3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
126 * 0 for faster, smaller code (especially in the critical paths).
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
134 #ifdef CONFIG_DEBUG_SLAB
137 #define FORCED_DEBUG 1
141 #define FORCED_DEBUG 0
144 /* Shouldn't this be in a header file somewhere? */
145 #define BYTES_PER_WORD sizeof(void *)
146 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
148 #ifndef ARCH_KMALLOC_FLAGS
149 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
152 /* Legal flag mask for kmem_cache_create(). */
154 # define CREATE_MASK (SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
162 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
172 * Bufctl's are used for linking objs within a slab
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
188 typedef unsigned int kmem_bufctl_t
;
189 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
191 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
198 * arrange for kmem_freepages to be called via RCU. This is useful if
199 * we need to approach a kernel structure obliquely, from its address
200 * obtained without the usual locking. We can lock the structure to
201 * stabilize it and check it's still at the given address, only if we
202 * can be sure that the memory has not been meanwhile reused for some
203 * other kind of object (which our subsystem's lock might corrupt).
205 * rcu_read_lock before reading the address, then rcu_read_unlock after
206 * taking the spinlock within the structure expected at that address.
209 struct rcu_head head
;
210 struct kmem_cache
*cachep
;
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
224 struct list_head list
;
225 unsigned long colouroff
;
226 void *s_mem
; /* including colour offset */
227 unsigned int inuse
; /* num of objs active in slab */
229 unsigned short nodeid
;
231 struct slab_rcu __slab_cover_slab_rcu
;
239 * - LIFO ordering, to hand out cache-warm objects from _alloc
240 * - reduce the number of linked list operations
241 * - reduce spinlock operations
243 * The limit is stored in the per-cpu structure to reduce the data cache
250 unsigned int batchcount
;
251 unsigned int touched
;
254 * Must have this definition in here for the proper
255 * alignment of array_cache. Also simplifies accessing
261 * bootstrap: The caches do not work without cpuarrays anymore, but the
262 * cpuarrays are allocated from the generic caches...
264 #define BOOT_CPUCACHE_ENTRIES 1
265 struct arraycache_init
{
266 struct array_cache cache
;
267 void *entries
[BOOT_CPUCACHE_ENTRIES
];
271 * The slab lists for all objects.
274 struct list_head slabs_partial
; /* partial list first, better asm code */
275 struct list_head slabs_full
;
276 struct list_head slabs_free
;
277 unsigned long free_objects
;
278 unsigned int free_limit
;
279 unsigned int colour_next
; /* Per-node cache coloring */
280 spinlock_t list_lock
;
281 struct array_cache
*shared
; /* shared per node */
282 struct array_cache
**alien
; /* on other nodes */
283 unsigned long next_reap
; /* updated without locking */
284 int free_touched
; /* updated without locking */
288 * Need this for bootstrapping a per node allocator.
290 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291 static struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
292 #define CACHE_CACHE 0
293 #define SIZE_AC MAX_NUMNODES
294 #define SIZE_L3 (2 * MAX_NUMNODES)
296 static int drain_freelist(struct kmem_cache
*cache
,
297 struct kmem_list3
*l3
, int tofree
);
298 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
300 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
301 static void cache_reap(struct work_struct
*unused
);
304 * This function must be completely optimized away if a constant is passed to
305 * it. Mostly the same as what is in linux/slab.h except it returns an index.
307 static __always_inline
int index_of(const size_t size
)
309 extern void __bad_size(void);
311 if (__builtin_constant_p(size
)) {
319 #include <linux/kmalloc_sizes.h>
327 static int slab_early_init
= 1;
329 #define INDEX_AC index_of(sizeof(struct arraycache_init))
330 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
332 static void kmem_list3_init(struct kmem_list3
*parent
)
334 INIT_LIST_HEAD(&parent
->slabs_full
);
335 INIT_LIST_HEAD(&parent
->slabs_partial
);
336 INIT_LIST_HEAD(&parent
->slabs_free
);
337 parent
->shared
= NULL
;
338 parent
->alien
= NULL
;
339 parent
->colour_next
= 0;
340 spin_lock_init(&parent
->list_lock
);
341 parent
->free_objects
= 0;
342 parent
->free_touched
= 0;
345 #define MAKE_LIST(cachep, listp, slab, nodeid) \
347 INIT_LIST_HEAD(listp); \
348 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
351 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
353 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
354 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
355 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 #define CFLGS_OFF_SLAB (0x80000000UL)
359 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
361 #define BATCHREFILL_LIMIT 16
363 * Optimization question: fewer reaps means less probability for unnessary
364 * cpucache drain/refill cycles.
366 * OTOH the cpuarrays can contain lots of objects,
367 * which could lock up otherwise freeable slabs.
369 #define REAPTIMEOUT_CPUC (2*HZ)
370 #define REAPTIMEOUT_LIST3 (4*HZ)
373 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
374 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
375 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
376 #define STATS_INC_GROWN(x) ((x)->grown++)
377 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
378 #define STATS_SET_HIGH(x) \
380 if ((x)->num_active > (x)->high_mark) \
381 (x)->high_mark = (x)->num_active; \
383 #define STATS_INC_ERR(x) ((x)->errors++)
384 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
385 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
386 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
387 #define STATS_SET_FREEABLE(x, i) \
389 if ((x)->max_freeable < i) \
390 (x)->max_freeable = i; \
392 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
393 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
394 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
395 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
397 #define STATS_INC_ACTIVE(x) do { } while (0)
398 #define STATS_DEC_ACTIVE(x) do { } while (0)
399 #define STATS_INC_ALLOCED(x) do { } while (0)
400 #define STATS_INC_GROWN(x) do { } while (0)
401 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
402 #define STATS_SET_HIGH(x) do { } while (0)
403 #define STATS_INC_ERR(x) do { } while (0)
404 #define STATS_INC_NODEALLOCS(x) do { } while (0)
405 #define STATS_INC_NODEFREES(x) do { } while (0)
406 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
407 #define STATS_SET_FREEABLE(x, i) do { } while (0)
408 #define STATS_INC_ALLOCHIT(x) do { } while (0)
409 #define STATS_INC_ALLOCMISS(x) do { } while (0)
410 #define STATS_INC_FREEHIT(x) do { } while (0)
411 #define STATS_INC_FREEMISS(x) do { } while (0)
417 * memory layout of objects:
419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
420 * the end of an object is aligned with the end of the real
421 * allocation. Catches writes behind the end of the allocation.
422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
424 * cachep->obj_offset: The real object.
425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
427 * [BYTES_PER_WORD long]
429 static int obj_offset(struct kmem_cache
*cachep
)
431 return cachep
->obj_offset
;
434 static int obj_size(struct kmem_cache
*cachep
)
436 return cachep
->obj_size
;
439 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
441 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
442 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
443 sizeof(unsigned long long));
446 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
448 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
449 if (cachep
->flags
& SLAB_STORE_USER
)
450 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
451 sizeof(unsigned long long) -
453 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
454 sizeof(unsigned long long));
457 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
459 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
460 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
465 #define obj_offset(x) 0
466 #define obj_size(cachep) (cachep->buffer_size)
467 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
468 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
469 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
473 #ifdef CONFIG_TRACING
474 size_t slab_buffer_size(struct kmem_cache
*cachep
)
476 return cachep
->buffer_size
;
478 EXPORT_SYMBOL(slab_buffer_size
);
482 * Do not go above this order unless 0 objects fit into the slab.
484 #define BREAK_GFP_ORDER_HI 1
485 #define BREAK_GFP_ORDER_LO 0
486 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
489 * Functions for storing/retrieving the cachep and or slab from the page
490 * allocator. These are used to find the slab an obj belongs to. With kfree(),
491 * these are used to find the cache which an obj belongs to.
493 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
495 page
->lru
.next
= (struct list_head
*)cache
;
498 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
500 page
= compound_head(page
);
501 BUG_ON(!PageSlab(page
));
502 return (struct kmem_cache
*)page
->lru
.next
;
505 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
507 page
->lru
.prev
= (struct list_head
*)slab
;
510 static inline struct slab
*page_get_slab(struct page
*page
)
512 BUG_ON(!PageSlab(page
));
513 return (struct slab
*)page
->lru
.prev
;
516 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
518 struct page
*page
= virt_to_head_page(obj
);
519 return page_get_cache(page
);
522 static inline struct slab
*virt_to_slab(const void *obj
)
524 struct page
*page
= virt_to_head_page(obj
);
525 return page_get_slab(page
);
528 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
531 return slab
->s_mem
+ cache
->buffer_size
* idx
;
535 * We want to avoid an expensive divide : (offset / cache->buffer_size)
536 * Using the fact that buffer_size is a constant for a particular cache,
537 * we can replace (offset / cache->buffer_size) by
538 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
540 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
541 const struct slab
*slab
, void *obj
)
543 u32 offset
= (obj
- slab
->s_mem
);
544 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
548 * These are the default caches for kmalloc. Custom caches can have other sizes.
550 struct cache_sizes malloc_sizes
[] = {
551 #define CACHE(x) { .cs_size = (x) },
552 #include <linux/kmalloc_sizes.h>
556 EXPORT_SYMBOL(malloc_sizes
);
558 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
564 static struct cache_names __initdata cache_names
[] = {
565 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
566 #include <linux/kmalloc_sizes.h>
571 static struct arraycache_init initarray_cache __initdata
=
572 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
573 static struct arraycache_init initarray_generic
=
574 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
576 /* internal cache of cache description objs */
577 static struct kmem_list3
*cache_cache_nodelists
[MAX_NUMNODES
];
578 static struct kmem_cache cache_cache
= {
579 .nodelists
= cache_cache_nodelists
,
581 .limit
= BOOT_CPUCACHE_ENTRIES
,
583 .buffer_size
= sizeof(struct kmem_cache
),
584 .name
= "kmem_cache",
587 #define BAD_ALIEN_MAGIC 0x01020304ul
590 * chicken and egg problem: delay the per-cpu array allocation
591 * until the general caches are up.
603 * used by boot code to determine if it can use slab based allocator
605 int slab_is_available(void)
607 return g_cpucache_up
>= EARLY
;
610 #ifdef CONFIG_LOCKDEP
613 * Slab sometimes uses the kmalloc slabs to store the slab headers
614 * for other slabs "off slab".
615 * The locking for this is tricky in that it nests within the locks
616 * of all other slabs in a few places; to deal with this special
617 * locking we put on-slab caches into a separate lock-class.
619 * We set lock class for alien array caches which are up during init.
620 * The lock annotation will be lost if all cpus of a node goes down and
621 * then comes back up during hotplug
623 static struct lock_class_key on_slab_l3_key
;
624 static struct lock_class_key on_slab_alc_key
;
626 static struct lock_class_key debugobj_l3_key
;
627 static struct lock_class_key debugobj_alc_key
;
629 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
630 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
633 struct array_cache
**alc
;
634 struct kmem_list3
*l3
;
637 l3
= cachep
->nodelists
[q
];
641 lockdep_set_class(&l3
->list_lock
, l3_key
);
644 * FIXME: This check for BAD_ALIEN_MAGIC
645 * should go away when common slab code is taught to
646 * work even without alien caches.
647 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
648 * for alloc_alien_cache,
650 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
654 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
658 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
660 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
663 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
667 for_each_online_node(node
)
668 slab_set_debugobj_lock_classes_node(cachep
, node
);
671 static void init_node_lock_keys(int q
)
673 struct cache_sizes
*s
= malloc_sizes
;
675 if (g_cpucache_up
< LATE
)
678 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
679 struct kmem_list3
*l3
;
681 l3
= s
->cs_cachep
->nodelists
[q
];
682 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
685 slab_set_lock_classes(s
->cs_cachep
, &on_slab_l3_key
,
686 &on_slab_alc_key
, q
);
690 static inline void init_lock_keys(void)
695 init_node_lock_keys(node
);
698 static void init_node_lock_keys(int q
)
702 static inline void init_lock_keys(void)
706 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
710 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
716 * Guard access to the cache-chain.
718 static DEFINE_MUTEX(cache_chain_mutex
);
719 static struct list_head cache_chain
;
721 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
723 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
725 return cachep
->array
[smp_processor_id()];
728 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
731 struct cache_sizes
*csizep
= malloc_sizes
;
734 /* This happens if someone tries to call
735 * kmem_cache_create(), or __kmalloc(), before
736 * the generic caches are initialized.
