[SCSI] advansys: Move to scsi hotplug initialisation model
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / pci / cmipci.c
blob7d3c5ee0005cc0bf81fe805fe08cdfe932bb26d8
1 /*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gameport.h>
31 #include <linux/moduleparam.h>
32 #include <linux/mutex.h>
33 #include <sound/core.h>
34 #include <sound/info.h>
35 #include <sound/control.h>
36 #include <sound/pcm.h>
37 #include <sound/rawmidi.h>
38 #include <sound/mpu401.h>
39 #include <sound/opl3.h>
40 #include <sound/sb.h>
41 #include <sound/asoundef.h>
42 #include <sound/initval.h>
44 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
45 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
48 "{C-Media,CMI8738B},"
49 "{C-Media,CMI8338A},"
50 "{C-Media,CMI8338B}}");
52 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
53 #define SUPPORT_JOYSTICK 1
54 #endif
56 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
57 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
58 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
59 static long mpu_port[SNDRV_CARDS];
60 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
62 #ifdef SUPPORT_JOYSTICK
63 static int joystick_port[SNDRV_CARDS];
64 #endif
66 module_param_array(index, int, NULL, 0444);
67 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
68 module_param_array(id, charp, NULL, 0444);
69 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
70 module_param_array(enable, bool, NULL, 0444);
71 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
72 module_param_array(mpu_port, long, NULL, 0444);
73 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
74 module_param_array(fm_port, long, NULL, 0444);
75 MODULE_PARM_DESC(fm_port, "FM port.");
76 module_param_array(soft_ac3, bool, NULL, 0444);
77 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
78 #ifdef SUPPORT_JOYSTICK
79 module_param_array(joystick_port, int, NULL, 0444);
80 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
81 #endif
84 * CM8x38 registers definition
87 #define CM_REG_FUNCTRL0 0x00
88 #define CM_RST_CH1 0x00080000
89 #define CM_RST_CH0 0x00040000
90 #define CM_CHEN1 0x00020000 /* ch1: enable */
91 #define CM_CHEN0 0x00010000 /* ch0: enable */
92 #define CM_PAUSE1 0x00000008 /* ch1: pause */
93 #define CM_PAUSE0 0x00000004 /* ch0: pause */
94 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
95 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
97 #define CM_REG_FUNCTRL1 0x04
98 #define CM_ASFC_MASK 0x0000E000 /* ADC sampling frequency */
99 #define CM_ASFC_SHIFT 13
100 #define CM_DSFC_MASK 0x00001C00 /* DAC sampling frequency */
101 #define CM_DSFC_SHIFT 10
102 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
103 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
104 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/OUT -> IN loopback */
105 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
106 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
107 #define CM_BREQ 0x00000010 /* bus master enabled */
108 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
109 #define CM_UART_EN 0x00000004 /* UART */
110 #define CM_JYSTK_EN 0x00000002 /* joy stick */
112 #define CM_REG_CHFORMAT 0x08
114 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */
115 #define CM_CHB3D 0x20000000 /* 4 channels */
117 #define CM_CHIP_MASK1 0x1f000000
118 #define CM_CHIP_037 0x01000000
120 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
121 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
122 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
123 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
125 #define CM_ADCBITLEN_MASK 0x0000C000
126 #define CM_ADCBITLEN_16 0x00000000
127 #define CM_ADCBITLEN_15 0x00004000
128 #define CM_ADCBITLEN_14 0x00008000
129 #define CM_ADCBITLEN_13 0x0000C000
131 #define CM_ADCDACLEN_MASK 0x00003000
132 #define CM_ADCDACLEN_060 0x00000000
133 #define CM_ADCDACLEN_066 0x00001000
134 #define CM_ADCDACLEN_130 0x00002000
135 #define CM_ADCDACLEN_280 0x00003000
137 #define CM_CH1_SRATE_176K 0x00000800
138 #define CM_CH1_SRATE_88K 0x00000400
139 #define CM_CH0_SRATE_176K 0x00000200
140 #define CM_CH0_SRATE_88K 0x00000100
142 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
144 #define CM_CH1FMT_MASK 0x0000000C
145 #define CM_CH1FMT_SHIFT 2
146 #define CM_CH0FMT_MASK 0x00000003
147 #define CM_CH0FMT_SHIFT 0
149 #define CM_REG_INT_HLDCLR 0x0C
150 #define CM_CHIP_MASK2 0xff000000
151 #define CM_CHIP_039 0x04000000
152 #define CM_CHIP_039_6CH 0x01000000
153 #define CM_CHIP_055 0x08000000
154 #define CM_CHIP_8768 0x20000000
155 #define CM_TDMA_INT_EN 0x00040000
156 #define CM_CH1_INT_EN 0x00020000
157 #define CM_CH0_INT_EN 0x00010000
158 #define CM_INT_HOLD 0x00000002
159 #define CM_INT_CLEAR 0x00000001
161 #define CM_REG_INT_STATUS 0x10
162 #define CM_INTR 0x80000000
163 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
164 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
165 #define CM_UARTINT 0x00010000
166 #define CM_LTDMAINT 0x00008000
167 #define CM_HTDMAINT 0x00004000
168 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
169 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
170 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
171 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
172 #define CM_CH1BUSY 0x00000008
173 #define CM_CH0BUSY 0x00000004
174 #define CM_CHINT1 0x00000002
175 #define CM_CHINT0 0x00000001
177 #define CM_REG_LEGACY_CTRL 0x14
178 #define CM_NXCHG 0x80000000 /* h/w multi channels? */
179 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
180 #define CM_VMPU_330 0x00000000
181 #define CM_VMPU_320 0x20000000
182 #define CM_VMPU_310 0x40000000
183 #define CM_VMPU_300 0x60000000
184 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
185 #define CM_VSBSEL_220 0x00000000
186 #define CM_VSBSEL_240 0x04000000
187 #define CM_VSBSEL_260 0x08000000
188 #define CM_VSBSEL_280 0x0C000000
189 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
190 #define CM_FMSEL_388 0x00000000
191 #define CM_FMSEL_3C8 0x01000000
192 #define CM_FMSEL_3E0 0x02000000
193 #define CM_FMSEL_3E8 0x03000000
194 #define CM_ENSPDOUT 0x00800000 /* enable XPDIF/OUT to I/O interface */
195 #define CM_SPDCOPYRHT 0x00400000 /* set copyright spdif in/out */
196 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
197 #define CM_SETRETRY 0x00010000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
199 #define CM_LINE_AS_BASS 0x00006000 /* use line-in as bass */
201 #define CM_REG_MISC_CTRL 0x18
202 #define CM_PWD 0x80000000
203 #define CM_RESET 0x40000000
204 #define CM_SFIL_MASK 0x30000000
205 #define CM_TXVX 0x08000000
206 #define CM_N4SPK3D 0x04000000 /* 4ch output */
207 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
208 #define CM_SPDIF48K 0x01000000 /* write */
209 #define CM_SPATUS48K 0x01000000 /* read */
210 #define CM_ENDBDAC 0x00800000 /* enable dual dac */
211 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
212 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
213 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-IN -> int. OUT */
214 #define CM_FM_EN 0x00080000 /* enalbe FM */
215 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
216 #define CM_VIDWPDSB 0x00010000
217 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
218 #define CM_MASK_EN 0x00004000
219 #define CM_VIDWPPRT 0x00002000
220 #define CM_SFILENB 0x00001000
221 #define CM_MMODE_MASK 0x00000E00
222 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
223 #define CM_ENCENTER 0x00000080
224 #define CM_FLINKON 0x00000040
225 #define CM_FLINKOFF 0x00000020
226 #define CM_MIDSMP 0x00000010
227 #define CM_UPDDMA_MASK 0x0000000C
228 #define CM_TWAIT_MASK 0x00000003
230 /* byte */
231 #define CM_REG_MIXER0 0x20
233 #define CM_REG_SB16_DATA 0x22
234 #define CM_REG_SB16_ADDR 0x23
236 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
237 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
238 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
239 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
241 #define CM_REG_MIXER1 0x24
242 #define CM_FMMUTE 0x80 /* mute FM */
243 #define CM_FMMUTE_SHIFT 7
244 #define CM_WSMUTE 0x40 /* mute PCM */
245 #define CM_WSMUTE_SHIFT 6
246 #define CM_SPK4 0x20 /* lin-in -> rear line out */
247 #define CM_SPK4_SHIFT 5
248 #define CM_REAR2FRONT 0x10 /* exchange rear/front */
249 #define CM_REAR2FRONT_SHIFT 4
250 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */
251 #define CM_WAVEINL_SHIFT 3
252 #define CM_WAVEINR 0x04 /* digical wave rec. right */
253 #define CM_WAVEINR_SHIFT 2
254 #define CM_X3DEN 0x02 /* 3D surround enable */
255 #define CM_X3DEN_SHIFT 1
256 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
257 #define CM_CDPLAY_SHIFT 0
259 #define CM_REG_MIXER2 0x25
260 #define CM_RAUXREN 0x80 /* AUX right capture */
261 #define CM_RAUXREN_SHIFT 7
262 #define CM_RAUXLEN 0x40 /* AUX left capture */
263 #define CM_RAUXLEN_SHIFT 6
264 #define CM_VAUXRM 0x20 /* AUX right mute */
265 #define CM_VAUXRM_SHIFT 5
266 #define CM_VAUXLM 0x10 /* AUX left mute */
267 #define CM_VAUXLM_SHIFT 4
268 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
269 #define CM_VADMIC_SHIFT 1
270 #define CM_MICGAINZ 0x01 /* mic boost */
271 #define CM_MICGAINZ_SHIFT 0
273 #define CM_REG_MIXER3 0x24
274 #define CM_REG_AUX_VOL 0x26
275 #define CM_VAUXL_MASK 0xf0
276 #define CM_VAUXR_MASK 0x0f
278 #define CM_REG_MISC 0x27
279 #define CM_XGPO1 0x20
280 // #define CM_XGPBIO 0x04
281 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
282 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
283 #define CM_SPDVALID 0x02 /* spdif input valid check */
284 #define CM_DMAUTO 0x01
286 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
288 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
289 * or identical with AC97 codec?
