2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
19 * Gianfar: AKA Lambda Draconis, "Dragon"
27 * The driver is initialized through platform_device. Structures which
28 * define the configuration needed by the board are defined in a
29 * board structure in arch/ppc/platforms (though I do not
30 * discount the possibility that other architectures could one
33 * The Gianfar Ethernet Controller uses a ring of buffer
34 * descriptors. The beginning is indicated by a register
35 * pointing to the physical address of the start of the ring.
36 * The end is determined by a "wrap" bit being set in the
37 * last descriptor of the ring.
39 * When a packet is received, the RXF bit in the
40 * IEVENT register is set, triggering an interrupt when the
41 * corresponding bit in the IMASK register is also set (if
42 * interrupt coalescing is active, then the interrupt may not
43 * happen immediately, but will wait until either a set number
44 * of frames or amount of time have passed). In NAPI, the
45 * interrupt handler will signal there is work to be done, and
46 * exit. Without NAPI, the packet(s) will be handled
47 * immediately. Both methods will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
83 #include <linux/platform_device.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
99 #include "gianfar_mii.h"
101 #define TX_TIMEOUT (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
109 #define RECEIVE(x) netif_rx(x)
112 const char gfar_driver_name
[] = "Gianfar Ethernet";
113 const char gfar_driver_version
[] = "1.3";
115 static int gfar_enet_open(struct net_device
*dev
);
116 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
117 static void gfar_timeout(struct net_device
*dev
);
118 static int gfar_close(struct net_device
*dev
);
119 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
120 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
);
121 static int gfar_set_mac_address(struct net_device
*dev
);
122 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
123 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
);
124 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
);
125 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
126 static void adjust_link(struct net_device
*dev
);
127 static void init_registers(struct net_device
*dev
);
128 static int init_phy(struct net_device
*dev
);
129 static int gfar_probe(struct platform_device
*pdev
);
130 static int gfar_remove(struct platform_device
*pdev
);
131 static void free_skb_resources(struct gfar_private
*priv
);
132 static void gfar_set_multi(struct net_device
*dev
);
133 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct net_device
*dev
, int *budget
);
137 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
138 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
139 static void gfar_vlan_rx_register(struct net_device
*netdev
,
140 struct vlan_group
*grp
);
141 static void gfar_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
142 void gfar_halt(struct net_device
*dev
);
143 void gfar_start(struct net_device
*dev
);
144 static void gfar_clear_exact_match(struct net_device
*dev
);
145 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
147 extern struct ethtool_ops gfar_ethtool_ops
;
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
153 /* Returns 1 if incoming frames use an FCB */
154 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
156 return (priv
->vlan_enable
|| priv
->rx_csum_enable
);
159 /* Set up the ethernet device structure, private data,
160 * and anything else we need before we start */
161 static int gfar_probe(struct platform_device
*pdev
)
164 struct net_device
*dev
= NULL
;
165 struct gfar_private
*priv
= NULL
;
166 struct gianfar_platform_data
*einfo
;
171 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
174 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
180 /* Create an ethernet device instance */
181 dev
= alloc_etherdev(sizeof (*priv
));
186 priv
= netdev_priv(dev
);
188 /* Set the info in the priv to the current info */
191 /* fill out IRQ fields */
192 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
193 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
194 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
195 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
197 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
200 /* get a pointer to the register memory */
201 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
202 priv
->regs
= (struct gfar
*)
203 ioremap(r
->start
, sizeof (struct gfar
));
205 if (NULL
== priv
->regs
) {
210 spin_lock_init(&priv
->lock
);
212 platform_set_drvdata(pdev
, dev
);
214 /* Stop the DMA engine now, in case it was running before */
215 /* (The firmware could have used it, and left it running). */
216 /* To do this, we write Graceful Receive Stop and Graceful */
217 /* Transmit Stop, and then wait until the corresponding bits */
218 /* in IEVENT indicate the stops have completed. */
219 tempval
= gfar_read(&priv
->regs
->dmactrl
);
220 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
221 gfar_write(&priv
->regs
->dmactrl
, tempval
);
223 tempval
= gfar_read(&priv
->regs
->dmactrl
);
224 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
225 gfar_write(&priv
->regs
->dmactrl
, tempval
);
227 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
230 /* Reset MAC layer */
231 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
233 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
234 gfar_write(&priv
->regs
->maccfg1
, tempval
);
236 /* Initialize MACCFG2. */
237 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
239 /* Initialize ECNTRL */
240 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
242 /* Copy the station address into the dev structure, */
243 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
245 /* Set the dev->base_addr to the gfar reg region */
246 dev
->base_addr
= (unsigned long) (priv
->regs
);
248 SET_MODULE_OWNER(dev
);
249 SET_NETDEV_DEV(dev
, &pdev
->dev
);
251 /* Fill in the dev structure */
252 dev
->open
= gfar_enet_open
;
253 dev
->hard_start_xmit
= gfar_start_xmit
;
254 dev
->tx_timeout
= gfar_timeout
;
255 dev
->watchdog_timeo
= TX_TIMEOUT
;
256 #ifdef CONFIG_GFAR_NAPI
257 dev
->poll
= gfar_poll
;
258 dev
->weight
= GFAR_DEV_WEIGHT
;
260 dev
->stop
= gfar_close
;
261 dev
->get_stats
= gfar_get_stats
;
262 dev
->change_mtu
= gfar_change_mtu
;
264 dev
->set_multicast_list
= gfar_set_multi
;
266 dev
->ethtool_ops
= &gfar_ethtool_ops
;
268 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
269 priv
->rx_csum_enable
= 1;
270 dev
->features
|= NETIF_F_IP_CSUM
;
272 priv
->rx_csum_enable
= 0;
276 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
277 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
278 dev
->vlan_rx_kill_vid
= gfar_vlan_rx_kill_vid
;
280 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
282 priv
->vlan_enable
= 1;
285 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
286 priv
->extended_hash
= 1;
287 priv
->hash_width
= 9;
289 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
290 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
291 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
292 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
293 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
294 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
295 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
296 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
297 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
298 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
299 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
300 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
301 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
302 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
303 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
304 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
307 priv
->extended_hash
= 0;
308 priv
->hash_width
= 8;
310 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
311 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
312 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
313 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
314 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
315 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
316 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
317 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
320 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
321 priv
->padding
= DEFAULT_PADDING
;
325 if (dev
->features
& NETIF_F_IP_CSUM
)
326 dev
->hard_header_len
+= GMAC_FCB_LEN
;
328 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
329 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
330 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
332 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
333 priv
->txcount
= DEFAULT_TXCOUNT
;
334 priv
->txtime
= DEFAULT_TXTIME
;
335 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
336 priv
->rxcount
= DEFAULT_RXCOUNT
;
337 priv
->rxtime
= DEFAULT_RXTIME
;
339 /* Enable most messages by default */
340 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
342 err
= register_netdev(dev
);
345 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
350 /* Create all the sysfs files */
351 gfar_init_sysfs(dev
);
353 /* Print out the device info */
354 printk(KERN_INFO DEVICE_NAME
, dev
->name
);
355 for (idx
= 0; idx
< 6; idx
++)
356 printk("%2.2x%c", dev
->dev_addr
[idx
], idx
== 5 ? ' ' : ':');
359 /* Even more device info helps when determining which kernel */
360 /* provided which set of benchmarks. */
361 #ifdef CONFIG_GFAR_NAPI
362 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
364 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
366 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
367 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
372 iounmap((void *) priv
->regs
);
378 static int gfar_remove(struct platform_device
*pdev
)
380 struct net_device
*dev
= platform_get_drvdata(pdev
);
381 struct gfar_private
*priv
= netdev_priv(dev
);
383 platform_set_drvdata(pdev
, NULL
);
385 iounmap((void *) priv
->regs
);
392 /* Initializes driver's PHY state, and attaches to the PHY.
