2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/config.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/mii.h>
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.3"
48 #define PFX DRV_NAME " "
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION
);
67 static const u32 default_msg
68 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
71 static int debug
= -1; /* defaults above */
72 module_param(debug
, int, 0);
73 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table
[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
), },
81 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
83 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
84 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
85 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015, },
88 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
90 static int skge_up(struct net_device
*dev
);
91 static int skge_down(struct net_device
*dev
);
92 static void skge_phy_reset(struct skge_port
*skge
);
93 static void skge_tx_clean(struct skge_port
*skge
);
94 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
95 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
96 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
97 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
98 static void yukon_init(struct skge_hw
*hw
, int port
);
99 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
100 static void genesis_link_up(struct skge_port
*skge
);
102 /* Avoid conditionals by using array */
103 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
104 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
105 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
106 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
107 static const u32 portirqmask
[] = { IS_PORT_1
, IS_PORT_2
};
109 static int skge_get_regs_len(struct net_device
*dev
)
115 * Returns copy of whole control register region
116 * Note: skip RAM address register because accessing it will
119 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
122 const struct skge_port
*skge
= netdev_priv(dev
);
123 const void __iomem
*io
= skge
->hw
->regs
;
126 memset(p
, 0, regs
->len
);
127 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
129 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
130 regs
->len
- B3_RI_WTO_R1
);
133 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
134 static int wol_supported(const struct skge_hw
*hw
)
136 return !((hw
->chip_id
== CHIP_ID_GENESIS
||
137 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)));
140 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
142 struct skge_port
*skge
= netdev_priv(dev
);
144 wol
->supported
= wol_supported(skge
->hw
) ? WAKE_MAGIC
: 0;
145 wol
->wolopts
= skge
->wol
? WAKE_MAGIC
: 0;
148 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
150 struct skge_port
*skge
= netdev_priv(dev
);
151 struct skge_hw
*hw
= skge
->hw
;
153 if (wol
->wolopts
!= WAKE_MAGIC
&& wol
->wolopts
!= 0)
156 if (wol
->wolopts
== WAKE_MAGIC
&& !wol_supported(hw
))
159 skge
->wol
= wol
->wolopts
== WAKE_MAGIC
;
162 memcpy_toio(hw
->regs
+ WOL_MAC_ADDR
, dev
->dev_addr
, ETH_ALEN
);
164 skge_write16(hw
, WOL_CTRL_STAT
,
165 WOL_CTL_ENA_PME_ON_MAGIC_PKT
|
166 WOL_CTL_ENA_MAGIC_PKT_UNIT
);
168 skge_write16(hw
, WOL_CTRL_STAT
, WOL_CTL_DEFAULT
);
173 /* Determine supported/advertised modes based on hardware.
174 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
176 static u32
skge_supported_modes(const struct skge_hw
*hw
)
181 supported
= SUPPORTED_10baseT_Half
182 | SUPPORTED_10baseT_Full
183 | SUPPORTED_100baseT_Half
184 | SUPPORTED_100baseT_Full
185 | SUPPORTED_1000baseT_Half
186 | SUPPORTED_1000baseT_Full
187 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
189 if (hw
->chip_id
== CHIP_ID_GENESIS
)
190 supported
&= ~(SUPPORTED_10baseT_Half
191 | SUPPORTED_10baseT_Full
192 | SUPPORTED_100baseT_Half
193 | SUPPORTED_100baseT_Full
);
195 else if (hw
->chip_id
== CHIP_ID_YUKON
)
196 supported
&= ~SUPPORTED_1000baseT_Half
;
198 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_FIBRE
204 static int skge_get_settings(struct net_device
*dev
,
205 struct ethtool_cmd
*ecmd
)
207 struct skge_port
*skge
= netdev_priv(dev
);
208 struct skge_hw
*hw
= skge
->hw
;
210 ecmd
->transceiver
= XCVR_INTERNAL
;
211 ecmd
->supported
= skge_supported_modes(hw
);
214 ecmd
->port
= PORT_TP
;
215 ecmd
->phy_address
= hw
->phy_addr
;
217 ecmd
->port
= PORT_FIBRE
;
219 ecmd
->advertising
= skge
->advertising
;
220 ecmd
->autoneg
= skge
->autoneg
;
221 ecmd
->speed
= skge
->speed
;
222 ecmd
->duplex
= skge
->duplex
;
226 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
228 struct skge_port
*skge
= netdev_priv(dev
);
229 const struct skge_hw
*hw
= skge
->hw
;
230 u32 supported
= skge_supported_modes(hw
);
232 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
233 ecmd
->advertising
= supported
;
239 switch (ecmd
->speed
) {
241 if (ecmd
->duplex
== DUPLEX_FULL
)
242 setting
= SUPPORTED_1000baseT_Full
;
243 else if (ecmd
->duplex
== DUPLEX_HALF
)
244 setting
= SUPPORTED_1000baseT_Half
;
249 if (ecmd
->duplex
== DUPLEX_FULL
)
250 setting
= SUPPORTED_100baseT_Full
;
251 else if (ecmd
->duplex
== DUPLEX_HALF
)
252 setting
= SUPPORTED_100baseT_Half
;
258 if (ecmd
->duplex
== DUPLEX_FULL
)
259 setting
= SUPPORTED_10baseT_Full
;
260 else if (ecmd
->duplex
== DUPLEX_HALF
)
261 setting
= SUPPORTED_10baseT_Half
;
269 if ((setting
& supported
) == 0)
272 skge
->speed
= ecmd
->speed
;
273 skge
->duplex
= ecmd
->duplex
;
276 skge
->autoneg
= ecmd
->autoneg
;
277 skge
->advertising
= ecmd
->advertising
;
279 if (netif_running(dev
))
280 skge_phy_reset(skge
);
285 static void skge_get_drvinfo(struct net_device
*dev
,
286 struct ethtool_drvinfo
*info
)
288 struct skge_port
*skge
= netdev_priv(dev
);
290 strcpy(info
->driver
, DRV_NAME
);
291 strcpy(info
->version
, DRV_VERSION
);
292 strcpy(info
->fw_version
, "N/A");
293 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
296 static const struct skge_stat
{
297 char name
[ETH_GSTRING_LEN
];
301 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
302 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
304 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
305 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
306 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
307 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
308 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
309 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
310 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
311 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
313 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
314 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
315 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
316 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
317 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
318 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
320 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
321 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
322 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
323 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
324 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
327 static int skge_get_stats_count(struct net_device
*dev
)
329 return ARRAY_SIZE(skge_stats
);
332 static void skge_get_ethtool_stats(struct net_device
*dev
,
333 struct ethtool_stats
*stats
, u64
*data
)
335 struct skge_port
*skge
= netdev_priv(dev
);
337 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
338 genesis_get_stats(skge
, data
);
340 yukon_get_stats(skge
, data
);
343 /* Use hardware MIB variables for critical path statistics and
344 * transmit feedback not reported at interrupt.
345 * Other errors are accounted for in interrupt handler.
347 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
349 struct skge_port
*skge
= netdev_priv(dev
);
350 u64 data
[ARRAY_SIZE(skge_stats
)];
352 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
353 genesis_get_stats(skge
, data
);
355 yukon_get_stats(skge
, data
);
357 skge
->net_stats
.tx_bytes
= data
[0];
358 skge
->net_stats
.rx_bytes
= data
[1];
359 skge
->net_stats
.tx_packets
= data
[2] + data
[4] + data
[6];
360 skge
->net_stats
.rx_packets
= data
[3] + data
[5] + data
[7];
361 skge
->net_stats
.multicast
= data
[5] + data
[7];
362 skge
->net_stats
.collisions
= data
[10];
363 skge
->net_stats
.tx_aborted_errors
= data
[12];
365 return &skge
->net_stats
;
368 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
374 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
375 memcpy(data
+ i
* ETH_GSTRING_LEN
,
376 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
381 static void skge_get_ring_param(struct net_device
*dev
,
382 struct ethtool_ringparam
*p
)
384 struct skge_port
*skge
= netdev_priv(dev
);
386 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
387 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
388 p
->rx_mini_max_pending
= 0;
389 p
->rx_jumbo_max_pending
= 0;
391 p
->rx_pending
= skge
->rx_ring
.count
;
392 p
->tx_pending
= skge
->tx_ring
.count
;
393 p
->rx_mini_pending
= 0;
394 p
->rx_jumbo_pending
= 0;
397 static int skge_set_ring_param(struct net_device
*dev
,
398 struct ethtool_ringparam
*p
)
400 struct skge_port
*skge
= netdev_priv(dev
);
403 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
404 p
->tx_pending
== 0 || p
->tx_pending
> MAX_TX_RING_SIZE
)
407 skge
->rx_ring
.count
= p
->rx_pending
;
408 skge
->tx_ring
.count
= p
->tx_pending
;
410 if (netif_running(dev
)) {
420 static u32
skge_get_msglevel(struct net_device
*netdev
)
422 struct skge_port
*skge
= netdev_priv(netdev
);
423 return skge
->msg_enable
;
426 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
428 struct skge_port
*skge
= netdev_priv(netdev