291 #define CM_REG_EXTERN_CODEC CM_REG_AC97
294 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
296 #define CM_REG_MPU_PCI 0x40
299 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
301 #define CM_REG_FM_PCI 0x50
304 * access from SB-mixer port
306 #define CM_REG_EXTENT_IND 0xf0
307 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
308 #define CM_VPHONE_SHIFT 5
309 #define CM_VPHOM 0x10 /* Phone mute control */
310 #define CM_VSPKM 0x08 /* Speaker mute control, default high */
311 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
312 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
313 #define CM_VADMIC3 0x01 /* Mic record boost */
316 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
317 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
318 * unit (readonly?).
320 #define CM_REG_PLL 0xf8
323 * extended registers
325 #define CM_REG_CH0_FRAME1 0x80 /* base address */
326 #define CM_REG_CH0_FRAME2 0x84
327 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
328 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
329 #define CM_REG_EXT_MISC 0x90
330 #define CM_REG_MISC_CTRL_8768 0x92 /* reg. name the same as 0x18 */
331 #define CM_CHB3D8C 0x20 /* 7.1 channels support */
332 #define CM_SPD32FMT 0x10 /* SPDIF/IN 32k */
333 #define CM_ADC2SPDIF 0x08 /* ADC output to SPDIF/OUT */
334 #define CM_SHAREADC 0x04 /* DAC in ADC as Center/LFE */
335 #define CM_REALTCMP 0x02 /* monitor the CMPL/CMPR of ADC */
336 #define CM_INVLRCK 0x01 /* invert ZVPORT's LRCK */
339 * size of i/o region
341 #define CM_EXTENT_CODEC 0x100
342 #define CM_EXTENT_MIDI 0x2
343 #define CM_EXTENT_SYNTH 0x4
347 * channels for playback / capture
349 #define CM_CH_PLAY 0
350 #define CM_CH_CAPT 1
353 * flags to check device open/close
355 #define CM_OPEN_NONE 0
356 #define CM_OPEN_CH_MASK 0x01
357 #define CM_OPEN_DAC 0x10
358 #define CM_OPEN_ADC 0x20
359 #define CM_OPEN_SPDIF 0x40
360 #define CM_OPEN_MCHAN 0x80
361 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
362 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
363 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
364 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
365 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
366 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
369 #if CM_CH_PLAY == 1
370 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
371 #define CM_PLAYBACK_SPDF CM_SPDF_1
372 #define CM_CAPTURE_SPDF CM_SPDF_0
373 #else
374 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
375 #define CM_PLAYBACK_SPDF CM_SPDF_0
376 #define CM_CAPTURE_SPDF CM_SPDF_1
377 #endif
381 * driver data
384 struct cmipci_pcm {
385 struct snd_pcm_substream *substream;
386 int running; /* dac/adc running? */
387 unsigned int dma_size; /* in frames */
388 unsigned int period_size; /* in frames */
389 unsigned int offset; /* physical address of the buffer */
390 unsigned int fmt; /* format bits */
391 int ch; /* channel (0/1) */
392 unsigned int is_dac; /* is dac? */
393 int bytes_per_frame;
394 int shift;
397 /* mixer elements toggled/resumed during ac3 playback */
398 struct cmipci_mixer_auto_switches {
399 const char *name; /* switch to toggle */
400 int toggle_on; /* value to change when ac3 mode */
402 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
403 {"PCM Playback Switch", 0},
404 {"IEC958 Output Switch", 1},
405 {"IEC958 Mix Analog", 0},
406 // {"IEC958 Out To DAC", 1}, // no longer used
407 {"IEC958 Loop", 0},
409 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
411 struct cmipci {
412 struct snd_card *card;
414 struct pci_dev *pci;
415 unsigned int device; /* device ID */
416 int irq;
418 unsigned long iobase;
419 unsigned int ctrl; /* FUNCTRL0 current value */
421 struct snd_pcm *pcm; /* DAC/ADC PCM */
422 struct snd_pcm *pcm2; /* 2nd DAC */
423 struct snd_pcm *pcm_spdif; /* SPDIF */
425 int chip_version;
426 int max_channels;
427 unsigned int has_dual_dac: 1;
428 unsigned int can_ac3_sw: 1;
429 unsigned int can_ac3_hw: 1;
430 unsigned int can_multi_ch: 1;
431 unsigned int do_soft_ac3: 1;
433 unsigned int spdif_playback_avail: 1; /* spdif ready? */
434 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
435 int spdif_counter; /* for software AC3 */
437 unsigned int dig_status;
438 unsigned int dig_pcm_status;
440 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
442 int opened[2]; /* open mode */
443 struct mutex open_mutex;
445 unsigned int mixer_insensitive: 1;
446 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
447 int mixer_res_status[CM_SAVED_MIXERS];
449 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
451 /* external MIDI */
452 struct snd_rawmidi *rmidi;
454 #ifdef SUPPORT_JOYSTICK
455 struct gameport *gameport;
456 #endif
458 spinlock_t reg_lock;
460 #ifdef CONFIG_PM
461 unsigned int saved_regs[0x20];
462 unsigned char saved_mixers[0x20];
463 #endif
467 /* read/write operations for dword register */
468 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
470 outl(data, cm->iobase + cmd);
473 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
475 return inl(cm->iobase + cmd);
478 /* read/write operations for word register */
479 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
481 outw(data, cm->iobase + cmd);
484 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
486 return inw(cm->iobase + cmd);
489 /* read/write operations for byte register */
490 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
492 outb(data, cm->iobase + cmd);
495 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
497 return inb(cm->iobase + cmd);
500 /* bit operations for dword register */
501 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
503 unsigned int val, oval;
504 val = oval = inl(cm->iobase + cmd);
505 val |= flag;
506 if (val == oval)
507 return 0;
508 outl(val, cm->iobase + cmd);
509 return 1;
512 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
514 unsigned int val, oval;
515 val = oval = inl(cm->iobase + cmd);
516 val &= ~flag;
517 if (val == oval)
518 return 0;
519 outl(val, cm->iobase + cmd);
520 return 1;
523 /* bit operations for byte register */
524 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
526 unsigned char val, oval;
527 val = oval = inb(cm->iobase + cmd);
528 val |= flag;
529 if (val == oval)
530 return 0;
531 outb(val, cm->iobase + cmd);
532 return 1;
535 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
537 unsigned char val, oval;
538 val = oval = inb(cm->iobase + cmd);
539 val &= ~flag;
540 if (val == oval)
541 return 0;
542 outb(val, cm->iobase + cmd);
543 return 1;
548 * PCM interface
552 * calculate frequency
555 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
557 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
559 unsigned int i;
560 for (i = 0; i < ARRAY_SIZE(rates); i++) {
561 if (rates[i] == rate)
562 return i;
564 snd_BUG();
565 return 0;
568 #ifdef USE_VAR48KRATE
570 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
571 * does it this way .. maybe not. Never get any information from C-Media about
572 * that <werner@suse.de>.
574 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
576 unsigned int delta, tolerance;
577 int xm, xn, xr;
579 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
580 rate <<= 1;
581 *n = -1;
582 if (*r > 0xff)
583 goto out;
584 tolerance = rate*CM_TOLERANCE_RATE;
586 for (xn = (1+2); xn < (0x1f+2); xn++) {
587 for (xm = (1+2); xm < (0xff+2); xm++) {
588 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
590 if (xr < rate)
591 delta = rate - xr;
592 else
593 delta = xr - rate;
596 * If we found one, remember this,
597 * and try to find a closer one
599 if (delta < tolerance) {
600 tolerance = delta;
601 *m = xm - 2;
602 *n = xn - 2;
606 out:
607 return (*n > -1);
611 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
612 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
613 * at the register CM_REG_FUNCTRL1 (0x04).
614 * Problem: other ways are also possible (any information about that?)
616 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
618 unsigned int reg = CM_REG_PLL + slot;
620 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
621 * for DSFC/ASFC (000 upto 111).
624 /* FIXME: Init (Do we've to set an other register first before programming?) */
626 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
627 snd_cmipci_write_b(cm, reg, rate>>8);
628 snd_cmipci_write_b(cm, reg, rate&0xff);
630 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
632 #endif /* USE_VAR48KRATE */
634 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
635 struct snd_pcm_hw_params *hw_params)
637 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
640 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
641 struct snd_pcm_hw_params *hw_params)
643 struct cmipci *cm = snd_pcm_substream_chip(substream);
644 if (params_channels(hw_params) > 2) {
645 mutex_lock(&cm->open_mutex);
646 if (cm->opened[CM_CH_PLAY]) {
647 mutex_unlock(&cm->open_mutex);
648 return -EBUSY;
650 /* reserve the channel A */
651 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
652 mutex_unlock(&cm->open_mutex);
654 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
657 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
659 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
660 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
661 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
662 udelay(10);
665 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
667 return snd_pcm_lib_free_pages(substream);
674 static unsigned int hw_channels[] = {1, 2, 4, 5, 6, 8};
675 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
676 .count = 3,
677 .list = hw_channels,
678 .mask = 0,
680 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
681 .count = 5,
682 .list = hw_channels,
683 .mask = 0,
685 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
686 .count = 6,
687 .list = hw_channels,
688 .mask = 0,
691 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
693 if (channels > 2) {
694 if (! cm->can_multi_ch)
695 return -EINVAL;
696 if (rec->fmt != 0x03) /* stereo 16bit only */
697 return -EINVAL;
699 spin_lock_irq(&cm->reg_lock);
700 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
701 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
702 if (channels > 4) {
703 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
704 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
705 } else {
706 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
707 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
709 if (channels >= 6) {
710 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
711 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
712 } else {
713 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
714 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
716 if (cm->chip_version == 68) {
717 if (channels == 8) {
718 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
719 } else {
720 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL_8768, CM_CHB3D8C);
723 spin_unlock_irq(&cm->reg_lock);
725 } else {
726 if (cm->can_multi_ch) {
727 spin_lock_irq(&cm->reg_lock);
728 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
729 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
730 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
731 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
732 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENCENTER);
733 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
734 spin_unlock_irq(&cm->reg_lock);
737 return 0;
742 * prepare playback/capture channel
743 * channel to be used must have been set in rec->ch.