393 * Returns 0 on success.
395 static int init_phy(struct net_device
*dev
)
397 struct gfar_private
*priv
= netdev_priv(dev
);
398 uint gigabit_support
=
399 priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
400 SUPPORTED_1000baseT_Full
: 0;
401 struct phy_device
*phydev
;
402 char phy_id
[BUS_ID_SIZE
];
406 priv
->oldduplex
= -1;
408 snprintf(phy_id
, BUS_ID_SIZE
, PHY_ID_FMT
, priv
->einfo
->bus_id
, priv
->einfo
->phy_id
);
410 phydev
= phy_connect(dev
, phy_id
, &adjust_link
, 0);
412 if (IS_ERR(phydev
)) {
413 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
414 return PTR_ERR(phydev
);
417 /* Remove any features not supported by the controller */
418 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
419 phydev
->advertising
= phydev
->supported
;
421 priv
->phydev
= phydev
;
426 static void init_registers(struct net_device
*dev
)
428 struct gfar_private
*priv
= netdev_priv(dev
);
431 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
433 /* Initialize IMASK */
434 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
436 /* Init hash registers to zero */
437 gfar_write(&priv
->regs
->igaddr0
, 0);
438 gfar_write(&priv
->regs
->igaddr1
, 0);
439 gfar_write(&priv
->regs
->igaddr2
, 0);
440 gfar_write(&priv
->regs
->igaddr3
, 0);
441 gfar_write(&priv
->regs
->igaddr4
, 0);
442 gfar_write(&priv
->regs
->igaddr5
, 0);
443 gfar_write(&priv
->regs
->igaddr6
, 0);
444 gfar_write(&priv
->regs
->igaddr7
, 0);
446 gfar_write(&priv
->regs
->gaddr0
, 0);
447 gfar_write(&priv
->regs
->gaddr1
, 0);
448 gfar_write(&priv
->regs
->gaddr2
, 0);
449 gfar_write(&priv
->regs
->gaddr3
, 0);
450 gfar_write(&priv
->regs
->gaddr4
, 0);
451 gfar_write(&priv
->regs
->gaddr5
, 0);
452 gfar_write(&priv
->regs
->gaddr6
, 0);
453 gfar_write(&priv
->regs
->gaddr7
, 0);
455 /* Zero out the rmon mib registers if it has them */
456 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
457 memset((void *) &(priv
->regs
->rmon
), 0,
458 sizeof (struct rmon_mib
));
460 /* Mask off the CAM interrupts */
461 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
462 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
465 /* Initialize the max receive buffer length */
466 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
468 /* Initialize the Minimum Frame Length Register */
469 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
471 /* Assign the TBI an address which won't conflict with the PHYs */
472 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
476 /* Halt the receive and transmit queues */
477 void gfar_halt(struct net_device
*dev
)
479 struct gfar_private
*priv
= netdev_priv(dev
);
480 struct gfar
*regs
= priv
->regs
;
483 /* Mask all interrupts */
484 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
486 /* Clear all interrupts */
487 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
489 /* Stop the DMA, and wait for it to stop */
490 tempval
= gfar_read(&priv
->regs
->dmactrl
);
491 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
492 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
493 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
494 gfar_write(&priv
->regs
->dmactrl
, tempval
);
496 while (!(gfar_read(&priv
->regs
->ievent
) &
497 (IEVENT_GRSC
| IEVENT_GTSC
)))
501 /* Disable Rx and Tx */
502 tempval
= gfar_read(®s
->maccfg1
);
503 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
504 gfar_write(®s
->maccfg1
, tempval
);
507 void stop_gfar(struct net_device
*dev
)
509 struct gfar_private
*priv
= netdev_priv(dev
);
510 struct gfar
*regs
= priv
->regs
;
513 phy_stop(priv
->phydev
);
516 spin_lock_irqsave(&priv
->lock
, flags
);
520 spin_unlock_irqrestore(&priv
->lock
, flags
);
523 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
524 free_irq(priv
->interruptError
, dev
);
525 free_irq(priv
->interruptTransmit
, dev
);
526 free_irq(priv
->interruptReceive
, dev
);
528 free_irq(priv
->interruptTransmit
, dev
);
531 free_skb_resources(priv
);
533 dma_free_coherent(NULL
,
534 sizeof(struct txbd8
)*priv
->tx_ring_size
535 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
537 gfar_read(®s
->tbase0
));
540 /* If there are any tx skbs or rx skbs still around, free them.