);
429 skge
->msg_enable
= value
;
432 static int skge_nway_reset(struct net_device
*dev
)
434 struct skge_port
*skge
= netdev_priv(dev
);
436 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
439 skge_phy_reset(skge
);
443 static int skge_set_sg(struct net_device
*dev
, u32 data
)
445 struct skge_port
*skge
= netdev_priv(dev
);
446 struct skge_hw
*hw
= skge
->hw
;
448 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
450 return ethtool_op_set_sg(dev
, data
);
453 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
455 struct skge_port
*skge
= netdev_priv(dev
);
456 struct skge_hw
*hw
= skge
->hw
;
458 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
461 return ethtool_op_set_tx_csum(dev
, data
);
464 static u32
skge_get_rx_csum(struct net_device
*dev
)
466 struct skge_port
*skge
= netdev_priv(dev
);
468 return skge
->rx_csum
;
471 /* Only Yukon supports checksum offload. */
472 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
474 struct skge_port
*skge
= netdev_priv(dev
);
476 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
479 skge
->rx_csum
= data
;
483 static void skge_get_pauseparam(struct net_device
*dev
,
484 struct ethtool_pauseparam
*ecmd
)
486 struct skge_port
*skge
= netdev_priv(dev
);
488 ecmd
->tx_pause
= (skge
->flow_control
== FLOW_MODE_LOC_SEND
)
489 || (skge
->flow_control
== FLOW_MODE_SYMMETRIC
);
490 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_REM_SEND
)
491 || (skge
->flow_control
== FLOW_MODE_SYMMETRIC
);
493 ecmd
->autoneg
= skge
->autoneg
;
496 static int skge_set_pauseparam(struct net_device
*dev
,
497 struct ethtool_pauseparam
*ecmd
)
499 struct skge_port
*skge
= netdev_priv(dev
);
501 skge
->autoneg
= ecmd
->autoneg
;
502 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
503 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
504 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
505 skge
->flow_control
= FLOW_MODE_REM_SEND
;
506 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
507 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
509 skge
->flow_control
= FLOW_MODE_NONE
;
511 if (netif_running(dev
))
512 skge_phy_reset(skge
);
516 /* Chip internal frequency for clock calculations */
517 static inline u32
hwkhz(const struct skge_hw
*hw
)
519 if (hw
->chip_id
== CHIP_ID_GENESIS
)
520 return 53215; /* or: 53.125 MHz */
522 return 78215; /* or: 78.125 MHz */
525 /* Chip HZ to microseconds */
526 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
528 return (ticks
* 1000) / hwkhz(hw
);
531 /* Microseconds to chip HZ */
532 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
534 return hwkhz(hw
) * usec
/ 1000;
537 static int skge_get_coalesce(struct net_device
*dev
,
538 struct ethtool_coalesce
*ecmd
)
540 struct skge_port
*skge
= netdev_priv(dev
);
541 struct skge_hw
*hw
= skge
->hw
;
542 int port
= skge
->port
;
544 ecmd
->rx_coalesce_usecs
= 0;
545 ecmd
->tx_coalesce_usecs
= 0;
547 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
548 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
549 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
551 if (msk
& rxirqmask
[port
])
552 ecmd
->rx_coalesce_usecs
= delay
;
553 if (msk
& txirqmask
[port
])
554 ecmd
->tx_coalesce_usecs
= delay
;
560 /* Note: interrupt timer is per board, but can turn on/off per port */
561 static int skge_set_coalesce(struct net_device
*dev
,
562 struct ethtool_coalesce
*ecmd
)
564 struct skge_port
*skge
= netdev_priv(dev
);
565 struct skge_hw
*hw
= skge
->hw
;
566 int port
= skge
->port
;
567 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
570 if (ecmd
->rx_coalesce_usecs
== 0)
571 msk
&= ~rxirqmask
[port
];
572 else if (ecmd
->rx_coalesce_usecs
< 25 ||
573 ecmd
->rx_coalesce_usecs
> 33333)
576 msk
|= rxirqmask
[port
];
577 delay
= ecmd
->rx_coalesce_usecs
;
580 if (ecmd
->tx_coalesce_usecs
== 0)
581 msk
&= ~txirqmask
[port
];
582 else if (ecmd
->tx_coalesce_usecs
< 25 ||
583 ecmd
->tx_coalesce_usecs
> 33333)
586 msk
|= txirqmask
[port
];
587 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
590 skge_write32(hw
, B2_IRQM_MSK
, msk
);
592 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
594 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
595 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
600 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
601 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
603 struct skge_hw
*hw
= skge
->hw
;
604 int port
= skge
->port
;
606 spin_lock_bh(&hw
->phy_lock
);
607 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
610 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
611 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
612 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
613 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
617 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
618 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
620 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
621 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
626 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
627 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
628 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
630 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
636 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
637 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
638 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
639 PHY_M_LED_MO_10(MO_LED_OFF
) |
640 PHY_M_LED_MO_100(MO_LED_OFF
) |
641 PHY_M_LED_MO_1000(MO_LED_OFF
) |
642 PHY_M_LED_MO_RX(MO_LED_OFF
));
645 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
646 PHY_M_LED_PULS_DUR(PULS_170MS
) |
647 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
651 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
652 PHY_M_LED_MO_RX(MO_LED_OFF
) |
653 (skge
->speed
== SPEED_100
?
654 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
657 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
658 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
659 PHY_M_LED_MO_DUP(MO_LED_ON
) |
660 PHY_M_LED_MO_10(MO_LED_ON
) |
661 PHY_M_LED_MO_100(MO_LED_ON
) |
662 PHY_M_LED_MO_1000(MO_LED_ON
) |
663 PHY_M_LED_MO_RX(MO_LED_ON
));
666 spin_unlock_bh(&hw
->phy_lock
);
669 /* blink LED's for finding board */
670 static int skge_phys_id(struct net_device
*dev
, u32 data
)
672 struct skge_port
*skge
= netdev_priv(dev
);
674 enum led_mode mode
= LED_MODE_TST
;
676 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
677 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
682 skge_led(skge
, mode
);
683 mode
^= LED_MODE_TST
;
685 if (msleep_interruptible(BLINK_MS
))
690 /* back to regular LED state */
691 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
696 static struct ethtool_ops skge_ethtool_ops
= {
697 .get_settings
= skge_get_settings
,
698 .set_settings
= skge_set_settings
,
699 .get_drvinfo
= skge_get_drvinfo
,
700 .get_regs_len
= skge_get_regs_len
,
701 .get_regs
= skge_get_regs
,
702 .get_wol
= skge_get_wol
,
703 .set_wol
= skge_set_wol
,
704 .get_msglevel
= skge_get_msglevel
,
705 .set_msglevel
= skge_set_msglevel
,
706 .nway_reset
= skge_nway_reset
,
707 .get_link
= ethtool_op_get_link
,
708 .get_ringparam
= skge_get_ring_param
,
709 .set_ringparam
= skge_set_ring_param
,
710 .get_pauseparam
= skge_get_pauseparam
,
711 .set_pauseparam
= skge_set_pauseparam
,
712 .get_coalesce
= skge_get_coalesce
,
713 .set_coalesce
= skge_set_coalesce
,
714 .get_sg
= ethtool_op_get_sg
,
715 .set_sg
= skge_set_sg
,
716 .get_tx_csum
= ethtool_op_get_tx_csum
,
717 .set_tx_csum
= skge_set_tx_csum
,
718 .get_rx_csum
= skge_get_rx_csum
,
719 .set_rx_csum
= skge_set_rx_csum
,
720 .get_strings
= skge_get_strings
,
721 .phys_id
= skge_phys_id
,
722 .get_stats_count
= skge_get_stats_count
,
723 .get_ethtool_stats
= skge_get_ethtool_stats
,
724 .get_perm_addr
= ethtool_op_get_perm_addr
,
728 * Allocate ring elements and chain them together
729 * One-to-one association of board descriptors with ring elements
731 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u64 base
)
733 struct skge_tx_desc
*d
;
734 struct skge_element
*e
;
737 ring
->start
= kmalloc(sizeof(*e
)*ring
->count
, GFP_KERNEL
);
741 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
744 if (i
== ring
->count
- 1) {
745 e
->next
= ring
->start
;
746 d
->next_offset
= base
;
749 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
752 ring
->to_use
= ring
->to_clean
= ring
->start
;
757 /* Allocate and setup a new buffer for receiving */
758 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
759 struct sk_buff
*skb
, unsigned int bufsize
)
761 struct skge_rx_desc
*rd
= e
->desc
;
764 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
768 rd
->dma_hi
= map
>> 32;
770 rd
->csum1_start
= ETH_HLEN
;
771 rd
->csum2_start
= ETH_HLEN
;
777 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
778 pci_unmap_addr_set(e
, mapaddr
, map
);
779 pci_unmap_len_set(e
, maplen
, bufsize
);
782 /* Resume receiving using existing skb,
783 * Note: DMA address is not changed by chip.
784 * MTU not changed while receiver active.
786 static void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
788 struct skge_rx_desc
*rd
= e
->desc
;
791 rd
->csum2_start
= ETH_HLEN
;
795 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
799 /* Free all buffers in receive ring, assumes receiver stopped */
800 static void skge_rx_clean(struct skge_port
*skge
)
802 struct skge_hw
*hw
= skge
->hw
;
803 struct skge_ring
*ring
= &skge
->rx_ring
;
804 struct skge_element
*e
;
808 struct skge_rx_desc
*rd
= e
->desc
;
811 pci_unmap_single(hw
->pdev
,
812 pci_unmap_addr(e
, mapaddr
),
813 pci_unmap_len(e
, maplen
),
815 dev_kfree_skb(e
->skb
);
818 } while ((e
= e
->next
) != ring
->start
);
822 /* Allocate buffers for receive ring
823 * For receive: to_clean is next received frame.