745 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
746 struct snd_pcm_substream *substream)
748 unsigned int reg, freq, val;
749 struct snd_pcm_runtime *runtime = substream->runtime;
751 rec->fmt = 0;
752 rec->shift = 0;
753 if (snd_pcm_format_width(runtime->format) >= 16) {
754 rec->fmt |= 0x02;
755 if (snd_pcm_format_width(runtime->format) > 16)
756 rec->shift++; /* 24/32bit */
758 if (runtime->channels > 1)
759 rec->fmt |= 0x01;
760 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
761 snd_printd("cannot set dac channels\n");
762 return -EINVAL;
765 rec->offset = runtime->dma_addr;
766 /* buffer and period sizes in frame */
767 rec->dma_size = runtime->buffer_size << rec->shift;
768 rec->period_size = runtime->period_size << rec->shift;
769 if (runtime->channels > 2) {
770 /* multi-channels */
771 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
772 rec->period_size = (rec->period_size * runtime->channels) / 2;
775 spin_lock_irq(&cm->reg_lock);
777 /* set buffer address */
778 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
779 snd_cmipci_write(cm, reg, rec->offset);
780 /* program sample counts */
781 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
782 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
783 snd_cmipci_write_w(cm, reg + 2, rec->period_size - 1);
785 /* set adc/dac flag */
786 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
787 if (rec->is_dac)
788 cm->ctrl &= ~val;
789 else
790 cm->ctrl |= val;
791 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
792 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
794 /* set sample rate */
795 freq = snd_cmipci_rate_freq(runtime->rate);
796 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
797 if (rec->ch) {
798 val &= ~CM_ASFC_MASK;
799 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
800 } else {
801 val &= ~CM_DSFC_MASK;
802 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
804 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
805 //snd_printd("cmipci: functrl1 = %08x\n", val);
807 /* set format */
808 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
809 if (rec->ch) {
810 val &= ~CM_CH1FMT_MASK;
811 val |= rec->fmt << CM_CH1FMT_SHIFT;
812 } else {
813 val &= ~CM_CH0FMT_MASK;
814 val |= rec->fmt << CM_CH0FMT_SHIFT;
816 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
817 //snd_printd("cmipci: chformat = %08x\n", val);
819 rec->running = 0;
820 spin_unlock_irq(&cm->reg_lock);
822 return 0;
826 * PCM trigger/stop
828 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
829 struct snd_pcm_substream *substream, int cmd)
831 unsigned int inthld, chen, reset, pause;
832 int result = 0;
834 inthld = CM_CH0_INT_EN << rec->ch;
835 chen = CM_CHEN0 << rec->ch;
836 reset = CM_RST_CH0 << rec->ch;
837 pause = CM_PAUSE0 << rec->ch;
839 spin_lock(&cm->reg_lock);
840 switch (cmd) {
841 case SNDRV_PCM_TRIGGER_START:
842 rec->running = 1;
843 /* set interrupt */
844 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
845 cm->ctrl |= chen;
846 /* enable channel */
847 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
848 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
849 break;
850 case SNDRV_PCM_TRIGGER_STOP:
851 rec->running = 0;
852 /* disable interrupt */
853 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
854 /* reset */
855 cm->ctrl &= ~chen;
856 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
857 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
858 break;
859 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
860 case SNDRV_PCM_TRIGGER_SUSPEND:
861 cm->ctrl |= pause;
862 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
863 break;
864 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
865 case SNDRV_PCM_TRIGGER_RESUME:
866 cm->ctrl &= ~pause;
867 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
868 break;
869 default:
870 result = -EINVAL;
871 break;
873 spin_unlock(&cm->reg_lock);
874 return result;
878 * return the current pointer
880 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
881 struct snd_pcm_substream *substream)
883 size_t ptr;
884 unsigned int reg;
885 if (!rec->running)
886 return 0;
887 #if 1 // this seems better..
888 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
889 ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
890 ptr >>= rec->shift;
891 #else
892 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
893 ptr = snd_cmipci_read(cm, reg) - rec->offset;
894 ptr = bytes_to_frames(substream->runtime, ptr);
895 #endif
896 if (substream->runtime->channels > 2)
897 ptr = (ptr * 2) / substream->runtime->channels;
898 return ptr;
902 * playback
905 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
906 int cmd)
908 struct cmipci *cm = snd_pcm_substream_chip(substream);
909 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], substream, cmd);
912 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
914 struct cmipci *cm = snd_pcm_substream_chip(substream);
915 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
921 * capture
924 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
925 int cmd)
927 struct cmipci *cm = snd_pcm_substream_chip(substream);
928 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], substream, cmd);
931 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
933 struct cmipci *cm = snd_pcm_substream_chip(substream);
934 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
939 * hw preparation for spdif
942 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
943 struct snd_ctl_elem_info *uinfo)
945 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
946 uinfo->count = 1;
947 return 0;
950 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
951 struct snd_ctl_elem_value *ucontrol)
953 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
954 int i;
956 spin_lock_irq(&chip->reg_lock);
957 for (i = 0; i < 4; i++)
958 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
959 spin_unlock_irq(&chip->reg_lock);
960 return 0;
963 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
964 struct snd_ctl_elem_value *ucontrol)
966 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
967 int i, change;
968 unsigned int val;
970 val = 0;
971 spin_lock_irq(&chip->reg_lock);
972 for (i = 0; i < 4; i++)
973 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
974 change = val != chip->dig_status;
975 chip->dig_status = val;
976 spin_unlock_irq(&chip->reg_lock);
977 return change;
980 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
982 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
983 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
984 .info = snd_cmipci_spdif_default_info,
985 .get = snd_cmipci_spdif_default_get,
986 .put = snd_cmipci_spdif_default_put
989 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
990 struct snd_ctl_elem_info *uinfo)
992 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
993 uinfo->count = 1;
994 return 0;
997 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
998 struct snd_ctl_elem_value *ucontrol)
1000 ucontrol->value.iec958.status[0] = 0xff;
1001 ucontrol->value.iec958.status[1] = 0xff;
1002 ucontrol->value.iec958.status[2] = 0xff;
1003 ucontrol->value.iec958.status[3] = 0xff;
1004 return 0;
1007 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1009 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1010 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1011 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1012 .info = snd_cmipci_spdif_mask_info,
1013 .get = snd_cmipci_spdif_mask_get,
1016 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1017 struct snd_ctl_elem_info *uinfo)
1019 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1020 uinfo->count = 1;
1021 return 0;
1024 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1025 struct snd_ctl_elem_value *ucontrol)
1027 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1028 int i;
1030 spin_lock_irq(&chip->reg_lock);
1031 for (i = 0; i < 4; i++)
1032 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1033 spin_unlock_irq(&chip->reg_lock);
1034 return 0;
1037 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1038 struct snd_ctl_elem_value *ucontrol)
1040 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1041 int i, change;
1042 unsigned int val;
1044 val = 0;
1045 spin_lock_irq(&chip->reg_lock);
1046 for (i = 0; i < 4; i++)
1047 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1048 change = val != chip->dig_pcm_status;
1049 chip->dig_pcm_status = val;
1050 spin_unlock_irq(&chip->reg_lock);
1051 return change;
1054 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1056 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1057 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1058 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1059 .info = snd_cmipci_spdif_stream_info,
1060 .get = snd_cmipci_spdif_stream_get,
1061 .put = snd_cmipci_spdif_stream_put
1067 /* save mixer setting and mute for AC3 playback */
1068 static int save_mixer_state(struct cmipci *cm)
1070 if (! cm->mixer_insensitive) {
1071 struct snd_ctl_elem_value *val;
1072 unsigned int i;
1074 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1075 if (!val)
1076 return -ENOMEM;
1077 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1078 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1079 if (ctl) {
1080 int event;
1081 memset(val, 0, sizeof(*val));
1082 ctl->get(ctl, val);
1083 cm->mixer_res_status[i] = val->value.integer.value[0];
1084 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1085 event = SNDRV_CTL_EVENT_MASK_INFO;
1086 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1087 ctl->put(ctl, val); /* toggle */
1088 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1090 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1091 snd_ctl_notify(cm->card, event, &ctl->id);
1094 kfree(val);
1095 cm->mixer_insensitive = 1;
1097 return 0;
1101 /* restore the previously saved mixer status */
1102 static void restore_mixer_state(struct cmipci *cm)
1104 if (cm->mixer_insensitive) {
1105 struct snd_ctl_elem_value *val;
1106 unsigned int i;
1108 val = kmalloc(sizeof(*val), GFP_KERNEL);
1109 if (!val)
1110 return;
1111 cm->mixer_insensitive = 0; /* at first clear this;
1112 otherwise the changes will be ignored */
1113 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1114 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1115 if (ctl) {
1116 int event;
1118 memset(val, 0, sizeof(*val));
1119 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1120 ctl->get(ctl, val);