738 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
741 return ZERO_SIZE_PTR
;
743 while (size
> csizep
->cs_size
)
747 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
748 * has cs_{dma,}cachep==NULL. Thus no special case
749 * for large kmalloc calls required.
751 #ifdef CONFIG_ZONE_DMA
752 if (unlikely(gfpflags
& GFP_DMA
))
753 return csizep
->cs_dmacachep
;
755 return csizep
->cs_cachep
;
758 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
760 return __find_general_cachep(size
, gfpflags
);
763 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
765 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
769 * Calculate the number of objects and left-over bytes for a given buffer size.
771 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
772 size_t align
, int flags
, size_t *left_over
,
777 size_t slab_size
= PAGE_SIZE
<< gfporder
;
780 * The slab management structure can be either off the slab or
781 * on it. For the latter case, the memory allocated for a
785 * - One kmem_bufctl_t for each object
786 * - Padding to respect alignment of @align
787 * - @buffer_size bytes for each object
789 * If the slab management structure is off the slab, then the
790 * alignment will already be calculated into the size. Because
791 * the slabs are all pages aligned, the objects will be at the
792 * correct alignment when allocated.
794 if (flags
& CFLGS_OFF_SLAB
) {
796 nr_objs
= slab_size
/ buffer_size
;
798 if (nr_objs
> SLAB_LIMIT
)
799 nr_objs
= SLAB_LIMIT
;
802 * Ignore padding for the initial guess. The padding
803 * is at most @align-1 bytes, and @buffer_size is at
804 * least @align. In the worst case, this result will
805 * be one greater than the number of objects that fit
806 * into the memory allocation when taking the padding
809 nr_objs
= (slab_size
- sizeof(struct slab
)) /
810 (buffer_size
+ sizeof(kmem_bufctl_t
));
813 * This calculated number will be either the right
814 * amount, or one greater than what we want.
816 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
820 if (nr_objs
> SLAB_LIMIT
)
821 nr_objs
= SLAB_LIMIT
;
823 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
826 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
829 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
831 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
834 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
835 function
, cachep
->name
, msg
);
840 * By default on NUMA we use alien caches to stage the freeing of
841 * objects allocated from other nodes. This causes massive memory
842 * inefficiencies when using fake NUMA setup to split memory into a
843 * large number of small nodes, so it can be disabled on the command
847 static int use_alien_caches __read_mostly
= 1;
848 static int __init
noaliencache_setup(char *s
)
850 use_alien_caches
= 0;
853 __setup("noaliencache", noaliencache_setup
);
857 * Special reaping functions for NUMA systems called from cache_reap().
858 * These take care of doing round robin flushing of alien caches (containing
859 * objects freed on different nodes from which they were allocated) and the
860 * flushing of remote pcps by calling drain_node_pages.
862 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
864 static void init_reap_node(int cpu
)
868 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
869 if (node
== MAX_NUMNODES
)
870 node
= first_node(node_online_map
);
872 per_cpu(slab_reap_node
, cpu
) = node
;
875 static void next_reap_node(void)
877 int node
= __this_cpu_read(slab_reap_node
);
879 node
= next_node(node
, node_online_map
);
880 if (unlikely(node
>= MAX_NUMNODES
))
881 node
= first_node(node_online_map
);
882 __this_cpu_write(slab_reap_node
, node
);
886 #define init_reap_node(cpu) do { } while (0)
887 #define next_reap_node(void) do { } while (0)
891 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
892 * via the workqueue/eventd.
893 * Add the CPU number into the expiration time to minimize the possibility of
894 * the CPUs getting into lockstep and contending for the global cache chain
897 static void __cpuinit
start_cpu_timer(int cpu
)
899 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
902 * When this gets called from do_initcalls via cpucache_init(),
903 * init_workqueues() has already run, so keventd will be setup
906 if (keventd_up() && reap_work
->work
.func
== NULL
) {
908 INIT_DELAYED_WORK_DEFERRABLE(reap_work
, cache_reap
);
909 schedule_delayed_work_on(cpu
, reap_work
,
910 __round_jiffies_relative(HZ
, cpu
));
914 static struct array_cache
*alloc_arraycache(int node
, int entries
,
915 int batchcount
, gfp_t gfp
)
917 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
918 struct array_cache
*nc
= NULL
;
920 nc
= kmalloc_node(memsize
, gfp
, node
);
922 * The array_cache structures contain pointers to free object.
923 * However, when such objects are allocated or transferred to another
924 * cache the pointers are not cleared and they could be counted as
925 * valid references during a kmemleak scan. Therefore, kmemleak must
926 * not scan such objects.
928 kmemleak_no_scan(nc
);
932 nc
->batchcount
= batchcount
;
934 spin_lock_init(&nc
->lock
);
940 * Transfer objects in one arraycache to another.
941 * Locking must be handled by the caller.
943 * Return the number of entries transferred.
945 static int transfer_objects(struct array_cache
*to
,
946 struct array_cache
*from
, unsigned int max
)
948 /* Figure out how many entries to transfer */
949 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
954 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
964 #define drain_alien_cache(cachep, alien) do { } while (0)
965 #define reap_alien(cachep, l3) do { } while (0)
967 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
969 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
972 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
976 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
981 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
987 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
988 gfp_t flags
, int nodeid
)
993 #else /* CONFIG_NUMA */
995 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
996 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
998 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1000 struct array_cache
**ac_ptr
;
1001 int memsize
= sizeof(void *) * nr_node_ids
;
1006 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
1009 if (i
== node
|| !node_online(i
))
1011 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1013 for (i
--; i
>= 0; i
--)
1023 static void free_alien_cache(struct array_cache
**ac_ptr
)
1034 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1035 struct array_cache
*ac
, int node
)
1037 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1040 spin_lock(&rl3
->list_lock
);
1042 * Stuff objects into the remote nodes shared array first.
1043 * That way we could avoid the overhead of putting the objects
1044 * into the free lists and getting them back later.
1047 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1049 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1051 spin_unlock(&rl3
->list_lock
);
1056 * Called from cache_reap() to regularly drain alien caches round robin.
1058 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1060 int node
= __this_cpu_read(slab_reap_node
);
1063 struct array_cache
*ac
= l3
->alien
[node
];
1065 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1066 __drain_alien_cache(cachep
, ac
, node
);
1067 spin_unlock_irq(&ac
->lock
);
1072 static void drain_alien_cache(struct kmem_cache
*cachep
,
1073 struct array_cache
**alien
)
1076 struct array_cache
*ac
;
1077 unsigned long flags
;
1079 for_each_online_node(i
) {
1082 spin_lock_irqsave(&ac
->lock
, flags
);
1083 __drain_alien_cache(cachep
, ac
, i
);
1084 spin_unlock_irqrestore(&ac
->lock
, flags
);
1089 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1091 struct slab
*slabp
= virt_to_slab(objp
);
1092 int nodeid
= slabp
->nodeid
;
1093 struct kmem_list3
*l3
;
1094 struct array_cache
*alien
= NULL
;
1097 node
= numa_mem_id();
1100 * Make sure we are not freeing a object from another node to the array
1101 * cache on this cpu.
1103 if (likely(slabp
->nodeid
== node
))
1106 l3
= cachep
->nodelists
[node
];
1107 STATS_INC_NODEFREES(cachep
);
1108 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1109 alien
= l3
->alien
[nodeid
];
1110 spin_lock(&alien
->lock
);
1111 if (unlikely(alien
->avail
== alien
->limit
)) {
1112 STATS_INC_ACOVERFLOW(cachep
);
1113 __drain_alien_cache(cachep
, alien
, nodeid
);
1115 alien
->entry
[alien
->avail
++] = objp
;
1116 spin_unlock(&alien
->lock
);
1118 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1119 free_block(cachep
, &objp
, 1, nodeid
);
1120 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1127 * Allocates and initializes nodelists for a node on each slab cache, used for
1128 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1129 * will be allocated off-node since memory is not yet online for the new node.
1130 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1133 * Must hold cache_chain_mutex.
1135 static int init_cache_nodelists_node(int node
)
1137 struct kmem_cache
*cachep
;
1138 struct kmem_list3
*l3
;
1139 const int memsize
= sizeof(struct kmem_list3
);
1141 list_for_each_entry(cachep
, &cache_chain
, next
) {
1143 * Set up the size64 kmemlist for cpu before we can
1144 * begin anything. Make sure some other cpu on this
1145 * node has not already allocated this
1147 if (!cachep
->nodelists
[node
]) {
1148 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1151 kmem_list3_init(l3
);
1152 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1153 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1156 * The l3s don't come and go as CPUs come and
1157 * go. cache_chain_mutex is sufficient
1160 cachep
->nodelists
[node
] = l3
;
1163 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1164 cachep
->nodelists
[node
]->free_limit
=
1165 (1 + nr_cpus_node(node
)) *
1166 cachep
->batchcount
+ cachep
->num
;
1167 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1172 static void __cpuinit
cpuup_canceled(long cpu
)
1174 struct kmem_cache
*cachep
;
1175 struct kmem_list3
*l3
= NULL
;
1176 int node
= cpu_to_mem(cpu
);
1177 const struct cpumask
*mask
= cpumask_of_node(node
);
1179 list_for_each_entry(cachep
, &cache_chain
, next
) {
1180 struct array_cache
*nc
;
1181 struct array_cache
*shared
;
1182 struct array_cache
**alien
;
1184 /* cpu is dead; no one can alloc from it. */
1185 nc
= cachep
->array
[cpu
];
1186 cachep
->array
[cpu
] = NULL
;
1187 l3
= cachep
->nodelists
[node
];
1190 goto free_array_cache
;
1192 spin_lock_irq(&l3
->list_lock
);
1194 /* Free limit for this kmem_list3 */
1195 l3
->free_limit
-= cachep
->batchcount
;
1197 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1199 if (!cpumask_empty(mask
)) {
1200 spin_unlock_irq(&l3
->list_lock
);
1201 goto free_array_cache
;
1204 shared
= l3
->shared
;
1206 free_block(cachep
, shared
->entry
,
1207 shared
->avail
, node
);
1214 spin_unlock_irq(&l3
->list_lock
);
1218 drain_alien_cache(cachep
, alien
);
1219 free_alien_cache(alien
);
1225 * In the previous loop, all the objects were freed to
1226 * the respective cache's slabs, now we can go ahead and
1227 * shrink each nodelist to its limit.
1229 list_for_each_entry(cachep
, &cache_chain
, next
) {
1230 l3
= cachep
->nodelists
[node
];
1233 drain_freelist(cachep
, l3
, l3
->free_objects
);
1237 static int __cpuinit
cpuup_prepare(long cpu
)
1239 struct kmem_cache
*cachep
;
1240 struct kmem_list3
*l3
= NULL
;
1241 int node
= cpu_to_mem(cpu
);
1245 * We need to do this right in the beginning since
1246 * alloc_arraycache's are going to use this list.
1247 * kmalloc_node allows us to add the slab to the right
1248 * kmem_list3 and not this cpu's kmem_list3
1250 err
= init_cache_nodelists_node(node
);
1255 * Now we can go ahead with allocating the shared arrays and
1258 list_for_each_entry(cachep
, &cache_chain
, next
) {
1259 struct array_cache
*nc
;
1260 struct array_cache
*shared
= NULL
;
1261 struct array_cache
**alien
= NULL
;
1263 nc
= alloc_arraycache(node
, cachep
->limit
,
1264 cachep
->batchcount
, GFP_KERNEL
);
1267 if (cachep
->shared
) {
1268 shared
= alloc_arraycache(node
,
1269 cachep
->shared
* cachep
->batchcount
,
1270 0xbaadf00d, GFP_KERNEL
);
1276 if (use_alien_caches
) {
1277 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1284 cachep
->array
[cpu
] = nc
;
1285 l3
= cachep
->nodelists
[node
];
1288 spin_lock_irq(&l3
->list_lock
);
1291 * We are serialised from CPU_DEAD or
1292 * CPU_UP_CANCELLED by the cpucontrol lock
1294 l3
->shared
= shared
;
1303 spin_unlock_irq(&l3
->list_lock
);
1305 free_alien_cache(alien
);
1306 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1307 slab_set_debugobj_lock_classes_node(cachep
, node
);
1309 init_node_lock_keys(node
);
1313 cpuup_canceled(cpu
);
1317 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1318 unsigned long action
, void *hcpu
)
1320 long cpu
= (long)hcpu
;
1324 case CPU_UP_PREPARE
:
1325 case CPU_UP_PREPARE_FROZEN
:
1326 mutex_lock(&cache_chain_mutex
);
1327 err
= cpuup_prepare(cpu
);
1328 mutex_unlock(&cache_chain_mutex
);
1331 case CPU_ONLINE_FROZEN
:
1332 start_cpu_timer(cpu
);
1334 #ifdef CONFIG_HOTPLUG_CPU
1335 case CPU_DOWN_PREPARE
:
1336 case CPU_DOWN_PREPARE_FROZEN
:
1338 * Shutdown cache reaper. Note that the cache_chain_mutex is
1339 * held so that if cache_reap() is invoked it cannot do
1340 * anything expensive but will only modify reap_work
1341 * and reschedule the timer.