541 * Then free tx_skbuff and rx_skbuff */
542 static void free_skb_resources(struct gfar_private
*priv
)
548 /* Go through all the buffer descriptors and free their data buffers */
549 txbdp
= priv
->tx_bd_base
;
551 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
553 if (priv
->tx_skbuff
[i
]) {
554 dma_unmap_single(NULL
, txbdp
->bufPtr
,
557 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
558 priv
->tx_skbuff
[i
] = NULL
;
562 kfree(priv
->tx_skbuff
);
564 rxbdp
= priv
->rx_bd_base
;
566 /* rx_skbuff is not guaranteed to be allocated, so only
567 * free it and its contents if it is allocated */
568 if(priv
->rx_skbuff
!= NULL
) {
569 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
570 if (priv
->rx_skbuff
[i
]) {
571 dma_unmap_single(NULL
, rxbdp
->bufPtr
,
572 priv
->rx_buffer_size
,
575 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
576 priv
->rx_skbuff
[i
] = NULL
;
586 kfree(priv
->rx_skbuff
);
590 void gfar_start(struct net_device
*dev
)
592 struct gfar_private
*priv
= netdev_priv(dev
);
593 struct gfar
*regs
= priv
->regs
;
596 /* Enable Rx and Tx in MACCFG1 */
597 tempval
= gfar_read(®s
->maccfg1
);
598 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
599 gfar_write(®s
->maccfg1
, tempval
);
601 /* Initialize DMACTRL to have WWR and WOP */
602 tempval
= gfar_read(&priv
->regs
->dmactrl
);
603 tempval
|= DMACTRL_INIT_SETTINGS
;
604 gfar_write(&priv
->regs
->dmactrl
, tempval
);
606 /* Clear THLT, so that the DMA starts polling now */
607 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
609 /* Make sure we aren't stopped */
610 tempval
= gfar_read(&priv
->regs
->dmactrl
);
611 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
612 gfar_write(&priv
->regs
->dmactrl
, tempval
);
614 /* Unmask the interrupts we look for */
615 gfar_write(®s
->imask
, IMASK_DEFAULT
);
618 /* Bring the controller up and running */
619 int startup_gfar(struct net_device
*dev
)
626 struct gfar_private
*priv
= netdev_priv(dev
);
627 struct gfar
*regs
= priv
->regs
;
632 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
634 /* Allocate memory for the buffer descriptors */
635 vaddr
= (unsigned long) dma_alloc_coherent(NULL
,
636 sizeof (struct txbd8
) * priv
->tx_ring_size
+
637 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
641 if (netif_msg_ifup(priv
))
642 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
647 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
649 /* enet DMA only understands physical addresses */
650 gfar_write(®s
->tbase0
, addr
);
652 /* Start the rx descriptor ring where the tx ring leaves off */
653 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
654 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
655 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
656 gfar_write(®s
->rbase0
, addr
);
658 /* Setup the skbuff rings */
660 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
661 priv
->tx_ring_size
, GFP_KERNEL
);
663 if (NULL
== priv
->tx_skbuff
) {
664 if (netif_msg_ifup(priv
))
665 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
671 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
672 priv
->tx_skbuff
[i
] = NULL
;
675 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
676 priv
->rx_ring_size
, GFP_KERNEL
);
678 if (NULL
== priv
->rx_skbuff
) {
679 if (netif_msg_ifup(priv
))
680 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
686 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
687 priv
->rx_skbuff
[i
] = NULL
;
689 /* Initialize some variables in our dev structure */
690 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
691 priv
->cur_rx
= priv
->rx_bd_base
;
692 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
695 /* Initialize Transmit Descriptor Ring */
696 txbdp
= priv
->tx_bd_base
;
697 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
704 /* Set the last descriptor in the ring to indicate wrap */
706 txbdp
->status
|= TXBD_WRAP
;
708 rxbdp
= priv
->rx_bd_base
;
709 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
710 struct sk_buff
*skb
= NULL
;
714 skb
= gfar_new_skb(dev
, rxbdp
);
716 priv
->rx_skbuff
[i
] = skb
;
721 /* Set the last descriptor in the ring to wrap */
723 rxbdp
->status
|= RXBD_WRAP
;
725 /* If the device has multiple interrupts, register for
726 * them. Otherwise, only register for the one */
727 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
728 /* Install our interrupt handlers for Error,
729 * Transmit, and Receive */
730 if (request_irq(priv
->interruptError
, gfar_error
,
731 0, "enet_error", dev
) < 0) {
732 if (netif_msg_intr(priv
))
733 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
734 dev
->name
, priv
->interruptError
);
740 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
741 0, "enet_tx", dev
) < 0) {
742 if (netif_msg_intr(priv
))
743 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
744 dev
->name
, priv
->interruptTransmit
);
751 if (request_irq(priv
->interruptReceive
, gfar_receive
,
752 0, "enet_rx", dev
) < 0) {
753 if (netif_msg_intr(priv
))
754 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
755 dev
->name
, priv
->interruptReceive
);
761 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
762 0, "gfar_interrupt", dev
) < 0) {
763 if (netif_msg_intr(priv
))
764 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
765 dev
->name
, priv
->interruptError
);
772 phy_start(priv
->phydev
);
774 /* Configure the coalescing support */
775 if (priv
->txcoalescing
)
776 gfar_write(®s
->txic
,
777 mk_ic_value(priv
->txcount
, priv
->txtime
));
779 gfar_write(®s
->txic
, 0);
781 if (priv
->rxcoalescing
)
782 gfar_write(®s
->rxic
,
783 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
785 gfar_write(®s
->rxic
, 0);
787 if (priv
->rx_csum_enable
)
788 rctrl
|= RCTRL_CHECKSUMMING
;
790 if (priv
->extended_hash
) {
791 rctrl
|= RCTRL_EXTHASH
;
793 gfar_clear_exact_match(dev
);
797 if (priv
->vlan_enable
)
801 rctrl
&= ~RCTRL_PAL_MASK
;
802 rctrl
|= RCTRL_PADDING(priv
->padding
);
805 /* Init rctrl based on our settings */
806 gfar_write(&priv
->regs
->rctrl
, rctrl
);
808 if (dev
->features
& NETIF_F_IP_CSUM
)
809 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
811 /* Set the extraction length and index */
812 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
813 ATTRELI_EI(priv
->rx_stash_index
);
815 gfar_write(&priv
->regs
->attreli
, attrs
);
817 /* Start with defaults, and add stashing or locking
818 * depending on the approprate variables */
819 attrs
= ATTR_INIT_SETTINGS
;
821 if (priv
->bd_stash_en
)
822 attrs
|= ATTR_BDSTASH
;
824 if (priv
->rx_stash_size
!= 0)
825 attrs
|= ATTR_BUFSTASH
;
827 gfar_write(&priv
->regs
->attr
, attrs
);
829 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
830 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
831 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
833 /* Start the controller */
839 free_irq(priv
->interruptTransmit
, dev
);
841 free_irq(priv
->interruptError
, dev
);
844 free_skb_resources(priv
);
846 dma_free_coherent(NULL
,
847 sizeof(struct txbd8
)*priv
->tx_ring_size
848 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
850 gfar_read(®s
->tbase0
));
855 /* Called when something needs to use the ethernet device */
856 /* Returns 0 for success. */
857 static int gfar_enet_open(struct net_device
*dev
)
861 /* Initialize a bunch of registers */
864 gfar_set_mac_address(dev
);
871 err
= startup_gfar(dev
);
873 netif_start_queue(dev
);
878 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
880 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
882 memset(fcb
, 0, GMAC_FCB_LEN
);
887 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
891 /* If we're here, it's a IP packet with a TCP or UDP
892 * payload. We set it to checksum, using a pseudo-header
895 flags
= TXFCB_DEFAULT
;
897 /* Tell the controller what the protocol is */
898 /* And provide the already calculated phcs */
899 if (skb
->nh
.iph
->protocol
== IPPROTO_UDP
) {
901 fcb
->phcs
= skb
->h
.uh
->check
;
903 fcb
->phcs
= skb
->h
.th
->check
;
905 /* l3os is the distance between the start of the
906 * frame (skb->data) and the start of the IP hdr.