1121 event = SNDRV_CTL_EVENT_MASK_INFO;
1122 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1123 val->value.integer.value[0] = cm->mixer_res_status[i];
1124 ctl->put(ctl, val);
1125 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1127 snd_ctl_notify(cm->card, event, &ctl->id);
1130 kfree(val);
1134 /* spinlock held! */
1135 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1137 if (do_ac3) {
1138 /* AC3EN for 037 */
1139 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1140 /* AC3EN for 039 */
1141 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1143 if (cm->can_ac3_hw) {
1144 /* SPD24SEL for 037, 0x02 */
1145 /* SPD24SEL for 039, 0x20, but cannot be set */
1146 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1147 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1148 } else { /* can_ac3_sw */
1149 /* SPD32SEL for 037 & 039, 0x20 */
1150 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1151 /* set 176K sample rate to fix 033 HW bug */
1152 if (cm->chip_version == 33) {
1153 if (rate >= 48000) {
1154 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1155 } else {
1156 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1161 } else {
1162 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1163 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1165 if (cm->can_ac3_hw) {
1166 /* chip model >= 37 */
1167 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1168 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1169 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1170 } else {
1171 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1172 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1174 } else {
1175 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1176 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1177 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1182 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1184 int rate, err;
1186 rate = subs->runtime->rate;
1188 if (up && do_ac3)
1189 if ((err = save_mixer_state(cm)) < 0)
1190 return err;
1192 spin_lock_irq(&cm->reg_lock);
1193 cm->spdif_playback_avail = up;
1194 if (up) {
1195 /* they are controlled via "IEC958 Output Switch" */
1196 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1197 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1198 if (cm->spdif_playback_enabled)
1199 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1200 setup_ac3(cm, subs, do_ac3, rate);
1202 if (rate == 48000)
1203 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1204 else
1205 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1207 } else {
1208 /* they are controlled via "IEC958 Output Switch" */
1209 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1210 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1211 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1212 setup_ac3(cm, subs, 0, 0);
1214 spin_unlock_irq(&cm->reg_lock);
1215 return 0;
1220 * preparation
1223 /* playback - enable spdif only on the certain condition */
1224 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1226 struct cmipci *cm = snd_pcm_substream_chip(substream);
1227 int rate = substream->runtime->rate;
1228 int err, do_spdif, do_ac3 = 0;
1230 do_spdif = ((rate == 44100 || rate == 48000) &&
1231 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1232 substream->runtime->channels == 2);
1233 if (do_spdif && cm->can_ac3_hw)
1234 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1235 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1236 return err;
1237 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1240 /* playback (via device #2) - enable spdif always */
1241 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1243 struct cmipci *cm = snd_pcm_substream_chip(substream);
1244 int err, do_ac3;
1246 if (cm->can_ac3_hw)
1247 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1248 else
1249 do_ac3 = 1; /* doesn't matter */
1250 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1251 return err;
1252 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1255 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1257 struct cmipci *cm = snd_pcm_substream_chip(substream);
1258 setup_spdif_playback(cm, substream, 0, 0);
1259 restore_mixer_state(cm);
1260 return snd_cmipci_hw_free(substream);
1263 /* capture */
1264 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1266 struct cmipci *cm = snd_pcm_substream_chip(substream);
1267 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1270 /* capture with spdif (via device #2) */
1271 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1273 struct cmipci *cm = snd_pcm_substream_chip(substream);
1275 spin_lock_irq(&cm->reg_lock);
1276 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1277 spin_unlock_irq(&cm->reg_lock);
1279 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1282 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1284 struct cmipci *cm = snd_pcm_substream_chip(subs);
1286 spin_lock_irq(&cm->reg_lock);
1287 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1288 spin_unlock_irq(&cm->reg_lock);
1290 return snd_cmipci_hw_free(subs);
1295 * interrupt handler
1297 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1299 struct cmipci *cm = dev_id;
1300 unsigned int status, mask = 0;
1302 /* fastpath out, to ease interrupt sharing */
1303 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1304 if (!(status & CM_INTR))
1305 return IRQ_NONE;
1307 /* acknowledge interrupt */
1308 spin_lock(&cm->reg_lock);
1309 if (status & CM_CHINT0)
1310 mask |= CM_CH0_INT_EN;
1311 if (status & CM_CHINT1)
1312 mask |= CM_CH1_INT_EN;
1313 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1314 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1315 spin_unlock(&cm->reg_lock);
1317 if (cm->rmidi && (status & CM_UARTINT))
1318 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1320 if (cm->pcm) {
1321 if ((status & CM_CHINT0) && cm->channel[0].running)
1322 snd_pcm_period_elapsed(cm->channel[0].substream);
1323 if ((status & CM_CHINT1) && cm->channel[1].running)
1324 snd_pcm_period_elapsed(cm->channel[1].substream);
1326 return IRQ_HANDLED;
1330 * h/w infos
1333 /* playback on channel A */
1334 static struct snd_pcm_hardware snd_cmipci_playback =
1336 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1337 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1338 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1339 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1340 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1341 .rate_min = 5512,
1342 .rate_max = 48000,
1343 .channels_min = 1,
1344 .channels_max = 2,
1345 .buffer_bytes_max = (128*1024),
1346 .period_bytes_min = 64,
1347 .period_bytes_max = (128*1024),
1348 .periods_min = 2,
1349 .periods_max = 1024,
1350 .fifo_size = 0,
1353 /* capture on channel B */
1354 static struct snd_pcm_hardware snd_cmipci_capture =
1356 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1357 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1358 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1359 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1360 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1361 .rate_min = 5512,
1362 .rate_max = 48000,
1363 .channels_min = 1,
1364 .channels_max = 2,
1365 .buffer_bytes_max = (128*1024),
1366 .period_bytes_min = 64,
1367 .period_bytes_max = (128*1024),
1368 .periods_min = 2,
1369 .periods_max = 1024,
1370 .fifo_size = 0,
1373 /* playback on channel B - stereo 16bit only? */
1374 static struct snd_pcm_hardware snd_cmipci_playback2 =
1376 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1377 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1378 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1379 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1380 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1381 .rate_min = 5512,
1382 .rate_max = 48000,
1383 .channels_min = 2,
1384 .channels_max = 2,
1385 .buffer_bytes_max = (128*1024),
1386 .period_bytes_min = 64,
1387 .period_bytes_max = (128*1024),
1388 .periods_min = 2,
1389 .periods_max = 1024,
1390 .fifo_size = 0,
1393 /* spdif playback on channel A */
1394 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1396 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1397 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1398 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1399 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1400 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1401 .rate_min = 44100,
1402 .rate_max = 48000,
1403 .channels_min = 2,
1404 .channels_max = 2,
1405 .buffer_bytes_max = (128*1024),
1406 .period_bytes_min = 64,
1407 .period_bytes_max = (128*1024),
1408 .periods_min = 2,
1409 .periods_max = 1024,
1410 .fifo_size = 0,
1413 /* spdif playback on channel A (32bit, IEC958 subframes) */
1414 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1416 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1417 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1418 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1419 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1420 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1421 .rate_min = 44100,
1422 .rate_max = 48000,
1423 .channels_min = 2,
1424 .channels_max = 2,
1425 .buffer_bytes_max = (128*1024),
1426 .period_bytes_min = 64,
1427 .period_bytes_max = (128*1024),
1428 .periods_min = 2,
1429 .periods_max = 1024,
1430 .fifo_size = 0,
1433 /* spdif capture on channel B */
1434 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1436 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1437 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1438 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1439 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1440 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1441 .rate_min = 44100,
1442 .rate_max = 48000,
1443 .channels_min = 2,
1444 .channels_max = 2,
1445 .buffer_bytes_max = (128*1024),
1446 .period_bytes_min = 64,
1447 .period_bytes_max = (128*1024),
1448 .periods_min = 2,
1449 .periods_max = 1024,
1450 .fifo_size = 0,
1454 * check device open/close
1456 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1458 int ch = mode & CM_OPEN_CH_MASK;
1460 /* FIXME: a file should wait until the device becomes free
1461 * when it's opened on blocking mode. however, since the current
1462 * pcm framework doesn't pass file pointer before actually opened,
1463 * we can't know whether blocking mode or not in open callback..