825 static int skge_rx_fill(struct skge_port
*skge
)
827 struct skge_ring
*ring
= &skge
->rx_ring
;
828 struct skge_element
*e
;
834 skb
= dev_alloc_skb(skge
->rx_buf_size
+ NET_IP_ALIGN
);
838 skb_reserve(skb
, NET_IP_ALIGN
);
839 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
840 } while ( (e
= e
->next
) != ring
->start
);
842 ring
->to_clean
= ring
->start
;
846 static void skge_link_up(struct skge_port
*skge
)
848 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
849 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
851 netif_carrier_on(skge
->netdev
);
852 if (skge
->tx_avail
> MAX_SKB_FRAGS
+ 1)
853 netif_wake_queue(skge
->netdev
);
855 if (netif_msg_link(skge
))
857 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
858 skge
->netdev
->name
, skge
->speed
,
859 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
860 (skge
->flow_control
== FLOW_MODE_NONE
) ? "none" :
861 (skge
->flow_control
== FLOW_MODE_LOC_SEND
) ? "tx only" :
862 (skge
->flow_control
== FLOW_MODE_REM_SEND
) ? "rx only" :
863 (skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ? "tx and rx" :
867 static void skge_link_down(struct skge_port
*skge
)
869 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
870 netif_carrier_off(skge
->netdev
);
871 netif_stop_queue(skge
->netdev
);
873 if (netif_msg_link(skge
))
874 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
877 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
881 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
882 xm_read16(hw
, port
, XM_PHY_DATA
);
884 /* Need to wait for external PHY */
885 for (i
= 0; i
< PHY_RETRIES
; i
++) {
887 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
893 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
898 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
901 if (__xm_phy_read(hw
, port
, reg
, &v
))
902 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
903 hw
->dev
[port
]->name
);
907 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
911 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
912 for (i
= 0; i
< PHY_RETRIES
; i
++) {
913 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
920 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
924 static void genesis_init(struct skge_hw
*hw
)
926 /* set blink source counter */
927 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
928 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
930 /* configure mac arbiter */
931 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
933 /* configure mac arbiter timeout values */
934 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
935 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
936 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
937 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
939 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
940 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
941 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
942 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
944 /* configure packet arbiter timeout */
945 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
946 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
947 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
948 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
949 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
952 static void genesis_reset(struct skge_hw
*hw
, int port
)
954 const u8 zero
[8] = { 0 };
956 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
958 /* reset the statistics module */
959 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
960 xm_write16(hw
, port
, XM_IMSK
, 0xffff); /* disable XMAC IRQs */
961 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
962 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
963 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
965 /* disable Broadcom PHY IRQ */
966 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
968 xm_outhash(hw
, port
, XM_HSM
, zero
);
972 /* Convert mode to MII values */
973 static const u16 phy_pause_map
[] = {
974 [FLOW_MODE_NONE
] = 0,
975 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
976 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
977 [FLOW_MODE_REM_SEND
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
981 /* Check status of Broadcom phy link */
982 static void bcom_check_link(struct skge_hw
*hw
, int port
)
984 struct net_device
*dev
= hw
->dev
[port
];
985 struct skge_port
*skge
= netdev_priv(dev
);
988 /* read twice because of latch */
989 (void) xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
990 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
992 if ((status
& PHY_ST_LSYNC
) == 0) {
993 u16 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
994 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
995 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
996 /* dummy read to ensure writing */
997 (void) xm_read16(hw
, port
, XM_MMU_CMD
);
999 if (netif_carrier_ok(dev
))
1000 skge_link_down(skge
);
1002 if (skge
->autoneg
== AUTONEG_ENABLE
&&
1003 (status
& PHY_ST_AN_OVER
)) {
1004 u16 lpa
= xm_phy_read(hw
, port
, PHY_BCOM_AUNE_LP
);
1005 u16 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1007 if (lpa
& PHY_B_AN_RF
) {
1008 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1013 /* Check Duplex mismatch */
1014 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1015 case PHY_B_RES_1000FD
:
1016 skge
->duplex
= DUPLEX_FULL
;
1018 case PHY_B_RES_1000HD
:
1019 skge
->duplex
= DUPLEX_HALF
;
1022 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1028 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1029 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1030 case PHY_B_AS_PAUSE_MSK
:
1031 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
1034 skge
->flow_control
= FLOW_MODE_REM_SEND
;
1037 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
1040 skge
->flow_control
= FLOW_MODE_NONE
;
1043 skge
->speed
= SPEED_1000
;
1046 if (!netif_carrier_ok(dev
))
1047 genesis_link_up(skge
);
1051 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1052 * Phy on for 100 or 10Mbit operation
1054 static void bcom_phy_init(struct skge_port
*skge
, int jumbo
)
1056 struct skge_hw
*hw
= skge
->hw
;
1057 int port
= skge
->port
;
1059 u16 id1
, r
, ext
, ctl
;
1061 /* magic workaround patterns for Broadcom */
1062 static const struct {
1066 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1067 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1068 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1069 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1071 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1072 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1075 /* read Id from external PHY (all have the same address) */
1076 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1078 /* Optimize MDIO transfer by suppressing preamble. */
1079 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1081 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1084 case PHY_BCOM_ID1_C0
:
1086 * Workaround BCOM Errata for the C0 type.
1087 * Write magic patterns to reserved registers.
1089 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1090 xm_phy_write(hw
, port
,
1091 C0hack
[i
].reg
, C0hack
[i
].val
);
1094 case PHY_BCOM_ID1_A1
:
1096 * Workaround BCOM Errata for the A1 type.
1097 * Write magic patterns to reserved registers.
1099 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1100 xm_phy_write(hw
, port
,
1101 A1hack
[i
].reg
, A1hack
[i
].val
);
1106 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1107 * Disable Power Management after reset.
1109 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1110 r
|= PHY_B_AC_DIS_PM
;
1111 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1114 xm_read16(hw
, port
, XM_ISRC
);
1116 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1117 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1119 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1121 * Workaround BCOM Errata #1 for the C5 type.
1122 * 1000Base-T Link Acquisition Failure in Slave Mode
1123 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1125 u16 adv
= PHY_B_1000C_RD
;
1126 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1127 adv
|= PHY_B_1000C_AHD
;
1128 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1129 adv
|= PHY_B_1000C_AFD
;
1130 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1132 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1134 if (skge
->duplex
== DUPLEX_FULL
)
1135 ctl
|= PHY_CT_DUP_MD
;
1136 /* Force to slave */
1137 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1140 /* Set autonegotiation pause parameters */
1141 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1142 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1144 /* Handle Jumbo frames */
1146 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1147 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1149 ext
|= PHY_B_PEC_HIGH_LA
;
1153 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1154 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1156 /* Use link status change interrupt */
1157 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1159 bcom_check_link(hw
, port
);
1162 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1164 struct net_device
*dev
= hw
->dev
[port
];
1165 struct skge_port
*skge
= netdev_priv(dev
);
1166 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1169 const u8 zero
[6] = { 0 };
1171 /* Clear MIB counters */
1172 xm_write16(hw
, port
, XM_STAT_CMD
,
1173 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1174 /* Clear two times according to Errata #3 */
1175 xm_write16(hw
, port
, XM_STAT_CMD
,
1176 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1178 /* Unreset the XMAC. */
1179 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1182 * Perform additional initialization for external PHYs,
1183 * namely for the 1000baseTX cards that use the XMAC's
1186 /* Take external Phy out of reset */
1187 r
= skge_read32(hw
, B2_GP_IO
);
1189 r
|= GP_DIR_0
|GP_IO_0
;
1191 r
|= GP_DIR_2
|GP_IO_2
;
1193 skge_write32(hw
, B2_GP_IO
, r
);
1194 skge_read32(hw
, B2_GP_IO
);
1196 /* Enable GMII interface */
1197 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1199 bcom_phy_init(skge
, jumbo
);
1201 /* Set Station Address */
1202 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1204 /* We don't use match addresses so clear */
1205 for (i
= 1; i
< 16; i
++)
1206 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1208 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1209 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1211 /* We don't need the FCS appended to the packet. */
1212 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1214 r
|= XM_RX_BIG_PK_OK
;
1216 if (skge
->duplex
== DUPLEX_HALF
) {
1218 * If in manual half duplex mode the other side might be in
1219 * full duplex mode, so ignore if a carrier extension is not seen
1220 * on frames received
1222 r
|= XM_RX_DIS_CEXT
;
1224 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1227 /* We want short frames padded to 60 bytes. */
1228 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1231 * Bump up the transmit threshold. This helps hold off transmit
1232 * underruns when we're blasting traffic from both ports at once.
1234 xm_write16(hw
, port
, XM_TX_THR
, 512);
1237 * Enable the reception of all error frames. This is is
1238 * a necessary evil due to the design of the XMAC. The
1239 * XMAC's receive FIFO is only 8K in size, however jumbo
1240 * frames can be up to 9000 bytes in length. When bad
1241 * frame filtering is enabled, the XMAC's RX FIFO operates
1242 * in 'store and forward' mode. For this to work, the
1243 * entire frame has to fit into the FIFO, but that means
1244 * that jumbo frames larger than 8192 bytes will be
1245 * truncated. Disabling all bad frame filtering causes
1246 * the RX FIFO to operate in streaming mode, in which
1247 * case the XMAC will start transferring frames out of the
1248 * RX FIFO as soon as the FIFO threshold is reached.
1250 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1254 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1255 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1256 * and 'Octets Rx OK Hi Cnt Ov'.
1258 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1261 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1262 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1263 * and 'Octets Tx OK Hi Cnt Ov'.
1265 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1267 /* Configure MAC arbiter */
1268 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1270 /* configure timeout values */
1271 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1272 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1273 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1274 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1276 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1277 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1278 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1279 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1281 /* Configure Rx MAC FIFO */
1282 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1283 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1284 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1286 /* Configure Tx MAC FIFO */
1287 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1288 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1289 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1292 /* Enable frame flushing if jumbo frames used */
1293 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1295 /* enable timeout timers if normal frames */
1296 skge_write16(hw
, B3_PA_CTRL
,
1297 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1301 static void genesis_stop(struct skge_port
*skge
)
1303 struct skge_hw
*hw
= skge
->hw
;
1304 int port
= skge
->port
;
1307 genesis_reset(hw
, port
);
1309 /* Clear Tx packet arbiter timeout IRQ */
1310 skge_write16(hw
, B3_PA_CTRL
,
1311 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1314 * If the transfer sticks at the MAC the STOP command will not
1315 * terminate if we don't flush the XMAC's transmit FIFO !
