1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
69 #include <linux/config.h>
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
93 #include <linux/tcp.h>
95 #include <net/checksum.h>
97 #include <asm/atomic.h>
98 #include <asm/system.h>
100 #include <asm/byteorder.h>
101 #include <asm/uaccess.h>
103 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define CAS_NCPUS num_online_cpus()
107 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
109 #define cas_skb_release(x) netif_receive_skb(x)
111 #define cas_skb_release(x) netif_rx(x)
114 /* select which firmware to use */
115 #define USE_HP_WORKAROUND
116 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
121 #define USE_TX_COMPWB /* use completion writeback registers */
122 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
123 #define USE_RX_BLANK /* hw interrupt mitigation */
124 #undef USE_ENTROPY_DEV /* don't test for entropy device */
126 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
127 * also, we need to make cp->lock finer-grained.
134 #undef USE_VPD_DEBUG /* debug vpd information if defined */
136 /* rx processing options */
137 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
138 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
139 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
140 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
141 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
143 #define DRV_MODULE_NAME "cassini"
144 #define PFX DRV_MODULE_NAME ": "
145 #define DRV_MODULE_VERSION "1.4"
146 #define DRV_MODULE_RELDATE "1 July 2004"
148 #define CAS_DEF_MSG_ENABLE \
158 /* length of time before we decide the hardware is borked,
159 * and dev->tx_timeout() should be called to fix the problem
161 #define CAS_TX_TIMEOUT (HZ)
162 #define CAS_LINK_TIMEOUT (22*HZ/10)
163 #define CAS_LINK_FAST_TIMEOUT (1)
165 /* timeout values for state changing. these specify the number
166 * of 10us delays to be used before giving up.
168 #define STOP_TRIES_PHY 1000
169 #define STOP_TRIES 5000
171 /* specify a minimum frame size to deal with some fifo issues
172 * max mtu == 2 * page size - ethernet header - 64 - swivel =
173 * 2 * page_size - 0x50
175 #define CAS_MIN_FRAME 97
176 #define CAS_1000MB_MIN_FRAME 255
177 #define CAS_MIN_MTU 60
178 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
182 * Eliminate these and use separate atomic counters for each, to
183 * avoid a race condition.
186 #define CAS_RESET_MTU 1
187 #define CAS_RESET_ALL 2
188 #define CAS_RESET_SPARE 3
191 static char version
[] __devinitdata
=
192 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_PARM(cassini_debug
, "i");
198 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
199 MODULE_PARM(link_mode
, "i");
200 MODULE_PARM_DESC(link_mode
, "default link mode");
203 * Work around for a PCS bug in which the link goes down due to the chip
204 * being confused and never showing a link status of "up."
206 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 * Value in seconds, for user input.
210 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
211 MODULE_PARM(linkdown_timeout
, "i");
212 MODULE_PARM_DESC(linkdown_timeout
,
213 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
216 * value in 'ticks' (units used by jiffies). Set when we init the
217 * module because 'HZ' in actually a function call on some flavors of
218 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220 static int link_transition_timeout
;
223 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
224 static int link_mode
;
226 static u16 link_modes
[] __devinitdata
= {
227 BMCR_ANENABLE
, /* 0 : autoneg */
228 0, /* 1 : 10bt half duplex */
229 BMCR_SPEED100
, /* 2 : 100bt half duplex */
230 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
231 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
232 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
235 static struct pci_device_id cas_pci_tbl
[] __devinitdata
= {
236 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
237 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
238 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
239 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
243 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
245 static void cas_set_link_modes(struct cas
*cp
);
247 static inline void cas_lock_tx(struct cas
*cp
)
251 for (i
= 0; i
< N_TX_RINGS
; i
++)
252 spin_lock(&cp
->tx_lock
[i
]);
255 static inline void cas_lock_all(struct cas
*cp
)
257 spin_lock_irq(&cp
->lock
);
261 /* WTZ: QA was finding deadlock problems with the previous
262 * versions after long test runs with multiple cards per machine.