907 * l4os is the distance between the start of the
908 * l3 hdr and the l4 hdr */
909 fcb
->l3os
= (u16
)(skb
->nh
.raw
- skb
->data
- GMAC_FCB_LEN
);
910 fcb
->l4os
= (u16
)(skb
->h
.raw
- skb
->nh
.raw
);
915 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
917 fcb
->flags
|= TXFCB_VLN
;
918 fcb
->vlctl
= vlan_tx_tag_get(skb
);
921 /* This is called by the kernel when a frame is ready for transmission. */
922 /* It is pointed to by the dev->hard_start_xmit function pointer */
923 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
925 struct gfar_private
*priv
= netdev_priv(dev
);
926 struct txfcb
*fcb
= NULL
;
930 /* Update transmit stats */
931 priv
->stats
.tx_bytes
+= skb
->len
;
934 spin_lock_irq(&priv
->lock
);
936 /* Point at the first free tx descriptor */
937 txbdp
= priv
->cur_tx
;
939 /* Clear all but the WRAP status flags */
940 status
= txbdp
->status
& TXBD_WRAP
;
942 /* Set up checksumming */
943 if (likely((dev
->features
& NETIF_F_IP_CSUM
)
944 && (CHECKSUM_HW
== skb
->ip_summed
))) {
945 fcb
= gfar_add_fcb(skb
, txbdp
);
947 gfar_tx_checksum(skb
, fcb
);
950 if (priv
->vlan_enable
&&
951 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
952 if (unlikely(NULL
== fcb
)) {
953 fcb
= gfar_add_fcb(skb
, txbdp
);
957 gfar_tx_vlan(skb
, fcb
);
960 /* Set buffer length and pointer */
961 txbdp
->length
= skb
->len
;
962 txbdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
963 skb
->len
, DMA_TO_DEVICE
);
965 /* Save the skb pointer so we can free it later */
966 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
968 /* Update the current skb pointer (wrapping if this was the last) */
970 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
972 /* Flag the BD as interrupt-causing */
973 status
|= TXBD_INTERRUPT
;
975 /* Flag the BD as ready to go, last in frame, and */
977 status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
979 dev
->trans_start
= jiffies
;
981 txbdp
->status
= status
;
983 /* If this was the last BD in the ring, the next one */
984 /* is at the beginning of the ring */
985 if (txbdp
->status
& TXBD_WRAP
)
986 txbdp
= priv
->tx_bd_base
;
990 /* If the next BD still needs to be cleaned up, then the bds
991 are full. We need to tell the kernel to stop sending us stuff. */
992 if (txbdp
== priv
->dirty_tx
) {
993 netif_stop_queue(dev
);
995 priv
->stats
.tx_fifo_errors
++;
998 /* Update the current txbd to the next one */
999 priv
->cur_tx
= txbdp
;
1001 /* Tell the DMA to go go go */
1002 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1005 spin_unlock_irq(&priv
->lock
);
1010 /* Stops the kernel queue, and halts the controller */
1011 static int gfar_close(struct net_device
*dev
)
1013 struct gfar_private
*priv
= netdev_priv(dev
);
1016 /* Disconnect from the PHY */
1017 phy_disconnect(priv
->phydev
);
1018 priv
->phydev
= NULL
;
1020 netif_stop_queue(dev
);
1025 /* returns a net_device_stats structure pointer */
1026 static struct net_device_stats
* gfar_get_stats(struct net_device
*dev
)
1028 struct gfar_private
*priv
= netdev_priv(dev
);
1030 return &(priv
->stats
);
1033 /* Changes the mac address if the controller is not running. */
1034 int gfar_set_mac_address(struct net_device
*dev
)
1036 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1042 /* Enables and disables VLAN insertion/extraction */
1043 static void gfar_vlan_rx_register(struct net_device
*dev
,
1044 struct vlan_group
*grp
)
1046 struct gfar_private
*priv
= netdev_priv(dev
);
1047 unsigned long flags
;
1050 spin_lock_irqsave(&priv
->lock
, flags
);
1055 /* Enable VLAN tag insertion */
1056 tempval
= gfar_read(&priv
->regs
->tctrl
);
1057 tempval
|= TCTRL_VLINS
;
1059 gfar_write(&priv
->regs
->tctrl
, tempval
);
1061 /* Enable VLAN tag extraction */
1062 tempval
= gfar_read(&priv
->regs
->rctrl
);
1063 tempval
|= RCTRL_VLEX
;
1064 gfar_write(&priv
->regs
->rctrl
, tempval
);
1066 /* Disable VLAN tag insertion */
1067 tempval
= gfar_read(&priv
->regs
->tctrl
);
1068 tempval
&= ~TCTRL_VLINS
;
1069 gfar_write(&priv
->regs
->tctrl
, tempval
);
1071 /* Disable VLAN tag extraction */
1072 tempval
= gfar_read(&priv
->regs
->rctrl
);
1073 tempval
&= ~RCTRL_VLEX
;
1074 gfar_write(&priv
->regs
->rctrl
, tempval
);
1077 spin_unlock_irqrestore(&priv
->lock
, flags
);
1081 static void gfar_vlan_rx_kill_vid(struct net_device
*dev
, uint16_t vid
)
1083 struct gfar_private
*priv
= netdev_priv(dev
);
1084 unsigned long flags
;
1086 spin_lock_irqsave(&priv
->lock
, flags
);
1089 priv
->vlgrp
->vlan_devices
[vid
] = NULL
;
1091 spin_unlock_irqrestore(&priv
->lock
, flags
);
1095 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1097 int tempsize
, tempval
;
1098 struct gfar_private
*priv
= netdev_priv(dev
);
1099 int oldsize
= priv
->rx_buffer_size
;
1100 int frame_size
= new_mtu
+ ETH_HLEN
;
1102 if (priv
->vlan_enable
)
1103 frame_size
+= VLAN_ETH_HLEN
;
1105 if (gfar_uses_fcb(priv
))
1106 frame_size
+= GMAC_FCB_LEN
;
1108 frame_size
+= priv
->padding
;
1110 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1111 if (netif_msg_drv(priv
))
1112 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1118 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1119 INCREMENTAL_BUFFER_SIZE
;
1121 /* Only stop and start the controller if it isn't already
1122 * stopped, and we changed something */
1123 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1126 priv
->rx_buffer_size
= tempsize
;