1317 xm_write32(hw
, port
, XM_MODE
,
1318 xm_read32(hw
, port
, XM_MODE
)|XM_MD_FTF
);
1322 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1324 /* For external PHYs there must be special handling */
1325 reg
= skge_read32(hw
, B2_GP_IO
);
1333 skge_write32(hw
, B2_GP_IO
, reg
);
1334 skge_read32(hw
, B2_GP_IO
);
1336 xm_write16(hw
, port
, XM_MMU_CMD
,
1337 xm_read16(hw
, port
, XM_MMU_CMD
)
1338 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1340 xm_read16(hw
, port
, XM_MMU_CMD
);
1344 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1346 struct skge_hw
*hw
= skge
->hw
;
1347 int port
= skge
->port
;
1349 unsigned long timeout
= jiffies
+ HZ
;
1351 xm_write16(hw
, port
,
1352 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1354 /* wait for update to complete */
1355 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1356 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1357 if (time_after(jiffies
, timeout
))
1362 /* special case for 64 bit octet counter */
1363 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1364 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1365 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1366 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1368 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1369 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1372 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1374 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1375 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1377 if (netif_msg_intr(skge
))
1378 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1379 skge
->netdev
->name
, status
);
1381 if (status
& XM_IS_TXF_UR
) {
1382 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1383 ++skge
->net_stats
.tx_fifo_errors
;
1385 if (status
& XM_IS_RXF_OV
) {
1386 xm_write32(hw
, port
, XM_MODE
, XM_MD_FRF
);
1387 ++skge
->net_stats
.rx_fifo_errors
;
1391 static void genesis_link_up(struct skge_port
*skge
)
1393 struct skge_hw
*hw
= skge
->hw
;
1394 int port
= skge
->port
;
1398 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1401 * enabling pause frame reception is required for 1000BT
1402 * because the XMAC is not reset if the link is going down
1404 if (skge
->flow_control
== FLOW_MODE_NONE
||
1405 skge
->flow_control
== FLOW_MODE_LOC_SEND
)
1406 /* Disable Pause Frame Reception */
1407 cmd
|= XM_MMU_IGN_PF
;
1409 /* Enable Pause Frame Reception */
1410 cmd
&= ~XM_MMU_IGN_PF
;
1412 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1414 mode
= xm_read32(hw
, port
, XM_MODE
);
1415 if (skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1416 skge
->flow_control
== FLOW_MODE_LOC_SEND
) {
1418 * Configure Pause Frame Generation
1419 * Use internal and external Pause Frame Generation.
1420 * Sending pause frames is edge triggered.
1421 * Send a Pause frame with the maximum pause time if
1422 * internal oder external FIFO full condition occurs.
1423 * Send a zero pause time frame to re-start transmission.
1425 /* XM_PAUSE_DA = '010000C28001' (default) */
1426 /* XM_MAC_PTIME = 0xffff (maximum) */
1427 /* remember this value is defined in big endian (!) */
1428 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1430 mode
|= XM_PAUSE_MODE
;
1431 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1434 * disable pause frame generation is required for 1000BT
1435 * because the XMAC is not reset if the link is going down
1437 /* Disable Pause Mode in Mode Register */
1438 mode
&= ~XM_PAUSE_MODE
;
1440 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1443 xm_write32(hw
, port
, XM_MODE
, mode
);
1446 /* disable GP0 interrupt bit for external Phy */
1447 msk
|= XM_IS_INP_ASS
;
1449 xm_write16(hw
, port
, XM_IMSK
, msk
);
1450 xm_read16(hw
, port
, XM_ISRC
);
1452 /* get MMU Command Reg. */
1453 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1454 if (skge
->duplex
== DUPLEX_FULL
)
1455 cmd
|= XM_MMU_GMII_FD
;
1458 * Workaround BCOM Errata (#10523) for all BCom Phys
1459 * Enable Power Management after link up
1461 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1462 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1463 & ~PHY_B_AC_DIS_PM
);
1464 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1467 xm_write16(hw
, port
, XM_MMU_CMD
,
1468 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1473 static inline void bcom_phy_intr(struct skge_port
*skge
)
1475 struct skge_hw
*hw
= skge
->hw
;
1476 int port
= skge
->port
;
1479 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1480 if (netif_msg_intr(skge
))
1481 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1482 skge
->netdev
->name
, isrc
);
1484 if (isrc
& PHY_B_IS_PSE
)
1485 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1486 hw
->dev
[port
]->name
);
1488 /* Workaround BCom Errata:
1489 * enable and disable loopback mode if "NO HCD" occurs.
1491 if (isrc
& PHY_B_IS_NO_HDCL
) {
1492 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1493 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1494 ctrl
| PHY_CT_LOOP
);
1495 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1496 ctrl
& ~PHY_CT_LOOP
);
1499 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1500 bcom_check_link(hw
, port
);
1504 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1508 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1509 gma_write16(hw
, port
, GM_SMI_CTRL
,
1510 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1511 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1514 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1518 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1519 hw
->dev
[port
]->name
);
1523 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1527 gma_write16(hw
, port
, GM_SMI_CTRL
,
1528 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1529 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1531 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1533 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1539 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1543 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1546 if (__gm_phy_read(hw
, port
, reg
, &v
))
1547 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1548 hw
->dev
[port
]->name
);
1552 /* Marvell Phy Initialization */
1553 static void yukon_init(struct skge_hw
*hw
, int port
)
1555 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1556 u16 ctrl
, ct1000
, adv
;
1558 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1559 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1561 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1562 PHY_M_EC_MAC_S_MSK
);
1563 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1565 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1567 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1570 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1571 if (skge
->autoneg
== AUTONEG_DISABLE
)
1572 ctrl
&= ~PHY_CT_ANE
;
1574 ctrl
|= PHY_CT_RESET
;
1575 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1581 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1583 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1584 ct1000
|= PHY_M_1000C_AFD
;
1585 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1586 ct1000
|= PHY_M_1000C_AHD
;
1587 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1588 adv
|= PHY_M_AN_100_FD
;
1589 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1590 adv
|= PHY_M_AN_100_HD
;
1591 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1592 adv
|= PHY_M_AN_10_FD
;
1593 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1594 adv
|= PHY_M_AN_10_HD
;
1595 } else /* special defines for FIBER (88E1011S only) */
1596 adv
|= PHY_M_AN_1000X_AHD
| PHY_M_AN_1000X_AFD
;
1598 /* Set Flow-control capabilities */
1599 adv
|= phy_pause_map
[skge
->flow_control
];
1601 /* Restart Auto-negotiation */
1602 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1604 /* forced speed/duplex settings */
1605 ct1000
= PHY_M_1000C_MSE
;
1607 if (skge
->duplex
== DUPLEX_FULL
)
1608 ctrl
|= PHY_CT_DUP_MD
;
1610 switch (skge
->speed
) {
1612 ctrl
|= PHY_CT_SP1000
;
1615 ctrl
|= PHY_CT_SP100
;
1619 ctrl
|= PHY_CT_RESET
;
1622 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
1624 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
1625 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1627 /* Enable phy interrupt on autonegotiation complete (or link up) */
1628 if (skge
->autoneg
== AUTONEG_ENABLE
)
1629 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
1631 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
1634 static void yukon_reset(struct skge_hw
*hw
, int port
)
1636 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
1637 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
1638 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
1639 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
1640 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
1642 gma_write16(hw
, port
, GM_RX_CTRL
,
1643 gma_read16(hw
, port
, GM_RX_CTRL
)
1644 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
1647 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1648 static int is_yukon_lite_a0(struct skge_hw
*hw
)
1653 if (hw
->chip_id
!= CHIP_ID_YUKON
)
1656 reg
= skge_read32(hw
, B2_FAR
);
1657 skge_write8(hw
, B2_FAR
+ 3, 0xff);
1658 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
1659 skge_write32(hw
, B2_FAR
, reg
);
1663 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
1665 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1668 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
1670 /* WA code for COMA mode -- set PHY reset */
1671 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1672 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1673 reg
= skge_read32(hw
, B2_GP_IO
);
1674 reg
|= GP_DIR_9
| GP_IO_9
;
1675 skge_write32(hw
, B2_GP_IO
, reg
);
1679 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
1680 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
1682 /* WA code for COMA mode -- clear PHY reset */
1683 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1684 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1685 reg
= skge_read32(hw
, B2_GP_IO
);
1688 skge_write32(hw
, B2_GP_IO
, reg
);
1691 /* Set hardware config mode */
1692 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
1693 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
1694 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
1696 /* Clear GMC reset */
1697 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
1698 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
1699 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
1700 if (skge
->autoneg
== AUTONEG_DISABLE
) {
1701 reg
= GM_GPCR_AU_ALL_DIS
;
1702 gma_write16(hw
, port
, GM_GP_CTRL
,
1703 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
1705 switch (skge
->speed
) {
1707 reg
|= GM_GPCR_SPEED_1000
;
1710 reg
|= GM_GPCR_SPEED_100
;
1713 if (skge
->duplex
== DUPLEX_FULL
)
1714 reg
|= GM_GPCR_DUP_FULL
;
1716 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
1717 switch (skge
->flow_control
) {
1718 case FLOW_MODE_NONE
:
1719 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
1720 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
1722 case FLOW_MODE_LOC_SEND
:
1723 /* disable Rx flow-control */
1724 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
1727 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
1728 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
1730 yukon_init(hw
, port
);
1733 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
1734 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
1736 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
1737 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
1738 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
1740 /* transmit control */
1741 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
1743 /* receive control reg: unicast + multicast + no FCS */
1744 gma_write16(hw
, port
, GM_RX_CTRL
,
1745 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
1747 /* transmit flow control */
1748 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
1750 /* transmit parameter */
1751 gma_write16(hw
, port
, GM_TX_PARAM
,
1752 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
1753 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
1754 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
1756 /* serial mode register */
1757 reg
= GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF
);
1758 if (hw
->dev
[port
]->mtu
> 1500)
1759 reg
|= GM_SMOD_JUMBO_ENA
;
1761 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
1763 /* physical address: used for pause frames */
1764 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
1765 /* virtual address for data */
1766 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
1768 /* enable interrupt mask for counter overflows */
1769 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
1770 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
1771 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
1773 /* Initialize Mac Fifo */
1775 /* Configure Rx MAC FIFO */
1776 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
1777 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
1779 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1780 if (is_yukon_lite_a0(hw
))
1781 reg
&= ~GMF_RX_F_FL_ON
;
1783 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
1784 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
1786 * because Pause Packet Truncation in GMAC is not working
1787 * we have to increase the Flush Threshold to 64 bytes
1788 * in order to flush pause packets in Rx FIFO on Yukon-1
1790 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
1792 /* Configure Tx MAC FIFO */
1793 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
