has been done
1014 * or not. In the worst case it loops once more.
1016 tsk->flags |= PF_EXITPIDONE;
1018 if (tsk->io_context)
1019 exit_io_context();
1021 if (tsk->splice_pipe)
1022 __free_pipe_info(tsk->splice_pipe);
1024 preempt_disable();
1025 /* causes final put_task_struct in finish_task_switch(). */
1026 tsk->state = TASK_DEAD;
1028 schedule();
1029 BUG();
1030 /* Avoid "noreturn function does return". */
1031 for (;;)
1032 cpu_relax(); /* For when BUG is null */
1035 EXPORT_SYMBOL_GPL(do_exit);
1037 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1039 if (comp)
1040 complete(comp);
1042 do_exit(code);
1045 EXPORT_SYMBOL(complete_and_exit);
1047 asmlinkage long sys_exit(int error_code)
1049 do_exit((error_code&0xff)<<8);
1053 * Take down every thread in the group. This is called by fatal signals
1054 * as well as by sys_exit_group (below).
1056 NORET_TYPE void
1057 do_group_exit(int exit_code)
1059 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1061 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1062 exit_code = current->signal->group_exit_code;
1063 else if (!thread_group_empty(current)) {
1064 struct signal_struct *const sig = current->signal;
1065 struct sighand_struct *const sighand = current->sighand;
1066 spin_lock_irq(&sighand->siglock);
1067 if (sig->flags & SIGNAL_GROUP_EXIT)
1068 /* Another thread got here before we took the lock. */
1069 exit_code = sig->group_exit_code;
1070 else {
1071 sig->group_exit_code = exit_code;
1072 zap_other_threads(current);
1074 spin_unlock_irq(&sighand->siglock);
1077 do_exit(exit_code);
1078 /* NOTREACHED */
1082 * this kills every thread in the thread group. Note that any externally
1083 * wait4()-ing process will get the correct exit code - even if this
1084 * thread is not the thread group leader.
1086 asmlinkage void sys_exit_group(int error_code)
1088 do_group_exit((error_code & 0xff) << 8);
1091 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1093 int err;
1095 if (pid > 0) {
1096 if (p->pid != pid)
1097 return 0;
1098 } else if (!pid) {
1099 if (process_group(p) != process_group(current))
1100 return 0;
1101 } else if (pid != -1) {
1102 if (process_group(p) != -pid)
1103 return 0;
1107 * Do not consider detached threads that are
1108 * not ptraced:
1110 if (p->exit_signal == -1 && !p->ptrace)
1111 return 0;
1113 /* Wait for all children (clone and not) if __WALL is set;
1114 * otherwise, wait for clone children *only* if __WCLONE is
1115 * set; otherwise, wait for non-clone children *only*. (Note:
1116 * A "clone" child here is one that reports to its parent
1117 * using a signal other than SIGCHLD.) */
1118 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1119 && !(options & __WALL))
1120 return 0;
1122 * Do not consider thread group leaders that are
1123 * in a non-empty thread group:
1125 if (delay_group_leader(p))
1126 return 2;
1128 err = security_task_wait(p);
1129 if (err)
1130 return err;
1132 return 1;
1135 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1136 int why, int status,
1137 struct siginfo __user *infop,
1138 struct rusage __user *rusagep)
1140 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1142 put_task_struct(p);
1143 if (!retval)
1144 retval = put_user(SIGCHLD, &infop->si_signo);
1145 if (!retval)
1146 retval = put_user(0, &infop->si_errno);
1147 if (!retval)
1148 retval = put_user((short)why, &infop->si_code);
1149 if (!retval)
1150 retval = put_user(pid, &infop->si_pid);
1151 if (!retval)
1152 retval = put_user(uid, &infop->si_uid);
1153 if (!retval)
1154 retval = put_user(status, &infop->si_status);
1155 if (!retval)
1156 retval = pid;
1157 return retval;
1161 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1162 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1163 * the lock and this task is uninteresting. If we return nonzero, we have
1164 * released the lock and the system call should return.