1465 mutex_lock(&cm->open_mutex);
1466 if (cm->opened[ch]) {
1467 mutex_unlock(&cm->open_mutex);
1468 return -EBUSY;
1470 cm->opened[ch] = mode;
1471 cm->channel[ch].substream = subs;
1472 if (! (mode & CM_OPEN_DAC)) {
1473 /* disable dual DAC mode */
1474 cm->channel[ch].is_dac = 0;
1475 spin_lock_irq(&cm->reg_lock);
1476 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1477 spin_unlock_irq(&cm->reg_lock);
1479 mutex_unlock(&cm->open_mutex);
1480 return 0;
1483 static void close_device_check(struct cmipci *cm, int mode)
1485 int ch = mode & CM_OPEN_CH_MASK;
1487 mutex_lock(&cm->open_mutex);
1488 if (cm->opened[ch] == mode) {
1489 if (cm->channel[ch].substream) {
1490 snd_cmipci_ch_reset(cm, ch);
1491 cm->channel[ch].running = 0;
1492 cm->channel[ch].substream = NULL;
1494 cm->opened[ch] = 0;
1495 if (! cm->channel[ch].is_dac) {
1496 /* enable dual DAC mode again */
1497 cm->channel[ch].is_dac = 1;
1498 spin_lock_irq(&cm->reg_lock);
1499 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1500 spin_unlock_irq(&cm->reg_lock);
1503 mutex_unlock(&cm->open_mutex);
1509 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1511 struct cmipci *cm = snd_pcm_substream_chip(substream);
1512 struct snd_pcm_runtime *runtime = substream->runtime;
1513 int err;
1515 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1516 return err;
1517 runtime->hw = snd_cmipci_playback;
1518 runtime->hw.channels_max = cm->max_channels;
1519 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1520 cm->dig_pcm_status = cm->dig_status;
1521 return 0;
1524 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1526 struct cmipci *cm = snd_pcm_substream_chip(substream);
1527 struct snd_pcm_runtime *runtime = substream->runtime;
1528 int err;
1530 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1531 return err;
1532 runtime->hw = snd_cmipci_capture;
1533 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1534 runtime->hw.rate_min = 41000;
1535 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1537 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1538 return 0;
1541 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1543 struct cmipci *cm = snd_pcm_substream_chip(substream);
1544 struct snd_pcm_runtime *runtime = substream->runtime;
1545 int err;
1547 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1548 return err;
1549 runtime->hw = snd_cmipci_playback2;
1550 mutex_lock(&cm->open_mutex);
1551 if (! cm->opened[CM_CH_PLAY]) {
1552 if (cm->can_multi_ch) {
1553 runtime->hw.channels_max = cm->max_channels;
1554 if (cm->max_channels == 4)
1555 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1556 else if (cm->max_channels == 6)
1557 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1558 else if (cm->max_channels == 8)
1559 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1561 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1563 mutex_unlock(&cm->open_mutex);
1564 return 0;
1567 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1569 struct cmipci *cm = snd_pcm_substream_chip(substream);
1570 struct snd_pcm_runtime *runtime = substream->runtime;
1571 int err;
1573 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1574 return err;
1575 if (cm->can_ac3_hw) {
1576 runtime->hw = snd_cmipci_playback_spdif;
1577 if (cm->chip_version >= 37)
1578 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1579 } else {
1580 runtime->hw = snd_cmipci_playback_iec958_subframe;
1582 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1583 cm->dig_pcm_status = cm->dig_status;
1584 return 0;
1587 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1589 struct cmipci *cm = snd_pcm_substream_chip(substream);
1590 struct snd_pcm_runtime *runtime = substream->runtime;
1591 int err;
1593 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1594 return err;
1595 runtime->hw = snd_cmipci_capture_spdif;
1596 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1597 return 0;
1604 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1606 struct cmipci *cm = snd_pcm_substream_chip(substream);
1607 close_device_check(cm, CM_OPEN_PLAYBACK);
1608 return 0;
1611 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1613 struct cmipci *cm = snd_pcm_substream_chip(substream);
1614 close_device_check(cm, CM_OPEN_CAPTURE);
1615 return 0;
1618 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1620 struct cmipci *cm = snd_pcm_substream_chip(substream);
1621 close_device_check(cm, CM_OPEN_PLAYBACK2);
1622 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1623 return 0;
1626 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1628 struct cmipci *cm = snd_pcm_substream_chip(substream);
1629 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1630 return 0;
1633 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1635 struct cmipci *cm = snd_pcm_substream_chip(substream);
1636 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1637 return 0;
1644 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1645 .open = snd_cmipci_playback_open,
1646 .close = snd_cmipci_playback_close,
1647 .ioctl = snd_pcm_lib_ioctl,
1648 .hw_params = snd_cmipci_hw_params,
1649 .hw_free = snd_cmipci_playback_hw_free,
1650 .prepare = snd_cmipci_playback_prepare,
1651 .trigger = snd_cmipci_playback_trigger,
1652 .pointer = snd_cmipci_playback_pointer,
1655 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1656 .open = snd_cmipci_capture_open,
1657 .close = snd_cmipci_capture_close,
1658 .ioctl = snd_pcm_lib_ioctl,
1659 .hw_params = snd_cmipci_hw_params,
1660 .hw_free = snd_cmipci_hw_free,
1661 .prepare = snd_cmipci_capture_prepare,
1662 .trigger = snd_cmipci_capture_trigger,
1663 .pointer = snd_cmipci_capture_pointer,
1666 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1667 .open = snd_cmipci_playback2_open,
1668 .close = snd_cmipci_playback2_close,
1669 .ioctl = snd_pcm_lib_ioctl,
1670 .hw_params = snd_cmipci_playback2_hw_params,
1671 .hw_free = snd_cmipci_hw_free,
1672 .prepare = snd_cmipci_capture_prepare, /* channel B */
1673 .trigger = snd_cmipci_capture_trigger, /* channel B */
1674 .pointer = snd_cmipci_capture_pointer, /* channel B */
1677 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1678 .open = snd_cmipci_playback_spdif_open,
1679 .close = snd_cmipci_playback_spdif_close,
1680 .ioctl = snd_pcm_lib_ioctl,
1681 .hw_params = snd_cmipci_hw_params,
1682 .hw_free = snd_cmipci_playback_hw_free,
1683 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1684 .trigger = snd_cmipci_playback_trigger,
1685 .pointer = snd_cmipci_playback_pointer,
1688 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1689 .open = snd_cmipci_capture_spdif_open,
1690 .close = snd_cmipci_capture_spdif_close,
1691 .ioctl = snd_pcm_lib_ioctl,
1692 .hw_params = snd_cmipci_hw_params,
1693 .hw_free = snd_cmipci_capture_spdif_hw_free,
1694 .prepare = snd_cmipci_capture_spdif_prepare,
1695 .trigger = snd_cmipci_capture_trigger,
1696 .pointer = snd_cmipci_capture_pointer,
1703 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1705 struct snd_pcm *pcm;
1706 int err;
1708 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1709 if (err < 0)
1710 return err;
1712 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1713 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1715 pcm->private_data = cm;
1716 pcm->info_flags = 0;
1717 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1718 cm->pcm = pcm;
1720 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1721 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1723 return 0;
1726 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1728 struct snd_pcm *pcm;
1729 int err;
1731 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1732 if (err < 0)
1733 return err;
1735 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1737 pcm->private_data = cm;
1738 pcm->info_flags = 0;
1739 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1740 cm->pcm2 = pcm;
1742 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1743 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1745 return 0;
1748 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1750 struct snd_pcm *pcm;
1751 int err;
1753 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1754 if (err < 0)
1755 return err;
1757 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1758 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1760 pcm->private_data = cm;
1761 pcm->info_flags = 0;
1762 strcpy(pcm->name, "C-Media PCI IEC958");
1763 cm->pcm_spdif = pcm;
1765 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1766 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1768 return 0;
1772 * mixer interface:
1773 * - CM8338/8738 has a compatible mixer interface with SB16, but
1774 * lack of some elements like tone control, i/o gain and AGC.
1775 * - Access to native registers:
1776 * - A 3D switch
1777 * - Output mute switches
1780 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1782 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1783 outb(data, s->iobase + CM_REG_SB16_DATA);
1786 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1788 unsigned char v;
1790 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1791 v = inb(s->iobase + CM_REG_SB16_DATA);
1792 return v;
1796 * general mixer element
1798 struct cmipci_sb_reg {
1799 unsigned int left_reg, right_reg;
1800 unsigned int left_shift, right_shift;
1801 unsigned int mask;
1802 unsigned int invert: 1;
1803 unsigned int stereo: 1;
1806 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1807 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1809 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1810 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1811 .info = snd_cmipci_info_volume, \
1812 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1813 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1816 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1817 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1818 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1819 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1821 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1823 r->left_reg = val & 0xff;
1824 r->right_reg = (val >> 8) & 0xff;
1825 r->left_shift = (val >> 16) & 0x07;
1826 r->right_shift = (val >> 19) & 0x07;
1827 r->invert = (val >> 22) & 1;
1828 r->stereo = (val >> 23) & 1;
1829 r->mask = (val >> 24) & 0xff;
1832 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1833 struct snd_ctl_elem_info *uinfo)
1835 struct cmipci_sb_reg reg;
1837 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1838 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1839 uinfo->count = reg.stereo + 1;
1840 uinfo->value.integer.min = 0;
1841 uinfo->value.integer.max = reg.mask;
1842 return 0;
1845 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
1846 struct snd_ctl_elem_value *ucontrol)
1848 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1849 struct cmipci_sb_reg reg;
1850 int val;
1852 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1853 spin_lock_irq(&cm->reg_lock);
1854 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
1855 if (reg.invert)
1856 val = reg.mask - val;
1857 ucontrol->value.integer.value[0] = val;
1858 if (reg.stereo) {
1859 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
1860 if (reg.invert)
1861 val = reg.mask - val;
1862 ucontrol->value.integer.value[1] = val;
1864 spin_unlock_irq(&cm->reg_lock);
1865 return 0;
1868 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
1869 struct snd_ctl_elem_value *ucontrol)
1871 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1872 struct cmipci_sb_reg reg;
1873 int change;
1874 int left, right, oleft, oright;
1876 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1877 left = ucontrol->value.integer.value[0] & reg.mask;
1878 if (reg.invert)
1879 left = reg.mask - left;
1880 left <<= reg.left_shift;
1881 if (reg.stereo) {
1882 right = ucontrol->value.integer.value[1] & reg.mask;
1883 if (reg.invert)
1884 right = reg.mask - right;
1885 right <<= reg.right_shift;
1886 } else
1887 right = 0;
1888 spin_lock_irq(&cm->reg_lock);
1889 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
1890 left |= oleft & ~(reg.mask << reg.left_shift);
1891 change = left != oleft;
1892 if (reg.stereo) {
1893 if (reg.left_reg != reg.right_reg) {
1894 snd_cmipci_mixer_write(cm, reg.left_reg, left);
1895 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
1896 } else
1897 oright = left;
1898 right |= oright & ~(reg.mask << reg.right_shift);
1899 change |= right != oright;
1900 snd_cmipci_mixer_write(cm, reg.right_reg, right);
1901 } else
1902 snd_cmipci_mixer_write(cm, reg.left_reg, left);
1903 spin_unlock_irq(&cm->reg_lock);
1904 return change;
1908 * input route (left,right) -> (left,right)
1910 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
1911 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1912 .info = snd_cmipci_info_input_sw, \