1794 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
1797 /* Go into power down mode */
1798 static void yukon_suspend(struct skge_hw
*hw
, int port
)
1802 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
1803 ctrl
|= PHY_M_PC_POL_R_DIS
;
1804 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
1806 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1807 ctrl
|= PHY_CT_RESET
;
1808 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1810 /* switch IEEE compatible power down mode on */
1811 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1812 ctrl
|= PHY_CT_PDOWN
;
1813 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1816 static void yukon_stop(struct skge_port
*skge
)
1818 struct skge_hw
*hw
= skge
->hw
;
1819 int port
= skge
->port
;
1821 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1822 yukon_reset(hw
, port
);
1824 gma_write16(hw
, port
, GM_GP_CTRL
,
1825 gma_read16(hw
, port
, GM_GP_CTRL
)
1826 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
1827 gma_read16(hw
, port
, GM_GP_CTRL
);
1829 yukon_suspend(hw
, port
);
1831 /* set GPHY Control reset */
1832 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
1833 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
1836 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
1838 struct skge_hw
*hw
= skge
->hw
;
1839 int port
= skge
->port
;
1842 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
1843 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
1844 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
1845 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
1847 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1848 data
[i
] = gma_read32(hw
, port
,
1849 skge_stats
[i
].gma_offset
);
1852 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
1854 struct net_device
*dev
= hw
->dev
[port
];
1855 struct skge_port
*skge
= netdev_priv(dev
);
1856 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
1858 if (netif_msg_intr(skge
))
1859 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1862 if (status
& GM_IS_RX_FF_OR
) {
1863 ++skge
->net_stats
.rx_fifo_errors
;
1864 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
1867 if (status
& GM_IS_TX_FF_UR
) {
1868 ++skge
->net_stats
.tx_fifo_errors
;
1869 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
1874 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
1876 switch (aux
& PHY_M_PS_SPEED_MSK
) {
1877 case PHY_M_PS_SPEED_1000
:
1879 case PHY_M_PS_SPEED_100
:
1886 static void yukon_link_up(struct skge_port
*skge
)
1888 struct skge_hw
*hw
= skge
->hw
;
1889 int port
= skge
->port
;
1892 /* Enable Transmit FIFO Underrun */
1893 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
1895 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
1896 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
1897 reg
|= GM_GPCR_DUP_FULL
;
1900 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
1901 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
1903 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
1907 static void yukon_link_down(struct skge_port
*skge
)
1909 struct skge_hw
*hw
= skge
->hw
;
1910 int port
= skge
->port
;
1913 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);
1915 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
1916 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
1917 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
1919 if (skge
->flow_control
== FLOW_MODE_REM_SEND
) {
1920 /* restore Asymmetric Pause bit */
1921 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
1922 gm_phy_read(hw
, port
,
1928 yukon_reset(hw
, port
);
1929 skge_link_down(skge
);
1931 yukon_init(hw
, port
);
1934 static void yukon_phy_intr(struct skge_port
*skge
)
1936 struct skge_hw
*hw
= skge
->hw
;
1937 int port
= skge
->port
;
1938 const char *reason
= NULL
;
1939 u16 istatus
, phystat
;
1941 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
1942 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
1944 if (netif_msg_intr(skge
))
1945 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
1946 skge
->netdev
->name
, istatus
, phystat
);
1948 if (istatus
& PHY_M_IS_AN_COMPL
) {
1949 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
1951 reason
= "remote fault";
1955 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
1956 reason
= "master/slave fault";
1960 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
1961 reason
= "speed/duplex";
1965 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
1966 ? DUPLEX_FULL
: DUPLEX_HALF
;
1967 skge
->speed
= yukon_speed(hw
, phystat
);
1969 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1970 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
1971 case PHY_M_PS_PAUSE_MSK
:
1972 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
1974 case PHY_M_PS_RX_P_EN
:
1975 skge
->flow_control
= FLOW_MODE_REM_SEND
;
1977 case PHY_M_PS_TX_P_EN
:
1978 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
1981 skge
->flow_control
= FLOW_MODE_NONE
;
1984 if (skge
->flow_control
== FLOW_MODE_NONE
||
1985 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
1986 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
1988 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
1989 yukon_link_up(skge
);
1993 if (istatus
& PHY_M_IS_LSP_CHANGE
)
1994 skge
->speed
= yukon_speed(hw
, phystat
);
1996 if (istatus
& PHY_M_IS_DUP_CHANGE
)
1997 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
1998 if (istatus
& PHY_M_IS_LST_CHANGE
) {
1999 if (phystat
& PHY_M_PS_LINK_UP
)
2000 yukon_link_up(skge
);
2002 yukon_link_down(skge
);
2006 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2007 skge
->netdev
->name
, reason
);
2009 /* XXX restart autonegotiation? */
2012 static void skge_phy_reset(struct skge_port
*skge
)
2014 struct skge_hw
*hw
= skge
->hw
;
2015 int port
= skge
->port
;
2017 netif_stop_queue(skge
->netdev
);
2018 netif_carrier_off(skge
->netdev
);
2020 spin_lock_bh(&hw
->phy_lock
);
2021 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2022 genesis_reset(hw
, port
);
2023 genesis_mac_init(hw
, port
);
2025 yukon_reset(hw
, port
);
2026 yukon_init(hw
, port
);
2028 spin_unlock_bh(&hw
->phy_lock
);
2031 /* Basic MII support */
2032 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2034 struct mii_ioctl_data
*data
= if_mii(ifr
);
2035 struct skge_port
*skge
= netdev_priv(dev
);
2036 struct skge_hw
*hw
= skge
->hw
;
2037 int err
= -EOPNOTSUPP
;
2039 if (!netif_running(dev
))
2040 return -ENODEV
; /* Phy still in reset */
2044 data
->phy_id
= hw
->phy_addr
;
2049 spin_lock_bh(&hw
->phy_lock
);
2050 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2051 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2053 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2054 spin_unlock_bh(&hw
->phy_lock
);
2055 data
->val_out
= val
;
2060 if (!capable(CAP_NET_ADMIN
))
2063 spin_lock_bh(&hw
->phy_lock
);
2064 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2065 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2068 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2070 spin_unlock_bh(&hw
->phy_lock
);
2076 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2082 end
= start
+ len
- 1;
2084 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2085 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2086 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2087 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2088 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2090 if (q
== Q_R1
|| q
== Q_R2
) {
2091 /* Set thresholds on receive queue's */
2092 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2094 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2097 /* Enable store & forward on Tx queue's because
2098 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2100 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2103 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2106 /* Setup Bus Memory Interface */
2107 static void skge_qset(struct skge_port
*skge
, u16 q
,
2108 const struct skge_element
*e
)
2110 struct skge_hw
*hw
= skge
->hw
;
2111 u32 watermark
= 0x600;
2112 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2114 /* optimization to reduce window on 32bit/33mhz */
2115 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2118 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2119 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2120 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2121 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2124 static int skge_up(struct net_device
*dev
)
2126 struct skge_port
*skge
= netdev_priv(dev
);
2127 struct skge_hw
*hw
= skge
->hw
;
2128 int port
= skge
->port
;
2129 u32 chunk
, ram_addr
;
2130 size_t rx_size
, tx_size
;
2133 if (netif_msg_ifup(skge
))
2134 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2136 if (dev
->mtu
> RX_BUF_SIZE
)
2137 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
+ NET_IP_ALIGN
;
2139 skge
->rx_buf_size
= RX_BUF_SIZE
;
2142 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2143 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2144 skge
->mem_size
= tx_size
+ rx_size
;
2145 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2149 memset(skge
->mem
, 0, skge
->mem_size
);
2151 if ((err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
)))
2154 err
= skge_rx_fill(skge
);
2158 if ((err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2159 skge
->dma
+ rx_size
)))
2162 skge
->tx_avail
= skge
->tx_ring
.count
- 1;
2164 /* Enable IRQ from port */
2165 hw
->intr_mask
|= portirqmask
[port
];
2166 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2168 /* Initialize MAC */
2169 spin_lock_bh(&hw
->phy_lock
);
2170 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2171 genesis_mac_init(hw
, port
);
2173 yukon_mac_init(hw
, port
);
2174 spin_unlock_bh(&hw
->phy_lock
);
2176 /* Configure RAMbuffers */
2177 chunk
= hw
->ram_size
/ ((hw
->ports
+ 1)*2);
2178 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2180 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2181 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2183 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2184 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2185 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2187 /* Start receiver BMU */
2189 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2190 skge_led(skge
, LED_MODE_ON
);
2195 skge_rx_clean(skge
);
2196 kfree(skge
->rx_ring
.start
);
2198 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2204 static int skge_down(struct net_device
*dev
)
2206 struct skge_port
*skge
= netdev_priv(dev
);
2207 struct skge_hw
*hw
= skge
->hw
;
2208 int port
= skge
->port
;
2210 if (skge
->mem
== NULL
)
2213 if (netif_msg_ifdown(skge
))
2214 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2216 netif_stop_queue(dev
);
2218 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2219 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2224 hw
->intr_mask
&= ~portirqmask
[skge
->port
];
2225 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2227 /* Stop transmitter */
2228 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2229 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2230 RB_RST_SET
|RB_DIS_OP_MD
);
2233 /* Disable Force Sync bit and Enable Alloc bit */
2234 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2235 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2237 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2238 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2239 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2241 /* Reset PCI FIFO */
2242 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2243 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2245 /* Reset the RAM Buffer async Tx queue */
2246 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2248 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2249 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2250 RB_RST_SET
|RB_DIS_OP_MD
);
2251 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2253 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2254 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2255 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2257 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2258 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2261 skge_led(skge
, LED_MODE_OFF
);
2263 skge_tx_clean(skge
);
2264 skge_rx_clean(skge
);
2266 kfree(skge
->rx_ring
.start
);
2267 kfree(skge
->tx_ring
.start
);
2268 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2273 static int skge_xmit_frame(struct sk_buff
*skb
, struct net_device
*dev
)
2275 struct skge_port
*skge
= netdev_priv(dev
);
2276 struct skge_hw
*hw
= skge
->hw
;
2277 struct skge_ring
*ring
= &skge
->tx_ring
;
2278 struct skge_element
*e
;
2279 struct skge_tx_desc
*td
;
2283 unsigned long flags
;
2285 skb
= skb_padto(skb
, ETH_ZLEN
);
2287 return NETDEV_TX_OK
;
2289 local_irq_save(flags
);
2290 if (!spin_trylock(&skge
->tx_lock
)) {
2291 /* Collision - tell upper layer to requeue */
2292 local_irq_restore(flags
);
2293 return NETDEV_TX_LOCKED
;
2296 if (unlikely(skge
->tx_avail
< skb_shinfo(skb
)->nr_frags
+1)) {
2297 if (!netif_queue_stopped(dev
)) {
2298 netif_stop_queue(dev
);
2300 printk(KERN_WARNING PFX
"%s: ring full when queue awake!\n",
2303 spin_unlock_irqrestore(&skge
->tx_lock
, flags
);
2304 return NETDEV_TX_BUSY
;
2310 len
= skb_headlen(skb
);
2311 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2312 pci_unmap_addr_set(e
, mapaddr
, map
);
2313 pci_unmap_len_set(e
, maplen
, len
);
2316 td
->dma_hi
= map
>> 32;
2318 if (skb
->ip_summed
== CHECKSUM_HW
) {
2319 int offset
= skb
->h
.raw
- skb
->data
;
2321 /* This seems backwards, but it is what the sk98lin
2322 * does. Looks like hardware is wrong?