263 * See if replacing cas_lock_all with safer versions helps. The
264 * symptoms QA is reporting match those we'd expect if interrupts
265 * aren't being properly restored, and we fixed a previous deadlock
266 * with similar symptoms by using save/restore versions in other
269 #define cas_lock_all_save(cp, flags) \
271 struct cas *xxxcp = (cp); \
272 spin_lock_irqsave(&xxxcp->lock, flags); \
273 cas_lock_tx(xxxcp); \
276 static inline void cas_unlock_tx(struct cas
*cp
)
280 for (i
= N_TX_RINGS
; i
> 0; i
--)
281 spin_unlock(&cp
->tx_lock
[i
- 1]);
284 static inline void cas_unlock_all(struct cas
*cp
)
287 spin_unlock_irq(&cp
->lock
);
290 #define cas_unlock_all_restore(cp, flags) \
292 struct cas *xxxcp = (cp); \
293 cas_unlock_tx(xxxcp); \
294 spin_unlock_irqrestore(&xxxcp->lock, flags); \
297 static void cas_disable_irq(struct cas
*cp
, const int ring
)
299 /* Make sure we won't get any more interrupts */
301 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
305 /* disable completion interrupts and selectively mask */
306 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
308 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
318 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
319 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
323 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
324 REG_PLUS_INTRN_MASK(ring
));
330 static inline void cas_mask_intr(struct cas
*cp
)
334 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
335 cas_disable_irq(cp
, i
);
338 static void cas_enable_irq(struct cas
*cp
, const int ring
)
340 if (ring
== 0) { /* all but TX_DONE */
341 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
345 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
347 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
357 writel(INTRN_MASK_RX_EN
, cp
->regs
+
358 REG_PLUS_INTRN_MASK(ring
));
367 static inline void cas_unmask_intr(struct cas
*cp
)
371 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
372 cas_enable_irq(cp
, i
);
375 static inline void cas_entropy_gather(struct cas
*cp
)
377 #ifdef USE_ENTROPY_DEV
378 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
381 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
382 readl(cp
->regs
+ REG_ENTROPY_IV
),
387 static inline void cas_entropy_reset(struct cas
*cp
)
389 #ifdef USE_ENTROPY_DEV
390 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
393 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
394 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
395 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
396 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
398 /* if we read back 0x0, we don't have an entropy device */
399 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
400 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
404 /* access to the phy. the following assumes that we've initialized the MIF to
405 * be in frame rather than bit-bang mode
407 static u16
cas_phy_read(struct cas
*cp
, int reg
)
410 int limit
= STOP_TRIES_PHY
;
412 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
413 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
414 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
415 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
416 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
418 /* poll for completion */
419 while (limit
-- > 0) {
421 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
422 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
423 return (cmd
& MIF_FRAME_DATA_MASK
);
425 return 0xFFFF; /* -1 */
428 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
430 int limit
= STOP_TRIES_PHY
;
433 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
434 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
435 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
436 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
437 cmd
|= val
& MIF_FRAME_DATA_MASK
;
438 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
440 /* poll for completion */
441 while (limit
-- > 0) {
443 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
444 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
450 static void cas_phy_powerup(struct cas
*cp
)
452 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
454 if ((ctl
& BMCR_PDOWN
) == 0)
457 cas_phy_write(cp
, MII_BMCR
, ctl
);
460 static void cas_phy_powerdown(struct cas
*cp
)
462 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
464 if (ctl
& BMCR_PDOWN
)
467 cas_phy_write(cp
, MII_BMCR
, ctl
);
470 /* cp->lock held. note: the last put_page will free the buffer */
471 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
473 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
475 __free_pages(page
->buffer
, cp
->page_order
);
480 #ifdef RX_COUNT_BUFFERS
481 #define RX_USED_ADD(x, y) ((x)->used += (y))
482 #define RX_USED_SET(x, y) ((x)->used = (y))
484 #define RX_USED_ADD(x, y)
485 #define RX_USED_SET(x, y)
488 /* local page allocation routines for the receive buffers. jumbo pages
489 * require at least 8K contiguous and 8K aligned buffers.