1343 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1344 /* Now the cache_reaper is guaranteed to be not running. */
1345 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1347 case CPU_DOWN_FAILED
:
1348 case CPU_DOWN_FAILED_FROZEN
:
1349 start_cpu_timer(cpu
);
1352 case CPU_DEAD_FROZEN
:
1354 * Even if all the cpus of a node are down, we don't free the
1355 * kmem_list3 of any cache. This to avoid a race between
1356 * cpu_down, and a kmalloc allocation from another cpu for
1357 * memory from the node of the cpu going down. The list3
1358 * structure is usually allocated from kmem_cache_create() and
1359 * gets destroyed at kmem_cache_destroy().
1363 case CPU_UP_CANCELED
:
1364 case CPU_UP_CANCELED_FROZEN
:
1365 mutex_lock(&cache_chain_mutex
);
1366 cpuup_canceled(cpu
);
1367 mutex_unlock(&cache_chain_mutex
);
1370 return notifier_from_errno(err
);
1373 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1374 &cpuup_callback
, NULL
, 0
1377 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1379 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1380 * Returns -EBUSY if all objects cannot be drained so that the node is not
1383 * Must hold cache_chain_mutex.
1385 static int __meminit
drain_cache_nodelists_node(int node
)
1387 struct kmem_cache
*cachep
;
1390 list_for_each_entry(cachep
, &cache_chain
, next
) {
1391 struct kmem_list3
*l3
;
1393 l3
= cachep
->nodelists
[node
];
1397 drain_freelist(cachep
, l3
, l3
->free_objects
);
1399 if (!list_empty(&l3
->slabs_full
) ||
1400 !list_empty(&l3
->slabs_partial
)) {
1408 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1409 unsigned long action
, void *arg
)
1411 struct memory_notify
*mnb
= arg
;
1415 nid
= mnb
->status_change_nid
;
1420 case MEM_GOING_ONLINE
:
1421 mutex_lock(&cache_chain_mutex
);
1422 ret
= init_cache_nodelists_node(nid
);
1423 mutex_unlock(&cache_chain_mutex
);
1425 case MEM_GOING_OFFLINE
:
1426 mutex_lock(&cache_chain_mutex
);
1427 ret
= drain_cache_nodelists_node(nid
);
1428 mutex_unlock(&cache_chain_mutex
);
1432 case MEM_CANCEL_ONLINE
:
1433 case MEM_CANCEL_OFFLINE
:
1437 return notifier_from_errno(ret
);
1439 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1442 * swap the static kmem_list3 with kmalloced memory
1444 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1447 struct kmem_list3
*ptr
;
1449 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1452 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1454 * Do not assume that spinlocks can be initialized via memcpy:
1456 spin_lock_init(&ptr
->list_lock
);
1458 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1459 cachep
->nodelists
[nodeid
] = ptr
;
1463 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1464 * size of kmem_list3.
1466 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1470 for_each_online_node(node
) {
1471 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1472 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1474 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1479 * Initialisation. Called after the page allocator have been initialised and
1480 * before smp_init().
1482 void __init
kmem_cache_init(void)
1485 struct cache_sizes
*sizes
;
1486 struct cache_names
*names
;
1491 if (num_possible_nodes() == 1)
1492 use_alien_caches
= 0;
1494 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1495 kmem_list3_init(&initkmem_list3
[i
]);
1496 if (i
< MAX_NUMNODES
)
1497 cache_cache
.nodelists
[i
] = NULL
;
1499 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1502 * Fragmentation resistance on low memory - only use bigger
1503 * page orders on machines with more than 32MB of memory.
1505 if (totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1506 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1508 /* Bootstrap is tricky, because several objects are allocated
1509 * from caches that do not exist yet:
1510 * 1) initialize the cache_cache cache: it contains the struct
1511 * kmem_cache structures of all caches, except cache_cache itself:
1512 * cache_cache is statically allocated.
1513 * Initially an __init data area is used for the head array and the
1514 * kmem_list3 structures, it's replaced with a kmalloc allocated
1515 * array at the end of the bootstrap.
1516 * 2) Create the first kmalloc cache.
1517 * The struct kmem_cache for the new cache is allocated normally.
1518 * An __init data area is used for the head array.
1519 * 3) Create the remaining kmalloc caches, with minimally sized
1521 * 4) Replace the __init data head arrays for cache_cache and the first
1522 * kmalloc cache with kmalloc allocated arrays.
1523 * 5) Replace the __init data for kmem_list3 for cache_cache and
1524 * the other cache's with kmalloc allocated memory.
1525 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1528 node
= numa_mem_id();
1530 /* 1) create the cache_cache */
1531 INIT_LIST_HEAD(&cache_chain
);
1532 list_add(&cache_cache
.next
, &cache_chain
);
1533 cache_cache
.colour_off
= cache_line_size();
1534 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1535 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1538 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1540 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1541 nr_node_ids
* sizeof(struct kmem_list3
*);
1543 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1545 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1547 cache_cache
.reciprocal_buffer_size
=
1548 reciprocal_value(cache_cache
.buffer_size
);
1550 for (order
= 0; order
< MAX_ORDER
; order
++) {
1551 cache_estimate(order
, cache_cache
.buffer_size
,
1552 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1553 if (cache_cache
.num
)
1556 BUG_ON(!cache_cache
.num
);
1557 cache_cache
.gfporder
= order
;
1558 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1559 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1560 sizeof(struct slab
), cache_line_size());
1562 /* 2+3) create the kmalloc caches */
1563 sizes
= malloc_sizes
;
1564 names
= cache_names
;
1567 * Initialize the caches that provide memory for the array cache and the
1568 * kmem_list3 structures first. Without this, further allocations will
1572 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1573 sizes
[INDEX_AC
].cs_size
,
1574 ARCH_KMALLOC_MINALIGN
,
1575 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1578 if (INDEX_AC
!= INDEX_L3
) {
1579 sizes
[INDEX_L3
].cs_cachep
=
1580 kmem_cache_create(names
[INDEX_L3
].name
,
1581 sizes
[INDEX_L3
].cs_size
,
1582 ARCH_KMALLOC_MINALIGN
,
1583 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1587 slab_early_init
= 0;
1589 while (sizes
->cs_size
!= ULONG_MAX
) {
1591 * For performance, all the general caches are L1 aligned.
1592 * This should be particularly beneficial on SMP boxes, as it
1593 * eliminates "false sharing".
1594 * Note for systems short on memory removing the alignment will
1595 * allow tighter packing of the smaller caches.
1597 if (!sizes
->cs_cachep
) {
1598 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1600 ARCH_KMALLOC_MINALIGN
,
1601 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1604 #ifdef CONFIG_ZONE_DMA
1605 sizes
->cs_dmacachep
= kmem_cache_create(
1608 ARCH_KMALLOC_MINALIGN
,
1609 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1616 /* 4) Replace the bootstrap head arrays */
1618 struct array_cache
*ptr
;
1620 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1622 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1623 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1624 sizeof(struct arraycache_init
));
1626 * Do not assume that spinlocks can be initialized via memcpy:
1628 spin_lock_init(&ptr
->lock
);
1630 cache_cache
.array
[smp_processor_id()] = ptr
;
1632 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1634 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1635 != &initarray_generic
.cache
);
1636 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1637 sizeof(struct arraycache_init
));
1639 * Do not assume that spinlocks can be initialized via memcpy:
1641 spin_lock_init(&ptr
->lock
);
1643 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1646 /* 5) Replace the bootstrap kmem_list3's */
1650 for_each_online_node(nid
) {
1651 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1653 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1654 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1656 if (INDEX_AC
!= INDEX_L3
) {
1657 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1658 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1663 g_cpucache_up
= EARLY
;
1666 void __init
kmem_cache_init_late(void)
1668 struct kmem_cache
*cachep
;
1670 g_cpucache_up
= LATE
;
1672 /* Annotate slab for lockdep -- annotate the malloc caches */
1675 /* 6) resize the head arrays to their final sizes */
1676 mutex_lock(&cache_chain_mutex
);
1677 list_for_each_entry(cachep
, &cache_chain
, next
)
1678 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1680 mutex_unlock(&cache_chain_mutex
);
1683 g_cpucache_up
= FULL
;
1686 * Register a cpu startup notifier callback that initializes
1687 * cpu_cache_get for all new cpus
1689 register_cpu_notifier(&cpucache_notifier
);
1693 * Register a memory hotplug callback that initializes and frees
1696 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1700 * The reap timers are started later, with a module init call: That part
1701 * of the kernel is not yet operational.
1705 static int __init
cpucache_init(void)
1710 * Register the timers that return unneeded pages to the page allocator
1712 for_each_online_cpu(cpu
)
1713 start_cpu_timer(cpu
);
1716 __initcall(cpucache_init
);
1719 * Interface to system's page allocator. No need to hold the cache-lock.
1721 * If we requested dmaable memory, we will get it. Even if we
1722 * did not request dmaable memory, we might get it, but that
1723 * would be relatively rare and ignorable.
1725 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1733 * Nommu uses slab's for process anonymous memory allocations, and thus
1734 * requires __GFP_COMP to properly refcount higher order allocations
1736 flags
|= __GFP_COMP
;
1739 flags
|= cachep
->gfpflags
;
1740 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1741 flags
|= __GFP_RECLAIMABLE
;
1743 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1747 nr_pages
= (1 << cachep
->gfporder
);
1748 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1749 add_zone_page_state(page_zone(page
),
1750 NR_SLAB_RECLAIMABLE
, nr_pages
);
1752 add_zone_page_state(page_zone(page
),
1753 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1754 for (i
= 0; i
< nr_pages
; i
++)
1755 __SetPageSlab(page
+ i
);
1757 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1758 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1761 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1763 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1766 return page_address(page
);
1770 * Interface to system's page release.