2324 if (skb
->h
.ipiph
->protocol
== IPPROTO_UDP
2325 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2326 control
= BMU_TCP_CHECK
;
2328 control
= BMU_UDP_CHECK
;
2331 td
->csum_start
= offset
;
2332 td
->csum_write
= offset
+ skb
->csum
;
2334 control
= BMU_CHECK
;
2336 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2337 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2339 struct skge_tx_desc
*tf
= td
;
2341 control
|= BMU_STFWD
;
2342 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2343 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2345 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2346 frag
->size
, PCI_DMA_TODEVICE
);
2352 tf
->dma_hi
= (u64
) map
>> 32;
2353 pci_unmap_addr_set(e
, mapaddr
, map
);
2354 pci_unmap_len_set(e
, maplen
, frag
->size
);
2356 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2358 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2360 /* Make sure all the descriptors written */
2362 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2365 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2367 if (netif_msg_tx_queued(skge
))
2368 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2369 dev
->name
, e
- ring
->start
, skb
->len
);
2371 ring
->to_use
= e
->next
;
2372 skge
->tx_avail
-= skb_shinfo(skb
)->nr_frags
+ 1;
2373 if (skge
->tx_avail
<= MAX_SKB_FRAGS
+ 1) {
2374 pr_debug("%s: transmit queue full\n", dev
->name
);
2375 netif_stop_queue(dev
);
2378 dev
->trans_start
= jiffies
;
2379 spin_unlock_irqrestore(&skge
->tx_lock
, flags
);
2381 return NETDEV_TX_OK
;
2384 static inline void skge_tx_free(struct skge_hw
*hw
, struct skge_element
*e
)
2386 /* This ring element can be skb or fragment */
2388 pci_unmap_single(hw
->pdev
,
2389 pci_unmap_addr(e
, mapaddr
),
2390 pci_unmap_len(e
, maplen
),
2392 dev_kfree_skb_any(e
->skb
);
2395 pci_unmap_page(hw
->pdev
,
2396 pci_unmap_addr(e
, mapaddr
),
2397 pci_unmap_len(e
, maplen
),
2402 static void skge_tx_clean(struct skge_port
*skge
)
2404 struct skge_ring
*ring
= &skge
->tx_ring
;
2405 struct skge_element
*e
;
2406 unsigned long flags
;
2408 spin_lock_irqsave(&skge
->tx_lock
, flags
);
2409 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
2411 skge_tx_free(skge
->hw
, e
);
2414 spin_unlock_irqrestore(&skge
->tx_lock
, flags
);
2417 static void skge_tx_timeout(struct net_device
*dev
)
2419 struct skge_port
*skge
= netdev_priv(dev
);
2421 if (netif_msg_timer(skge
))
2422 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2424 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2425 skge_tx_clean(skge
);
2428 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2432 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2435 if (!netif_running(dev
)) {
2451 static void genesis_set_multicast(struct net_device
*dev
)
2453 struct skge_port
*skge
= netdev_priv(dev
);
2454 struct skge_hw
*hw
= skge
->hw
;
2455 int port
= skge
->port
;
2456 int i
, count
= dev
->mc_count
;
2457 struct dev_mc_list
*list
= dev
->mc_list
;
2461 mode
= xm_read32(hw
, port
, XM_MODE
);
2462 mode
|= XM_MD_ENA_HASH
;
2463 if (dev
->flags
& IFF_PROMISC
)
2464 mode
|= XM_MD_ENA_PROM
;
2466 mode
&= ~XM_MD_ENA_PROM
;
2468 if (dev
->flags
& IFF_ALLMULTI
)
2469 memset(filter
, 0xff, sizeof(filter
));
2471 memset(filter
, 0, sizeof(filter
));
2472 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
) {
2474 crc
= ether_crc_le(ETH_ALEN
, list
->dmi_addr
);
2476 filter
[bit
/8] |= 1 << (bit
%8);
2480 xm_write32(hw
, port
, XM_MODE
, mode
);
2481 xm_outhash(hw
, port
, XM_HSM
, filter
);
2484 static void yukon_set_multicast(struct net_device
*dev
)
2486 struct skge_port
*skge
= netdev_priv(dev
);
2487 struct skge_hw
*hw
= skge
->hw
;
2488 int port
= skge
->port
;
2489 struct dev_mc_list
*list
= dev
->mc_list
;
2493 memset(filter
, 0, sizeof(filter
));
2495 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2496 reg
|= GM_RXCR_UCF_ENA
;
2498 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2499 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2500 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2501 memset(filter
, 0xff, sizeof(filter
));
2502 else if (dev
->mc_count
== 0) /* no multicast */
2503 reg
&= ~GM_RXCR_MCF_ENA
;
2506 reg
|= GM_RXCR_MCF_ENA
;
2508 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
) {
2509 u32 bit
= ether_crc(ETH_ALEN
, list
->dmi_addr
) & 0x3f;
2510 filter
[bit
/8] |= 1 << (bit
%8);
2515 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2516 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2517 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2518 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2519 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2520 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2521 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2522 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2524 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2527 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
2529 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2530 return status
>> XMR_FS_LEN_SHIFT
;
2532 return status
>> GMR_FS_LEN_SHIFT
;
2535 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2537 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2538 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2540 return (status
& GMR_FS_ANY_ERR
) ||
2541 (status
& GMR_FS_RX_OK
) == 0;
2545 /* Get receive buffer from descriptor.