1913 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
1914 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
1917 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
1918 struct snd_ctl_elem_info *uinfo)
1920 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1921 uinfo->count = 4;
1922 uinfo->value.integer.min = 0;
1923 uinfo->value.integer.max = 1;
1924 return 0;
1927 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
1928 struct snd_ctl_elem_value *ucontrol)
1930 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1931 struct cmipci_sb_reg reg;
1932 int val1, val2;
1934 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1935 spin_lock_irq(&cm->reg_lock);
1936 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1937 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1938 spin_unlock_irq(&cm->reg_lock);
1939 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
1940 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
1941 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
1942 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
1943 return 0;
1946 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
1947 struct snd_ctl_elem_value *ucontrol)
1949 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1950 struct cmipci_sb_reg reg;
1951 int change;
1952 int val1, val2, oval1, oval2;
1954 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1955 spin_lock_irq(&cm->reg_lock);
1956 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
1957 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
1958 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1959 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
1960 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
1961 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
1962 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
1963 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
1964 change = val1 != oval1 || val2 != oval2;
1965 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
1966 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
1967 spin_unlock_irq(&cm->reg_lock);
1968 return change;
1972 * native mixer switches/volumes
1975 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
1976 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1977 .info = snd_cmipci_info_native_mixer, \
1978 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1979 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
1982 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
1983 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1984 .info = snd_cmipci_info_native_mixer, \
1985 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1986 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
1989 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
1990 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1991 .info = snd_cmipci_info_native_mixer, \
1992 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
1993 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
1996 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
1997 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1998 .info = snd_cmipci_info_native_mixer, \
1999 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2000 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2003 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2004 struct snd_ctl_elem_info *uinfo)
2006 struct cmipci_sb_reg reg;
2008 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2009 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2010 uinfo->count = reg.stereo + 1;
2011 uinfo->value.integer.min = 0;
2012 uinfo->value.integer.max = reg.mask;
2013 return 0;
2017 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2018 struct snd_ctl_elem_value *ucontrol)
2020 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2021 struct cmipci_sb_reg reg;
2022 unsigned char oreg, val;
2024 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2025 spin_lock_irq(&cm->reg_lock);
2026 oreg = inb(cm->iobase + reg.left_reg);
2027 val = (oreg >> reg.left_shift) & reg.mask;
2028 if (reg.invert)
2029 val = reg.mask - val;
2030 ucontrol->value.integer.value[0] = val;
2031 if (reg.stereo) {
2032 val = (oreg >> reg.right_shift) & reg.mask;
2033 if (reg.invert)
2034 val = reg.mask - val;
2035 ucontrol->value.integer.value[1] = val;
2037 spin_unlock_irq(&cm->reg_lock);
2038 return 0;
2041 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2042 struct snd_ctl_elem_value *ucontrol)
2044 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2045 struct cmipci_sb_reg reg;
2046 unsigned char oreg, nreg, val;
2048 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2049 spin_lock_irq(&cm->reg_lock);
2050 oreg = inb(cm->iobase + reg.left_reg);
2051 val = ucontrol->value.integer.value[0] & reg.mask;
2052 if (reg.invert)
2053 val = reg.mask - val;
2054 nreg = oreg & ~(reg.mask << reg.left_shift);
2055 nreg |= (val << reg.left_shift);
2056 if (reg.stereo) {
2057 val = ucontrol->value.integer.value[1] & reg.mask;
2058 if (reg.invert)
2059 val = reg.mask - val;
2060 nreg &= ~(reg.mask << reg.right_shift);
2061 nreg |= (val << reg.right_shift);
2063 outb(nreg, cm->iobase + reg.left_reg);
2064 spin_unlock_irq(&cm->reg_lock);
2065 return (nreg != oreg);
2069 * special case - check mixer sensitivity
2071 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2072 struct snd_ctl_elem_value *ucontrol)
2074 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2078 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2079 struct snd_ctl_elem_value *ucontrol)
2081 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2082 if (cm->mixer_insensitive) {
2083 /* ignored */
2084 return 0;
2086 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2090 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2091 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2092 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2093 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2094 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2095 { /* switch with sensitivity */
2096 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2097 .name = "PCM Playback Switch",
2098 .info = snd_cmipci_info_native_mixer,
2099 .get = snd_cmipci_get_native_mixer_sensitive,
2100 .put = snd_cmipci_put_native_mixer_sensitive,
2101 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2103 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2104 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2105 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2106 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2107 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2108 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2109 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2110 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2111 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2112 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2113 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2114 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2115 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2116 CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2117 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2118 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2119 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2120 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2121 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2122 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2123 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2124 CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2125 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2129 * other switches
2132 struct cmipci_switch_args {
2133 int reg; /* register index */
2134 unsigned int mask; /* mask bits */
2135 unsigned int mask_on; /* mask bits to turn on */
2136 unsigned int is_byte: 1; /* byte access? */
2137 unsigned int ac3_sensitive: 1; /* access forbidden during
2138 * non-audio operation?
2142 static int snd_cmipci_uswitch_info(struct snd_kcontrol *kcontrol,
2143 struct snd_ctl_elem_info *uinfo)
2145 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2146 uinfo->count = 1;
2147 uinfo->value.integer.min = 0;
2148 uinfo->value.integer.max = 1;
2149 return 0;
2152 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2153 struct snd_ctl_elem_value *ucontrol,
2154 struct cmipci_switch_args *args)
2156 unsigned int val;
2157 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2159 spin_lock_irq(&cm->reg_lock);
2160 if (args->ac3_sensitive && cm->mixer_insensitive) {
2161 ucontrol->value.integer.value[0] = 0;
2162 spin_unlock_irq(&cm->reg_lock);
2163 return 0;
2165 if (args->is_byte)
2166 val = inb(cm->iobase + args->reg);
2167 else
2168 val = snd_cmipci_read(cm, args->reg);
2169 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2170 spin_unlock_irq(&cm->reg_lock);
2171 return 0;
2174 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2175 struct snd_ctl_elem_value *ucontrol)
2177 struct cmipci_switch_args *args;
2178 args = (struct cmipci_switch_args *)kcontrol->private_value;
2179 snd_assert(args != NULL, return -EINVAL);
2180 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2183 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2184 struct snd_ctl_elem_value *ucontrol,
2185 struct cmipci_switch_args *args)
2187 unsigned int val;
2188 int change;
2189 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2191 spin_lock_irq(&cm->reg_lock);
2192 if (args->ac3_sensitive && cm->mixer_insensitive) {
2193 /* ignored */
2194 spin_unlock_irq(&cm->reg_lock);
2195 return 0;
2197 if (args->is_byte)
2198 val = inb(cm->iobase + args->reg);
2199 else
2200 val = snd_cmipci_read(cm, args->reg);
2201 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2202 args->mask_on : (args->mask & ~args->mask_on));
2203 if (change) {
2204 val &= ~args->mask;
2205 if (ucontrol->value.integer.value[0])
2206 val |= args->mask_on;
2207 else
2208 val |= (args->mask & ~args->mask_on);
2209 if (args->is_byte)
2210 outb((unsigned char)val, cm->iobase + args->reg);
2211 else
2212 snd_cmipci_write(cm, args->reg, val);
2214 spin_unlock_irq(&cm->reg_lock);
2215 return change;
2218 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2219 struct snd_ctl_elem_value *ucontrol)
2221 struct cmipci_switch_args *args;
2222 args = (struct cmipci_switch_args *)kcontrol->private_value;
2223 snd_assert(args != NULL, return -EINVAL);
2224 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2227 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2228 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2229 .reg = xreg, \
2230 .mask = xmask, \
2231 .mask_on = xmask_on, \
2232 .is_byte = xis_byte, \
2233 .ac3_sensitive = xac3, \
2236 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2237 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2239 #if 0 /* these will be controlled in pcm device */
2240 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2241 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2242 #endif
2243 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2244 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2245 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2246 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2247 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2248 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2249 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2250 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2251 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2252 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2253 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2254 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2255 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2256 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2257 #if CM_CH_PLAY == 1
2258 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2259 #else
2260 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2261 #endif
2262 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2263 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_SPK4, 1, 0);
2264 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS, 0, 0);
2265 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2266 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2268 #define DEFINE_SWITCH(sname, stype, sarg) \
2269 { .name = sname, \
2270 .iface = stype, \
2271 .info = snd_cmipci_uswitch_info, \
2272 .get = snd_cmipci_uswitch_get, \
2273 .put = snd_cmipci_uswitch_put, \
2274 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2277 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2278 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2282 * callbacks for spdif output switch
2283 * needs toggle two registers..
