[PATCH] module: strlen_user() race fix
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blob74fae2daf87e177679a64bd9810965c57ea89514
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/kernel.h>
10 #include <linux/fs.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/bio.h>
14 #include <linux/config.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/compiler.h>
19 #include <linux/hash.h>
20 #include <linux/rbtree.h>
21 #include <linux/mempool.h>
22 #include <linux/ioprio.h>
23 #include <linux/writeback.h>
26 * tunables
28 static const int cfq_quantum = 4; /* max queue in one round of service */
29 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
30 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
31 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
32 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
34 static const int cfq_slice_sync = HZ / 10;
35 static int cfq_slice_async = HZ / 25;
36 static const int cfq_slice_async_rq = 2;
37 static int cfq_slice_idle = HZ / 100;
39 #define CFQ_IDLE_GRACE (HZ / 10)
40 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_KEY_ASYNC (0)
43 #define CFQ_KEY_ANY (0xffff)
46 * disable queueing at the driver/hardware level
48 static const int cfq_max_depth = 2;
51 * for the hash of cfqq inside the cfqd
53 #define CFQ_QHASH_SHIFT 6
54 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
55 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
58 * for the hash of crq inside the cfqq
60 #define CFQ_MHASH_SHIFT 6
61 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
62 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
63 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
64 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
65 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
67 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
68 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
70 #define RQ_DATA(rq) (rq)->elevator_private
73 * rb-tree defines
75 #define RB_NONE (2)
76 #define RB_EMPTY(node) ((node)->rb_node == NULL)
77 #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE
78 #define RB_CLEAR(node) do { \
79 (node)->rb_parent = NULL; \
80 RB_CLEAR_COLOR((node)); \
81 (node)->rb_right = NULL; \
82 (node)->rb_left = NULL; \
83 } while (0)
84 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
85 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
86 #define rq_rb_key(rq) (rq)->sector
88 static kmem_cache_t *crq_pool;
89 static kmem_cache_t *cfq_pool;
90 static kmem_cache_t *cfq_ioc_pool;
92 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
93 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
94 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
95 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
97 #define ASYNC (0)
98 #define SYNC (1)
100 #define cfq_cfqq_dispatched(cfqq) \
101 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
103 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
105 #define cfq_cfqq_sync(cfqq) \
106 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
109 * Per block device queue structure
111 struct cfq_data {
112 atomic_t ref;
113 request_queue_t *queue;
116 * rr list of queues with requests and the count of them
118 struct list_head rr_list[CFQ_PRIO_LISTS];
119 struct list_head busy_rr;
120 struct list_head cur_rr;
121 struct list_head idle_rr;
122 unsigned int busy_queues;
125 * non-ordered list of empty cfqq's
127 struct list_head empty_list;
130 * cfqq lookup hash
132 struct hlist_head *cfq_hash;
135 * global crq hash for all queues
137 struct hlist_head *crq_hash;
139 unsigned int max_queued;
141 mempool_t *crq_pool;
143 int rq_in_driver;
146 * schedule slice state info
149 * idle window management
151 struct timer_list idle_slice_timer;
152 struct work_struct unplug_work;
154 struct cfq_queue *active_queue;
155 struct cfq_io_context *active_cic;
156 int cur_prio, cur_end_prio;
157 unsigned int dispatch_slice;
159 struct timer_list idle_class_timer;
161 sector_t last_sector;
162 unsigned long last_end_request;
164 unsigned int rq_starved;
167 * tunables, see top of file
169 unsigned int cfq_quantum;
170 unsigned int cfq_queued;
171 unsigned int cfq_fifo_expire[2];
172 unsigned int cfq_back_penalty;
173 unsigned int cfq_back_max;
174 unsigned int cfq_slice[2];
175 unsigned int cfq_slice_async_rq;
176 unsigned int cfq_slice_idle;
177 unsigned int cfq_max_depth;
181 * Per process-grouping structure
183 struct cfq_queue {
184 /* reference count */
185 atomic_t ref;
186 /* parent cfq_data */
187 struct cfq_data *cfqd;
188 /* cfqq lookup hash */
189 struct hlist_node cfq_hash;
190 /* hash key */
191 unsigned int key;
192 /* on either rr or empty list of cfqd */
193 struct list_head cfq_list;
194 /* sorted list of pending requests */
195 struct rb_root sort_list;
196 /* if fifo isn't expired, next request to serve */
197 struct cfq_rq *next_crq;
198 /* requests queued in sort_list */
199 int queued[2];
200 /* currently allocated requests */
201 int allocated[2];
202 /* fifo list of requests in sort_list */
203 struct list_head fifo;
205 unsigned long slice_start;
206 unsigned long slice_end;
207 unsigned long slice_left;
208 unsigned long service_last;
210 /* number of requests that are on the dispatch list */
211 int on_dispatch[2];
213 /* io prio of this group */
214 unsigned short ioprio, org_ioprio;
215 unsigned short ioprio_class, org_ioprio_class;
217 /* various state flags, see below */
218 unsigned int flags;
221 struct cfq_rq {
222 struct rb_node rb_node;
223 sector_t rb_key;
224 struct request *request;
225 struct hlist_node hash;
227 struct cfq_queue *cfq_queue;
228 struct cfq_io_context *io_context;
230 unsigned int crq_flags;
233 enum cfqq_state_flags {
234 CFQ_CFQQ_FLAG_on_rr = 0,
235 CFQ_CFQQ_FLAG_wait_request,
236 CFQ_CFQQ_FLAG_must_alloc,
237 CFQ_CFQQ_FLAG_must_alloc_slice,
238 CFQ_CFQQ_FLAG_must_dispatch,
239 CFQ_CFQQ_FLAG_fifo_expire,
240 CFQ_CFQQ_FLAG_idle_window,
241 CFQ_CFQQ_FLAG_prio_changed,
242 CFQ_CFQQ_FLAG_expired,
245 #define CFQ_CFQQ_FNS(name) \
246 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
248 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
250 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
252 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
254 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
256 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
259 CFQ_CFQQ_FNS(on_rr);
260 CFQ_CFQQ_FNS(wait_request);
261 CFQ_CFQQ_FNS(must_alloc);
262 CFQ_CFQQ_FNS(must_alloc_slice);
263 CFQ_CFQQ_FNS(must_dispatch);
264 CFQ_CFQQ_FNS(fifo_expire);
265 CFQ_CFQQ_FNS(idle_window);
266 CFQ_CFQQ_FNS(prio_changed);
267 CFQ_CFQQ_FNS(expired);
268 #undef CFQ_CFQQ_FNS
270 enum cfq_rq_state_flags {
271 CFQ_CRQ_FLAG_is_sync = 0,
274 #define CFQ_CRQ_FNS(name) \
275 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
277 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
279 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
281 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
283 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
285 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
288 CFQ_CRQ_FNS(is_sync);
289 #undef CFQ_CRQ_FNS
291 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
292 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
293 static void cfq_put_cfqd(struct cfq_data *cfqd);
295 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
298 * lots of deadline iosched dupes, can be abstracted later...
300 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
302 hlist_del_init(&crq->hash);
305 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
307 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
309 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
312 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
314 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
315 struct hlist_node *entry, *next;
317 hlist_for_each_safe(entry, next, hash_list) {
318 struct cfq_rq *crq = list_entry_hash(entry);
319 struct request *__rq = crq->request;
321 if (!rq_mergeable(__rq)) {
322 cfq_del_crq_hash(crq);
323 continue;
326 if (rq_hash_key(__rq) == offset)
327 return __rq;
330 return NULL;
334 * scheduler run of queue, if there are requests pending and no one in the
335 * driver that will restart queueing
337 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
339 if (!cfqd->rq_in_driver && cfqd->busy_queues)
340 kblockd_schedule_work(&cfqd->unplug_work);
343 static int cfq_queue_empty(request_queue_t *q)
345 struct cfq_data *cfqd = q->elevator->elevator_data;
347 return !cfqd->busy_queues;
351 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
352 * We choose the request that is closest to the head right now. Distance
353 * behind the head are penalized and only allowed to a certain extent.