491 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
495 page
= kmalloc(sizeof(cas_page_t
), flags
);
499 INIT_LIST_HEAD(&page
->list
);
500 RX_USED_SET(page
, 0);
501 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
504 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
505 cp
->page_size
, PCI_DMA_FROMDEVICE
);
513 /* initialize spare pool of rx buffers, but allocate during the open */
514 static void cas_spare_init(struct cas
*cp
)
516 spin_lock(&cp
->rx_inuse_lock
);
517 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
518 spin_unlock(&cp
->rx_inuse_lock
);
520 spin_lock(&cp
->rx_spare_lock
);
521 INIT_LIST_HEAD(&cp
->rx_spare_list
);
522 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
523 spin_unlock(&cp
->rx_spare_lock
);
526 /* used on close. free all the spare buffers. */
527 static void cas_spare_free(struct cas
*cp
)
529 struct list_head list
, *elem
, *tmp
;
531 /* free spare buffers */
532 INIT_LIST_HEAD(&list
);
533 spin_lock(&cp
->rx_spare_lock
);
534 list_splice(&cp
->rx_spare_list
, &list
);
535 INIT_LIST_HEAD(&cp
->rx_spare_list
);
536 spin_unlock(&cp
->rx_spare_lock
);
537 list_for_each_safe(elem
, tmp
, &list
) {
538 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
541 INIT_LIST_HEAD(&list
);
544 * Looks like Adrian had protected this with a different
545 * lock than used everywhere else to manipulate this list.
547 spin_lock(&cp
->rx_inuse_lock
);
548 list_splice(&cp
->rx_inuse_list
, &list
);
549 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
550 spin_unlock(&cp
->rx_inuse_lock
);
552 spin_lock(&cp
->rx_spare_lock
);
553 list_splice(&cp
->rx_inuse_list
, &list
);
554 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
555 spin_unlock(&cp
->rx_spare_lock
);
557 list_for_each_safe(elem
, tmp
, &list
) {
558 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
562 /* replenish spares if needed */
563 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
565 struct list_head list
, *elem
, *tmp
;
568 /* check inuse list. if we don't need any more free buffers,
572 /* make a local copy of the list */
573 INIT_LIST_HEAD(&list
);
574 spin_lock(&cp
->rx_inuse_lock
);
575 list_splice(&cp
->rx_inuse_list
, &list
);
576 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
577 spin_unlock(&cp
->rx_inuse_lock
);
579 list_for_each_safe(elem
, tmp
, &list
) {
580 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
582 if (page_count(page
->buffer
) > 1)
586 spin_lock(&cp
->rx_spare_lock
);
587 if (cp
->rx_spares_needed
> 0) {
588 list_add(elem
, &cp
->rx_spare_list
);
589 cp
->rx_spares_needed
--;
590 spin_unlock(&cp
->rx_spare_lock
);
592 spin_unlock(&cp
->rx_spare_lock
);
593 cas_page_free(cp
, page
);
597 /* put any inuse buffers back on the list */
598 if (!list_empty(&list
)) {
599 spin_lock(&cp
->rx_inuse_lock
);
600 list_splice(&list
, &cp
->rx_inuse_list
);
601 spin_unlock(&cp
->rx_inuse_lock
);
604 spin_lock(&cp
->rx_spare_lock
);
605 needed
= cp
->rx_spares_needed
;
606 spin_unlock(&cp
->rx_spare_lock
);
610 /* we still need spares, so try to allocate some */
611 INIT_LIST_HEAD(&list
);
614 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
617 list_add(&spare
->list