1772 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1774 unsigned long i
= (1 << cachep
->gfporder
);
1775 struct page
*page
= virt_to_page(addr
);
1776 const unsigned long nr_freed
= i
;
1778 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1780 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1781 sub_zone_page_state(page_zone(page
),
1782 NR_SLAB_RECLAIMABLE
, nr_freed
);
1784 sub_zone_page_state(page_zone(page
),
1785 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1787 BUG_ON(!PageSlab(page
));
1788 __ClearPageSlab(page
);
1791 if (current
->reclaim_state
)
1792 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1793 free_pages((unsigned long)addr
, cachep
->gfporder
);
1796 static void kmem_rcu_free(struct rcu_head
*head
)
1798 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1799 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1801 kmem_freepages(cachep
, slab_rcu
->addr
);
1802 if (OFF_SLAB(cachep
))
1803 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1808 #ifdef CONFIG_DEBUG_PAGEALLOC
1809 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1810 unsigned long caller
)
1812 int size
= obj_size(cachep
);
1814 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1816 if (size
< 5 * sizeof(unsigned long))
1819 *addr
++ = 0x12345678;
1821 *addr
++ = smp_processor_id();
1822 size
-= 3 * sizeof(unsigned long);
1824 unsigned long *sptr
= &caller
;
1825 unsigned long svalue
;
1827 while (!kstack_end(sptr
)) {
1829 if (kernel_text_address(svalue
)) {
1831 size
-= sizeof(unsigned long);
1832 if (size
<= sizeof(unsigned long))
1838 *addr
++ = 0x87654321;
1842 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1844 int size
= obj_size(cachep
);
1845 addr
= &((char *)addr
)[obj_offset(cachep
)];
1847 memset(addr
, val
, size
);
1848 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1851 static void dump_line(char *data
, int offset
, int limit
)
1854 unsigned char error
= 0;
1857 printk(KERN_ERR
"%03x:", offset
);
1858 for (i
= 0; i
< limit
; i
++) {
1859 if (data
[offset
+ i
] != POISON_FREE
) {
1860 error
= data
[offset
+ i
];
1863 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1867 if (bad_count
== 1) {
1868 error
^= POISON_FREE
;
1869 if (!(error
& (error
- 1))) {
1870 printk(KERN_ERR
"Single bit error detected. Probably "
1873 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1876 printk(KERN_ERR
"Run a memory test tool.\n");
1885 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1890 if (cachep
->flags
& SLAB_RED_ZONE
) {
1891 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1892 *dbg_redzone1(cachep
, objp
),
1893 *dbg_redzone2(cachep
, objp
));
1896 if (cachep
->flags
& SLAB_STORE_USER
) {
1897 printk(KERN_ERR
"Last user: [<%p>]",
1898 *dbg_userword(cachep
, objp
));
1899 print_symbol("(%s)",
1900 (unsigned long)*dbg_userword(cachep
, objp
));
1903 realobj
= (char *)objp
+ obj_offset(cachep
);
1904 size
= obj_size(cachep
);
1905 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1908 if (i
+ limit
> size
)
1910 dump_line(realobj
, i
, limit
);
1914 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1920 realobj
= (char *)objp
+ obj_offset(cachep
);
1921 size
= obj_size(cachep
);
1923 for (i
= 0; i
< size
; i
++) {
1924 char exp
= POISON_FREE
;
1927 if (realobj
[i
] != exp
) {
1933 "Slab corruption: %s start=%p, len=%d\n",
1934 cachep
->name
, realobj
, size
);
1935 print_objinfo(cachep
, objp
, 0);
1937 /* Hexdump the affected line */
1940 if (i
+ limit
> size
)
1942 dump_line(realobj
, i
, limit
);
1945 /* Limit to 5 lines */
1951 /* Print some data about the neighboring objects, if they
1954 struct slab
*slabp
= virt_to_slab(objp
);
1957 objnr
= obj_to_index(cachep
, slabp
, objp
);
1959 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1960 realobj
= (char *)objp
+ obj_offset(cachep
);
1961 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1963 print_objinfo(cachep
, objp
, 2);
1965 if (objnr
+ 1 < cachep
->num
) {
1966 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1967 realobj
= (char *)objp
+ obj_offset(cachep
);
1968 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1970 print_objinfo(cachep
, objp
, 2);
1977 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1980 for (i
= 0; i
< cachep
->num
; i
++) {
1981 void *objp
= index_to_obj(cachep
, slabp
, i
);
1983 if (cachep
->flags
& SLAB_POISON
) {
1984 #ifdef CONFIG_DEBUG_PAGEALLOC
1985 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1987 kernel_map_pages(virt_to_page(objp
),
1988 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1990 check_poison_obj(cachep
, objp
);
1992 check_poison_obj(cachep
, objp
);
1995 if (cachep
->flags
& SLAB_RED_ZONE
) {
1996 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1997 slab_error(cachep
, "start of a freed object "
1999 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2000 slab_error(cachep
, "end of a freed object "
2006 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2012 * slab_destroy - destroy and release all objects in a slab
2013 * @cachep: cache pointer being destroyed
2014 * @slabp: slab pointer being destroyed
2016 * Destroy all the objs in a slab, and release the mem back to the system.
2017 * Before calling the slab must have been unlinked from the cache. The
2018 * cache-lock is not held/needed.
2020 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
2022 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
2024 slab_destroy_debugcheck(cachep
, slabp
);
2025 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
2026 struct slab_rcu
*slab_rcu
;
2028 slab_rcu
= (struct slab_rcu
*)slabp
;
2029 slab_rcu
->cachep
= cachep
;
2030 slab_rcu
->addr
= addr
;
2031 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
2033 kmem_freepages(cachep
, addr
);
2034 if (OFF_SLAB(cachep
))
2035 kmem_cache_free(cachep
->slabp_cache
, slabp
);
2039 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
2042 struct kmem_list3
*l3
;
2044 for_each_online_cpu(i
)
2045 kfree(cachep
->array
[i
]);
2047 /* NUMA: free the list3 structures */
2048 for_each_online_node(i
) {
2049 l3
= cachep
->nodelists
[i
];
2052 free_alien_cache(l3
->alien
);
2056 kmem_cache_free(&cache_cache
, cachep
);
2061 * calculate_slab_order - calculate size (page order) of slabs
2062 * @cachep: pointer to the cache that is being created
2063 * @size: size of objects to be created in this cache.
2064 * @align: required alignment for the objects.
2065 * @flags: slab allocation flags
2067 * Also calculates the number of objects per slab.
2069 * This could be made much more intelligent. For now, try to avoid using
2070 * high order pages for slabs. When the gfp() functions are more friendly
2071 * towards high-order requests, this should be changed.
2073 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2074 size_t size
, size_t align
, unsigned long flags
)
2076 unsigned long offslab_limit
;
2077 size_t left_over
= 0;
2080 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2084 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2088 if (flags
& CFLGS_OFF_SLAB
) {
2090 * Max number of objs-per-slab for caches which
2091 * use off-slab slabs. Needed to avoid a possible
2092 * looping condition in cache_grow().
2094 offslab_limit
= size
- sizeof(struct slab
);
2095 offslab_limit
/= sizeof(kmem_bufctl_t
);
2097 if (num
> offslab_limit
)
2101 /* Found something acceptable - save it away */
2103 cachep
->gfporder
= gfporder
;
2104 left_over
= remainder
;
2107 * A VFS-reclaimable slab tends to have most allocations
2108 * as GFP_NOFS and we really don't want to have to be allocating
2109 * higher-order pages when we are unable to shrink dcache.
2111 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2115 * Large number of objects is good, but very large slabs are
2116 * currently bad for the gfp()s.
2118 if (gfporder
>= slab_break_gfp_order
)
2122 * Acceptable internal fragmentation?
2124 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2130 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2132 if (g_cpucache_up
== FULL
)
2133 return enable_cpucache(cachep
, gfp
);
2135 if (g_cpucache_up
== NONE
) {
2137 * Note: the first kmem_cache_create must create the cache
2138 * that's used by kmalloc(24), otherwise the creation of
2139 * further caches will BUG().
2141 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2144 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2145 * the first cache, then we need to set up all its list3s,
2146 * otherwise the creation of further caches will BUG().
2148 set_up_list3s(cachep
, SIZE_AC
);
2149 if (INDEX_AC
== INDEX_L3
)
2150 g_cpucache_up
= PARTIAL_L3
;
2152 g_cpucache_up
= PARTIAL_AC
;
2154 cachep
->array
[smp_processor_id()] =
2155 kmalloc(sizeof(struct arraycache_init
), gfp
);
2157 if (g_cpucache_up
== PARTIAL_AC
) {
2158 set_up_list3s(cachep
, SIZE_L3
);
2159 g_cpucache_up
= PARTIAL_L3
;
2162 for_each_online_node(node
) {
2163 cachep
->nodelists
[node
] =
2164 kmalloc_node(sizeof(struct kmem_list3
),
2166 BUG_ON(!cachep
->nodelists
[node
]);
2167 kmem_list3_init(cachep
->nodelists
[node
]);
2171 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2172 jiffies
+ REAPTIMEOUT_LIST3
+
2173 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2175 cpu_cache_get(cachep
)->avail
= 0;
2176 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2177 cpu_cache_get(cachep
)->batchcount
= 1;
2178 cpu_cache_get(cachep
)->touched
= 0;
2179 cachep
->batchcount
= 1;
2180 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2185 * kmem_cache_create - Create a cache.
2186 * @name: A string which is used in /proc/slabinfo to identify this cache.
2187 * @size: The size of objects to be created in this cache.
2188 * @align: The required alignment for the objects.
2189 * @flags: SLAB flags
2190 * @ctor: A constructor for the objects.
2192 * Returns a ptr to the cache on success, NULL on failure.
2193 * Cannot be called within a int, but can be interrupted.
2194 * The @ctor is run when new pages are allocated by the cache.
2196 * @name must be valid until the cache is destroyed. This implies that
2197 * the module calling this has to destroy the cache before getting unloaded.
2201 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2202 * to catch references to uninitialised memory.
2204 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2205 * for buffer overruns.
2207 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2208 * cacheline. This can be beneficial if you're counting cycles as closely
2212 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2213 unsigned long flags
, void (*ctor
)(void *))
2215 size_t left_over
, slab_size
, ralign
;
2216 struct kmem_cache
*cachep
= NULL
, *pc
;
2220 * Sanity checks... these are all serious usage bugs.
2222 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2223 size
> KMALLOC_MAX_SIZE
) {
2224 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2230 * We use cache_chain_mutex to ensure a consistent view of
2231 * cpu_online_mask as well. Please see cpuup_callback
2233 if (slab_is_available()) {
2235 mutex_lock(&cache_chain_mutex
);
2238 list_for_each_entry(pc
, &cache_chain
, next
) {
2243 * This happens when the module gets unloaded and doesn't
2244 * destroy its slab cache and no-one else reuses the vmalloc
2245 * area of the module. Print a warning.
2247 res
= probe_kernel_address(pc
->name
, tmp
);
2250 "SLAB: cache with size %d has lost its name\n",
2255 if (!strcmp(pc
->name
, name
)) {
2257 "kmem_cache_create: duplicate cache %s\n", name
);
2264 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2267 * Enable redzoning and last user accounting, except for caches with
2268 * large objects, if the increased size would increase the object size
2269 * above the next power of two: caches with object sizes just above a
2270 * power of two have a significant amount of internal fragmentation.
2272 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2273 2 * sizeof(unsigned long long)))
2274 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2275 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2276 flags
|= SLAB_POISON
;
2278 if (flags
& SLAB_DESTROY_BY_RCU
)
2279 BUG_ON(flags
& SLAB_POISON
);
2282 * Always checks flags, a caller might be expecting debug support which
2285 BUG_ON(flags
& ~CREATE_MASK
);
2288 * Check that size is in terms of words. This is needed to avoid
2289 * unaligned accesses for some archs when redzoning is used, and makes
2290 * sure any on-slab bufctl's are also correctly aligned.
2292 if (size
& (BYTES_PER_WORD
- 1)) {
2293 size
+= (BYTES_PER_WORD
- 1);
2294 size
&= ~(BYTES_PER_WORD
- 1);
2297 /* calculate the final buffer alignment: */
2299 /* 1) arch recommendation: can be overridden for debug */
2300 if (flags
& SLAB_HWCACHE_ALIGN
) {
2302 * Default alignment: as specified by the arch code. Except if
2303 * an object is really small, then squeeze multiple objects into
2306 ralign
= cache_line_size();
2307 while (size
<= ralign
/ 2)
2310 ralign
= BYTES_PER_WORD
;
2314 * Redzoning and user store require word alignment or possibly larger.
2315 * Note this will be overridden by architecture or caller mandated
2316 * alignment if either is greater than BYTES_PER_WORD.
2318 if (flags
& SLAB_STORE_USER
)
2319 ralign
= BYTES_PER_WORD
;
2321 if (flags
& SLAB_RED_ZONE
) {
2322 ralign
= REDZONE_ALIGN
;
2323 /* If redzoning, ensure that the second redzone is suitably
2324 * aligned, by adjusting the object size accordingly. */
2325 size
+= REDZONE_ALIGN
- 1;
2326 size
&= ~(REDZONE_ALIGN
- 1);
2329 /* 2) arch mandated alignment */
2330 if (ralign
< ARCH_SLAB_MINALIGN
) {
2331 ralign
= ARCH_SLAB_MINALIGN
;
2333 /* 3) caller mandated alignment */
2334 if (ralign
< align
) {
2337 /* disable debug if necessary */
2338 if (ralign
> __alignof__(unsigned long long))
2339 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2345 if (slab_is_available())
2350 /* Get cache's description obj. */
2351 cachep
= kmem_cache_zalloc(&cache_cache
, gfp
);
2355 cachep
->nodelists
= (struct kmem_list3
**)&cachep
->array
[nr_cpu_ids
];
2357 cachep
->obj_size
= size
;
2360 * Both debugging options require word-alignment which is calculated
2363 if (flags
& SLAB_RED_ZONE
) {
2364 /* add space for red zone words */
2365 cachep
->obj_offset
+= sizeof(unsigned long long);
2366 size
+= 2 * sizeof(unsigned long long);
2368 if (flags
& SLAB_STORE_USER
) {
2369 /* user store requires one word storage behind the end of
2370 * the real object. But if the second red zone needs to be
2371 * aligned to 64 bits, we must allow that much space.