355 static struct cfq_rq *
356 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
358 sector_t last, s1, s2, d1 = 0, d2 = 0;
359 int r1_wrap = 0, r2_wrap = 0; /* requests are behind the disk head */
360 unsigned long back_max;
362 if (crq1 == NULL || crq1 == crq2)
363 return crq2;
364 if (crq2 == NULL)
365 return crq1;
367 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
368 return crq1;
369 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
370 return crq2;
372 s1 = crq1->request->sector;
373 s2 = crq2->request->sector;
375 last = cfqd->last_sector;
378 * by definition, 1KiB is 2 sectors
380 back_max = cfqd->cfq_back_max * 2;
383 * Strict one way elevator _except_ in the case where we allow
384 * short backward seeks which are biased as twice the cost of a
385 * similar forward seek.
387 if (s1 >= last)
388 d1 = s1 - last;
389 else if (s1 + back_max >= last)
390 d1 = (last - s1) * cfqd->cfq_back_penalty;
391 else
392 r1_wrap = 1;
394 if (s2 >= last)
395 d2 = s2 - last;
396 else if (s2 + back_max >= last)
397 d2 = (last - s2) * cfqd->cfq_back_penalty;
398 else
399 r2_wrap = 1;
401 /* Found required data */
402 if (!r1_wrap && r2_wrap)
403 return crq1;
404 else if (!r2_wrap && r1_wrap)
405 return crq2;
406 else if (r1_wrap && r2_wrap) {
407 /* both behind the head */
408 if (s1 <= s2)
409 return crq1;
410 else
411 return crq2;
414 /* Both requests in front of the head */
415 if (d1 < d2)
416 return crq1;
417 else if (d2 < d1)
418 return crq2;
419 else {
420 if (s1 >= s2)
421 return crq1;
422 else
423 return crq2;
428 * would be nice to take fifo expire time into account as well
430 static struct cfq_rq *
431 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
432 struct cfq_rq *last)
434 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
435 struct rb_node *rbnext, *rbprev;
437 if (!(rbnext = rb_next(&last->rb_node))) {
438 rbnext = rb_first(&cfqq->sort_list);
439 if (rbnext == &last->rb_node)
440 rbnext = NULL;
443 rbprev = rb_prev(&last->rb_node);
445 if (rbprev)
446 crq_prev = rb_entry_crq(rbprev);
447 if (rbnext)
448 crq_next = rb_entry_crq(rbnext);
450 return cfq_choose_req(cfqd, crq_next, crq_prev);
453 static void cfq_update_next_crq(struct cfq_rq *crq)
455 struct cfq_queue *cfqq = crq->cfq_queue;
457 if (cfqq->next_crq == crq)
458 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
461 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
463 struct cfq_data *cfqd = cfqq->cfqd;
464 struct list_head *list, *entry;
466 BUG_ON(!cfq_cfqq_on_rr(cfqq));
468 list_del(&cfqq->cfq_list);
470 if (cfq_class_rt(cfqq))
471 list = &cfqd->cur_rr;
472 else if (cfq_class_idle(cfqq))
473 list = &cfqd->idle_rr;
474 else {
476 * if cfqq has requests in flight, don't allow it to be
477 * found in cfq_set_active_queue before it has finished them.
478 * this is done to increase fairness between a process that
479 * has lots of io pending vs one that only generates one
480 * sporadically or synchronously
482 if (cfq_cfqq_dispatched(cfqq))
483 list = &cfqd->busy_rr;
484 else
485 list = &cfqd->rr_list[cfqq->ioprio];
489 * if queue was preempted, just add to front to be fair. busy_rr
490 * isn't sorted.
492 if (preempted || list == &cfqd->busy_rr) {
493 list_add(&cfqq->cfq_list, list);
494 return;
498 * sort by when queue was last serviced
500 entry = list;
501 while ((entry = entry->prev) != list) {
502 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
504 if (!__cfqq->service_last)
505 break;
506 if (time_before(__cfqq->service_last, cfqq->service_last))
507 break;
510 list_add(&cfqq->cfq_list, entry);
514 * add to busy list of queues for service, trying to be fair in ordering
515 * the pending list according to last request service
517 static inline void
518 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
520 BUG_ON(cfq_cfqq_on_rr(cfqq));
521 cfq_mark_cfqq_on_rr(cfqq);
522 cfqd->busy_queues++;
524 cfq_resort_rr_list(cfqq, 0);
527 static inline void
528 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
530 BUG_ON(!cfq_cfqq_on_rr(cfqq));
531 cfq_clear_cfqq_on_rr(cfqq);
532 list_move(&cfqq->cfq_list, &cfqd->empty_list);
534 BUG_ON(!cfqd->busy_queues);
535 cfqd->busy_queues--;
539 * rb tree support functions
541 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
543 struct cfq_queue *cfqq = crq->cfq_queue;
544 struct cfq_data *cfqd = cfqq->cfqd;
545 const int sync = cfq_crq_is_sync(crq);
547 BUG_ON(!cfqq->queued[sync]);
548 cfqq->queued[sync]--;
550 cfq_update_next_crq(crq);
552 rb_erase(&crq->rb_node, &cfqq->sort_list);
553 RB_CLEAR_COLOR(&crq->rb_node);
555 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
556 cfq_del_cfqq_rr(cfqd, cfqq);
559 static struct cfq_rq *
560 __cfq_add_crq_rb(struct cfq_rq *crq)
562 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
563 struct rb_node *parent = NULL;
564 struct cfq_rq *__crq;
566 while (*p) {
567 parent = *p;
568 __crq = rb_entry_crq(parent);
570 if (crq->rb_key < __crq->rb_key)
571 p = &(*p)->rb_left;
572 else if (crq->rb_key > __crq->rb_key)
573 p = &(*p)->rb_right;
574 else
575 return __crq;
578 rb_link_node(&crq->rb_node, parent, p);
579 return NULL;
582 static void cfq_add_crq_rb(struct cfq_rq *crq)
584 struct cfq_queue *cfqq = crq->cfq_queue;
585 struct cfq_data *cfqd = cfqq->cfqd;
586 struct request *rq = crq->request;
587 struct cfq_rq *__alias;
589 crq->rb_key = rq_rb_key(rq);
590 cfqq->queued[cfq_crq_is_sync(crq)]++;
593 * looks a little odd, but the first insert might return an alias.