1130 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1131 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1133 /* If the mtu is larger than the max size for standard
1134 * ethernet frames (ie, a jumbo frame), then set maccfg2
1135 * to allow huge frames, and to check the length */
1136 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1138 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1139 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1141 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1143 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1145 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1151 /* gfar_timeout gets called when a packet has not been
1152 * transmitted after a set amount of time.
1153 * For now, assume that clearing out all the structures, and
1154 * starting over will fix the problem. */
1155 static void gfar_timeout(struct net_device
*dev
)
1157 struct gfar_private
*priv
= netdev_priv(dev
);
1159 priv
->stats
.tx_errors
++;
1161 if (dev
->flags
& IFF_UP
) {
1166 netif_schedule(dev
);
1169 /* Interrupt Handler for Transmit complete */
1170 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
)
1172 struct net_device
*dev
= (struct net_device
*) dev_id
;
1173 struct gfar_private
*priv
= netdev_priv(dev
);
1177 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1180 spin_lock(&priv
->lock
);
1181 bdp
= priv
->dirty_tx
;
1182 while ((bdp
->status
& TXBD_READY
) == 0) {
1183 /* If dirty_tx and cur_tx are the same, then either the */
1184 /* ring is empty or full now (it could only be full in the beginning, */
1185 /* obviously). If it is empty, we are done. */
1186 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1189 priv
->stats
.tx_packets
++;
1191 /* Deferred means some collisions occurred during transmit, */
1192 /* but we eventually sent the packet. */
1193 if (bdp
->status
& TXBD_DEF
)
1194 priv
->stats
.collisions
++;
1196 /* Free the sk buffer associated with this TxBD */
1197 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1198 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1200 (priv
->skb_dirtytx
+
1201 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1203 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1204 if (bdp
->status
& TXBD_WRAP
)
1205 bdp
= priv
->tx_bd_base
;
1209 /* Move dirty_tx to be the next bd */
1210 priv
->dirty_tx
= bdp
;
1212 /* We freed a buffer, so now we can restart transmission */
1213 if (netif_queue_stopped(dev
))
1214 netif_wake_queue(dev
);
1215 } /* while ((bdp->status & TXBD_READY) == 0) */
1217 /* If we are coalescing the interrupts, reset the timer */
1218 /* Otherwise, clear it */
1219 if (priv
->txcoalescing
)
1220 gfar_write(&priv
->regs
->txic
,
1221 mk_ic_value(priv
->txcount
, priv
->txtime
));
1223 gfar_write(&priv
->regs
->txic
, 0);
1225 spin_unlock(&priv
->lock
);
1230 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1232 unsigned int alignamount
;
1233 struct gfar_private
*priv
= netdev_priv(dev
);
1234 struct sk_buff
*skb
= NULL
;
1235 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1237 /* We have to allocate the skb, so keep trying till we succeed */
1238 while ((!skb
) && timeout
--)
1239 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1244 alignamount
= RXBUF_ALIGNMENT
-
1245 (((unsigned) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1247 /* We need the data buffer to be aligned properly. We will reserve
1248 * as many bytes as needed to align the data properly
1250 skb_reserve(skb
, alignamount
);
1254 bdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1255 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1259 /* Mark the buffer empty */
1260 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1265 static inline void count_errors(unsigned short status
, struct gfar_private
*priv
)
1267 struct net_device_stats
*stats
= &priv
->stats
;
1268 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1270 /* If the packet was truncated, none of the other errors
1272 if (status
& RXBD_TRUNCATED
) {
1273 stats
->rx_length_errors
++;
1279 /* Count the errors, if there were any */
1280 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1281 stats
->rx_length_errors
++;
1283 if (status
& RXBD_LARGE
)
1288 if (status
& RXBD_NONOCTET
) {
1289 stats
->rx_frame_errors
++;
1290 estats
->rx_nonoctet
++;
1292 if (status
& RXBD_CRCERR
) {
1293 estats
->rx_crcerr
++;
1294 stats
->rx_crc_errors
++;
1296 if (status
& RXBD_OVERRUN
) {
1297 estats
->rx_overrun
++;
1298 stats
->rx_crc_errors
++;
1302 irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
)
1304 struct net_device
*dev
= (struct net_device
*) dev_id
;
1305 struct gfar_private
*priv
= netdev_priv(dev
);
1307 #ifdef CONFIG_GFAR_NAPI
1311 /* Clear IEVENT, so rx interrupt isn't called again
1312 * because of this interrupt */
1313 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1316 #ifdef CONFIG_GFAR_NAPI
1317 if (netif_rx_schedule_prep(dev
)) {
1318 tempval
= gfar_read(&priv
->regs
->imask
);
1319 tempval
&= IMASK_RX_DISABLED
;
1320 gfar_write(&priv
->regs
->imask
, tempval
);
1322 __netif_rx_schedule(dev
);
1324 if (netif_msg_rx_err(priv
))
1325 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1326 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1327 gfar_read(&priv
->regs
->imask
));
1331 spin_lock(&priv
->lock
);
1332 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1334 /* If we are coalescing interrupts, update the timer */
1335 /* Otherwise, clear it */