1166 static int wait_task_zombie(struct task_struct *p, int noreap,
1167 struct siginfo __user *infop,
1168 int __user *stat_addr, struct rusage __user *ru)
1170 unsigned long state;
1171 int retval;
1172 int status;
1174 if (unlikely(noreap)) {
1175 pid_t pid = p->pid;
1176 uid_t uid = p->uid;
1177 int exit_code = p->exit_code;
1178 int why, status;
1180 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1181 return 0;
1182 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1183 return 0;
1184 get_task_struct(p);
1185 read_unlock(&tasklist_lock);
1186 if ((exit_code & 0x7f) == 0) {
1187 why = CLD_EXITED;
1188 status = exit_code >> 8;
1189 } else {
1190 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1191 status = exit_code & 0x7f;
1193 return wait_noreap_copyout(p, pid, uid, why,
1194 status, infop, ru);
1198 * Try to move the task's state to DEAD
1199 * only one thread is allowed to do this:
1201 state = xchg(&p->exit_state, EXIT_DEAD);
1202 if (state != EXIT_ZOMBIE) {
1203 BUG_ON(state != EXIT_DEAD);
1204 return 0;
1206 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1208 * This can only happen in a race with a ptraced thread
1209 * dying on another processor.
1211 return 0;
1214 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1215 struct signal_struct *psig;
1216 struct signal_struct *sig;
1219 * The resource counters for the group leader are in its
1220 * own task_struct. Those for dead threads in the group
1221 * are in its signal_struct, as are those for the child
1222 * processes it has previously reaped. All these
1223 * accumulate in the parent's signal_struct c* fields.
1225 * We don't bother to take a lock here to protect these
1226 * p->signal fields, because they are only touched by
1227 * __exit_signal, which runs with tasklist_lock
1228 * write-locked anyway, and so is excluded here. We do
1229 * need to protect the access to p->parent->signal fields,
1230 * as other threads in the parent group can be right
1231 * here reaping other children at the same time.
1233 spin_lock_irq(&p->parent->sighand->siglock);
1234 psig = p->parent->signal;
1235 sig = p->signal;
1236 psig->cutime =
1237 cputime_add(psig->cutime,
1238 cputime_add(p->utime,
1239 cputime_add(sig->utime,
1240 sig->cutime)));
1241 psig->cstime =
1242 cputime_add(psig->cstime,
1243 cputime_add(p->stime,
1244 cputime_add(sig->stime,
1245 sig->cstime)));
1246 psig->cgtime =
1247 cputime_add(psig->cgtime,
1248 cputime_add(p->gtime,
1249 cputime_add(sig->gtime,
1250 sig->cgtime)));
1251 psig->cmin_flt +=
1252 p->min_flt + sig->min_flt + sig->cmin_flt;
1253 psig->cmaj_flt +=
1254 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1255 psig->cnvcsw +=
1256 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1257 psig->cnivcsw +=
1258 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1259 psig->cinblock +=
1260 task_io_get_inblock(p) +
1261 sig->inblock + sig->cinblock;
1262 psig->coublock +=
1263 task_io_get_oublock(p) +
1264 sig->oublock + sig->coublock;
1265 spin_unlock_irq(&p->parent->sighand->siglock);
1269 * Now we are sure this task is interesting, and no other
1270 * thread can reap it because we set its state to EXIT_DEAD.
1272 read_unlock(&tasklist_lock);
1274 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1275 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1276 ? p->signal->group_exit_code : p->exit_code;
1277 if (!retval && stat_addr)
1278 retval = put_user(status, stat_addr);
1279 if (!retval && infop)
1280 retval = put_user(SIGCHLD, &infop->si_signo);
1281 if (!retval && infop)
1282 retval = put_user(0, &infop->si_errno);
1283 if (!retval && infop) {
1284 int why;
1286 if ((status & 0x7f) == 0) {
1287 why = CLD_EXITED;
1288 status >>= 8;
1289 } else {
1290 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1291 status &= 0x7f;
1293 retval = put_user((short)why, &infop->si_code);
1294 if (!retval)
1295 retval = put_user(status, &infop->si_status);
1297 if (!retval && infop)
1298 retval = put_user(p->pid, &infop->si_pid);
1299 if (!retval && infop)
1300 retval = put_user(p->uid, &infop->si_uid);
1301 if (retval) {
1302 // TODO: is this safe?