594 * if that happens, put the alias on the dispatch list
596 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
597 cfq_dispatch_insert(cfqd->queue, __alias);
599 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
601 if (!cfq_cfqq_on_rr(cfqq))
602 cfq_add_cfqq_rr(cfqd, cfqq);
605 * check if this request is a better next-serve candidate
607 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
610 static inline void
611 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
613 rb_erase(&crq->rb_node, &cfqq->sort_list);
614 cfqq->queued[cfq_crq_is_sync(crq)]--;
616 cfq_add_crq_rb(crq);
619 static struct request *cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector)
622 struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, current->pid, CFQ_KEY_ANY);
623 struct rb_node *n;
625 if (!cfqq)
626 goto out;
628 n = cfqq->sort_list.rb_node;
629 while (n) {
630 struct cfq_rq *crq = rb_entry_crq(n);
632 if (sector < crq->rb_key)
633 n = n->rb_left;
634 else if (sector > crq->rb_key)
635 n = n->rb_right;
636 else
637 return crq->request;
640 out:
641 return NULL;
644 static void cfq_activate_request(request_queue_t *q, struct request *rq)
646 struct cfq_data *cfqd = q->elevator->elevator_data;
648 cfqd->rq_in_driver++;
651 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
653 struct cfq_data *cfqd = q->elevator->elevator_data;
655 WARN_ON(!cfqd->rq_in_driver);
656 cfqd->rq_in_driver--;
659 static void cfq_remove_request(struct request *rq)
661 struct cfq_rq *crq = RQ_DATA(rq);
663 list_del_init(&rq->queuelist);
664 cfq_del_crq_rb(crq);
665 cfq_del_crq_hash(crq);
668 static int
669 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
671 struct cfq_data *cfqd = q->elevator->elevator_data;
672 struct request *__rq;
673 int ret;
675 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
676 if (__rq && elv_rq_merge_ok(__rq, bio)) {
677 ret = ELEVATOR_BACK_MERGE;
678 goto out;
681 __rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio));
682 if (__rq && elv_rq_merge_ok(__rq, bio)) {
683 ret = ELEVATOR_FRONT_MERGE;
684 goto out;
687 return ELEVATOR_NO_MERGE;
688 out:
689 *req = __rq;
690 return ret;
693 static void cfq_merged_request(request_queue_t *q, struct request *req)
695 struct cfq_data *cfqd = q->elevator->elevator_data;
696 struct cfq_rq *crq = RQ_DATA(req);
698 cfq_del_crq_hash(crq);
699 cfq_add_crq_hash(cfqd, crq);
701 if (rq_rb_key(req) != crq->rb_key) {
702 struct cfq_queue *cfqq = crq->cfq_queue;
704 cfq_update_next_crq(crq);
705 cfq_reposition_crq_rb(cfqq, crq);
709 static void
710 cfq_merged_requests(request_queue_t *q, struct request *rq,
711 struct request *next)
713 cfq_merged_request(q, rq);
716 * reposition in fifo if next is older than rq
718 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
719 time_before(next->start_time, rq->start_time))
720 list_move(&rq->queuelist, &next->queuelist);
722 cfq_remove_request(next);
725 static inline void
726 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
728 if (cfqq) {
730 * stop potential idle class queues waiting service
732 del_timer(&cfqd->idle_class_timer);
734 cfqq->slice_start = jiffies;
735 cfqq->slice_end = 0;
736 cfqq->slice_left = 0;
737 cfq_clear_cfqq_must_alloc_slice(cfqq);
738 cfq_clear_cfqq_fifo_expire(cfqq);
739 cfq_clear_cfqq_expired(cfqq);
742 cfqd->active_queue = cfqq;
747 * 0,1
748 * 0,1,2
749 * 0,1,2,3
750 * 0,1,2,3,4
751 * 0,1,2,3,4,5
752 * 0,1,2,3,4,5,6
753 * 0,1,2,3,4,5,6,7
755 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
757 int prio, wrap;
759 prio = -1;
760 wrap = 0;
761 do {
762 int p;
764 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
765 if (!list_empty(&cfqd->rr_list[p])) {
766 prio = p;
767 break;
771 if (prio != -1)
772 break;
773 cfqd->cur_prio = 0;
774 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
775 cfqd->cur_end_prio = 0;
776 if (wrap)
777 break;
778 wrap = 1;
780 } while (1);
782 if (unlikely(prio == -1))
783 return -1;
785 BUG_ON(prio >= CFQ_PRIO_LISTS);
787 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
789 cfqd->cur_prio = prio + 1;
790 if (cfqd->cur_prio > cfqd->cur_end_prio) {
791 cfqd->cur_end_prio = cfqd->cur_prio;
792 cfqd->cur_prio = 0;
794 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
795 cfqd->cur_prio = 0;
796 cfqd->cur_end_prio = 0;
799 return prio;
802 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
804 struct cfq_queue *cfqq;
807 * if current queue is expired but not done with its requests yet,
808 * wait for that to happen
810 if ((cfqq = cfqd->active_queue) != NULL) {
811 if (cfq_cfqq_expired(cfqq) && cfq_cfqq_dispatched(cfqq))
812 return NULL;
816 * if current list is non-empty, grab first entry. if it is empty,
817 * get next prio level and grab first entry then if any are spliced
819 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
820 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
823 * if we have idle queues and no rt or be queues had pending
824 * requests, either allow immediate service if the grace period
825 * has passed or arm the idle grace timer
827 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
828 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
830 if (time_after_eq(jiffies, end))
831 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
832 else
833 mod_timer(&cfqd->idle_class_timer, end);
836 __cfq_set_active_queue(cfqd, cfqq);
837 return cfqq;
841 * current cfqq expired its slice (or was too idle), select new one
843 static void
844 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
845 int preempted)
847 unsigned long now = jiffies;
849 if (cfq_cfqq_wait_request(cfqq))
850 del_timer(&cfqd->idle_slice_timer);
852 if (!preempted && !cfq_cfqq_dispatched(cfqq))
853 cfqq->service_last = now;
855 cfq_clear_cfqq_must_dispatch(cfqq);
856 cfq_clear_cfqq_wait_request(cfqq);
859 * store what was left of this slice, if the queue idled out
860 * or was preempted
862 if (time_after(cfqq->slice_end, now))
863 cfqq->slice_left = cfqq->slice_end - now;
864 else
865 cfqq->slice_left = 0;
867 if (cfq_cfqq_on_rr(cfqq))
868 cfq_resort_rr_list(cfqq, preempted);
870 if (cfqq == cfqd->active_queue)
871 cfqd->active_queue = NULL;
873 if (cfqd->active_cic) {
874 put_io_context(cfqd->active_cic->ioc);
875 cfqd->active_cic = NULL;
878 cfqd->dispatch_slice = 0;
881 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
883 struct cfq_queue *cfqq = cfqd->active_queue;
885 if (cfqq) {
887 * use deferred expiry, if there are requests in progress as
888 * not to disturb the slice of the next queue
890 if (cfq_cfqq_dispatched(cfqq))
891 cfq_mark_cfqq_expired(cfqq);
892 else
893 __cfq_slice_expired(cfqd, cfqq, preempted);
897 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
900 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
901 WARN_ON(cfqq != cfqd->active_queue);
904 * idle is disabled, either manually or by past process history
906 if (!cfqd->cfq_slice_idle)
907 return 0;
908 if (!cfq_cfqq_idle_window(cfqq))
909 return 0;
911 * task has exited, don't wait
913 if (cfqd->active_cic && !cfqd->active_cic->ioc->task)
914 return 0;
916 cfq_mark_cfqq_must_dispatch(cfqq);
917 cfq_mark_cfqq_wait_request(cfqq);
919 if (!timer_pending(&cfqd->idle_slice_timer)) {
920 unsigned long slice_left = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
922 cfqd->idle_slice_timer.expires = jiffies + slice_left;
923 add_timer(&cfqd->idle_slice_timer);
926 return 1;
929 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
931 struct cfq_data *cfqd = q->elevator->elevator_data;
932 struct cfq_queue *cfqq = crq->cfq_queue;
934 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
935 cfq_remove_request(crq->request);
936 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
937 elv_dispatch_sort(q, crq->request);
941 * return expired entry, or NULL to just start from scratch in rbtree
943 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
945 struct cfq_data *cfqd = cfqq->cfqd;
946 struct request *rq;
947 struct cfq_rq *crq;
949 if (cfq_cfqq_fifo_expire(cfqq))
950 return NULL;
952 if (!list_empty(&cfqq->fifo)) {
953 int fifo = cfq_cfqq_class_sync(cfqq);
955 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
956 rq = crq->request;
957 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
958 cfq_mark_cfqq_fifo_expire(cfqq);
959 return crq;
963 return NULL;
967 * Scale schedule slice based on io priority. Use the sync time slice only
968 * if a queue is marked sync and has sync io queued. A sync queue with async
969 * io only, should not get full sync slice length.