1336 if (priv
->rxcoalescing
)
1337 gfar_write(&priv
->regs
->rxic
,
1338 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1340 gfar_write(&priv
->regs
->rxic
, 0);
1342 spin_unlock(&priv
->lock
);
1348 static inline int gfar_rx_vlan(struct sk_buff
*skb
,
1349 struct vlan_group
*vlgrp
, unsigned short vlctl
)
1351 #ifdef CONFIG_GFAR_NAPI
1352 return vlan_hwaccel_receive_skb(skb
, vlgrp
, vlctl
);
1354 return vlan_hwaccel_rx(skb
, vlgrp
, vlctl
);
1358 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1360 /* If valid headers were found, and valid sums
1361 * were verified, then we tell the kernel that no
1362 * checksumming is necessary. Otherwise, it is */
1363 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1364 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1366 skb
->ip_summed
= CHECKSUM_NONE
;
1370 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1372 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1374 /* Remove the FCB from the skb */
1375 skb_pull(skb
, GMAC_FCB_LEN
);
1380 /* gfar_process_frame() -- handle one incoming packet if skb
1382 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1385 struct gfar_private
*priv
= netdev_priv(dev
);
1386 struct rxfcb
*fcb
= NULL
;
1389 if (netif_msg_rx_err(priv
))
1390 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1391 priv
->stats
.rx_dropped
++;
1392 priv
->extra_stats
.rx_skbmissing
++;
1396 /* Prep the skb for the packet */
1397 skb_put(skb
, length
);
1399 /* Grab the FCB if there is one */
1400 if (gfar_uses_fcb(priv
))
1401 fcb
= gfar_get_fcb(skb
);
1403 /* Remove the padded bytes, if there are any */
1405 skb_pull(skb
, priv
->padding
);
1407 if (priv
->rx_csum_enable
)
1408 gfar_rx_checksum(skb
, fcb
);
1410 /* Tell the skb what kind of packet this is */
1411 skb
->protocol
= eth_type_trans(skb
, dev
);
1413 /* Send the packet up the stack */
1414 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
1415 ret
= gfar_rx_vlan(skb
, priv
->vlgrp
, fcb
->vlctl
);
1419 if (NET_RX_DROP
== ret
)
1420 priv
->extra_stats
.kernel_dropped
++;
1426 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1427 * until the budget/quota has been reached. Returns the number
1430 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1433 struct sk_buff
*skb
;
1436 struct gfar_private
*priv
= netdev_priv(dev
);
1438 /* Get the first full descriptor */
1441 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1442 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1445 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1446 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1447 /* Increment the number of packets */
1448 priv
->stats
.rx_packets
++;
1451 /* Remove the FCS from the packet length */
1452 pkt_len
= bdp
->length
- 4;
1454 gfar_process_frame(dev
, skb
, pkt_len
);
1456 priv
->stats
.rx_bytes
+= pkt_len
;
1458 count_errors(bdp
->status
, priv
);
1461 dev_kfree_skb_any(skb
);
1463 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1466 dev
->last_rx
= jiffies
;
1468 /* Clear the status flags for this buffer */
1469 bdp
->status
&= ~RXBD_STATS
;
1471 /* Add another skb for the future */
1472 skb
= gfar_new_skb(dev
, bdp
);
1473 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1475 /* Update to the next pointer */
1476 if (bdp
->status
& RXBD_WRAP
)
1477 bdp
= priv
->rx_bd_base
;
1481 /* update to point at the next skb */
1484 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1488 /* Update the current rxbd pointer to be the next one */
1491 /* If no packets have arrived since the
1492 * last one we processed, clear the IEVENT RX and
1493 * BSY bits so that another interrupt won't be
1494 * generated when we set IMASK */
1495 if (bdp
->status
& RXBD_EMPTY
)
1496 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1501 #ifdef CONFIG_GFAR_NAPI
1502 static int gfar_poll(struct net_device
*dev
, int *budget
)
1505 struct gfar_private
*priv
= netdev_priv(dev
);
1506 int rx_work_limit
= *budget
;
1508 if (rx_work_limit
> dev
->quota
)
1509 rx_work_limit
= dev
->quota
;
1511 howmany
= gfar_clean_rx_ring(dev
, rx_work_limit
);
1513 dev
->quota
-= howmany
;
1514 rx_work_limit
-= howmany
;
1517 if (rx_work_limit
>= 0) {
1518 netif_rx_complete(dev
);
1520 /* Clear the halt bit in RSTAT */
1521 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1523 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1525 /* If we are coalescing interrupts, update the timer */
1526 /* Otherwise, clear it */
1527 if (priv
->rxcoalescing
)
1528 gfar_write(&priv
->regs
->rxic
,
1529 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1531 gfar_write(&priv
->regs
->rxic
, 0);
1534 return (rx_work_limit
< 0) ? 1 : 0;
1538 /* The interrupt handler for devices with one interrupt */
1539 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1541 struct net_device
*dev
= dev_id
;
1542 struct gfar_private
*priv
= netdev_priv(dev
);
1544 /* Save ievent for future reference */
1545 u32 events
= gfar_read(&priv
->regs
->ievent
);
1548 gfar_write(&priv
->regs
->ievent
, events
);
1550 /* Check for reception */
1551 if ((events
& IEVENT_RXF0
) || (events
& IEVENT_RXB0
))
1552 gfar_receive(irq
, dev_id
, regs
);
1554 /* Check for transmit completion */
1555 if ((events
& IEVENT_TXF
) || (events
& IEVENT_TXB
))
1556 gfar_transmit(irq
, dev_id
, regs
);
1558 /* Update error statistics */
1559 if (events
& IEVENT_TXE
) {
1560 priv
->stats
.tx_errors
++;
1562 if (events
& IEVENT_LC