, &list
);
621 spin_lock(&cp
->rx_spare_lock
);
622 list_splice(&list
, &cp
->rx_spare_list
);
623 cp
->rx_spares_needed
-= i
;
624 spin_unlock(&cp
->rx_spare_lock
);
627 /* pull a page from the list. */
628 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
630 struct list_head
*entry
;
633 spin_lock(&cp
->rx_spare_lock
);
634 if (list_empty(&cp
->rx_spare_list
)) {
635 /* try to do a quick recovery */
636 spin_unlock(&cp
->rx_spare_lock
);
637 cas_spare_recover(cp
, GFP_ATOMIC
);
638 spin_lock(&cp
->rx_spare_lock
);
639 if (list_empty(&cp
->rx_spare_list
)) {
640 if (netif_msg_rx_err(cp
))
641 printk(KERN_ERR
"%s: no spare buffers "
642 "available.\n", cp
->dev
->name
);
643 spin_unlock(&cp
->rx_spare_lock
);
648 entry
= cp
->rx_spare_list
.next
;
650 recover
= ++cp
->rx_spares_needed
;
651 spin_unlock(&cp
->rx_spare_lock
);
653 /* trigger the timer to do the recovery */
654 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
656 atomic_inc(&cp
->reset_task_pending
);
657 atomic_inc(&cp
->reset_task_pending_spare
);
658 schedule_work(&cp
->reset_task
);
660 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
661 schedule_work(&cp
->reset_task
);
664 return list_entry(entry
, cas_page_t
, list
);
668 static void cas_mif_poll(struct cas
*cp
, const int enable
)
672 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
673 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
675 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
676 cfg
|= MIF_CFG_PHY_SELECT
;
678 /* poll and interrupt on link status change. */
680 cfg
|= MIF_CFG_POLL_EN
;
681 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
682 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
684 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
685 cp
->regs
+ REG_MIF_MASK
);
686 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
689 /* Must be invoked under cp->lock */
690 static void cas_begin_auto_negotiation(struct cas
*cp
, struct ethtool_cmd
*ep
)
696 int oldstate
= cp
->lstate
;
697 int link_was_not_down
= !(oldstate
== link_down
);
699 /* Setup link parameters */
702 lcntl
= cp
->link_cntl
;
703 if (ep
->autoneg
== AUTONEG_ENABLE
)
704 cp
->link_cntl
= BMCR_ANENABLE
;
707 if (ep
->speed
== SPEED_100
)
708 cp
->link_cntl
|= BMCR_SPEED100
;
709 else if (ep
->speed
== SPEED_1000
)
710 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
711 if (ep
->duplex
== DUPLEX_FULL
)
712 cp
->link_cntl
|= BMCR_FULLDPLX
;
715 changed
= (lcntl
!= cp
->link_cntl
);
718 if (cp
->lstate
== link_up
) {
719 printk(KERN_INFO
"%s: PCS link down.\n",
723 printk(KERN_INFO
"%s: link configuration changed\n",
727 cp
->lstate
= link_down
;
728 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
733 * WTZ: If the old state was link_up, we turn off the carrier
734 * to replicate everything we do elsewhere on a link-down
735 * event when we were already in a link-up state..
737 if (oldstate
== link_up
)
738 netif_carrier_off(cp
->dev
);
739 if (changed
&& link_was_not_down
) {
741 * WTZ: This branch will simply schedule a full reset after
742 * we explicitly changed link modes in an ioctl. See if this
743 * fixes the link-problems we were having for forced mode.