2546 * Handles copy of small buffers and reallocation failures
2548 static inline struct sk_buff
*skge_rx_get(struct skge_port
*skge
,
2549 struct skge_element
*e
,
2550 u32 control
, u32 status
, u16 csum
)
2552 struct sk_buff
*skb
;
2553 u16 len
= control
& BMU_BBC
;
2555 if (unlikely(netif_msg_rx_status(skge
)))
2556 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
2557 skge
->netdev
->name
, e
- skge
->rx_ring
.start
,
2560 if (len
> skge
->rx_buf_size
)
2563 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
2566 if (bad_phy_status(skge
->hw
, status
))
2569 if (phy_length(skge
->hw
, status
) != len
)
2572 if (len
< RX_COPY_THRESHOLD
) {
2573 skb
= dev_alloc_skb(len
+ 2);
2577 skb_reserve(skb
, 2);
2578 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
2579 pci_unmap_addr(e
, mapaddr
),
2580 len
, PCI_DMA_FROMDEVICE
);
2581 memcpy(skb
->data
, e
->skb
->data
, len
);
2582 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
2583 pci_unmap_addr(e
, mapaddr
),
2584 len
, PCI_DMA_FROMDEVICE
);
2585 skge_rx_reuse(e
, skge
->rx_buf_size
);
2587 struct sk_buff
*nskb
;
2588 nskb
= dev_alloc_skb(skge
->rx_buf_size
+ NET_IP_ALIGN
);
2592 pci_unmap_single(skge
->hw
->pdev
,
2593 pci_unmap_addr(e
, mapaddr
),
2594 pci_unmap_len(e
, maplen
),
2595 PCI_DMA_FROMDEVICE
);
2597 prefetch(skb
->data
);
2598 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
2602 skb
->dev
= skge
->netdev
;
2603 if (skge
->rx_csum
) {
2605 skb
->ip_summed
= CHECKSUM_HW
;
2608 skb
->protocol
= eth_type_trans(skb
, skge
->netdev
);
2613 if (netif_msg_rx_err(skge
))
2614 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
2615 skge
->netdev
->name
, e
- skge
->rx_ring
.start
,
2618 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
2619 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
2620 skge
->net_stats
.rx_length_errors
++;
2621 if (status
& XMR_FS_FRA_ERR
)
2622 skge
->net_stats
.rx_frame_errors
++;
2623 if (status
& XMR_FS_FCS_ERR
)
2624 skge
->net_stats
.rx_crc_errors
++;
2626 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
2627 skge
->net_stats
.rx_length_errors
++;
2628 if (status
& GMR_FS_FRAGMENT
)
2629 skge
->net_stats
.rx_frame_errors
++;
2630 if (status
& GMR_FS_CRC_ERR
)
2631 skge
->net_stats
.rx_crc_errors
++;
2635 skge_rx_reuse(e
, skge
->rx_buf_size
);
2640 static int skge_poll(struct net_device
*dev
, int *budget
)
2642 struct skge_port
*skge
= netdev_priv(dev
);
2643 struct skge_hw
*hw
= skge
->hw
;
2644 struct skge_ring
*ring
= &skge
->rx_ring
;
2645 struct skge_element
*e
;
2646 unsigned int to_do
= min(dev
->quota
, *budget
);
2647 unsigned int work_done
= 0;
2649 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
2650 struct skge_rx_desc
*rd
= e
->desc
;
2651 struct sk_buff
*skb
;
2655 control
= rd
->control
;
2656 if (control
& BMU_OWN
)
2659 skb
= skge_rx_get(skge
, e
, control
, rd
->status
,
2660 le16_to_cpu(rd
->csum2
));
2662 dev
->last_rx
= jiffies
;
2663 netif_receive_skb(skb
);
2667 skge_rx_reuse(e
, skge
->rx_buf_size
);
2671 /* restart receiver */
2673 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
),
2674 CSR_START
| CSR_IRQ_CL_F
);
2676 *budget
-= work_done
;
2677 dev
->quota
-= work_done
;
2679 if (work_done
>= to_do
)
2680 return 1; /* not done */
2682 netif_rx_complete(dev
);
2683 hw
->intr_mask
|= portirqmask
[skge
->port
];
2684 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2685 skge_read32(hw
, B0_IMSK
);
2690 static inline void skge_tx_intr(struct net_device
*dev
)
2692 struct skge_port
*skge
= netdev_priv(dev
);
2693 struct skge_hw
*hw
= skge
->hw
;
2694 struct skge_ring
*ring
= &skge
->tx_ring
;
2695 struct skge_element
*e
;
2697 spin_lock(&skge
->tx_lock
);
2698 for (e
= ring
->to_clean
; prefetch(e
->next
), e
!= ring
->to_use
; e
= e
->next
) {
2699 struct skge_tx_desc
*td
= e
->desc
;
2703 control
= td
->control
;
2704 if (control
& BMU_OWN
)
2707 if (unlikely(netif_msg_tx_done(skge
)))
2708 printk(KERN_DEBUG PFX
"%s: tx done slot %td status 0x%x\n",
2709 dev
->name
, e
- ring
->start
, td
->status
);
2711 skge_tx_free(hw
, e
);
2716 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
2718 if (skge
->tx_avail
> MAX_SKB_FRAGS
+ 1)
2719 netif_wake_queue(dev
);
2721 spin_unlock(&skge
->tx_lock
);
2724 /* Parity errors seem to happen when Genesis is connected to a switch
2725 * with no other ports present. Heartbeat error??
2727 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
2729 struct net_device
*dev
= hw
->dev
[port
];
2732 struct skge_port
*skge
= netdev_priv(dev
);
2733 ++skge
->net_stats
.tx_heartbeat_errors
;
2736 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2737 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
2740 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2741 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
2742 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
2743 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
2746 static void skge_pci_clear(struct skge_hw
*hw
)
2750 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &status
);
2751 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
2752 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
2753 status
| PCI_STATUS_ERROR_BITS
);
2754 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
2757 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
2759 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2760 genesis_mac_intr(hw
, port
);
2762 yukon_mac_intr(hw
, port
);
2765 /* Handle device specific framing and timeout interrupts */
2766 static void skge_error_irq(struct skge_hw
*hw
)
2768 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
2770 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2771 /* clear xmac errors */
2772 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
2773 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
2774 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
2775 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
2777 /* Timestamp (unused) overflow */
2778 if (hwstatus
& IS_IRQ_TIST_OV
)
2779 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
2782 if (hwstatus
& IS_RAM_RD_PAR
) {
2783 printk(KERN_ERR PFX
"Ram read data parity error\n");
2784 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
2787 if (hwstatus
& IS_RAM_WR_PAR
) {
2788 printk(KERN_ERR PFX
"Ram write data parity error\n");
2789 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
2792 if (hwstatus
& IS_M1_PAR_ERR
)
2793 skge_mac_parity(hw
, 0);
2795 if (hwstatus
& IS_M2_PAR_ERR
)
2796 skge_mac_parity(hw
, 1);
2798 if (hwstatus
& IS_R1_PAR_ERR
)
2799 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
2801 if (hwstatus
& IS_R2_PAR_ERR
)
2802 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
2804 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
2805 printk(KERN_ERR PFX
"hardware error detected (status 0x%x)\n",
2810 /* if error still set then just ignore it */
2811 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
2812 if (hwstatus
& IS_IRQ_STAT
) {
2813 pr_debug("IRQ status %x: still set ignoring hardware errors\n",
2815 hw
->intr_mask
&= ~IS_HW_ERR
;
2821 * Interrupt from PHY are handled in tasklet (soft irq)
2822 * because accessing phy registers requires spin wait which might
2823 * cause excess interrupt latency.
2825 static void skge_extirq(unsigned long data
)
2827 struct skge_hw
*hw
= (struct skge_hw
*) data
;
2830 spin_lock(&hw
->phy_lock
);
2831 for (port
= 0; port
< 2; port
++) {
2832 struct net_device
*dev
= hw
->dev
[port
];
2834 if (dev
&& netif_running(dev
)) {
2835 struct skge_port
*skge
= netdev_priv(dev
);
2837 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
2838 yukon_phy_intr(skge
);
2840 bcom_phy_intr(skge
);
2843 spin_unlock(&hw
->phy_lock
);
2845 local_irq_disable();
2846 hw
->intr_mask
|= IS_EXT_REG
;
2847 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2851 static inline void skge_wakeup(struct net_device
*dev
)
2853 struct skge_port
*skge
= netdev_priv(dev
);
2855 prefetch(skge
->rx_ring
.to_clean
);
2856 netif_rx_schedule(dev
);
2859 static irqreturn_t
skge_intr(int irq
, void *dev_id
, struct pt_regs
*regs
)
2861 struct skge_hw
*hw
= dev_id
;
2862 u32 status
= skge_read32(hw
, B0_SP_ISRC
);
2864 if (status
== 0 || status
== ~0) /* hotplug or shared irq */
2867 status
&= hw
->intr_mask
;
2868 if (status
& IS_R1_F
) {
2869 hw
->intr_mask
&= ~IS_R1_F
;
2870 skge_wakeup(hw
->dev
[0]);
2873 if (status
& IS_R2_F
) {
2874 hw
->intr_mask
&= ~IS_R2_F
;
2875 skge_wakeup(hw
->dev
[1]);
2878 if (status
& IS_XA1_F
)
2879 skge_tx_intr(hw
->dev
[0]);
2881 if (status
& IS_XA2_F
)
2882 skge_tx_intr(hw
->dev
[1]);
2884 if (status
& IS_PA_TO_RX1
) {
2885 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
2886 ++skge
->net_stats
.rx_over_errors
;
2887 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
2890 if (status
& IS_PA_TO_RX2
) {
2891 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
2892 ++skge
->net_stats
.rx_over_errors
;
2893 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
2896 if (status
& IS_PA_TO_TX1
)
2897 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
2899 if (status
& IS_PA_TO_TX2
)
2900 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
2902 if (status
& IS_MAC1
)
2903 skge_mac_intr(hw
, 0);
2905 if (status
& IS_MAC2
)
2906 skge_mac_intr(hw
, 1);
2908 if (status
& IS_HW_ERR
)
2911 if (status
& IS_EXT_REG
) {
2912 hw
->intr_mask
&= ~IS_EXT_REG
;
2913 tasklet_schedule(&hw
->ext_tasklet
);
2916 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2921 #ifdef CONFIG_NET_POLL_CONTROLLER
2922 static void skge_netpoll(struct net_device
*dev
)
2924 struct skge_port
*skge
= netdev_priv(dev
);
2926 disable_irq(dev
->irq
);
2927 skge_intr(dev
->irq
, skge
->hw
, NULL
);
2928 enable_irq(dev
->irq
);
2932 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
2934 struct skge_port
*skge
= netdev_priv(dev
);
2935 struct skge_hw
*hw
= skge
->hw
;
2936 unsigned port
= skge
->port
;
2937 const struct sockaddr
*addr
= p
;
2939 if (!is_valid_ether_addr(addr
->sa_data
))
2940 return -EADDRNOTAVAIL
;
2942 spin_lock_bh(&hw
->phy_lock
);
2943 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
2944 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8,
2945 dev
->dev_addr
, ETH_ALEN
);
2946 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8,
2947 dev
->dev_addr
, ETH_ALEN
);
2949 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2950 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
2952 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
2953 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
2955 spin_unlock_bh(&hw
->phy_lock
);
2960 static const struct {
2964 { CHIP_ID_GENESIS
, "Genesis" },
2965 { CHIP_ID_YUKON
, "Yukon" },
2966 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
2967 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
2970 static const char *skge_board_name(const struct skge_hw
*hw
)
2973 static char buf
[16];
2975 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
2976 if (skge_chips
[i
].id
== hw
->chip_id
)
2977 return skge_chips
[i
].name
;
2979 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
2985 * Setup the board data structure, but don't bring up
2988 static int skge_reset(struct skge_hw