)
1563 priv
->stats
.tx_window_errors
++;
1564 if (events
& IEVENT_CRL
)
1565 priv
->stats
.tx_aborted_errors
++;
1566 if (events
& IEVENT_XFUN
) {
1567 if (netif_msg_tx_err(priv
))
1568 printk(KERN_WARNING
"%s: tx underrun. dropped packet\n", dev
->name
);
1569 priv
->stats
.tx_dropped
++;
1570 priv
->extra_stats
.tx_underrun
++;
1572 /* Reactivate the Tx Queues */
1573 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1576 if (events
& IEVENT_BSY
) {
1577 priv
->stats
.rx_errors
++;
1578 priv
->extra_stats
.rx_bsy
++;
1580 gfar_receive(irq
, dev_id
, regs
);
1582 #ifndef CONFIG_GFAR_NAPI
1583 /* Clear the halt bit in RSTAT */
1584 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1587 if (netif_msg_rx_err(priv
))
1588 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
1590 gfar_read(&priv
->regs
->rstat
));
1592 if (events
& IEVENT_BABR
) {
1593 priv
->stats
.rx_errors
++;
1594 priv
->extra_stats
.rx_babr
++;
1596 if (netif_msg_rx_err(priv
))
1597 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1599 if (events
& IEVENT_EBERR
) {
1600 priv
->extra_stats
.eberr
++;
1601 if (netif_msg_rx_err(priv
))
1602 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1604 if ((events
& IEVENT_RXC
) && (netif_msg_rx_err(priv
)))
1605 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1607 if (events
& IEVENT_BABT
) {
1608 priv
->extra_stats
.tx_babt
++;
1609 if (netif_msg_rx_err(priv
))
1610 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1616 /* Called every time the controller might need to be made
1617 * aware of new link state. The PHY code conveys this
1618 * information through variables in the phydev structure, and this
1619 * function converts those variables into the appropriate
1620 * register values, and can bring down the device if needed.
1622 static void adjust_link(struct net_device
*dev
)
1624 struct gfar_private
*priv
= netdev_priv(dev
);
1625 struct gfar
*regs
= priv
->regs
;
1626 unsigned long flags
;
1627 struct phy_device
*phydev
= priv
->phydev
;
1630 spin_lock_irqsave(&priv
->lock
, flags
);
1632 u32 tempval
= gfar_read(®s
->maccfg2
);
1633 u32 ecntrl
= gfar_read(®s
->ecntrl
);
1635 /* Now we make sure that we can be in full duplex mode.
1636 * If not, we operate in half-duplex mode. */
1637 if (phydev
->duplex
!= priv
->oldduplex
) {
1639 if (!(phydev
->duplex
))
1640 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1642 tempval
|= MACCFG2_FULL_DUPLEX
;
1644 priv
->oldduplex
= phydev
->duplex
;
1647 if (phydev
->speed
!= priv
->oldspeed
) {
1649 switch (phydev
->speed
) {
1652 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1657 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1659 /* Reduced mode distinguishes
1660 * between 10 and 100 */
1661 if (phydev
->speed
== SPEED_100
)
1662 ecntrl
|= ECNTRL_R100
;
1664 ecntrl
&= ~(ECNTRL_R100
);
1667 if (netif_msg_link(priv
))
1669 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1670 dev
->name
, phydev
->speed
);
1674 priv
->oldspeed
= phydev
->speed
;
1677 gfar_write(®s
->maccfg2
, tempval
);
1678 gfar_write(®s
->ecntrl
, ecntrl
);
1680 if (!priv
->oldlink
) {
1683 netif_schedule(dev
);
1685 } else if (priv
->oldlink
) {
1689 priv
->oldduplex
= -1;
1692 if (new_state
&& netif_msg_link(priv
))
1693 phy_print_status(phydev
);
1695 spin_unlock_irqrestore(&priv
->lock
, flags
);
1698 /* Update the hash table based on the current list of multicast
1699 * addresses we subscribe to. Also, change the promiscuity of
1700 * the device based on the flags (this function is called
1701 * whenever dev->flags is changed */
1702 static void gfar_set_multi(struct net_device
*dev
)
1704 struct dev_mc_list
*mc_ptr
;
1705 struct gfar_private
*priv
= netdev_priv(dev
);
1706 struct gfar
*regs
= priv
->regs
;
1709 if(dev
->flags
& IFF_PROMISC
) {
1710 if (netif_msg_drv(priv
))
1711 printk(KERN_INFO
"%s: Entering promiscuous mode.\n",
1713 /* Set RCTRL to PROM */
1714 tempval
= gfar_read(®s
->rctrl
);
1715 tempval
|= RCTRL_PROM
;
1716 gfar_write(®s
->rctrl
, tempval
);
1718 /* Set RCTRL to not PROM */
1719 tempval
= gfar_read(®s
->rctrl
);
1720 tempval
&= ~(RCTRL_PROM
);
1721 gfar_write(®s
->rctrl
, tempval
);
1724 if(dev
->flags
& IFF_ALLMULTI
) {
1725 /* Set the hash to rx all multicast frames */
1726 gfar_write(®s
->igaddr0
, 0xffffffff);
1727 gfar_write(®s
->igaddr1
, 0xffffffff);
1728 gfar_write(®s
->igaddr2
, 0xffffffff);
1729 gfar_write(®s
->igaddr3
, 0xffffffff);
1730 gfar_write(®s
->igaddr4
, 0xffffffff);
1731 gfar_write(®s
->igaddr5
, 0xffffffff);
1732 gfar_write(®s
->igaddr6
, 0xffffffff);
1733 gfar_write(®s
->igaddr7
, 0xffffffff);
1734 gfar_write(®s
->gaddr0
, 0xffffffff);
1735 gfar_write(®s
->gaddr1
, 0xffffffff);
1736 gfar_write(®s
->gaddr2
, 0xffffffff);
1737 gfar_write(®s
->gaddr3
, 0xffffffff);
1738 gfar_write(®s
->gaddr4
, 0xffffffff);
1739 gfar_write(®s
->gaddr5
, 0xffffffff);
1740 gfar_write(®s
->gaddr6
, 0xffffffff);
1741 gfar_write(®s
->gaddr7
, 0xffffffff);
1746 /* zero out the hash */
1747 gfar_write(®s
->igaddr0
, 0x0);
1748 gfar_write(®s
->igaddr1
, 0x0);
1749 gfar_write(®s
->igaddr2
, 0x0);
1750 gfar_write(®s
->igaddr3
, 0x0);
1751 gfar_write(®s
->igaddr4
, 0x0);
1752 gfar_write(®s
->igaddr5
, 0x0);
1753 gfar_write(®s
->igaddr6
, 0x0);
1754 gfar_write(®s
->igaddr7
, 0x0);
1755 gfar_write(®s
->gaddr0
, 0x0);
1756 gfar_write(®s
->gaddr1
, 0x0);
1757 gfar_write(®s
->gaddr2
, 0x0);
1758 gfar_write(®s
->gaddr3
, 0x0);
1759 gfar_write(®s
->gaddr4