971 static inline int
972 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
974 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
976 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
978 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
981 static inline void
982 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
984 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
987 static inline int
988 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
990 const int base_rq = cfqd->cfq_slice_async_rq;
992 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
994 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
998 * get next queue for service
1000 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1002 unsigned long now = jiffies;
1003 struct cfq_queue *cfqq;
1005 cfqq = cfqd->active_queue;
1006 if (!cfqq)
1007 goto new_queue;
1009 if (cfq_cfqq_expired(cfqq))
1010 goto new_queue;
1013 * slice has expired
1015 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1016 goto expire;
1019 * if queue has requests, dispatch one. if not, check if
1020 * enough slice is left to wait for one
1022 if (!RB_EMPTY(&cfqq->sort_list))
1023 goto keep_queue;
1024 else if (cfq_cfqq_class_sync(cfqq) &&
1025 time_before(now, cfqq->slice_end)) {
1026 if (cfq_arm_slice_timer(cfqd, cfqq))
1027 return NULL;
1030 expire:
1031 cfq_slice_expired(cfqd, 0);
1032 new_queue:
1033 cfqq = cfq_set_active_queue(cfqd);
1034 keep_queue:
1035 return cfqq;
1038 static int
1039 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1040 int max_dispatch)
1042 int dispatched = 0;
1044 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1046 do {
1047 struct cfq_rq *crq;
1050 * follow expired path, else get first next available
1052 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1053 crq = cfqq->next_crq;
1056 * finally, insert request into driver dispatch list
1058 cfq_dispatch_insert(cfqd->queue, crq);
1060 cfqd->dispatch_slice++;
1061 dispatched++;
1063 if (!cfqd->active_cic) {
1064 atomic_inc(&crq->io_context->ioc->refcount);
1065 cfqd->active_cic = crq->io_context;
1068 if (RB_EMPTY(&cfqq->sort_list))
1069 break;
1071 } while (dispatched < max_dispatch);
1074 * if slice end isn't set yet, set it. if at least one request was
1075 * sync, use the sync time slice value
1077 if (!cfqq->slice_end)
1078 cfq_set_prio_slice(cfqd, cfqq);
1081 * expire an async queue immediately if it has used up its slice. idle
1082 * queue always expire after 1 dispatch round.
1084 if ((!cfq_cfqq_sync(cfqq) &&
1085 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1086 cfq_class_idle(cfqq))
1087 cfq_slice_expired(cfqd, 0);
1089 return dispatched;
1092 static int
1093 cfq_forced_dispatch_cfqqs(struct list_head *list)
1095 int dispatched = 0;
1096 struct cfq_queue *cfqq, *next;
1097 struct cfq_rq *crq;
1099 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1100 while ((crq = cfqq->next_crq)) {
1101 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1102 dispatched++;
1104 BUG_ON(!list_empty(&cfqq->fifo));
1106 return dispatched;
1109 static int
1110 cfq_forced_dispatch(struct cfq_data *cfqd)
1112 int i, dispatched = 0;
1114 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1115 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1117 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1118 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1119 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1121 cfq_slice_expired(cfqd, 0);
1123 BUG_ON(cfqd->busy_queues);
1125 return dispatched;
1128 static int
1129 cfq_dispatch_requests(request_queue_t *q, int force)
1131 struct cfq_data *cfqd = q->elevator->elevator_data;
1132 struct cfq_queue *cfqq;
1134 if (!cfqd->busy_queues)
1135 return 0;
1137 if (unlikely(force))
1138 return cfq_forced_dispatch(cfqd);
1140 cfqq = cfq_select_queue(cfqd);
1141 if (cfqq) {
1142 int max_dispatch;
1145 * if idle window is disabled, allow queue buildup
1147 if (!cfq_cfqq_idle_window(cfqq) &&
1148 cfqd->rq_in_driver >= cfqd->cfq_max_depth)
1149 return 0;
1151 cfq_clear_cfqq_must_dispatch(cfqq);
1152 cfq_clear_cfqq_wait_request(cfqq);
1153 del_timer(&cfqd->idle_slice_timer);
1155 max_dispatch = cfqd->cfq_quantum;
1156 if (cfq_class_idle(cfqq))
1157 max_dispatch = 1;
1159 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1162 return 0;
1166 * task holds one reference to the queue, dropped when task exits. each crq
1167 * in-flight on this queue also holds a reference, dropped when crq is freed.
1169 * queue lock must be held here.
1171 static void cfq_put_queue(struct cfq_queue *cfqq)
1173 struct cfq_data *cfqd = cfqq->cfqd;
1175 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1177 if (!atomic_dec_and_test(&cfqq->ref))
1178 return;
1180 BUG_ON(rb_first(&cfqq->sort_list));
1181 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1182 BUG_ON(cfq_cfqq_on_rr(cfqq));
1184 if (unlikely(cfqd->active_queue == cfqq)) {
1185 __cfq_slice_expired(cfqd, cfqq, 0);
1186 cfq_schedule_dispatch(cfqd);
1189 cfq_put_cfqd(cfqq->cfqd);
1192 * it's on the empty list and still hashed
1194 list_del(&cfqq->cfq_list);
1195 hlist_del(&cfqq->cfq_hash);
1196 kmem_cache_free(cfq_pool, cfqq);
1199 static inline struct cfq_queue *
1200 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1201 const int hashval)
1203 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1204 struct hlist_node *entry, *next;
1206 hlist_for_each_safe(entry, next, hash_list) {
1207 struct cfq_queue *__cfqq = list_entry_qhash(entry);
1208 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->ioprio_class, __cfqq->ioprio);
1210 if (__cfqq->key == key && (__p == prio || prio == CFQ_KEY_ANY))
1211 return __cfqq;
1214 return NULL;
1217 static struct cfq_queue *
1218 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1220 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1223 static void cfq_free_io_context(struct cfq_io_context *cic)
1225 struct cfq_io_context *__cic;
1226 struct list_head *entry, *next;
1228 list_for_each_safe(entry, next, &cic->list) {
1229 __cic = list_entry(entry, struct cfq_io_context, list);
1230 kmem_cache_free(cfq_ioc_pool, __cic);
1233 kmem_cache_free(cfq_ioc_pool, cic);
1237 * Called with interrupts disabled
1239 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1241 struct cfq_data *cfqd = cic->cfqq->cfqd;
1242 request_queue_t *q = cfqd->queue;
1244 WARN_ON(!irqs_disabled());
1246 spin_lock(q->queue_lock);
1248 if (unlikely(cic->cfqq == cfqd->active_queue)) {
1249 __cfq_slice_expired(cfqd, cic->cfqq, 0);
1250 cfq_schedule_dispatch(cfqd);
1253 cfq_put_queue(cic->cfqq);
1254 cic->cfqq = NULL;
1255 spin_unlock(q->queue_lock);
1259 * Another task may update the task cic list, if it is doing a queue lookup
1260 * on its behalf. cfq_cic_lock excludes such concurrent updates
1262 static void cfq_exit_io_context(struct cfq_io_context *cic)
1264 struct cfq_io_context *__cic;
1265 struct list_head *entry;
1266 unsigned long flags;
1268 local_irq_save(flags);
1271 * put the reference this task is holding to the various queues
1273 list_for_each(entry, &cic->list) {
1274 __cic = list_entry(entry, struct cfq_io_context, list);
1275 cfq_exit_single_io_context(__cic);
1278 cfq_exit_single_io_context(cic);
1279 local_irq_restore(flags);
1282 static struct cfq_io_context *
1283 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1285 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1287 if (cic) {
1288 INIT_LIST_HEAD(&cic->list);
1289 cic->cfqq = NULL;
1290 cic->key = NULL;
1291 cic->last_end_request = jiffies;