2285 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2286 struct snd_ctl_elem_value *ucontrol)
2288 int changed;
2289 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2290 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2291 return changed;
2294 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2295 struct snd_ctl_elem_value *ucontrol)
2297 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2298 int changed;
2299 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2300 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2301 if (changed) {
2302 if (ucontrol->value.integer.value[0]) {
2303 if (chip->spdif_playback_avail)
2304 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2305 } else {
2306 if (chip->spdif_playback_avail)
2307 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2310 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2311 return changed;
2315 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2316 struct snd_ctl_elem_info *uinfo)
2318 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2319 static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2320 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2321 uinfo->count = 1;
2322 uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2323 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2324 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2325 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2326 return 0;
2329 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2331 unsigned int val;
2332 if (cm->chip_version >= 39) {
2333 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2334 if (val & CM_LINE_AS_BASS)
2335 return 2;
2337 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2338 if (val & CM_SPK4)
2339 return 1;
2340 return 0;
2343 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2344 struct snd_ctl_elem_value *ucontrol)
2346 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2348 spin_lock_irq(&cm->reg_lock);
2349 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2350 spin_unlock_irq(&cm->reg_lock);
2351 return 0;
2354 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2355 struct snd_ctl_elem_value *ucontrol)
2357 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2358 int change;
2360 spin_lock_irq(&cm->reg_lock);
2361 if (ucontrol->value.enumerated.item[0] == 2)
2362 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2363 else
2364 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_LINE_AS_BASS);
2365 if (ucontrol->value.enumerated.item[0] == 1)
2366 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2367 else
2368 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_SPK4);
2369 spin_unlock_irq(&cm->reg_lock);
2370 return change;
2373 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2374 struct snd_ctl_elem_info *uinfo)
2376 static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2377 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2378 uinfo->count = 1;
2379 uinfo->value.enumerated.items = 2;
2380 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2381 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2382 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2383 return 0;
2386 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2387 struct snd_ctl_elem_value *ucontrol)
2389 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2390 /* same bit as spdi_phase */
2391 spin_lock_irq(&cm->reg_lock);
2392 ucontrol->value.enumerated.item[0] =
2393 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2394 spin_unlock_irq(&cm->reg_lock);
2395 return 0;
2398 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2399 struct snd_ctl_elem_value *ucontrol)
2401 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2402 int change;
2404 spin_lock_irq(&cm->reg_lock);
2405 if (ucontrol->value.enumerated.item[0])
2406 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2407 else
2408 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2409 spin_unlock_irq(&cm->reg_lock);
2410 return change;
2413 /* both for CM8338/8738 */
2414 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2415 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2417 .name = "Line-In Mode",
2418 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2419 .info = snd_cmipci_line_in_mode_info,
2420 .get = snd_cmipci_line_in_mode_get,
2421 .put = snd_cmipci_line_in_mode_put,
2425 /* for non-multichannel chips */
2426 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2427 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2429 /* only for CM8738 */
2430 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2431 #if 0 /* controlled in pcm device */
2432 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2433 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2434 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2435 #endif
2436 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2437 { .name = "IEC958 Output Switch",
2438 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2439 .info = snd_cmipci_uswitch_info,
2440 .get = snd_cmipci_spdout_enable_get,
2441 .put = snd_cmipci_spdout_enable_put,
2443 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2444 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2445 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2446 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2447 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2448 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2451 /* only for model 033/037 */
2452 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2453 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2454 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2455 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2458 /* only for model 039 or later */
2459 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2460 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2461 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2463 .name = "Mic-In Mode",
2464 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2465 .info = snd_cmipci_mic_in_mode_info,
2466 .get = snd_cmipci_mic_in_mode_get,
2467 .put = snd_cmipci_mic_in_mode_put,
2471 /* card control switches */
2472 static struct snd_kcontrol_new snd_cmipci_control_switches[] __devinitdata = {
2473 // DEFINE_CARD_SWITCH("Joystick", joystick), /* now module option */
2474 DEFINE_CARD_SWITCH("Modem", modem),
2478 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2480 struct snd_card *card;
2481 struct snd_kcontrol_new *sw;
2482 struct snd_kcontrol *kctl;
2483 unsigned int idx;
2484 int err;
2486 snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);
2488 card = cm->card;
2490 strcpy(card->mixername, "CMedia PCI");
2492 spin_lock_irq(&cm->reg_lock);
2493 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2494 spin_unlock_irq(&cm->reg_lock);
2496 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2497 if (cm->chip_version == 68) { // 8768 has no PCM volume
2498 if (!strcmp(snd_cmipci_mixers[idx].name,
2499 "PCM Playback Volume"))
2500 continue;
2502 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2503 return err;
2506 /* mixer switches */
2507 sw = snd_cmipci_mixer_switches;
2508 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2509 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2510 if (err < 0)
2511 return err;
2513 if (! cm->can_multi_ch) {
2514 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2515 if (err < 0)
2516 return err;
2518 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2519 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2520 sw = snd_cmipci_8738_mixer_switches;
2521 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2522 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2523 if (err < 0)
2524 return err;
2526 if (cm->can_ac3_hw) {
2527 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2528 return err;
2529 kctl->id.device = pcm_spdif_device;
2530 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2531 return err;
2532 kctl->id.device = pcm_spdif_device;
2533 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2534 return err;
2535 kctl->id.device = pcm_spdif_device;
2537 if (cm->chip_version <= 37) {
2538 sw = snd_cmipci_old_mixer_switches;
2539 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2540 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2541 if (err < 0)
2542 return err;
2546 if (cm->chip_version >= 39) {
2547 sw = snd_cmipci_extra_mixer_switches;
2548 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2549 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2550 if (err < 0)
2551 return err;
2555 /* card switches */
2556 sw = snd_cmipci_control_switches;
2557 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_control_switches); idx++, sw++) {
2558 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2559 if (err < 0)
2560 return err;
2563 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2564 struct snd_ctl_elem_id id;
2565 struct snd_kcontrol *ctl;
2566 memset(&id, 0, sizeof(id));
2567 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2568 strcpy(id.name, cm_saved_mixer[idx].name);
2569 if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
2570 cm->mixer_res_ctl[idx] = ctl;
2573 return 0;
2578 * proc interface
2581 #ifdef CONFIG_PROC_FS
2582 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2583 struct snd_info_buffer *buffer)
2585 struct cmipci *cm = entry->private_data;
2586 int i;
2588 snd_iprintf(buffer, "%s\n\n", cm->card->longname);
2589 for (i = 0; i < 0x40; i++) {
2590 int v = inb(cm->iobase + i);
2591 if (i % 4 == 0)
2592 snd_iprintf(buffer, "%02x: ", i);
2593 snd_iprintf(buffer, "%02x", v);
2594 if (i % 4 == 3)
2595 snd_iprintf(buffer, "\n");
2596 else
2597 snd_iprintf(buffer, " ");
2601 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2603 struct snd_info_entry *entry;
2605 if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2606 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2608 #else /* !CONFIG_PROC_FS */
2609 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2610 #endif
2613 static struct pci_device_id snd_cmipci_ids[] = {
2614 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2615 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2616 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2617 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2618 {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2619 {0,},
2624 * check chip version and capabilities
2625 * driver name is modified according to the chip model
2627 static void __devinit query_chip(struct cmipci *cm)
2629 unsigned int detect;
2631 /* check reg 0Ch, bit 24-31 */
2632 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2633 if (! detect) {
2634 /* check reg 08h, bit 24-28 */
2635 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2636 if (! detect) {
2637 cm->chip_version = 33;
2638 cm->max_channels = 2;
2639 if (cm->do_soft_ac3)
2640 cm->can_ac3_sw = 1;
2641 else
2642 cm->can_ac3_hw = 1;
2643 cm->has_dual_dac = 1;
2644 } else {
2645 cm->chip_version = 37;
2646 cm->max_channels = 2;
2647 cm->can_ac3_hw = 1;
2648 cm->has_dual_dac = 1;
2650 } else {
2651 /* check reg 0Ch, bit 26 */
2652 if (detect & CM_CHIP_8768) {
2653 cm->chip_version = 68;
2654 cm->max_channels = 8;
2655 cm->can_ac3_hw = 1;
2656 cm->has_dual_dac = 1;
2657 cm->can_multi_ch = 1;
2658 } else if (detect & CM_CHIP_055) {
2659 cm->chip_version = 55;
2660 cm->max_channels = 6;
2661 cm->can_ac3_hw = 1;
2662 cm->has_dual_dac = 1;
2663 cm->can_multi_ch = 1;
2664 } else if (detect & CM_CHIP_039) {
2665 cm->chip_version = 39;
2666 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2667 cm->max_channels = 6;
2668 else
2669 cm->max_channels = 4;
2670 cm->can_ac3_hw = 1;
2671 cm->has_dual_dac = 1;
2672 cm->can_multi_ch = 1;
2673 } else {
2674 printk(KERN_ERR "chip %x version not supported\n", detect);
2679 #ifdef SUPPORT_JOYSTICK
2680 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2682 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2683 struct gameport *gp;
2684 struct resource *r = NULL;
2685 int i, io_port = 0;
2687 if (joystick_port[dev] == 0)
2688 return -ENODEV;
2690 if (joystick_port[dev] == 1) { /* auto-detect */
2691 for (i = 0; ports[i]; i++) {
2692 io_port = ports[i];
2693 r = request_region(io_port, 1, "CMIPCI gameport");
2694 if (r)
2695 break;
2697 } else {
2698 io_port = joystick_port[dev];
2699 r = request_region(io_port, 1, "CMIPCI gameport");
2702 if (!r) {
2703 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2704 return -EBUSY;
2707 cm->gameport = gp = gameport_allocate_port();
2708 if (!gp) {
2709 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2710 release_and_free_resource(r);
2711 return -ENOMEM;
2713 gameport_set_name(gp, "C-Media Gameport");
2714 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2715 gameport_set_dev_parent(gp, &cm->pci->dev);
2716 gp->io = io_port;
2717 gameport_set_port_data(gp, r);