1303 p->exit_state = EXIT_ZOMBIE;
1304 return retval;
1306 retval = p->pid;
1307 if (p->real_parent != p->parent) {
1308 write_lock_irq(&tasklist_lock);
1309 /* Double-check with lock held. */
1310 if (p->real_parent != p->parent) {
1311 __ptrace_unlink(p);
1312 // TODO: is this safe?
1313 p->exit_state = EXIT_ZOMBIE;
1315 * If this is not a detached task, notify the parent.
1316 * If it's still not detached after that, don't release
1317 * it now.
1319 if (p->exit_signal != -1) {
1320 do_notify_parent(p, p->exit_signal);
1321 if (p->exit_signal != -1)
1322 p = NULL;
1325 write_unlock_irq(&tasklist_lock);
1327 if (p != NULL)
1328 release_task(p);
1329 BUG_ON(!retval);
1330 return retval;
1334 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1335 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1336 * the lock and this task is uninteresting. If we return nonzero, we have
1337 * released the lock and the system call should return.
1339 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1340 int noreap, struct siginfo __user *infop,
1341 int __user *stat_addr, struct rusage __user *ru)
1343 int retval, exit_code;
1345 if (!p->exit_code)
1346 return 0;
1347 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1348 p->signal && p->signal->group_stop_count > 0)
1350 * A group stop is in progress and this is the group leader.
1351 * We won't report until all threads have stopped.
1353 return 0;
1356 * Now we are pretty sure this task is interesting.
1357 * Make sure it doesn't get reaped out from under us while we
1358 * give up the lock and then examine it below. We don't want to
1359 * keep holding onto the tasklist_lock while we call getrusage and
1360 * possibly take page faults for user memory.
1362 get_task_struct(p);
1363 read_unlock(&tasklist_lock);
1365 if (unlikely(noreap)) {
1366 pid_t pid = p->pid;
1367 uid_t uid = p->uid;
1368 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1370 exit_code = p->exit_code;
1371 if (unlikely(!exit_code) ||
1372 unlikely(p->state & TASK_TRACED))
1373 goto bail_ref;
1374 return wait_noreap_copyout(p, pid, uid,
1375 why, (exit_code << 8) | 0x7f,
1376 infop, ru);
1379 write_lock_irq(&tasklist_lock);
1382 * This uses xchg to be atomic with the thread resuming and setting
1383 * it. It must also be done with the write lock held to prevent a
1384 * race with the EXIT_ZOMBIE case.
1386 exit_code = xchg(&p->exit_code, 0);
1387 if (unlikely(p->exit_state)) {
1389 * The task resumed and then died. Let the next iteration
1390 * catch it in EXIT_ZOMBIE. Note that exit_code might
1391 * already be zero here if it resumed and did _exit(0).
1392 * The task itself is dead and won't touch exit_code again;
1393 * other processors in this function are locked out.
1395 p->exit_code = exit_code;
1396 exit_code = 0;
1398 if (unlikely(exit_code == 0)) {
1400 * Another thread in this function got to it first, or it
1401 * resumed, or it resumed and then died.
1403 write_unlock_irq(&tasklist_lock);
1404 bail_ref:
1405 put_task_struct(p);
1407 * We are returning to the wait loop without having successfully
1408 * removed the process and having released the lock. We cannot
1409 * continue, since the "p" task pointer is potentially stale.
1411 * Return -EAGAIN, and do_wait() will restart the loop from the
1412 * beginning. Do _not_ re-acquire the lock.
1414 return -EAGAIN;
1417 /* move to end of parent's list to avoid starvation */
1418 remove_parent(p);
1419 add_parent(p);
1421 write_unlock_irq(&tasklist_lock);
1423 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1424 if (!retval && stat_addr)
1425 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1426 if (!retval && infop)
1427 retval = put_user(SIGCHLD, &infop->si_signo);
1428 if (!retval && infop)
1429 retval = put_user(0, &infop->si_errno);
1430 if (!retval && infop)
1431 retval = put_user((short)((p->ptrace & PT_PTRACED)
1432 ? CLD_TRAPPED : CLD_STOPPED),
1433 &infop->si_code);
1434 if (!retval && infop)
1435 retval = put_user(exit_code, &infop->si_status);
1436 if (!retval && infop)
1437 retval = put_user(p->pid, &infop->si_pid);
1438 if (!retval && infop)
1439 retval = put_user(p->uid, &infop->si_uid);
1440 if (!retval)
1441 retval = p->pid;
1442 put_task_struct(p);
1444 BUG_ON(!retval);
1445 return retval;
1449 * Handle do_wait work for one task in a live, non-stopped state.