1292 cic->ttime_total = 0;
1293 cic->ttime_samples = 0;
1294 cic->ttime_mean = 0;
1295 cic->dtor = cfq_free_io_context;
1296 cic->exit = cfq_exit_io_context;
1299 return cic;
1302 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1304 struct task_struct *tsk = current;
1305 int ioprio_class;
1307 if (!cfq_cfqq_prio_changed(cfqq))
1308 return;
1310 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1311 switch (ioprio_class) {
1312 default:
1313 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1314 case IOPRIO_CLASS_NONE:
1316 * no prio set, place us in the middle of the BE classes
1318 cfqq->ioprio = task_nice_ioprio(tsk);
1319 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1320 break;
1321 case IOPRIO_CLASS_RT:
1322 cfqq->ioprio = task_ioprio(tsk);
1323 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1324 break;
1325 case IOPRIO_CLASS_BE:
1326 cfqq->ioprio = task_ioprio(tsk);
1327 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1328 break;
1329 case IOPRIO_CLASS_IDLE:
1330 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1331 cfqq->ioprio = 7;
1332 cfq_clear_cfqq_idle_window(cfqq);
1333 break;
1337 * keep track of original prio settings in case we have to temporarily
1338 * elevate the priority of this queue
1340 cfqq->org_ioprio = cfqq->ioprio;
1341 cfqq->org_ioprio_class = cfqq->ioprio_class;
1343 if (cfq_cfqq_on_rr(cfqq))
1344 cfq_resort_rr_list(cfqq, 0);
1346 cfq_clear_cfqq_prio_changed(cfqq);
1349 static inline void changed_ioprio(struct cfq_queue *cfqq)
1351 if (cfqq) {
1352 struct cfq_data *cfqd = cfqq->cfqd;
1354 spin_lock(cfqd->queue->queue_lock);
1355 cfq_mark_cfqq_prio_changed(cfqq);
1356 cfq_init_prio_data(cfqq);
1357 spin_unlock(cfqd->queue->queue_lock);
1362 * callback from sys_ioprio_set, irqs are disabled
1364 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1366 struct cfq_io_context *cic = ioc->cic;
1368 changed_ioprio(cic->cfqq);
1370 list_for_each_entry(cic, &cic->list, list)
1371 changed_ioprio(cic->cfqq);
1373 return 0;
1376 static struct cfq_queue *
1377 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, unsigned short ioprio,
1378 gfp_t gfp_mask)
1380 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1381 struct cfq_queue *cfqq, *new_cfqq = NULL;
1383 retry:
1384 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1386 if (!cfqq) {
1387 if (new_cfqq) {
1388 cfqq = new_cfqq;
1389 new_cfqq = NULL;
1390 } else if (gfp_mask & __GFP_WAIT) {
1391 spin_unlock_irq(cfqd->queue->queue_lock);
1392 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1393 spin_lock_irq(cfqd->queue->queue_lock);
1394 goto retry;
1395 } else {
1396 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1397 if (!cfqq)
1398 goto out;
1401 memset(cfqq, 0, sizeof(*cfqq));
1403 INIT_HLIST_NODE(&cfqq->cfq_hash);
1404 INIT_LIST_HEAD(&cfqq->cfq_list);
1405 RB_CLEAR_ROOT(&cfqq->sort_list);
1406 INIT_LIST_HEAD(&cfqq->fifo);
1408 cfqq->key = key;
1409 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1410 atomic_set(&cfqq->ref, 0);
1411 cfqq->cfqd = cfqd;
1412 atomic_inc(&cfqd->ref);
1413 cfqq->service_last = 0;
1415 * set ->slice_left to allow preemption for a new process
1417 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1418 cfq_mark_cfqq_idle_window(cfqq);
1419 cfq_mark_cfqq_prio_changed(cfqq);
1420 cfq_init_prio_data(cfqq);
1423 if (new_cfqq)
1424 kmem_cache_free(cfq_pool, new_cfqq);
1426 atomic_inc(&cfqq->ref);
1427 out:
1428 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1429 return cfqq;
1433 * Setup general io context and cfq io context. There can be several cfq
1434 * io contexts per general io context, if this process is doing io to more
1435 * than one device managed by cfq. Note that caller is holding a reference to
1436 * cfqq, so we don't need to worry about it disappearing
1438 static struct cfq_io_context *
1439 cfq_get_io_context(struct cfq_data *cfqd, pid_t pid, gfp_t gfp_mask)
1441 struct io_context *ioc = NULL;
1442 struct cfq_io_context *cic;
1444 might_sleep_if(gfp_mask & __GFP_WAIT);
1446 ioc = get_io_context(gfp_mask);
1447 if (!ioc)
1448 return NULL;
1450 if ((cic = ioc->cic) == NULL) {
1451 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1453 if (cic == NULL)
1454 goto err;
1457 * manually increment generic io_context usage count, it
1458 * cannot go away since we are already holding one ref to it
1460 ioc->cic = cic;
1461 ioc->set_ioprio = cfq_ioc_set_ioprio;
1462 cic->ioc = ioc;
1463 cic->key = cfqd;
1464 atomic_inc(&cfqd->ref);
1465 } else {
1466 struct cfq_io_context *__cic;
1469 * the first cic on the list is actually the head itself
1471 if (cic->key == cfqd)
1472 goto out;
1475 * cic exists, check if we already are there. linear search
1476 * should be ok here, the list will usually not be more than
1477 * 1 or a few entries long
1479 list_for_each_entry(__cic, &cic->list, list) {
1481 * this process is already holding a reference to
1482 * this queue, so no need to get one more
1484 if (__cic->key == cfqd) {
1485 cic = __cic;
1486 goto out;
1491 * nope, process doesn't have a cic assoicated with this
1492 * cfqq yet. get a new one and add to list
1494 __cic = cfq_alloc_io_context(cfqd, gfp_mask);
1495 if (__cic == NULL)
1496 goto err;
1498 __cic->ioc = ioc;
1499 __cic->key = cfqd;
1500 atomic_inc(&cfqd->ref);
1501 list_add(&__cic->list, &cic->list);
1502 cic = __cic;
1505 out:
1506 return cic;
1507 err:
1508 put_io_context(ioc);
1509 return NULL;
1512 static void
1513 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1515 unsigned long elapsed, ttime;
1518 * if this context already has stuff queued, thinktime is from
1519 * last queue not last end
1521 #if 0
1522 if (time_after(cic->last_end_request, cic->last_queue))
1523 elapsed = jiffies - cic->last_end_request;
1524 else
1525 elapsed = jiffies - cic->last_queue;
1526 #else
1527 elapsed = jiffies - cic->last_end_request;
1528 #endif
1530 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1532 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1533 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1534 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1537 #define sample_valid(samples) ((samples) > 80)
1540 * Disable idle window if the process thinks too long or seeks so much that
1541 * it doesn't matter
1543 static void
1544 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1545 struct cfq_io_context *cic)
1547 int enable_idle = cfq_cfqq_idle_window(cfqq);
1549 if (!cic->ioc->task || !cfqd->cfq_slice_idle)
1550 enable_idle = 0;
1551 else if (sample_valid(cic->ttime_samples)) {
1552 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1553 enable_idle = 0;
1554 else
1555 enable_idle = 1;
1558 if (enable_idle)
1559 cfq_mark_cfqq_idle_window(cfqq);
1560 else
1561 cfq_clear_cfqq_idle_window(cfqq);
1566 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1567 * no or if we aren't sure, a 1 will cause a preempt.
1569 static int
1570 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1571 struct cfq_rq *crq)
1573 struct cfq_queue *cfqq = cfqd->active_queue;
1575 if (cfq_class_idle(new_cfqq))
1576 return 0;
1578 if (!cfqq)
1579 return 1;
1581 if (cfq_class_idle(cfqq))
1582 return 1;
1583 if (!cfq_cfqq_wait_request(new_cfqq))
1584 return 0;
1586 * if it doesn't have slice left, forget it
1588 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1589 return 0;
1590 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1591 return 1;
1593 return 0;
1597 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1598 * let it have half of its nominal slice.