2373 if (flags
& SLAB_RED_ZONE
)
2374 size
+= REDZONE_ALIGN
;
2376 size
+= BYTES_PER_WORD
;
2378 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2379 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2380 && cachep
->obj_size
> cache_line_size() && ALIGN(size
, align
) < PAGE_SIZE
) {
2381 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, align
);
2388 * Determine if the slab management is 'on' or 'off' slab.
2389 * (bootstrapping cannot cope with offslab caches so don't do
2390 * it too early on. Always use on-slab management when
2391 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2393 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2394 !(flags
& SLAB_NOLEAKTRACE
))
2396 * Size is large, assume best to place the slab management obj
2397 * off-slab (should allow better packing of objs).
2399 flags
|= CFLGS_OFF_SLAB
;
2401 size
= ALIGN(size
, align
);
2403 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2407 "kmem_cache_create: couldn't create cache %s.\n", name
);
2408 kmem_cache_free(&cache_cache
, cachep
);
2412 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2413 + sizeof(struct slab
), align
);
2416 * If the slab has been placed off-slab, and we have enough space then
2417 * move it on-slab. This is at the expense of any extra colouring.
2419 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2420 flags
&= ~CFLGS_OFF_SLAB
;
2421 left_over
-= slab_size
;
2424 if (flags
& CFLGS_OFF_SLAB
) {
2425 /* really off slab. No need for manual alignment */
2427 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2429 #ifdef CONFIG_PAGE_POISONING
2430 /* If we're going to use the generic kernel_map_pages()
2431 * poisoning, then it's going to smash the contents of
2432 * the redzone and userword anyhow, so switch them off.
2434 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2435 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2439 cachep
->colour_off
= cache_line_size();
2440 /* Offset must be a multiple of the alignment. */
2441 if (cachep
->colour_off
< align
)
2442 cachep
->colour_off
= align
;
2443 cachep
->colour
= left_over
/ cachep
->colour_off
;
2444 cachep
->slab_size
= slab_size
;
2445 cachep
->flags
= flags
;
2446 cachep
->gfpflags
= 0;
2447 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2448 cachep
->gfpflags
|= GFP_DMA
;
2449 cachep
->buffer_size
= size
;
2450 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2452 if (flags
& CFLGS_OFF_SLAB
) {
2453 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2455 * This is a possibility for one of the malloc_sizes caches.
2456 * But since we go off slab only for object size greater than
2457 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2458 * this should not happen at all.
2459 * But leave a BUG_ON for some lucky dude.
2461 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2463 cachep
->ctor
= ctor
;
2464 cachep
->name
= name
;
2466 if (setup_cpu_cache(cachep
, gfp
)) {
2467 __kmem_cache_destroy(cachep
);
2472 if (flags
& SLAB_DEBUG_OBJECTS
) {
2474 * Would deadlock through slab_destroy()->call_rcu()->
2475 * debug_object_activate()->kmem_cache_alloc().
2477 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2479 slab_set_debugobj_lock_classes(cachep
);
2482 /* cache setup completed, link it into the list */
2483 list_add(&cachep
->next
, &cache_chain
);
2485 if (!cachep
&& (flags
& SLAB_PANIC
))
2486 panic("kmem_cache_create(): failed to create slab `%s'\n",
2488 if (slab_is_available()) {
2489 mutex_unlock(&cache_chain_mutex
);
2494 EXPORT_SYMBOL(kmem_cache_create
);
2497 static void check_irq_off(void)
2499 BUG_ON(!irqs_disabled());
2502 static void check_irq_on(void)
2504 BUG_ON(irqs_disabled());
2507 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2511 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2515 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2519 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2524 #define check_irq_off() do { } while(0)
2525 #define check_irq_on() do { } while(0)
2526 #define check_spinlock_acquired(x) do { } while(0)
2527 #define check_spinlock_acquired_node(x, y) do { } while(0)
2530 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2531 struct array_cache
*ac
,
2532 int force
, int node
);
2534 static void do_drain(void *arg
)
2536 struct kmem_cache
*cachep
= arg
;
2537 struct array_cache
*ac
;
2538 int node
= numa_mem_id();
2541 ac
= cpu_cache_get(cachep
);
2542 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2543 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2544 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2548 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2550 struct kmem_list3
*l3
;
2553 on_each_cpu(do_drain
, cachep
, 1);
2555 for_each_online_node(node
) {
2556 l3
= cachep
->nodelists
[node
];
2557 if (l3
&& l3
->alien
)
2558 drain_alien_cache(cachep
, l3
->alien
);
2561 for_each_online_node(node
) {
2562 l3
= cachep
->nodelists
[node
];
2564 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2569 * Remove slabs from the list of free slabs.
2570 * Specify the number of slabs to drain in tofree.
2572 * Returns the actual number of slabs released.
2574 static int drain_freelist(struct kmem_cache
*cache
,
2575 struct kmem_list3
*l3
, int tofree
)
2577 struct list_head
*p
;
2582 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2584 spin_lock_irq(&l3
->list_lock
);
2585 p
= l3
->slabs_free
.prev
;
2586 if (p
== &l3
->slabs_free
) {
2587 spin_unlock_irq(&l3
->list_lock
);
2591 slabp
= list_entry(p
, struct slab
, list
);
2593 BUG_ON(slabp
->inuse
);
2595 list_del(&slabp
->list
);
2597 * Safe to drop the lock. The slab is no longer linked
2600 l3
->free_objects
-= cache
->num
;
2601 spin_unlock_irq(&l3
->list_lock
);
2602 slab_destroy(cache
, slabp
);
2609 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2610 static int __cache_shrink(struct kmem_cache
*cachep
)
2613 struct kmem_list3
*l3
;
2615 drain_cpu_caches(cachep
);
2618 for_each_online_node(i
) {
2619 l3
= cachep
->nodelists
[i
];
2623 drain_freelist(cachep
, l3
, l3
->free_objects
);
2625 ret
+= !list_empty(&l3
->slabs_full
) ||
2626 !list_empty(&l3
->slabs_partial
);
2628 return (ret
? 1 : 0);
2632 * kmem_cache_shrink - Shrink a cache.
2633 * @cachep: The cache to shrink.
2635 * Releases as many slabs as possible for a cache.
2636 * To help debugging, a zero exit status indicates all slabs were released.
2638 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2641 BUG_ON(!cachep
|| in_interrupt());
2644 mutex_lock(&cache_chain_mutex
);
2645 ret
= __cache_shrink(cachep
);
2646 mutex_unlock(&cache_chain_mutex
);
2650 EXPORT_SYMBOL(kmem_cache_shrink
);
2653 * kmem_cache_destroy - delete a cache
2654 * @cachep: the cache to destroy
2656 * Remove a &struct kmem_cache object from the slab cache.
2658 * It is expected this function will be called by a module when it is
2659 * unloaded. This will remove the cache completely, and avoid a duplicate
2660 * cache being allocated each time a module is loaded and unloaded, if the
2661 * module doesn't have persistent in-kernel storage across loads and unloads.
2663 * The cache must be empty before calling this function.
2665 * The caller must guarantee that no one will allocate memory from the cache
2666 * during the kmem_cache_destroy().
2668 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2670 BUG_ON(!cachep
|| in_interrupt());
2672 /* Find the cache in the chain of caches. */
2674 mutex_lock(&cache_chain_mutex
);
2676 * the chain is never empty, cache_cache is never destroyed
2678 list_del(&cachep
->next
);
2679 if (__cache_shrink(cachep
)) {
2680 slab_error(cachep
, "Can't free all objects");
2681 list_add(&cachep
->next
, &cache_chain
);
2682 mutex_unlock(&cache_chain_mutex
);
2687 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2690 __kmem_cache_destroy(cachep
);
2691 mutex_unlock(&cache_chain_mutex
);
2694 EXPORT_SYMBOL(kmem_cache_destroy
);
2697 * Get the memory for a slab management obj.
2698 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2699 * always come from malloc_sizes caches. The slab descriptor cannot
2700 * come from the same cache which is getting created because,
2701 * when we are searching for an appropriate cache for these
2702 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2703 * If we are creating a malloc_sizes cache here it would not be visible to
2704 * kmem_find_general_cachep till the initialization is complete.
2705 * Hence we cannot have slabp_cache same as the original cache.
2707 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2708 int colour_off
, gfp_t local_flags
,
2713 if (OFF_SLAB(cachep
)) {
2714 /* Slab management obj is off-slab. */
2715 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2716 local_flags
, nodeid
);
2718 * If the first object in the slab is leaked (it's allocated
2719 * but no one has a reference to it), we want to make sure
2720 * kmemleak does not treat the ->s_mem pointer as a reference
2721 * to the object. Otherwise we will not report the leak.
2723 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2728 slabp
= objp
+ colour_off
;
2729 colour_off
+= cachep
->slab_size
;
2732 slabp
->colouroff
= colour_off
;
2733 slabp
->s_mem
= objp
+ colour_off
;
2734 slabp
->nodeid
= nodeid
;
2739 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2741 return (kmem_bufctl_t
*) (slabp
+ 1);
2744 static void cache_init_objs(struct kmem_cache
*cachep
,
2749 for (i
= 0; i
< cachep
->num
; i
++) {
2750 void *objp
= index_to_obj(cachep
, slabp
, i
);
2752 /* need to poison the objs? */
2753 if (cachep
->flags
& SLAB_POISON
)
2754 poison_obj(cachep
, objp
, POISON_FREE
);
2755 if (cachep
->flags
& SLAB_STORE_USER
)
2756 *dbg_userword(cachep
, objp
) = NULL
;
2758 if (cachep
->flags
& SLAB_RED_ZONE
) {
2759 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2760 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2763 * Constructors are not allowed to allocate memory from the same
2764 * cache which they are a constructor for. Otherwise, deadlock.
2765 * They must also be threaded.
2767 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2768 cachep
->ctor(objp
+ obj_offset(cachep
));
2770 if (cachep
->flags
& SLAB_RED_ZONE
) {
2771 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2772 slab_error(cachep
, "constructor overwrote the"
2773 " end of an object");
2774 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2775 slab_error(cachep
, "constructor overwrote the"
2776 " start of an object");
2778 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2779 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2780 kernel_map_pages(virt_to_page(objp
),
2781 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2786 slab_bufctl(slabp
)[i
] = i
+ 1;
2788 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2791 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2793 if (CONFIG_ZONE_DMA_FLAG
) {
2794 if (flags
& GFP_DMA
)
2795 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2797 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2801 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2804 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2808 next
= slab_bufctl(slabp
)[slabp
->free
];
2810 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2811 WARN_ON(slabp
->nodeid
!= nodeid
);
2818 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2819 void *objp
, int nodeid
)
2821 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2824 /* Verify that the slab belongs to the intended node */
2825 WARN_ON(slabp
->nodeid
!= nodeid
);
2827 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2828 printk(KERN_ERR
"slab: double free detected in cache "
2829 "'%s', objp %p\n", cachep
->name
, objp
);
2833 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2834 slabp
->free
= objnr
;
2839 * Map pages beginning at addr to the given cache and slab. This is required
2840 * for the slab allocator to be able to lookup the cache and slab of a
2841 * virtual address for kfree, ksize, and slab debugging.
2843 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2849 page
= virt_to_page(addr
);
2852 if (likely(!PageCompound(page
)))
2853 nr_pages
<<= cache
->gfporder
;
2856 page_set_cache(page
, cache
);
2857 page_set_slab(page
, slab
);
2859 } while (--nr_pages
);
2863 * Grow (by 1) the number of slabs within a cache. This is called by
2864 * kmem_cache_alloc() when there are no active objs left in a cache.
2866 static int cache_grow(struct kmem_cache
*cachep
,
2867 gfp_t flags
, int nodeid
, void *objp
)
2872 struct kmem_list3
*l3
;
2875 * Be lazy and only check for valid flags here, keeping it out of the
2876 * critical path in kmem_cache_alloc().