2719 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2721 gameport_register_port(cm->gameport);
2723 return 0;
2726 static void snd_cmipci_free_gameport(struct cmipci *cm)
2728 if (cm->gameport) {
2729 struct resource *r = gameport_get_port_data(cm->gameport);
2731 gameport_unregister_port(cm->gameport);
2732 cm->gameport = NULL;
2734 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2735 release_and_free_resource(r);
2738 #else
2739 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2740 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2741 #endif
2743 static int snd_cmipci_free(struct cmipci *cm)
2745 if (cm->irq >= 0) {
2746 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2747 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2748 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2749 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2750 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2751 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2752 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2754 /* reset mixer */
2755 snd_cmipci_mixer_write(cm, 0, 0);
2757 synchronize_irq(cm->irq);
2759 free_irq(cm->irq, cm);
2762 snd_cmipci_free_gameport(cm);
2763 pci_release_regions(cm->pci);
2764 pci_disable_device(cm->pci);
2765 kfree(cm);
2766 return 0;
2769 static int snd_cmipci_dev_free(struct snd_device *device)
2771 struct cmipci *cm = device->device_data;
2772 return snd_cmipci_free(cm);
2775 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2777 long iosynth;
2778 unsigned int val;
2779 struct snd_opl3 *opl3;
2780 int err;
2782 if (!fm_port)
2783 goto disable_fm;
2785 /* first try FM regs in PCI port range */
2786 iosynth = cm->iobase + CM_REG_FM_PCI;
2787 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2788 OPL3_HW_OPL3, 1, &opl3);
2789 if (err < 0) {
2790 /* then try legacy ports */
2791 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2792 iosynth = fm_port;
2793 switch (iosynth) {
2794 case 0x3E8: val |= CM_FMSEL_3E8; break;
2795 case 0x3E0: val |= CM_FMSEL_3E0; break;
2796 case 0x3C8: val |= CM_FMSEL_3C8; break;
2797 case 0x388: val |= CM_FMSEL_388; break;
2798 default:
2799 goto disable_fm;
2801 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2802 /* enable FM */
2803 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2805 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2806 OPL3_HW_OPL3, 0, &opl3) < 0) {
2807 printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2808 "skipping...\n", iosynth);
2809 goto disable_fm;
2812 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2813 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2814 return err;
2816 return 0;
2818 disable_fm:
2819 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2820 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2821 return 0;
2824 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2825 int dev, struct cmipci **rcmipci)
2827 struct cmipci *cm;
2828 int err;
2829 static struct snd_device_ops ops = {
2830 .dev_free = snd_cmipci_dev_free,
2832 unsigned int val = 0;
2833 long iomidi;
2834 int integrated_midi;
2835 int pcm_index, pcm_spdif_index;
2836 static struct pci_device_id intel_82437vx[] = {
2837 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2838 { },
2841 *rcmipci = NULL;
2843 if ((err = pci_enable_device(pci)) < 0)
2844 return err;
2846 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2847 if (cm == NULL) {
2848 pci_disable_device(pci);
2849 return -ENOMEM;
2852 spin_lock_init(&cm->reg_lock);
2853 mutex_init(&cm->open_mutex);
2854 cm->device = pci->device;
2855 cm->card = card;
2856 cm->pci = pci;
2857 cm->irq = -1;
2858 cm->channel[0].ch = 0;
2859 cm->channel[1].ch = 1;
2860 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2862 if ((err = pci_request_regions(pci, card->driver)) < 0) {
2863 kfree(cm);
2864 pci_disable_device(pci);
2865 return err;
2867 cm->iobase = pci_resource_start(pci, 0);
2869 if (request_irq(pci->irq, snd_cmipci_interrupt,
2870 IRQF_SHARED, card->driver, cm)) {
2871 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2872 snd_cmipci_free(cm);
2873 return -EBUSY;
2875 cm->irq = pci->irq;
2877 pci_set_master(cm->pci);
2880 * check chip version, max channels and capabilities
2883 cm->chip_version = 0;
2884 cm->max_channels = 2;
2885 cm->do_soft_ac3 = soft_ac3[dev];
2887 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
2888 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
2889 query_chip(cm);
2890 /* added -MCx suffix for chip supporting multi-channels */
2891 if (cm->can_multi_ch)
2892 sprintf(cm->card->driver + strlen(cm->card->driver),
2893 "-MC%d", cm->max_channels);
2894 else if (cm->can_ac3_sw)
2895 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
2897 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2898 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2900 #if CM_CH_PLAY == 1
2901 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
2902 #else
2903 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
2904 #endif
2906 /* initialize codec registers */
2907 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2908 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2909 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2910 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2911 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2913 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
2914 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
2915 #if CM_CH_PLAY == 1
2916 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2917 #else
2918 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
2919 #endif
2920 /* Set Bus Master Request */
2921 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
2923 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
2924 switch (pci->device) {
2925 case PCI_DEVICE_ID_CMEDIA_CM8738:
2926 case PCI_DEVICE_ID_CMEDIA_CM8738B:
2927 if (!pci_dev_present(intel_82437vx))
2928 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
2929 break;
2930 default:
2931 break;
2934 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
2935 snd_cmipci_free(cm);
2936 return err;
2939 integrated_midi = snd_cmipci_read_b(cm, CM_REG_MPU_PCI) != 0xff;
2940 if (integrated_midi && mpu_port[dev] == 1)
2941 iomidi = cm->iobase + CM_REG_MPU_PCI;
2942 else {
2943 iomidi = mpu_port[dev];
2944 switch (iomidi) {
2945 case 0x320: val = CM_VMPU_320; break;
2946 case 0x310: val = CM_VMPU_310; break;
2947 case 0x300: val = CM_VMPU_300; break;
2948 case 0x330: val = CM_VMPU_330; break;
2949 default:
2950 iomidi = 0; break;
2952 if (iomidi > 0) {
2953 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2954 /* enable UART */
2955 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
2959 if ((err = snd_cmipci_create_fm(cm, fm_port[dev])) < 0)
2960 return err;
2962 /* reset mixer */
2963 snd_cmipci_mixer_write(cm, 0, 0);
2965 snd_cmipci_proc_init(cm);
2967 /* create pcm devices */
2968 pcm_index = pcm_spdif_index = 0;
2969 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
2970 return err;
2971 pcm_index++;
2972 if (cm->has_dual_dac) {
2973 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
2974 return err;
2975 pcm_index++;
2977 if (cm->can_ac3_hw || cm->can_ac3_sw) {
2978 pcm_spdif_index = pcm_index;
2979 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
2980 return err;
2983 /* create mixer interface & switches */
2984 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
2985 return err;
2987 if (iomidi > 0) {
2988 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
2989 iomidi,
2990 (integrated_midi ?
2991 MPU401_INFO_INTEGRATED : 0),
2992 cm->irq, 0, &cm->rmidi)) < 0) {
2993 printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
2997 #ifdef USE_VAR48KRATE
2998 for (val = 0; val < ARRAY_SIZE(rates); val++)
2999 snd_cmipci_set_pll(cm, rates[val], val);
3002 * (Re-)Enable external switch spdo_48k
3004 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3005 #endif /* USE_VAR48KRATE */
3007 if (snd_cmipci_create_gameport(cm, dev) < 0)
3008 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3010 snd_card_set_dev(card, &pci->dev);
3012 *rcmipci = cm;
3013 return 0;
3019 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3021 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3022 const struct pci_device_id *pci_id)
3024 static int dev;
3025 struct snd_card *card;
3026 struct cmipci *cm;
3027 int err;
3029 if (dev >= SNDRV_CARDS)
3030 return -ENODEV;
3031 if (! enable[dev]) {
3032 dev++;
3033 return -ENOENT;
3036 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
3037 if (card == NULL)
3038 return -ENOMEM;
3040 switch (pci->device) {
3041 case PCI_DEVICE_ID_CMEDIA_CM8738:
3042 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3043 strcpy(card->driver, "CMI8738");
3044 break;
3045 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3046 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3047 strcpy(card->driver, "CMI8338");
3048 break;
3049 default:
3050 strcpy(card->driver, "CMIPCI");
3051 break;
3054 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3055 snd_card_free(card);
3056 return err;
3058 card->private_data = cm;
3060 sprintf(card->shortname, "C-Media PCI %s", card->driver);
3061 sprintf(card->longname, "%s (model %d) at 0x%lx, irq %i",
3062 card->shortname,
3063 cm->chip_version,
3064 cm->iobase,
3065 cm->irq);
3067 //snd_printd("%s is detected\n", card->longname);
3069 if ((err = snd_card_register(card)) < 0) {
3070 snd_card_free(card);
3071 return err;
3073 pci_set_drvdata(pci, card);
3074 dev++;
3075 return 0;
3079 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3081 snd_card_free(pci_get_drvdata(pci));
3082 pci_set_drvdata(pci, NULL);
3086 #ifdef CONFIG_PM
3088 * power management
3090 static unsigned char saved_regs[] = {
3091 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3092 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3093 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3094 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3095 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3098 static unsigned char saved_mixers[] = {
3099 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3100 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3101 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3102 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3103 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3104 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3105 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3106 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3109 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3111 struct snd_card *card = pci_get_drvdata(pci);
3112 struct cmipci *cm = card->private_data;
3113 int i;
3115 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3117 snd_pcm_suspend_all(cm->pcm);
3118 snd_pcm_suspend_all(cm->pcm2);
3119 snd_pcm_suspend_all(cm->pcm_spdif);
3121 /* save registers */
3122 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3123 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3124 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3125 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3127 /* disable ints */
3128 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3130 pci_disable_device(pci);
3131 pci_save_state(pci);
3132 pci_set_power_state(pci, pci_choose_state(pci, state));
3133 return 0;
3136 static int snd_cmipci_resume(struct pci_dev *pci)
3138 struct snd_card *card = pci_get_drvdata(pci);
3139 struct cmipci *cm = card->private_data;
3140 int i;
3142 pci_set_power_state(pci, PCI_D0);
3143 pci_restore_state(pci);
3144 if (pci_enable_device(pci) < 0) {
3145 printk(KERN_ERR "cmipci: pci_enable_device failed, "
3146 "disabling device\n");
3147 snd_card_disconnect(card);
3148 return -EIO;
3150 pci_set_master(pci);
3152 /* reset / initialize to a sane state */
3153 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3154 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3155 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3156 snd_cmipci_mixer_write(cm, 0, 0);
3158 /* restore registers */
3159 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3160 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3161 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3162 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3164 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3165 return 0;
3167 #endif /* CONFIG_PM */
3169 static struct pci_driver driver = {
3170 .name = "C-Media PCI",
3171 .id_table = snd_cmipci_ids,
3172 .probe = snd_cmipci_probe,
3173 .remove = __devexit_p(snd_cmipci_remove),
3174 #ifdef CONFIG_PM
3175 .suspend = snd_cmipci_suspend,
3176 .resume = snd_cmipci_resume,
3177 #endif
3180 static int __init alsa_card_cmipci_init(void)
3182 return pci_register_driver(&driver);
3185 static void __exit alsa_card_cmipci_exit(void)
3187 pci_unregister_driver(&driver);
3190 module_init(alsa_card_cmipci_init)
3191 module_exit(alsa_card_cmipci_exit)