1600 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1602 struct cfq_queue *__cfqq, *next;
1604 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1605 cfq_resort_rr_list(__cfqq, 1);
1607 if (!cfqq->slice_left)
1608 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1610 cfqq->slice_end = cfqq->slice_left + jiffies;
1611 __cfq_slice_expired(cfqd, cfqq, 1);
1612 __cfq_set_active_queue(cfqd, cfqq);
1616 * should really be a ll_rw_blk.c helper
1618 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1620 request_queue_t *q = cfqd->queue;
1622 if (!blk_queue_plugged(q))
1623 q->request_fn(q);
1624 else
1625 __generic_unplug_device(q);
1629 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1630 * something we should do about it
1632 static void
1633 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1634 struct cfq_rq *crq)
1636 struct cfq_io_context *cic;
1638 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1641 * we never wait for an async request and we don't allow preemption
1642 * of an async request. so just return early
1644 if (!cfq_crq_is_sync(crq))
1645 return;
1647 cic = crq->io_context;
1649 cfq_update_io_thinktime(cfqd, cic);
1650 cfq_update_idle_window(cfqd, cfqq, cic);
1652 cic->last_queue = jiffies;
1654 if (cfqq == cfqd->active_queue) {
1656 * if we are waiting for a request for this queue, let it rip
1657 * immediately and flag that we must not expire this queue
1658 * just now
1660 if (cfq_cfqq_wait_request(cfqq)) {
1661 cfq_mark_cfqq_must_dispatch(cfqq);
1662 del_timer(&cfqd->idle_slice_timer);
1663 cfq_start_queueing(cfqd, cfqq);
1665 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1667 * not the active queue - expire current slice if it is
1668 * idle and has expired it's mean thinktime or this new queue
1669 * has some old slice time left and is of higher priority
1671 cfq_preempt_queue(cfqd, cfqq);
1672 cfq_mark_cfqq_must_dispatch(cfqq);
1673 cfq_start_queueing(cfqd, cfqq);
1677 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1679 struct cfq_data *cfqd = q->elevator->elevator_data;
1680 struct cfq_rq *crq = RQ_DATA(rq);
1681 struct cfq_queue *cfqq = crq->cfq_queue;
1683 cfq_init_prio_data(cfqq);
1685 cfq_add_crq_rb(crq);
1687 list_add_tail(&rq->queuelist, &cfqq->fifo);
1689 if (rq_mergeable(rq))
1690 cfq_add_crq_hash(cfqd, crq);
1692 cfq_crq_enqueued(cfqd, cfqq, crq);
1695 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1697 struct cfq_rq *crq = RQ_DATA(rq);
1698 struct cfq_queue *cfqq = crq->cfq_queue;
1699 struct cfq_data *cfqd = cfqq->cfqd;
1700 const int sync = cfq_crq_is_sync(crq);
1701 unsigned long now;
1703 now = jiffies;
1705 WARN_ON(!cfqd->rq_in_driver);
1706 WARN_ON(!cfqq->on_dispatch[sync]);
1707 cfqd->rq_in_driver--;
1708 cfqq->on_dispatch[sync]--;
1710 if (!cfq_class_idle(cfqq))
1711 cfqd->last_end_request = now;
1713 if (!cfq_cfqq_dispatched(cfqq)) {
1714 if (cfq_cfqq_on_rr(cfqq)) {
1715 cfqq->service_last = now;
1716 cfq_resort_rr_list(cfqq, 0);
1718 if (cfq_cfqq_expired(cfqq)) {
1719 __cfq_slice_expired(cfqd, cfqq, 0);
1720 cfq_schedule_dispatch(cfqd);
1724 if (cfq_crq_is_sync(crq))
1725 crq->io_context->last_end_request = now;
1728 static struct request *
1729 cfq_former_request(request_queue_t *q, struct request *rq)
1731 struct cfq_rq *crq = RQ_DATA(rq);
1732 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1734 if (rbprev)
1735 return rb_entry_crq(rbprev)->request;
1737 return NULL;
1740 static struct request *
1741 cfq_latter_request(request_queue_t *q, struct request *rq)
1743 struct cfq_rq *crq = RQ_DATA(rq);
1744 struct rb_node *rbnext = rb_next(&crq->rb_node);
1746 if (rbnext)
1747 return rb_entry_crq(rbnext)->request;
1749 return NULL;
1753 * we temporarily boost lower priority queues if they are holding fs exclusive
1754 * resources. they are boosted to normal prio (CLASS_BE/4)
1756 static void cfq_prio_boost(struct cfq_queue *cfqq)
1758 const int ioprio_class = cfqq->ioprio_class;
1759 const int ioprio = cfqq->ioprio;
1761 if (has_fs_excl()) {
1763 * boost idle prio on transactions that would lock out other
1764 * users of the filesystem
1766 if (cfq_class_idle(cfqq))
1767 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1768 if (cfqq->ioprio > IOPRIO_NORM)
1769 cfqq->ioprio = IOPRIO_NORM;
1770 } else {
1772 * check if we need to unboost the queue
1774 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1775 cfqq->ioprio_class = cfqq->org_ioprio_class;
1776 if (cfqq->ioprio != cfqq->org_ioprio)
1777 cfqq->ioprio = cfqq->org_ioprio;
1781 * refile between round-robin lists if we moved the priority class
1783 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1784 cfq_cfqq_on_rr(cfqq))
1785 cfq_resort_rr_list(cfqq, 0);
1788 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
1790 if (rw == READ || process_sync(task))
1791 return task->pid;
1793 return CFQ_KEY_ASYNC;
1796 static inline int
1797 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1798 struct task_struct *task, int rw)
1800 #if 1
1801 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1802 !cfq_cfqq_must_alloc_slice(cfqq)) {
1803 cfq_mark_cfqq_must_alloc_slice(cfqq);
1804 return ELV_MQUEUE_MUST;
1807 return ELV_MQUEUE_MAY;
1808 #else
1809 if (!cfqq || task->flags & PF_MEMALLOC)
1810 return ELV_MQUEUE_MAY;
1811 if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1812 if (cfq_cfqq_wait_request(cfqq))
1813 return ELV_MQUEUE_MUST;
1816 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1817 * can quickly flood the queue with writes from a single task
1819 if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1820 cfq_mark_cfqq_must_alloc_slice(cfqq);
1821 return ELV_MQUEUE_MUST;
1824 return ELV_MQUEUE_MAY;
1826 if (cfq_class_idle(cfqq))
1827 return ELV_MQUEUE_NO;
1828 if (cfqq->allocated[rw] >= cfqd->max_queued) {
1829 struct io_context *ioc = get_io_context(GFP_ATOMIC);
1830 int ret = ELV_MQUEUE_NO;
1832 if (ioc && ioc->nr_batch_requests)
1833 ret = ELV_MQUEUE_MAY;
1835 put_io_context(ioc);
1836 return ret;
1839 return ELV_MQUEUE_MAY;
1840 #endif
1843 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1845 struct cfq_data *cfqd = q->elevator->elevator_data;
1846 struct task_struct *tsk = current;
1847 struct cfq_queue *cfqq;
1850 * don't force setup of a queue from here, as a call to may_queue
1851 * does not necessarily imply that a request actually will be queued.
1852 * so just lookup a possibly existing queue, or return 'may queue'
1853 * if that fails
1855 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1856 if (cfqq) {
1857 cfq_init_prio_data(cfqq);
1858 cfq_prio_boost(cfqq);
1860 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1863 return ELV_MQUEUE_MAY;
1866 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1868 struct cfq_data *cfqd = q->elevator->elevator_data;
1869 struct request_list *rl = &q->rq;
1871 if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1872 smp_mb();
1873 if (waitqueue_active(&rl->wait[READ]))
1874 wake_up(&rl->wait[READ]);
1877 if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1878 smp_mb();
1879 if (waitqueue_active(&rl->wait[WRITE]))
1880 wake_up(&rl->wait[WRITE]);
1885 * queue lock held here
1887 static void cfq_put_request(request_queue_t *q, struct request *rq)
1889 struct cfq_data *cfqd = q->elevator->elevator_data;
1890 struct cfq_rq *crq = RQ_DATA(rq);
1892 if (crq) {
1893 struct cfq_queue *cfqq = crq->cfq_queue;
1894 const int rw = rq_data_dir(rq);
1896 BUG_ON(!cfqq->allocated[rw]);
1897 cfqq->allocated[rw]--;
1899 put_io_context(crq->io_context->ioc);
1901 mempool_free(crq, cfqd->crq_pool);
1902 rq->elevator_private = NULL;
1904 cfq_check_waiters(q, cfqq);
1905 cfq_put_queue(cfqq);
1910 * Allocate cfq data structures associated with this request.