2878 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2879 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2881 /* Take the l3 list lock to change the colour_next on this node */
2883 l3
= cachep
->nodelists
[nodeid
];
2884 spin_lock(&l3
->list_lock
);
2886 /* Get colour for the slab, and cal the next value. */
2887 offset
= l3
->colour_next
;
2889 if (l3
->colour_next
>= cachep
->colour
)
2890 l3
->colour_next
= 0;
2891 spin_unlock(&l3
->list_lock
);
2893 offset
*= cachep
->colour_off
;
2895 if (local_flags
& __GFP_WAIT
)
2899 * The test for missing atomic flag is performed here, rather than
2900 * the more obvious place, simply to reduce the critical path length
2901 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2902 * will eventually be caught here (where it matters).
2904 kmem_flagcheck(cachep
, flags
);
2907 * Get mem for the objs. Attempt to allocate a physical page from
2911 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2915 /* Get slab management. */
2916 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2917 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2921 slab_map_pages(cachep
, slabp
, objp
);
2923 cache_init_objs(cachep
, slabp
);
2925 if (local_flags
& __GFP_WAIT
)
2926 local_irq_disable();
2928 spin_lock(&l3
->list_lock
);
2930 /* Make slab active. */
2931 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2932 STATS_INC_GROWN(cachep
);
2933 l3
->free_objects
+= cachep
->num
;
2934 spin_unlock(&l3
->list_lock
);
2937 kmem_freepages(cachep
, objp
);
2939 if (local_flags
& __GFP_WAIT
)
2940 local_irq_disable();
2947 * Perform extra freeing checks:
2948 * - detect bad pointers.
2949 * - POISON/RED_ZONE checking
2951 static void kfree_debugcheck(const void *objp
)
2953 if (!virt_addr_valid(objp
)) {
2954 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2955 (unsigned long)objp
);
2960 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2962 unsigned long long redzone1
, redzone2
;
2964 redzone1
= *dbg_redzone1(cache
, obj
);
2965 redzone2
= *dbg_redzone2(cache
, obj
);
2970 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2973 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2974 slab_error(cache
, "double free detected");
2976 slab_error(cache
, "memory outside object was overwritten");
2978 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2979 obj
, redzone1
, redzone2
);
2982 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2989 BUG_ON(virt_to_cache(objp
) != cachep
);
2991 objp
-= obj_offset(cachep
);
2992 kfree_debugcheck(objp
);
2993 page
= virt_to_head_page(objp
);
2995 slabp
= page_get_slab(page
);
2997 if (cachep
->flags
& SLAB_RED_ZONE
) {
2998 verify_redzone_free(cachep
, objp
);
2999 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
3000 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
3002 if (cachep
->flags
& SLAB_STORE_USER
)
3003 *dbg_userword(cachep
, objp
) = caller
;
3005 objnr
= obj_to_index(cachep
, slabp
, objp
);
3007 BUG_ON(objnr
>= cachep
->num
);
3008 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
3010 #ifdef CONFIG_DEBUG_SLAB_LEAK
3011 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
3013 if (cachep
->flags
& SLAB_POISON
) {
3014 #ifdef CONFIG_DEBUG_PAGEALLOC
3015 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
3016 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
3017 kernel_map_pages(virt_to_page(objp
),
3018 cachep
->buffer_size
/ PAGE_SIZE
, 0);
3020 poison_obj(cachep
, objp
, POISON_FREE
);
3023 poison_obj(cachep
, objp
, POISON_FREE
);
3029 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
3034 /* Check slab's freelist to see if this obj is there. */
3035 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
3037 if (entries
> cachep
->num
|| i
>= cachep
->num
)
3040 if (entries
!= cachep
->num
- slabp
->inuse
) {
3042 printk(KERN_ERR
"slab: Internal list corruption detected in "
3043 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
3044 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
3046 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
3049 printk("\n%03x:", i
);
3050 printk(" %02x", ((unsigned char *)slabp
)[i
]);
3057 #define kfree_debugcheck(x) do { } while(0)
3058 #define cache_free_debugcheck(x,objp,z) (objp)
3059 #define check_slabp(x,y) do { } while(0)
3062 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
3065 struct kmem_list3
*l3
;
3066 struct array_cache
*ac
;
3071 node
= numa_mem_id();
3072 ac
= cpu_cache_get(cachep
);
3073 batchcount
= ac
->batchcount
;
3074 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3076 * If there was little recent activity on this cache, then
3077 * perform only a partial refill. Otherwise we could generate
3080 batchcount
= BATCHREFILL_LIMIT
;
3082 l3
= cachep
->nodelists
[node
];
3084 BUG_ON(ac
->avail
> 0 || !l3
);
3085 spin_lock(&l3
->list_lock
);
3087 /* See if we can refill from the shared array */
3088 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3089 l3
->shared
->touched
= 1;
3093 while (batchcount
> 0) {
3094 struct list_head
*entry
;
3096 /* Get slab alloc is to come from. */
3097 entry
= l3
->slabs_partial
.next
;
3098 if (entry
== &l3
->slabs_partial
) {
3099 l3
->free_touched
= 1;
3100 entry
= l3
->slabs_free
.next
;
3101 if (entry
== &l3
->slabs_free
)
3105 slabp
= list_entry(entry
, struct slab
, list
);
3106 check_slabp(cachep
, slabp
);
3107 check_spinlock_acquired(cachep
);
3110 * The slab was either on partial or free list so
3111 * there must be at least one object available for
3114 BUG_ON(slabp
->inuse
>= cachep
->num
);
3116 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3117 STATS_INC_ALLOCED(cachep
);
3118 STATS_INC_ACTIVE(cachep
);
3119 STATS_SET_HIGH(cachep
);
3121 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3124 check_slabp(cachep
, slabp
);
3126 /* move slabp to correct slabp list: */
3127 list_del(&slabp
->list
);
3128 if (slabp
->free
== BUFCTL_END
)
3129 list_add(&slabp
->list
, &l3
->slabs_full
);
3131 list_add(&slabp
->list
, &l3
->slabs_partial
);
3135 l3
->free_objects
-= ac
->avail
;
3137 spin_unlock(&l3
->list_lock
);
3139 if (unlikely(!ac
->avail
)) {
3141 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3143 /* cache_grow can reenable interrupts, then ac could change. */
3144 ac
= cpu_cache_get(cachep
);
3145 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3148 if (!ac
->avail
) /* objects refilled by interrupt? */
3152 return ac
->entry
[--ac
->avail
];
3155 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3158 might_sleep_if(flags
& __GFP_WAIT
);
3160 kmem_flagcheck(cachep
, flags
);
3165 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3166 gfp_t flags
, void *objp
, void *caller
)
3170 if (cachep
->flags
& SLAB_POISON
) {
3171 #ifdef CONFIG_DEBUG_PAGEALLOC
3172 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3173 kernel_map_pages(virt_to_page(objp
),
3174 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3176 check_poison_obj(cachep
, objp
);
3178 check_poison_obj(cachep
, objp
);
3180 poison_obj(cachep
, objp
, POISON_INUSE
);
3182 if (cachep
->flags
& SLAB_STORE_USER
)
3183 *dbg_userword(cachep
, objp
) = caller
;
3185 if (cachep
->flags
& SLAB_RED_ZONE
) {
3186 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3187 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3188 slab_error(cachep
, "double free, or memory outside"
3189 " object was overwritten");
3191 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3192 objp
, *dbg_redzone1(cachep
, objp
),
3193 *dbg_redzone2(cachep
, objp
));
3195 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3196 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3198 #ifdef CONFIG_DEBUG_SLAB_LEAK
3203 slabp
= page_get_slab(virt_to_head_page(objp
));
3204 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3205 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3208 objp
+= obj_offset(cachep
);
3209 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3211 if (ARCH_SLAB_MINALIGN
&&
3212 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3213 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3214 objp
, (int)ARCH_SLAB_MINALIGN
);
3219 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3222 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3224 if (cachep
== &cache_cache
)
3227 return should_failslab(obj_size(cachep
), flags
, cachep
->flags
);
3230 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3233 struct array_cache
*ac
;
3237 ac
= cpu_cache_get(cachep
);
3238 if (likely(ac
->avail
)) {
3239 STATS_INC_ALLOCHIT(cachep
);
3241 objp
= ac
->entry
[--ac
->avail
];
3243 STATS_INC_ALLOCMISS(cachep
);
3244 objp
= cache_alloc_refill(cachep
, flags
);
3246 * the 'ac' may be updated by cache_alloc_refill(),
3247 * and kmemleak_erase() requires its correct value.
3249 ac
= cpu_cache_get(cachep
);
3252 * To avoid a false negative, if an object that is in one of the
3253 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3254 * treat the array pointers as a reference to the object.
3257 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3263 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3265 * If we are in_interrupt, then process context, including cpusets and
3266 * mempolicy, may not apply and should not be used for allocation policy.
3268 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3270 int nid_alloc
, nid_here
;
3272 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3274 nid_alloc
= nid_here
= numa_mem_id();
3276 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3277 nid_alloc
= cpuset_slab_spread_node();
3278 else if (current
->mempolicy
)
3279 nid_alloc
= slab_node(current
->mempolicy
);
3281 if (nid_alloc
!= nid_here
)
3282 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3287 * Fallback function if there was no memory available and no objects on a
3288 * certain node and fall back is permitted. First we scan all the
3289 * available nodelists for available objects. If that fails then we
3290 * perform an allocation without specifying a node. This allows the page
3291 * allocator to do its reclaim / fallback magic. We then insert the
3292 * slab into the proper nodelist and then allocate from it.
3294 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3296 struct zonelist
*zonelist
;
3300 enum zone_type high_zoneidx
= gfp_zone(flags
);
3304 if (flags
& __GFP_THISNODE
)
3308 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3309 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3313 * Look through allowed nodes for objects available
3314 * from existing per node queues.
3316 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3317 nid
= zone_to_nid(zone
);
3319 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3320 cache
->nodelists
[nid
] &&
3321 cache
->nodelists
[nid
]->free_objects
) {
3322 obj
= ____cache_alloc_node(cache
,
3323 flags
| GFP_THISNODE
, nid
);
3331 * This allocation will be performed within the constraints
3332 * of the current cpuset / memory policy requirements.
3333 * We may trigger various forms of reclaim on the allowed
3334 * set and go into memory reserves if necessary.
3336 if (local_flags
& __GFP_WAIT
)
3338 kmem_flagcheck(cache
, flags
);
3339 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3340 if (local_flags
& __GFP_WAIT
)
3341 local_irq_disable();
3344 * Insert into the appropriate per node queues
3346 nid
= page_to_nid(virt_to_page(obj
));
3347 if (cache_grow(cache
, flags
, nid
, obj
)) {
3348 obj
= ____cache_alloc_node(cache
,
3349 flags
| GFP_THISNODE
, nid
);
3352 * Another processor may allocate the
3353 * objects in the slab since we are
3354 * not holding any locks.
3358 /* cache_grow already freed obj */
3368 * A interface to enable slab creation on nodeid
3370 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3373 struct list_head
*entry
;
3375 struct kmem_list3
*l3
;
3379 l3
= cachep
->nodelists
[nodeid
];
3384 spin_lock(&l3
->list_lock
);
3385 entry
= l3
->slabs_partial
.next
;
3386 if (entry
== &l3
->slabs_partial
) {
3387 l3
->free_touched
= 1;
3388 entry
= l3
->slabs_free
.next
;
3389 if (entry
== &l3
->slabs_free
)
3393 slabp
= list_entry(entry
, struct slab
, list
);
3394 check_spinlock_acquired_node(cachep
, nodeid
);
3395 check_slabp(cachep
, slabp
);
3397 STATS_INC_NODEALLOCS(cachep
);
3398 STATS_INC_ACTIVE(cachep
);
3399 STATS_SET_HIGH(cachep
);
3401 BUG_ON(slabp
->inuse
== cachep
->num
);
3403 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3404 check_slabp(cachep
, slabp
);
3406 /* move slabp to correct slabp list: */
3407 list_del(&slabp
->list
);
3409 if (slabp
->free
== BUFCTL_END
)
3410 list_add(&slabp
->list
, &l3
->slabs_full
);
3412 list_add(&slabp
->list
, &l3
->slabs_partial
);
3414 spin_unlock(&l3
->list_lock
);
3418 spin_unlock(&l3
->list_lock
);
3419 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3423 return fallback_alloc(cachep
, flags
);
3430 * kmem_cache_alloc_node - Allocate an object on the specified node
3431 * @cachep: The cache to allocate from.
3432 * @flags: See kmalloc().
3433 * @nodeid: node number of the target node.