1450 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1451 * the lock and this task is uninteresting. If we return nonzero, we have
1452 * released the lock and the system call should return.
1454 static int wait_task_continued(struct task_struct *p, int noreap,
1455 struct siginfo __user *infop,
1456 int __user *stat_addr, struct rusage __user *ru)
1458 int retval;
1459 pid_t pid;
1460 uid_t uid;
1462 if (unlikely(!p->signal))
1463 return 0;
1465 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1466 return 0;
1468 spin_lock_irq(&p->sighand->siglock);
1469 /* Re-check with the lock held. */
1470 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1471 spin_unlock_irq(&p->sighand->siglock);
1472 return 0;
1474 if (!noreap)
1475 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1476 spin_unlock_irq(&p->sighand->siglock);
1478 pid = p->pid;
1479 uid = p->uid;
1480 get_task_struct(p);
1481 read_unlock(&tasklist_lock);
1483 if (!infop) {
1484 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1485 put_task_struct(p);
1486 if (!retval && stat_addr)
1487 retval = put_user(0xffff, stat_addr);
1488 if (!retval)
1489 retval = p->pid;
1490 } else {
1491 retval = wait_noreap_copyout(p, pid, uid,
1492 CLD_CONTINUED, SIGCONT,
1493 infop, ru);
1494 BUG_ON(retval == 0);
1497 return retval;
1501 static inline int my_ptrace_child(struct task_struct *p)
1503 if (!(p->ptrace & PT_PTRACED))
1504 return 0;
1505 if (!(p->ptrace & PT_ATTACHED))
1506 return 1;
1508 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1509 * we are the attacher. If we are the real parent, this is a race
1510 * inside ptrace_attach. It is waiting for the tasklist_lock,
1511 * which we have to switch the parent links, but has already set
1512 * the flags in p->ptrace.
1514 return (p->parent != p->real_parent);
1517 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1518 int __user *stat_addr, struct rusage __user *ru)
1520 DECLARE_WAITQUEUE(wait, current);
1521 struct task_struct *tsk;
1522 int flag, retval;
1523 int allowed, denied;
1525 add_wait_queue(&current->signal->wait_chldexit,&wait);
1526 repeat:
1528 * We will set this flag if we see any child that might later
1529 * match our criteria, even if we are not able to reap it yet.
1531 flag = 0;
1532 allowed = denied = 0;
1533 current->state = TASK_INTERRUPTIBLE;
1534 read_lock(&tasklist_lock);
1535 tsk = current;
1536 do {
1537 struct task_struct *p;
1538 struct list_head *_p;
1539 int ret;
1541 list_for_each(_p,&tsk->children) {
1542 p = list_entry(_p, struct task_struct, sibling);
1544 ret = eligible_child(pid, options, p);
1545 if (!ret)
1546 continue;
1548 if (unlikely(ret < 0)) {
1549 denied = ret;
1550 continue;
1552 allowed = 1;
1554 switch (p->state) {
1555 case TASK_TRACED:
1557 * When we hit the race with PTRACE_ATTACH,
1558 * we will not report this child. But the
1559 * race means it has not yet been moved to
1560 * our ptrace_children list, so we need to
1561 * set the flag here to avoid a spurious ECHILD
1562 * when the race happens with the only child.
1564 flag = 1;
1565 if (!my_ptrace_child(p))
1566 continue;
1567 /*FALLTHROUGH*/
1568 case TASK_STOPPED:
1570 * It's stopped now, so it might later
1571 * continue, exit, or stop again.