1912 static int
1913 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1914 gfp_t gfp_mask)
1916 struct cfq_data *cfqd = q->elevator->elevator_data;
1917 struct task_struct *tsk = current;
1918 struct cfq_io_context *cic;
1919 const int rw = rq_data_dir(rq);
1920 pid_t key = cfq_queue_pid(tsk, rw);
1921 struct cfq_queue *cfqq;
1922 struct cfq_rq *crq;
1923 unsigned long flags;
1925 might_sleep_if(gfp_mask & __GFP_WAIT);
1927 cic = cfq_get_io_context(cfqd, key, gfp_mask);
1929 spin_lock_irqsave(q->queue_lock, flags);
1931 if (!cic)
1932 goto queue_fail;
1934 if (!cic->cfqq) {
1935 cfqq = cfq_get_queue(cfqd, key, tsk->ioprio, gfp_mask);
1936 if (!cfqq)
1937 goto queue_fail;
1939 cic->cfqq = cfqq;
1940 } else
1941 cfqq = cic->cfqq;
1943 cfqq->allocated[rw]++;
1944 cfq_clear_cfqq_must_alloc(cfqq);
1945 cfqd->rq_starved = 0;
1946 atomic_inc(&cfqq->ref);
1947 spin_unlock_irqrestore(q->queue_lock, flags);
1949 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
1950 if (crq) {
1951 RB_CLEAR(&crq->rb_node);
1952 crq->rb_key = 0;
1953 crq->request = rq;
1954 INIT_HLIST_NODE(&crq->hash);
1955 crq->cfq_queue = cfqq;
1956 crq->io_context = cic;
1958 if (rw == READ || process_sync(tsk))
1959 cfq_mark_crq_is_sync(crq);
1960 else
1961 cfq_clear_crq_is_sync(crq);
1963 rq->elevator_private = crq;
1964 return 0;
1967 spin_lock_irqsave(q->queue_lock, flags);
1968 cfqq->allocated[rw]--;
1969 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
1970 cfq_mark_cfqq_must_alloc(cfqq);
1971 cfq_put_queue(cfqq);
1972 queue_fail:
1973 if (cic)
1974 put_io_context(cic->ioc);
1976 * mark us rq allocation starved. we need to kickstart the process
1977 * ourselves if there are no pending requests that can do it for us.
1978 * that would be an extremely rare OOM situation
1980 cfqd->rq_starved = 1;
1981 cfq_schedule_dispatch(cfqd);
1982 spin_unlock_irqrestore(q->queue_lock, flags);
1983 return 1;
1986 static void cfq_kick_queue(void *data)
1988 request_queue_t *q = data;
1989 struct cfq_data *cfqd = q->elevator->elevator_data;
1990 unsigned long flags;
1992 spin_lock_irqsave(q->queue_lock, flags);
1994 if (cfqd->rq_starved) {
1995 struct request_list *rl = &q->rq;
1998 * we aren't guaranteed to get a request after this, but we
1999 * have to be opportunistic
2001 smp_mb();
2002 if (waitqueue_active(&rl->wait[READ]))
2003 wake_up(&rl->wait[READ]);
2004 if (waitqueue_active(&rl->wait[WRITE]))
2005 wake_up(&rl->wait[WRITE]);
2008 blk_remove_plug(q);
2009 q->request_fn(q);
2010 spin_unlock_irqrestore(q->queue_lock, flags);
2014 * Timer running if the active_queue is currently idling inside its time slice
2016 static void cfq_idle_slice_timer(unsigned long data)
2018 struct cfq_data *cfqd = (struct cfq_data *) data;
2019 struct cfq_queue *cfqq;
2020 unsigned long flags;
2022 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2024 if ((cfqq = cfqd->active_queue) != NULL) {
2025 unsigned long now = jiffies;
2028 * expired
2030 if (time_after(now, cfqq->slice_end))
2031 goto expire;
2034 * only expire and reinvoke request handler, if there are
2035 * other queues with pending requests
2037 if (!cfqd->busy_queues) {
2038 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2039 add_timer(&cfqd->idle_slice_timer);
2040 goto out_cont;
2044 * not expired and it has a request pending, let it dispatch
2046 if (!RB_EMPTY(&cfqq->sort_list)) {
2047 cfq_mark_cfqq_must_dispatch(cfqq);
2048 goto out_kick;
2051 expire:
2052 cfq_slice_expired(cfqd, 0);
2053 out_kick:
2054 cfq_schedule_dispatch(cfqd);
2055 out_cont:
2056 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2060 * Timer running if an idle class queue is waiting for service
2062 static void cfq_idle_class_timer(unsigned long data)
2064 struct cfq_data *cfqd = (struct cfq_data *) data;
2065 unsigned long flags, end;
2067 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2070 * race with a non-idle queue, reset timer
2072 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2073 if (!time_after_eq(jiffies, end)) {
2074 cfqd->idle_class_timer.expires = end;
2075 add_timer(&cfqd->idle_class_timer);
2076 } else
2077 cfq_schedule_dispatch(cfqd);
2079 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2082 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2084 del_timer_sync(&cfqd->idle_slice_timer);
2085 del_timer_sync(&cfqd->idle_class_timer);
2086 blk_sync_queue(cfqd->queue);
2089 static void cfq_put_cfqd(struct cfq_data *cfqd)
2091 request_queue_t *q = cfqd->queue;
2093 if (!atomic_dec_and_test(&cfqd->ref))
2094 return;
2096 cfq_shutdown_timer_wq(cfqd);
2097 blk_put_queue(q);
2099 mempool_destroy(cfqd->crq_pool);
2100 kfree(cfqd->crq_hash);
2101 kfree(cfqd->cfq_hash);
2102 kfree(cfqd);
2105 static void cfq_exit_queue(elevator_t *e)
2107 struct cfq_data *cfqd = e->elevator_data;
2109 cfq_shutdown_timer_wq(cfqd);
2110 cfq_put_cfqd(cfqd);
2113 static int cfq_init_queue(request_queue_t *q, elevator_t *e)
2115 struct cfq_data *cfqd;
2116 int i;
2118 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2119 if (!cfqd)
2120 return -ENOMEM;
2122 memset(cfqd, 0, sizeof(*cfqd));
2124 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2125 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2127 INIT_LIST_HEAD(&cfqd->busy_rr);
2128 INIT_LIST_HEAD(&cfqd->cur_rr);
2129 INIT_LIST_HEAD(&cfqd->idle_rr);
2130 INIT_LIST_HEAD(&cfqd->empty_list);
2132 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2133 if (!cfqd->crq_hash)
2134 goto out_crqhash;
2136 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2137 if (!cfqd->cfq_hash)
2138 goto out_cfqhash;
2140 cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool);
2141 if (!cfqd->crq_pool)
2142 goto out_crqpool;
2144 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2145 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2146 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2147 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2149 e->elevator_data = cfqd;
2151 cfqd->queue = q;
2152 atomic_inc(&q->refcnt);
2154 cfqd->max_queued = q->nr_requests / 4;
2155 q->nr_batching = cfq_queued;
2157 init_timer(&cfqd->idle_slice_timer);
2158 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2159 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2161 init_timer(&cfqd->idle_class_timer);
2162 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2163 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2165 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2167 atomic_set(&cfqd->ref, 1);
2169 cfqd->cfq_queued = cfq_queued;
2170 cfqd->cfq_quantum = cfq_quantum;
2171 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2172 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2173 cfqd->cfq_back_max = cfq_back_max;
2174 cfqd->cfq_back_penalty = cfq_back_penalty;
2175 cfqd->cfq_slice[0] = cfq_slice_async;
2176 cfqd->cfq_slice[1] = cfq_slice_sync;
2177 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2178 cfqd->cfq_slice_idle = cfq_slice_idle;
2179 cfqd->cfq_max_depth = cfq_max_depth;
2181 return 0;
2182 out_crqpool:
2183 kfree(cfqd->cfq_hash);
2184 out_cfqhash:
2185 kfree(cfqd->crq_hash);
2186 out_crqhash:
2187 kfree(cfqd);
2188 return -ENOMEM;
2191 static void cfq_slab_kill(void)
2193 if (crq_pool)
2194 kmem_cache_destroy(crq_pool);
2195 if (cfq_pool)
2196 kmem_cache_destroy(cfq_pool);
2197 if (cfq_ioc_pool)
2198 kmem_cache_destroy(cfq_ioc_pool);
2201 static int __init cfq_slab_setup(void)
2203 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2204 NULL, NULL);
2205 if (!crq_pool)
2206 goto fail;
2208 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2209 NULL, NULL);
2210 if (!cfq_pool)
2211 goto fail;
2213 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2214 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2215 if (!cfq_ioc_pool)