*hw
)
2992 u8 t8
, mac_cfg
, pmd_type
, phy_type
;
2995 ctst
= skge_read16(hw
, B0_CTST
);
2998 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
2999 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3001 /* clear PCI errors, if any */
3004 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3006 /* restore CLK_RUN bits (for Yukon-Lite) */
3007 skge_write16(hw
, B0_CTST
,
3008 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3010 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3011 phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3012 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3013 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3015 switch (hw
->chip_id
) {
3016 case CHIP_ID_GENESIS
:
3019 hw
->phy_addr
= PHY_ADDR_BCOM
;
3022 printk(KERN_ERR PFX
"%s: unsupported phy type 0x%x\n",
3023 pci_name(hw
->pdev
), phy_type
);
3029 case CHIP_ID_YUKON_LITE
:
3030 case CHIP_ID_YUKON_LP
:
3031 if (phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3034 hw
->phy_addr
= PHY_ADDR_MARV
;
3038 printk(KERN_ERR PFX
"%s: unsupported chip type 0x%x\n",
3039 pci_name(hw
->pdev
), hw
->chip_id
);
3043 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3044 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3045 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3047 /* read the adapters RAM size */
3048 t8
= skge_read8(hw
, B2_E_0
);
3049 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3051 /* special case: 4 x 64k x 36, offset = 0x80000 */
3052 hw
->ram_size
= 0x100000;
3053 hw
->ram_offset
= 0x80000;
3055 hw
->ram_size
= t8
* 512;
3058 hw
->ram_size
= 0x20000;
3060 hw
->ram_size
= t8
* 4096;
3062 hw
->intr_mask
= IS_HW_ERR
| IS_EXT_REG
;
3063 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3066 /* switch power to VCC (WA for VAUX problem) */
3067 skge_write8(hw
, B0_POWER_CTRL
,
3068 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3070 /* avoid boards with stuck Hardware error bits */
3071 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3072 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3073 printk(KERN_WARNING PFX
"stuck hardware sensor bit\n");
3074 hw
->intr_mask
&= ~IS_HW_ERR
;
3077 /* Clear PHY COMA */
3078 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3079 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3080 reg
&= ~PCI_PHY_COMA
;
3081 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3082 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3085 for (i
= 0; i
< hw
->ports
; i
++) {
3086 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3087 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3091 /* turn off hardware timer (unused) */
3092 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3093 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3094 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3096 /* enable the Tx Arbiters */
3097 for (i
= 0; i
< hw
->ports
; i
++)
3098 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3100 /* Initialize ram interface */
3101 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3103 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3104 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3105 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3106 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3107 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3108 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3109 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3110 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3111 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3112 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3113 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3114 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3116 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3118 /* Set interrupt moderation for Transmit only
3119 * Receive interrupts avoided by NAPI
3121 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3122 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3123 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3125 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3127 spin_lock_bh(&hw
->phy_lock
);
3128 for (i
= 0; i
< hw
->ports
; i
++) {
3129 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3130 genesis_reset(hw
, i
);
3134 spin_unlock_bh(&hw
->phy_lock
);
3139 /* Initialize network device */
3140 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3143 struct skge_port
*skge
;
3144 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3147 printk(KERN_ERR
"skge etherdev alloc failed");
3151 SET_MODULE_OWNER(dev
);
3152 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3153 dev
->open
= skge_up
;
3154 dev
->stop
= skge_down
;
3155 dev
->do_ioctl
= skge_ioctl
;
3156 dev
->hard_start_xmit
= skge_xmit_frame
;
3157 dev
->get_stats
= skge_get_stats
;
3158 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3159 dev
->set_multicast_list
= genesis_set_multicast
;
3161 dev
->set_multicast_list
= yukon_set_multicast
;
3163 dev
->set_mac_address
= skge_set_mac_address
;
3164 dev
->change_mtu
= skge_change_mtu
;
3165 SET_ETHTOOL_OPS(dev
, &skge_ethtool_ops
);
3166 dev
->tx_timeout
= skge_tx_timeout
;
3167 dev
->watchdog_timeo
= TX_WATCHDOG
;
3168 dev
->poll
= skge_poll
;
3169 dev
->weight
= NAPI_WEIGHT
;
3170 #ifdef CONFIG_NET_POLL_CONTROLLER
3171 dev
->poll_controller
= skge_netpoll
;
3173 dev
->irq
= hw
->pdev
->irq
;
3174 dev
->features
= NETIF_F_LLTX
;
3176 dev
->features
|= NETIF_F_HIGHDMA
;
3178 skge
= netdev_priv(dev
);
3181 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3182 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3183 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3185 /* Auto speed and flow control */
3186 skge
->autoneg
= AUTONEG_ENABLE
;
3187 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
3190 skge
->advertising
= skge_supported_modes(hw
);
3192 hw
->dev
[port
] = dev
;
3196 spin_lock_init(&skge
->tx_lock
);
3198 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3199 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3203 /* read the mac address */
3204 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3205 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3207 /* device is off until link detection */
3208 netif_carrier_off(dev
);
3209 netif_stop_queue(dev
);
3214 static void __devinit
skge_show_addr(struct net_device
*dev
)
3216 const struct skge_port
*skge
= netdev_priv(dev
);
3218 if (netif_msg_probe(skge
))
3219 printk(KERN_INFO PFX
"%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3221 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
3222 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5]);
3225 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3226 const struct pci_device_id
*ent
)
3228 struct net_device
*dev
, *dev1
;
3230 int err
, using_dac
= 0;
3232 if ((err
= pci_enable_device(pdev
))) {
3233 printk(KERN_ERR PFX
"%s cannot enable PCI device\n",
3238 if ((err
= pci_request_regions(pdev
, DRV_NAME
))) {
3239 printk(KERN_ERR PFX
"%s cannot obtain PCI resources\n",
3241 goto err_out_disable_pdev
;
3244 pci_set_master(pdev
);
3246 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)))
3248 else if (!(err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
3249 printk(KERN_ERR PFX
"%s no usable DMA configuration\n",
3251 goto err_out_free_regions
;
3255 /* byte swap descriptors in hardware */
3259 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3260 reg
|= PCI_REV_DESC
;
3261 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3266 hw
= kzalloc(sizeof(*hw
), GFP_KERNEL
);
3268 printk(KERN_ERR PFX
"%s: cannot allocate hardware struct\n",
3270 goto err_out_free_regions
;
3274 spin_lock_init(&hw
->phy_lock
);
3275 tasklet_init(&hw
->ext_tasklet
, skge_extirq
, (unsigned long) hw
);
3277 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3279 printk(KERN_ERR PFX
"%s: cannot map device registers\n",
3281 goto err_out_free_hw
;
3284 if ((err
= request_irq(pdev
->irq
, skge_intr
, SA_SHIRQ
, DRV_NAME
, hw
))) {
3285 printk(KERN_ERR PFX
"%s: cannot assign irq %d\n",
3286 pci_name(pdev
), pdev
->irq
);
3287 goto err_out_iounmap
;
3289 pci_set_drvdata(pdev
, hw
);
3291 err
= skge_reset(hw
);
3293 goto err_out_free_irq
;
3295 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%lx irq %d chip %s rev %d\n",
3296 pci_resource_start(pdev
, 0), pdev
->irq
,
3297 skge_board_name(hw
), hw
->chip_rev
);
3299 if ((dev
= skge_devinit(hw
, 0, using_dac
)) == NULL
)
3300 goto err_out_led_off
;
3302 if ((err
= register_netdev(dev
))) {
3303 printk(KERN_ERR PFX
"%s: cannot register net device\n",
3305 goto err_out_free_netdev
;
3308 skge_show_addr(dev
);
3310 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
3311 if (register_netdev(dev1
) == 0)
3312 skge_show_addr(dev1
);
3314 /* Failure to register second port need not be fatal */
3315 printk(KERN_WARNING PFX
"register of second port failed\n");
3323 err_out_free_netdev
:
3326 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3328 free_irq(pdev
->irq
, hw
);
3333 err_out_free_regions
:
3334 pci_release_regions(pdev
);
3335 err_out_disable_pdev
:
3336 pci_disable_device(pdev
);
3337 pci_set_drvdata(pdev
, NULL
);
3342 static void __devexit
skge_remove(struct pci_dev
*pdev
)
3344 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3345 struct net_device
*dev0
, *dev1
;
3350 if ((dev1
= hw
->dev
[1]))
3351 unregister_netdev(dev1
);
3353 unregister_netdev(dev0
);
3355 skge_write32(hw
, B0_IMSK
, 0);
3356 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3358 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3360 tasklet_kill(&hw
->ext_tasklet
);
3362 free_irq(pdev
->irq
, hw
);
3363 pci_release_regions(pdev
);
3364 pci_disable_device(pdev
);
3371 pci_set_drvdata(pdev
, NULL
);
3375 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3377 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3380 for (i
= 0; i
< 2; i
++) {
3381 struct net_device
*dev
= hw
->dev
[i
];
3384 struct skge_port
*skge
= netdev_priv(dev
);
3385 if (netif_running(dev
)) {
3386 netif_carrier_off(dev
);
3388 netif_stop_queue(dev
);
3392 netif_device_detach(dev
);
3397 pci_save_state(pdev
);
3398 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), wol
);
3399 pci_disable_device(pdev
);
3400 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3405 static int skge_resume(struct pci_dev
*pdev
)
3407 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3410 pci_set_power_state(pdev
, PCI_D0
);
3411 pci_restore_state(pdev
);
3412 pci_enable_wake(pdev
, PCI_D0
, 0);
3416 for (i
= 0; i
< 2; i
++) {
3417 struct net_device
*dev
= hw
->dev
[i
];
3419 netif_device_attach(dev
);
3420 if (netif_running(dev
) && skge_up(dev
))
3428 static struct pci_driver skge_driver
= {
3430 .id_table
= skge_id_table
,
3431 .probe
= skge_probe
,
3432 .remove
= __devexit_p(skge_remove
),
3434 .suspend
= skge_suspend
,
3435 .resume
= skge_resume
,
3439 static int __init
skge_init_module(void)
3441 return pci_module_init(&skge_driver
);
3444 static void __exit
skge_cleanup_module(void)
3446 pci_unregister_driver(&skge_driver
);
3449 module_init(skge_init_module
);
3450 module_exit(skge_cleanup_module
);