3434 * @caller: return address of caller, used for debug information
3436 * Identical to kmem_cache_alloc but it will allocate memory on the given
3437 * node, which can improve the performance for cpu bound structures.
3439 * Fallback to other node is possible if __GFP_THISNODE is not set.
3441 static __always_inline
void *
3442 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3445 unsigned long save_flags
;
3447 int slab_node
= numa_mem_id();
3449 flags
&= gfp_allowed_mask
;
3451 lockdep_trace_alloc(flags
);
3453 if (slab_should_failslab(cachep
, flags
))
3456 cache_alloc_debugcheck_before(cachep
, flags
);
3457 local_irq_save(save_flags
);
3459 if (nodeid
== NUMA_NO_NODE
)
3462 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3463 /* Node not bootstrapped yet */
3464 ptr
= fallback_alloc(cachep
, flags
);
3468 if (nodeid
== slab_node
) {
3470 * Use the locally cached objects if possible.
3471 * However ____cache_alloc does not allow fallback
3472 * to other nodes. It may fail while we still have
3473 * objects on other nodes available.
3475 ptr
= ____cache_alloc(cachep
, flags
);
3479 /* ___cache_alloc_node can fall back to other nodes */
3480 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3482 local_irq_restore(save_flags
);
3483 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3484 kmemleak_alloc_recursive(ptr
, obj_size(cachep
), 1, cachep
->flags
,
3488 kmemcheck_slab_alloc(cachep
, flags
, ptr
, obj_size(cachep
));
3490 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3491 memset(ptr
, 0, obj_size(cachep
));
3496 static __always_inline
void *
3497 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3501 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3502 objp
= alternate_node_alloc(cache
, flags
);
3506 objp
= ____cache_alloc(cache
, flags
);
3509 * We may just have run out of memory on the local node.
3510 * ____cache_alloc_node() knows how to locate memory on other nodes
3513 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3520 static __always_inline
void *
3521 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3523 return ____cache_alloc(cachep
, flags
);
3526 #endif /* CONFIG_NUMA */
3528 static __always_inline
void *
3529 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3531 unsigned long save_flags
;
3534 flags
&= gfp_allowed_mask
;
3536 lockdep_trace_alloc(flags
);
3538 if (slab_should_failslab(cachep
, flags
))
3541 cache_alloc_debugcheck_before(cachep
, flags
);
3542 local_irq_save(save_flags
);
3543 objp
= __do_cache_alloc(cachep
, flags
);
3544 local_irq_restore(save_flags
);
3545 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3546 kmemleak_alloc_recursive(objp
, obj_size(cachep
), 1, cachep
->flags
,
3551 kmemcheck_slab_alloc(cachep
, flags
, objp
, obj_size(cachep
));
3553 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3554 memset(objp
, 0, obj_size(cachep
));
3560 * Caller needs to acquire correct kmem_list's list_lock
3562 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3566 struct kmem_list3
*l3
;
3568 for (i
= 0; i
< nr_objects
; i
++) {
3569 void *objp
= objpp
[i
];
3572 slabp
= virt_to_slab(objp
);
3573 l3
= cachep
->nodelists
[node
];
3574 list_del(&slabp
->list
);
3575 check_spinlock_acquired_node(cachep
, node
);
3576 check_slabp(cachep
, slabp
);
3577 slab_put_obj(cachep
, slabp
, objp
, node
);
3578 STATS_DEC_ACTIVE(cachep
);
3580 check_slabp(cachep
, slabp
);
3582 /* fixup slab chains */
3583 if (slabp
->inuse
== 0) {
3584 if (l3
->free_objects
> l3
->free_limit
) {
3585 l3
->free_objects
-= cachep
->num
;
3586 /* No need to drop any previously held
3587 * lock here, even if we have a off-slab slab
3588 * descriptor it is guaranteed to come from
3589 * a different cache, refer to comments before
3592 slab_destroy(cachep
, slabp
);
3594 list_add(&slabp
->list
, &l3
->slabs_free
);
3597 /* Unconditionally move a slab to the end of the
3598 * partial list on free - maximum time for the
3599 * other objects to be freed, too.
3601 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3606 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3609 struct kmem_list3
*l3
;
3610 int node
= numa_mem_id();
3612 batchcount
= ac
->batchcount
;
3614 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3617 l3
= cachep
->nodelists
[node
];
3618 spin_lock(&l3
->list_lock
);
3620 struct array_cache
*shared_array
= l3
->shared
;
3621 int max
= shared_array
->limit
- shared_array
->avail
;
3623 if (batchcount
> max
)
3625 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3626 ac
->entry
, sizeof(void *) * batchcount
);
3627 shared_array
->avail
+= batchcount
;
3632 free_block(cachep
, ac
->entry
, batchcount
, node
);
3637 struct list_head
*p
;
3639 p
= l3
->slabs_free
.next
;
3640 while (p
!= &(l3
->slabs_free
)) {
3643 slabp
= list_entry(p
, struct slab
, list
);
3644 BUG_ON(slabp
->inuse
);
3649 STATS_SET_FREEABLE(cachep
, i
);
3652 spin_unlock(&l3
->list_lock
);
3653 ac
->avail
-= batchcount
;
3654 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3658 * Release an obj back to its cache. If the obj has a constructed state, it must
3659 * be in this state _before_ it is released. Called with disabled ints.
3661 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3664 struct array_cache
*ac
= cpu_cache_get(cachep
);
3667 kmemleak_free_recursive(objp
, cachep
->flags
);
3668 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3670 kmemcheck_slab_free(cachep
, objp
, obj_size(cachep
));
3673 * Skip calling cache_free_alien() when the platform is not numa.
3674 * This will avoid cache misses that happen while accessing slabp (which
3675 * is per page memory reference) to get nodeid. Instead use a global
3676 * variable to skip the call, which is mostly likely to be present in
3679 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3682 if (likely(ac
->avail
< ac
->limit
)) {
3683 STATS_INC_FREEHIT(cachep
);
3684 ac
->entry
[ac
->avail
++] = objp
;
3687 STATS_INC_FREEMISS(cachep
);
3688 cache_flusharray(cachep
, ac
);
3689 ac
->entry
[ac
->avail
++] = objp
;
3694 * kmem_cache_alloc - Allocate an object
3695 * @cachep: The cache to allocate from.
3696 * @flags: See kmalloc().
3698 * Allocate an object from this cache. The flags are only relevant
3699 * if the cache has no available objects.
3701 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3703 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3705 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3706 obj_size(cachep
), cachep
->buffer_size
, flags
);
3710 EXPORT_SYMBOL(kmem_cache_alloc
);
3712 #ifdef CONFIG_TRACING
3714 kmem_cache_alloc_trace(size_t size
, struct kmem_cache
*cachep
, gfp_t flags
)
3718 ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3720 trace_kmalloc(_RET_IP_
, ret
,
3721 size
, slab_buffer_size(cachep
), flags
);
3724 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3728 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3730 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3731 __builtin_return_address(0));
3733 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3734 obj_size(cachep
), cachep
->buffer_size
,
3739 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3741 #ifdef CONFIG_TRACING
3742 void *kmem_cache_alloc_node_trace(size_t size
,
3743 struct kmem_cache
*cachep
,
3749 ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3750 __builtin_return_address(0));
3751 trace_kmalloc_node(_RET_IP_
, ret
,
3752 size
, slab_buffer_size(cachep
),
3756 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3759 static __always_inline
void *
3760 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3762 struct kmem_cache
*cachep
;
3764 cachep
= kmem_find_general_cachep(size
, flags
);
3765 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3767 return kmem_cache_alloc_node_trace(size
, cachep
, flags
, node
);
3770 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3771 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3773 return __do_kmalloc_node(size
, flags
, node
,
3774 __builtin_return_address(0));
3776 EXPORT_SYMBOL(__kmalloc_node
);
3778 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3779 int node
, unsigned long caller
)
3781 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3783 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3785 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3787 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3789 EXPORT_SYMBOL(__kmalloc_node
);
3790 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3791 #endif /* CONFIG_NUMA */
3794 * __do_kmalloc - allocate memory
3795 * @size: how many bytes of memory are required.
3796 * @flags: the type of memory to allocate (see kmalloc).
3797 * @caller: function caller for debug tracking of the caller
3799 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3802 struct kmem_cache
*cachep
;
3805 /* If you want to save a few bytes .text space: replace
3807 * Then kmalloc uses the uninlined functions instead of the inline
3810 cachep
= __find_general_cachep(size
, flags
);
3811 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3813 ret
= __cache_alloc(cachep
, flags
, caller
);
3815 trace_kmalloc((unsigned long) caller
, ret
,
3816 size
, cachep
->buffer_size
, flags
);
3822 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3823 void *__kmalloc(size_t size
, gfp_t flags
)
3825 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3827 EXPORT_SYMBOL(__kmalloc
);
3829 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3831 return __do_kmalloc(size
, flags
, (void *)caller
);
3833 EXPORT_SYMBOL(__kmalloc_track_caller
);
3836 void *__kmalloc(size_t size
, gfp_t flags
)
3838 return __do_kmalloc(size
, flags
, NULL
);
3840 EXPORT_SYMBOL(__kmalloc
);
3844 * kmem_cache_free - Deallocate an object
3845 * @cachep: The cache the allocation was from.
3846 * @objp: The previously allocated object.
3848 * Free an object which was previously allocated from this
3851 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3853 unsigned long flags
;
3855 local_irq_save(flags
);
3856 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3857 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3858 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3859 __cache_free(cachep
, objp
, __builtin_return_address(0));
3860 local_irq_restore(flags
);
3862 trace_kmem_cache_free(_RET_IP_
, objp
);
3864 EXPORT_SYMBOL(kmem_cache_free
);
3867 * kfree - free previously allocated memory
3868 * @objp: pointer returned by kmalloc.
3870 * If @objp is NULL, no operation is performed.
3872 * Don't free memory not originally allocated by kmalloc()
3873 * or you will run into trouble.
3875 void kfree(const void *objp
)
3877 struct kmem_cache
*c
;
3878 unsigned long flags
;
3880 trace_kfree(_RET_IP_
, objp
);
3882 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3884 local_irq_save(flags
);
3885 kfree_debugcheck(objp
);
3886 c
= virt_to_cache(objp
);
3887 debug_check_no_locks_freed(objp
, obj_size(c
));
3888 debug_check_no_obj_freed(objp
, obj_size(c
));
3889 __cache_free(c
, (void *)objp
, __builtin_return_address(0));
3890 local_irq_restore(flags
);
3892 EXPORT_SYMBOL(kfree
);
3894 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3896 return obj_size(cachep
);
3898 EXPORT_SYMBOL(kmem_cache_size
);
3901 * This initializes kmem_list3 or resizes various caches for all nodes.
3903 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3906 struct kmem_list3
*l3
;
3907 struct array_cache
*new_shared
;
3908 struct array_cache
**new_alien
= NULL
;
3910 for_each_online_node(node
) {
3912 if (use_alien_caches
) {
3913 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3919 if (cachep
->shared
) {
3920 new_shared
= alloc_arraycache(node
,
3921 cachep
->shared
*cachep
->batchcount
,
3924 free_alien_cache(new_alien
);
3929 l3
= cachep
->nodelists
[node
];
3931 struct array_cache
*shared
= l3
->shared
;
3933 spin_lock_irq(&l3
->list_lock
);
3936 free_block(cachep
, shared
->entry
,
3937 shared
->avail
, node
);
3939 l3
->shared
= new_shared
;
3941 l3
->alien
= new_alien
;
3944 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3945 cachep
->batchcount
+ cachep
->num
;
3946 spin_unlock_irq(&l3
->list_lock
);
3948 free_alien_cache(new_alien
);
3951 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3953 free_alien_cache(new_alien
);
3958 kmem_list3_init(l3
);
3959 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3960 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3961 l3
->shared
= new_shared
;
3962 l3
->alien
= new_alien
;
3963 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3964 cachep
->batchcount
+ cachep
->num
;
3965 cachep
->nodelists
[node
] = l3
;
3970 if (!cachep
->next
.next
) {
3971 /* Cache is not active yet. Roll back what we did */
3974 if (cachep
->nodelists
[node
]) {
3975 l3
= cachep
->nodelists
[node
];
3978 free_alien_cache(l3
->alien
);
3980 cachep
->nodelists
[node
] = NULL
;
3988 struct ccupdate_struct
{
3989 struct kmem_cache
*cachep
;
3990 struct array_cache
*new[0];
3993 static void do_ccupdate_local(void *info
)
3995 struct ccupdate_struct
*new = info
;
3996 struct array_cache
*old
;
3999 old
= cpu_cache_get(new->cachep
);
4001 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
4002 new->new[smp_processor_id()] = old
;
4005 /* Always called with the cache_chain_mutex held */
4006 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
4007 int batchcount
, int shared
, gfp_t gfp
)
4009 struct ccupdate_struct
*new;
4012 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
4017 for_each_online_cpu(i
) {
4018 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
4021 for (i
--; i
>= 0; i
--)
4027 new->cachep
= cachep
;
4029 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
4032 cachep
->batchcount
= batchcount
;
4033 cachep
->limit
= limit
;
4034 cachep
->shared
= shared
;
4036 for_each_online_cpu(i
) {
4037 struct array_cache
*ccold
= new->new[i
];
4040 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4041 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
4042 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4046 return alloc_kmemlist(cachep
, gfp
);
4049 /* Called with cache_chain_mutex held always */
4050 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4056 * The head array serves three purposes:
4057 * - create a LIFO ordering, i.e. return objects that are cache-warm
4058 * - reduce the number of spinlock operations.