2216 goto fail;
2218 return 0;
2219 fail:
2220 cfq_slab_kill();
2221 return -ENOMEM;
2225 * sysfs parts below -->
2227 struct cfq_fs_entry {
2228 struct attribute attr;
2229 ssize_t (*show)(struct cfq_data *, char *);
2230 ssize_t (*store)(struct cfq_data *, const char *, size_t);
2233 static ssize_t
2234 cfq_var_show(unsigned int var, char *page)
2236 return sprintf(page, "%d\n", var);
2239 static ssize_t
2240 cfq_var_store(unsigned int *var, const char *page, size_t count)
2242 char *p = (char *) page;
2244 *var = simple_strtoul(p, &p, 10);
2245 return count;
2248 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2249 static ssize_t __FUNC(struct cfq_data *cfqd, char *page) \
2251 unsigned int __data = __VAR; \
2252 if (__CONV) \
2253 __data = jiffies_to_msecs(__data); \
2254 return cfq_var_show(__data, (page)); \
2256 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2257 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2258 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2259 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2260 SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0);
2261 SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0);
2262 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2263 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2264 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2265 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2266 SHOW_FUNCTION(cfq_max_depth_show, cfqd->cfq_max_depth, 0);
2267 #undef SHOW_FUNCTION
2269 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2270 static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count) \
2272 unsigned int __data; \
2273 int ret = cfq_var_store(&__data, (page), count); \
2274 if (__data < (MIN)) \
2275 __data = (MIN); \
2276 else if (__data > (MAX)) \
2277 __data = (MAX); \
2278 if (__CONV) \
2279 *(__PTR) = msecs_to_jiffies(__data); \
2280 else \
2281 *(__PTR) = __data; \
2282 return ret; \
2284 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2285 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2286 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2287 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2288 STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2289 STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2290 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2291 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2292 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2293 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2294 STORE_FUNCTION(cfq_max_depth_store, &cfqd->cfq_max_depth, 1, UINT_MAX, 0);
2295 #undef STORE_FUNCTION
2297 static struct cfq_fs_entry cfq_quantum_entry = {
2298 .attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR },
2299 .show = cfq_quantum_show,
2300 .store = cfq_quantum_store,
2302 static struct cfq_fs_entry cfq_queued_entry = {
2303 .attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR },
2304 .show = cfq_queued_show,
2305 .store = cfq_queued_store,
2307 static struct cfq_fs_entry cfq_fifo_expire_sync_entry = {
2308 .attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR },
2309 .show = cfq_fifo_expire_sync_show,
2310 .store = cfq_fifo_expire_sync_store,
2312 static struct cfq_fs_entry cfq_fifo_expire_async_entry = {
2313 .attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR },
2314 .show = cfq_fifo_expire_async_show,
2315 .store = cfq_fifo_expire_async_store,
2317 static struct cfq_fs_entry cfq_back_max_entry = {
2318 .attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR },
2319 .show = cfq_back_max_show,
2320 .store = cfq_back_max_store,
2322 static struct cfq_fs_entry cfq_back_penalty_entry = {
2323 .attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR },
2324 .show = cfq_back_penalty_show,
2325 .store = cfq_back_penalty_store,
2327 static struct cfq_fs_entry cfq_slice_sync_entry = {
2328 .attr = {.name = "slice_sync", .mode = S_IRUGO | S_IWUSR },
2329 .show = cfq_slice_sync_show,
2330 .store = cfq_slice_sync_store,
2332 static struct cfq_fs_entry cfq_slice_async_entry = {
2333 .attr = {.name = "slice_async", .mode = S_IRUGO | S_IWUSR },
2334 .show = cfq_slice_async_show,
2335 .store = cfq_slice_async_store,
2337 static struct cfq_fs_entry cfq_slice_async_rq_entry = {
2338 .attr = {.name = "slice_async_rq", .mode = S_IRUGO | S_IWUSR },
2339 .show = cfq_slice_async_rq_show,
2340 .store = cfq_slice_async_rq_store,
2342 static struct cfq_fs_entry cfq_slice_idle_entry = {
2343 .attr = {.name = "slice_idle", .mode = S_IRUGO | S_IWUSR },
2344 .show = cfq_slice_idle_show,
2345 .store = cfq_slice_idle_store,
2347 static struct cfq_fs_entry cfq_max_depth_entry = {
2348 .attr = {.name = "max_depth", .mode = S_IRUGO | S_IWUSR },
2349 .show = cfq_max_depth_show,
2350 .store = cfq_max_depth_store,
2353 static struct attribute *default_attrs[] = {
2354 &cfq_quantum_entry.attr,
2355 &cfq_queued_entry.attr,
2356 &cfq_fifo_expire_sync_entry.attr,
2357 &cfq_fifo_expire_async_entry.attr,
2358 &cfq_back_max_entry.attr,
2359 &cfq_back_penalty_entry.attr,
2360 &cfq_slice_sync_entry.attr,
2361 &cfq_slice_async_entry.attr,
2362 &cfq_slice_async_rq_entry.attr,
2363 &cfq_slice_idle_entry.attr,
2364 &cfq_max_depth_entry.attr,
2365 NULL,
2368 #define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr)
2370 static ssize_t
2371 cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2373 elevator_t *e = container_of(kobj, elevator_t, kobj);
2374 struct cfq_fs_entry *entry = to_cfq(attr);
2376 if (!entry->show)
2377 return -EIO;
2379 return entry->show(e->elevator_data, page);
2382 static ssize_t
2383 cfq_attr_store(struct kobject *kobj, struct attribute *attr,
2384 const char *page, size_t length)
2386 elevator_t *e = container_of(kobj, elevator_t, kobj);
2387 struct cfq_fs_entry *entry = to_cfq(attr);
2389 if (!entry->store)
2390 return -EIO;
2392 return entry->store(e->elevator_data, page, length);
2395 static struct sysfs_ops cfq_sysfs_ops = {
2396 .show = cfq_attr_show,
2397 .store = cfq_attr_store,
2400 static struct kobj_type cfq_ktype = {
2401 .sysfs_ops = &cfq_sysfs_ops,
2402 .default_attrs = default_attrs,
2405 static struct elevator_type iosched_cfq = {
2406 .ops = {
2407 .elevator_merge_fn = cfq_merge,
2408 .elevator_merged_fn = cfq_merged_request,
2409 .elevator_merge_req_fn = cfq_merged_requests,
2410 .elevator_dispatch_fn = cfq_dispatch_requests,
2411 .elevator_add_req_fn = cfq_insert_request,
2412 .elevator_activate_req_fn = cfq_activate_request,
2413 .elevator_deactivate_req_fn = cfq_deactivate_request,
2414 .elevator_queue_empty_fn = cfq_queue_empty,
2415 .elevator_completed_req_fn = cfq_completed_request,
2416 .elevator_former_req_fn = cfq_former_request,
2417 .elevator_latter_req_fn = cfq_latter_request,
2418 .elevator_set_req_fn = cfq_set_request,
2419 .elevator_put_req_fn = cfq_put_request,
2420 .elevator_may_queue_fn = cfq_may_queue,
2421 .elevator_init_fn = cfq_init_queue,
2422 .elevator_exit_fn = cfq_exit_queue,
2424 .elevator_ktype = &cfq_ktype,
2425 .elevator_name = "cfq",
2426 .elevator_owner = THIS_MODULE,
2429 static int __init cfq_init(void)
2431 int ret;
2434 * could be 0 on HZ < 1000 setups
2436 if (!cfq_slice_async)
2437 cfq_slice_async = 1;
2438 if (!cfq_slice_idle)
2439 cfq_slice_idle = 1;
2441 if (cfq_slab_setup())
2442 return -ENOMEM;
2444 ret = elv_register(&iosched_cfq);
2445 if (ret)
2446 cfq_slab_kill();
2448 return ret;
2451 static void __exit cfq_exit(void)
2453 elv_unregister(&iosched_cfq);
2454 cfq_slab_kill();
2457 module_init(cfq_init);
2458 module_exit(cfq_exit);
2460 MODULE_AUTHOR("Jens Axboe");
2461 MODULE_LICENSE("GPL");
2462 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");