, 0x0);
1760 gfar_write(®s
->gaddr5
, 0x0);
1761 gfar_write(®s
->gaddr6
, 0x0);
1762 gfar_write(®s
->gaddr7
, 0x0);
1764 /* If we have extended hash tables, we need to
1765 * clear the exact match registers to prepare for
1767 if (priv
->extended_hash
) {
1768 em_num
= GFAR_EM_NUM
+ 1;
1769 gfar_clear_exact_match(dev
);
1776 if(dev
->mc_count
== 0)
1779 /* Parse the list, and set the appropriate bits */
1780 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1782 gfar_set_mac_for_addr(dev
, idx
,
1786 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1794 /* Clears each of the exact match registers to zero, so they
1795 * don't interfere with normal reception */
1796 static void gfar_clear_exact_match(struct net_device
*dev
)
1799 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
1801 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
1802 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
1805 /* Set the appropriate hash bit for the given addr */
1806 /* The algorithm works like so:
1807 * 1) Take the Destination Address (ie the multicast address), and
1808 * do a CRC on it (little endian), and reverse the bits of the
1810 * 2) Use the 8 most significant bits as a hash into a 256-entry
1811 * table. The table is controlled through 8 32-bit registers:
1812 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1813 * gaddr7. This means that the 3 most significant bits in the
1814 * hash index which gaddr register to use, and the 5 other bits
1815 * indicate which bit (assuming an IBM numbering scheme, which
1816 * for PowerPC (tm) is usually the case) in the register holds
1818 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1821 struct gfar_private
*priv
= netdev_priv(dev
);
1822 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1823 int width
= priv
->hash_width
;
1824 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
1825 u8 whichreg
= result
>> (32 - width
+ 5);
1826 u32 value
= (1 << (31-whichbit
));
1828 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
1830 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
1836 /* There are multiple MAC Address register pairs on some controllers
1837 * This function sets the numth pair to a given address
1839 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
1841 struct gfar_private
*priv
= netdev_priv(dev
);
1843 char tmpbuf
[MAC_ADDR_LEN
];
1845 u32
*macptr
= &priv
->regs
->macstnaddr1
;
1849 /* Now copy it into the mac registers backwards, cuz */
1850 /* little endian is silly */
1851 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
1852 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
1854 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
1856 tempval
= *((u32
*) (tmpbuf
+ 4));
1858 gfar_write(macptr
+1, tempval
);
1861 /* GFAR error interrupt handler */
1862 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
)
1864 struct net_device
*dev
= dev_id
;
1865 struct gfar_private
*priv
= netdev_priv(dev
);
1867 /* Save ievent for future reference */
1868 u32 events
= gfar_read(&priv
->regs
->ievent
);
1871 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
1874 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
1875 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1876 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
1878 /* Update the error counters */
1879 if (events
& IEVENT_TXE
) {
1880 priv
->stats
.tx_errors
++;
1882 if (events
& IEVENT_LC
)
1883 priv
->stats
.tx_window_errors
++;
1884 if (events
& IEVENT_CRL
)
1885 priv
->stats
.tx_aborted_errors
++;
1886 if (events
& IEVENT_XFUN
) {
1887 if (netif_msg_tx_err(priv
))
1888 printk(KERN_DEBUG
"%s: underrun. packet dropped.\n",
1890 priv
->stats
.tx_dropped
++;
1891 priv
->extra_stats
.tx_underrun
++;
1893 /* Reactivate the Tx Queues */
1894 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1896 if (netif_msg_tx_err(priv
))
1897 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
1899 if (events
& IEVENT_BSY
) {
1900 priv
->stats
.rx_errors
++;
1901 priv
->extra_stats
.rx_bsy
++;
1903 gfar_receive(irq
, dev_id
, regs
);
1905 #ifndef CONFIG_GFAR_NAPI
1906 /* Clear the halt bit in RSTAT */
1907 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1910 if (netif_msg_rx_err(priv
))
1911 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
1913 gfar_read(&priv
->regs
->rstat
));
1915 if (events
& IEVENT_BABR
) {
1916 priv
->stats
.rx_errors
++;
1917 priv
->extra_stats
.rx_babr
++;
1919 if (netif_msg_rx_err(priv
))
1920 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1922 if (events
& IEVENT_EBERR
) {
1923 priv
->extra_stats
.eberr
++;
1924 if (netif_msg_rx_err(priv
))
1925 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1927 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
1928 if (netif_msg_rx_status(priv
))
1929 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1931 if (events
& IEVENT_BABT
) {
1932 priv
->extra_stats
.tx_babt
++;
1933 if (netif_msg_tx_err(priv
))
1934 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1939 /* Structure for a device driver */
1940 static struct platform_driver gfar_driver
= {
1941 .probe
= gfar_probe
,
1942 .remove
= gfar_remove
,
1944 .name
= "fsl-gianfar",
1948 static int __init
gfar_init(void)
1950 int err
= gfar_mdio_init();
1955 err
= platform_driver_register(&gfar_driver
);
1963 static void __exit
gfar_exit(void)
1965 platform_driver_unregister(&gfar_driver
);
1969 module_init(gfar_init
);
1970 module_exit(gfar_exit
);