4059 * - reduce the number of linked list operations on the slab and
4060 * bufctl chains: array operations are cheaper.
4061 * The numbers are guessed, we should auto-tune as described by
4064 if (cachep
->buffer_size
> 131072)
4066 else if (cachep
->buffer_size
> PAGE_SIZE
)
4068 else if (cachep
->buffer_size
> 1024)
4070 else if (cachep
->buffer_size
> 256)
4076 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4077 * allocation behaviour: Most allocs on one cpu, most free operations
4078 * on another cpu. For these cases, an efficient object passing between
4079 * cpus is necessary. This is provided by a shared array. The array
4080 * replaces Bonwick's magazine layer.
4081 * On uniprocessor, it's functionally equivalent (but less efficient)
4082 * to a larger limit. Thus disabled by default.
4085 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4090 * With debugging enabled, large batchcount lead to excessively long
4091 * periods with disabled local interrupts. Limit the batchcount
4096 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4098 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4099 cachep
->name
, -err
);
4104 * Drain an array if it contains any elements taking the l3 lock only if
4105 * necessary. Note that the l3 listlock also protects the array_cache
4106 * if drain_array() is used on the shared array.
4108 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4109 struct array_cache
*ac
, int force
, int node
)
4113 if (!ac
|| !ac
->avail
)
4115 if (ac
->touched
&& !force
) {
4118 spin_lock_irq(&l3
->list_lock
);
4120 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4121 if (tofree
> ac
->avail
)
4122 tofree
= (ac
->avail
+ 1) / 2;
4123 free_block(cachep
, ac
->entry
, tofree
, node
);
4124 ac
->avail
-= tofree
;
4125 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4126 sizeof(void *) * ac
->avail
);
4128 spin_unlock_irq(&l3
->list_lock
);
4133 * cache_reap - Reclaim memory from caches.
4134 * @w: work descriptor
4136 * Called from workqueue/eventd every few seconds.
4138 * - clear the per-cpu caches for this CPU.
4139 * - return freeable pages to the main free memory pool.
4141 * If we cannot acquire the cache chain mutex then just give up - we'll try
4142 * again on the next iteration.
4144 static void cache_reap(struct work_struct
*w
)
4146 struct kmem_cache
*searchp
;
4147 struct kmem_list3
*l3
;
4148 int node
= numa_mem_id();
4149 struct delayed_work
*work
= to_delayed_work(w
);
4151 if (!mutex_trylock(&cache_chain_mutex
))
4152 /* Give up. Setup the next iteration. */
4155 list_for_each_entry(searchp
, &cache_chain
, next
) {
4159 * We only take the l3 lock if absolutely necessary and we
4160 * have established with reasonable certainty that
4161 * we can do some work if the lock was obtained.
4163 l3
= searchp
->nodelists
[node
];
4165 reap_alien(searchp
, l3
);
4167 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4170 * These are racy checks but it does not matter
4171 * if we skip one check or scan twice.
4173 if (time_after(l3
->next_reap
, jiffies
))
4176 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4178 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4180 if (l3
->free_touched
)
4181 l3
->free_touched
= 0;
4185 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4186 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4187 STATS_ADD_REAPED(searchp
, freed
);
4193 mutex_unlock(&cache_chain_mutex
);
4196 /* Set up the next iteration */
4197 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4200 #ifdef CONFIG_SLABINFO
4202 static void print_slabinfo_header(struct seq_file
*m
)
4205 * Output format version, so at least we can change it
4206 * without _too_ many complaints.
4209 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4211 seq_puts(m
, "slabinfo - version: 2.1\n");
4213 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4214 "<objperslab> <pagesperslab>");
4215 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4216 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4218 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4219 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4220 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4225 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4229 mutex_lock(&cache_chain_mutex
);
4231 print_slabinfo_header(m
);
4233 return seq_list_start(&cache_chain
, *pos
);
4236 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4238 return seq_list_next(p
, &cache_chain
, pos
);
4241 static void s_stop(struct seq_file
*m
, void *p
)
4243 mutex_unlock(&cache_chain_mutex
);
4246 static int s_show(struct seq_file
*m
, void *p
)
4248 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4250 unsigned long active_objs
;
4251 unsigned long num_objs
;
4252 unsigned long active_slabs
= 0;
4253 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4257 struct kmem_list3
*l3
;
4261 for_each_online_node(node
) {
4262 l3
= cachep
->nodelists
[node
];
4267 spin_lock_irq(&l3
->list_lock
);
4269 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4270 if (slabp
->inuse
!= cachep
->num
&& !error
)
4271 error
= "slabs_full accounting error";
4272 active_objs
+= cachep
->num
;
4275 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4276 if (slabp
->inuse
== cachep
->num
&& !error
)
4277 error
= "slabs_partial inuse accounting error";
4278 if (!slabp
->inuse
&& !error
)
4279 error
= "slabs_partial/inuse accounting error";
4280 active_objs
+= slabp
->inuse
;
4283 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4284 if (slabp
->inuse
&& !error
)
4285 error
= "slabs_free/inuse accounting error";
4288 free_objects
+= l3
->free_objects
;
4290 shared_avail
+= l3
->shared
->avail
;
4292 spin_unlock_irq(&l3
->list_lock
);
4294 num_slabs
+= active_slabs
;
4295 num_objs
= num_slabs
* cachep
->num
;
4296 if (num_objs
- active_objs
!= free_objects
&& !error
)
4297 error
= "free_objects accounting error";
4299 name
= cachep
->name
;
4301 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4303 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4304 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4305 cachep
->num
, (1 << cachep
->gfporder
));
4306 seq_printf(m
, " : tunables %4u %4u %4u",
4307 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4308 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4309 active_slabs
, num_slabs
, shared_avail
);
4312 unsigned long high
= cachep
->high_mark
;
4313 unsigned long allocs
= cachep
->num_allocations
;
4314 unsigned long grown
= cachep
->grown
;
4315 unsigned long reaped
= cachep
->reaped
;
4316 unsigned long errors
= cachep
->errors
;
4317 unsigned long max_freeable
= cachep
->max_freeable
;
4318 unsigned long node_allocs
= cachep
->node_allocs
;
4319 unsigned long node_frees
= cachep
->node_frees
;
4320 unsigned long overflows
= cachep
->node_overflow
;
4322 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4323 "%4lu %4lu %4lu %4lu %4lu",
4324 allocs
, high
, grown
,
4325 reaped
, errors
, max_freeable
, node_allocs
,
4326 node_frees
, overflows
);
4330 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4331 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4332 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4333 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4335 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4336 allochit
, allocmiss
, freehit
, freemiss
);
4344 * slabinfo_op - iterator that generates /proc/slabinfo
4353 * num-pages-per-slab
4354 * + further values on SMP and with statistics enabled
4357 static const struct seq_operations slabinfo_op
= {
4364 #define MAX_SLABINFO_WRITE 128
4366 * slabinfo_write - Tuning for the slab allocator
4368 * @buffer: user buffer
4369 * @count: data length
4372 static ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4373 size_t count
, loff_t
*ppos
)
4375 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4376 int limit
, batchcount
, shared
, res
;
4377 struct kmem_cache
*cachep
;
4379 if (count
> MAX_SLABINFO_WRITE
)
4381 if (copy_from_user(&kbuf
, buffer
, count
))
4383 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4385 tmp
= strchr(kbuf
, ' ');
4390 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4393 /* Find the cache in the chain of caches. */
4394 mutex_lock(&cache_chain_mutex
);
4396 list_for_each_entry(cachep
, &cache_chain
, next
) {
4397 if (!strcmp(cachep
->name
, kbuf
)) {
4398 if (limit
< 1 || batchcount
< 1 ||
4399 batchcount
> limit
|| shared
< 0) {
4402 res
= do_tune_cpucache(cachep
, limit
,
4409 mutex_unlock(&cache_chain_mutex
);
4415 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4417 return seq_open(file
, &slabinfo_op
);
4420 static const struct file_operations proc_slabinfo_operations
= {
4421 .open
= slabinfo_open
,
4423 .write
= slabinfo_write
,
4424 .llseek
= seq_lseek
,
4425 .release
= seq_release
,
4428 #ifdef CONFIG_DEBUG_SLAB_LEAK
4430 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4432 mutex_lock(&cache_chain_mutex
);
4433 return seq_list_start(&cache_chain
, *pos
);
4436 static inline int add_caller(unsigned long *n
, unsigned long v
)
4446 unsigned long *q
= p
+ 2 * i
;
4460 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4466 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4472 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4473 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4475 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4480 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4482 #ifdef CONFIG_KALLSYMS
4483 unsigned long offset
, size
;
4484 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4486 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4487 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4489 seq_printf(m
, " [%s]", modname
);
4493 seq_printf(m
, "%p", (void *)address
);
4496 static int leaks_show(struct seq_file
*m
, void *p
)
4498 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4500 struct kmem_list3
*l3
;
4502 unsigned long *n
= m
->private;
4506 if (!(cachep
->flags
& SLAB_STORE_USER
))
4508 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4511 /* OK, we can do it */
4515 for_each_online_node(node
) {
4516 l3
= cachep
->nodelists
[node
];
4521 spin_lock_irq(&l3
->list_lock
);
4523 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4524 handle_slab(n
, cachep
, slabp
);
4525 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4526 handle_slab(n
, cachep
, slabp
);
4527 spin_unlock_irq(&l3
->list_lock
);
4529 name
= cachep
->name
;
4531 /* Increase the buffer size */
4532 mutex_unlock(&cache_chain_mutex
);
4533 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4535 /* Too bad, we are really out */
4537 mutex_lock(&cache_chain_mutex
);
4540 *(unsigned long *)m
->private = n
[0] * 2;
4542 mutex_lock(&cache_chain_mutex
);
4543 /* Now make sure this entry will be retried */
4547 for (i
= 0; i
< n
[1]; i
++) {
4548 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4549 show_symbol(m
, n
[2*i
+2]);
4556 static const struct seq_operations slabstats_op
= {
4557 .start
= leaks_start
,
4563 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4565 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4568 ret
= seq_open(file
, &slabstats_op
);
4570 struct seq_file
*m
= file
->private_data
;
4571 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4580 static const struct file_operations proc_slabstats_operations
= {
4581 .open
= slabstats_open
,
4583 .llseek
= seq_lseek
,
4584 .release
= seq_release_private
,
4588 static int __init
slab_proc_init(void)
4590 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4591 #ifdef CONFIG_DEBUG_SLAB_LEAK
4592 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4596 module_init(slab_proc_init
);
4600 * ksize - get the actual amount of memory allocated for a given object
4601 * @objp: Pointer to the object
4603 * kmalloc may internally round up allocations and return more memory
4604 * than requested. ksize() can be used to determine the actual amount of
4605 * memory allocated. The caller may use this additional memory, even though
4606 * a smaller amount of memory was initially specified with the kmalloc call.
4607 * The caller must guarantee that objp points to a valid object previously
4608 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4609 * must not be freed during the duration of the call.
4611 size_t ksize(const void *objp
)
4614 if (unlikely(objp
== ZERO_SIZE_PTR
))
4617 return obj_size(virt_to_cache(objp
));
4619 EXPORT_SYMBOL(ksize
);