1573 flag = 1;
1574 if (!(options & WUNTRACED) &&
1575 !my_ptrace_child(p))
1576 continue;
1577 retval = wait_task_stopped(p, ret == 2,
1578 (options & WNOWAIT),
1579 infop,
1580 stat_addr, ru);
1581 if (retval == -EAGAIN)
1582 goto repeat;
1583 if (retval != 0) /* He released the lock. */
1584 goto end;
1585 break;
1586 default:
1587 // case EXIT_DEAD:
1588 if (p->exit_state == EXIT_DEAD)
1589 continue;
1590 // case EXIT_ZOMBIE:
1591 if (p->exit_state == EXIT_ZOMBIE) {
1593 * Eligible but we cannot release
1594 * it yet:
1596 if (ret == 2)
1597 goto check_continued;
1598 if (!likely(options & WEXITED))
1599 continue;
1600 retval = wait_task_zombie(
1601 p, (options & WNOWAIT),
1602 infop, stat_addr, ru);
1603 /* He released the lock. */
1604 if (retval != 0)
1605 goto end;
1606 break;
1608 check_continued:
1610 * It's running now, so it might later
1611 * exit, stop, or stop and then continue.
1613 flag = 1;
1614 if (!unlikely(options & WCONTINUED))
1615 continue;
1616 retval = wait_task_continued(
1617 p, (options & WNOWAIT),
1618 infop, stat_addr, ru);
1619 if (retval != 0) /* He released the lock. */
1620 goto end;
1621 break;
1624 if (!flag) {
1625 list_for_each(_p, &tsk->ptrace_children) {
1626 p = list_entry(_p, struct task_struct,
1627 ptrace_list);
1628 if (!eligible_child(pid, options, p))
1629 continue;
1630 flag = 1;
1631 break;
1634 if (options & __WNOTHREAD)
1635 break;
1636 tsk = next_thread(tsk);
1637 BUG_ON(tsk->signal != current->signal);
1638 } while (tsk != current);
1640 read_unlock(&tasklist_lock);
1641 if (flag) {
1642 retval = 0;
1643 if (options & WNOHANG)
1644 goto end;
1645 retval = -ERESTARTSYS;
1646 if (signal_pending(current))
1647 goto end;
1648 schedule();
1649 goto repeat;
1651 retval = -ECHILD;
1652 if (unlikely(denied) && !allowed)
1653 retval = denied;
1654 end:
1655 current->state = TASK_RUNNING;
1656 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1657 if (infop) {
1658 if (retval > 0)
1659 retval = 0;
1660 else {
1662 * For a WNOHANG return, clear out all the fields
1663 * we would set so the user can easily tell the
1664 * difference.
1666 if (!retval)
1667 retval = put_user(0, &infop->si_signo);
1668 if (!retval)
1669 retval = put_user(0, &infop->si_errno);
1670 if (!retval)
1671 retval = put_user(0, &infop->si_code);
1672 if (!retval)
1673 retval = put_user(0, &infop->si_pid);
1674 if (!retval)
1675 retval = put_user(0, &infop->si_uid);
1676 if (!retval)
1677 retval = put_user(0, &infop->si_status);
1680 return retval;
1683 asmlinkage long sys_waitid(int which, pid_t pid,
1684 struct siginfo __user *infop, int options,
1685 struct rusage __user *ru)
1687 long ret;
1689 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1690 return -EINVAL;
1691 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1692 return -EINVAL;
1694 switch (which) {
1695 case P_ALL:
1696 pid = -1;
1697 break;
1698 case P_PID:
1699 if (pid <= 0)
1700 return -EINVAL;
1701 break;
1702 case P_PGID:
1703 if (pid <= 0)
1704 return -EINVAL;
1705 pid = -pid;
1706 break;
1707 default:
1708 return -EINVAL;
1711 ret = do_wait(pid, options, infop, NULL, ru);
1713 /* avoid REGPARM breakage on x86: */
1714 prevent_tail_call(ret);
1715 return ret;
1718 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1719 int options, struct rusage __user *ru)
1721 long ret;
1723 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1724 __WNOTHREAD|__WCLONE|__WALL))
1725 return -EINVAL;
1726 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1728 /* avoid REGPARM breakage on x86: */
1729 prevent_tail_call(ret);
1730 return ret;
1733 #ifdef __ARCH_WANT_SYS_WAITPID
1736 * sys_waitpid() remains for compatibility. waitpid() should be
1737 * implemented by calling sys_wait4() from libc.a.
1739 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1741 return sys_wait4(pid, stat_addr, options, NULL);
1744 #endif