745 atomic_inc(&cp
->reset_task_pending
);
746 atomic_inc(&cp
->reset_task_pending_all
);
747 schedule_work(&cp
->reset_task
);
749 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
753 if (cp
->phy_type
& CAS_PHY_SERDES
) {
754 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
756 if (cp
->link_cntl
& BMCR_ANENABLE
) {
757 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
758 cp
->lstate
= link_aneg
;
760 if (cp
->link_cntl
& BMCR_FULLDPLX
)
761 val
|= PCS_MII_CTRL_DUPLEX
;
762 val
&= ~PCS_MII_AUTONEG_EN
;
763 cp
->lstate
= link_force_ok
;
765 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
766 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
770 ctl
= cas_phy_read(cp
, MII_BMCR
);
771 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
772 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
773 ctl
|= cp
->link_cntl
;
774 if (ctl
& BMCR_ANENABLE
) {
775 ctl
|= BMCR_ANRESTART
;
776 cp
->lstate
= link_aneg
;
778 cp
->lstate
= link_force_ok
;
780 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
781 cas_phy_write(cp
, MII_BMCR
, ctl
);
786 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
789 /* Must be invoked under cp->lock. */
790 static int cas_reset_mii_phy(struct cas
*cp
)
792 int limit
= STOP_TRIES_PHY
;
795 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
798 val
= cas_phy_read(cp
, MII_BMCR
);
799 if ((val
& BMCR_RESET
) == 0)
806 static void cas_saturn_firmware_load(struct cas
*cp
)
808 cas_saturn_patch_t
*patch
= cas_saturn_patch
;
810 cas_phy_powerdown(cp
);
812 /* expanded memory access mode */
813 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
815 /* pointer configuration for new firmware */
816 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
817 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
818 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
819 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
820 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
821 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
822 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
823 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
825 /* download new firmware */
826 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
827 cas_phy_write(cp
, DP83065_MII_REGE
, patch
->addr
);
828 while (patch
->addr
) {
829 cas_phy_write(cp
, DP83065_MII_REGD
, patch
->val
);
833 /* enable firmware */
834 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
835 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
839 /* phy initialization */
840 static void cas_phy_init(struct cas
*cp
)
844 /* if we're in MII/GMII mode, set up phy */
845 if (CAS_PHY_MII(cp
->phy_type
)) {
846 writel(PCS_DATAPATH_MODE_MII
,
847 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
850 cas_reset_mii_phy(cp
); /* take out of isolate mode */
852 if (PHY_LUCENT_B0
== cp
->phy_id
) {
853 /* workaround link up/down issue with lucent */
854 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
855 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
856 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
858 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
859 /* workarounds for broadcom phy */
860 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
861 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
862 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
863 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
864 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
865 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
866 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
867 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
868 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
869 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
870 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
872 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
873 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
874 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
876 /* link workaround */
877 cas_phy_write(cp
, BROADCOM_MII_REG4
,
881 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
882 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
883 SATURN_PCFG_FSI
: 0x0,
884 cp
->regs
+ REG_SATURN_PCFG
);
886 /* load firmware to address 10Mbps auto-negotiation
887 * issue. NOTE: this will need to be changed if the
888 * default firmware gets fixed.
890 if (PHY_NS_DP83065
== cp
->phy_id
) {
891 cas_saturn_firmware_load(cp
);
896 /* advertise capabilities */
897 val
= cas_phy_read(cp
, MII_BMCR
);
898 val
&= ~BMCR_ANENABLE
;
899 cas_phy_write(cp
, MII_BMCR
, val
);
902 cas_phy_write(cp
, MII_ADVERTISE
,
903 cas_phy_read(cp
, MII_ADVERTISE
) |
904 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
905 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
906 CAS_ADVERTISE_PAUSE
|
907 CAS_ADVERTISE_ASYM_PAUSE
));
909 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
910 /* make sure that we don't advertise half
911 * duplex to avoid a chip issue
913 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
914 val
&= ~CAS_ADVERTISE_1000HALF
;
915 val
|= CAS_ADVERTISE_1000FULL
;
916 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
920 /* reset pcs for serdes */
924 writel(PCS_DATAPATH_MODE_SERDES
,
925 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
927 /* enable serdes pins on saturn */
928 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
929 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
931 /* Reset PCS unit. */
932 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
933 val
|= PCS_MII_RESET
;
934 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
937 while (limit
-- > 0) {
939 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
944 printk(KERN_WARNING
"%s: PCS reset bit would not "
945 "clear [%08x].\n", cp
->dev
->name
,
946 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
948 /* Make sure PCS is disabled while changing advertisement
951 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
953 /* Advertise all capabilities except half-duplex. */
954 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
955 val
&= ~PCS_MII_ADVERT_HD
;
956 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
957 PCS_MII_ADVERT_ASYM_PAUSE
);
958 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
961 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
963 /* pcs workaround: enable sync detect */
964 writel(PCS_SERDES_CTRL_SYNCD_EN
,
965 cp
->regs
+ REG_PCS_SERDES_CTRL
);
970 static int cas_pcs_link_check(struct cas
*cp
)
972 u32 stat
, state_machine
;
975 /* The link status bit latches on zero, so you must
976 * read it twice in such a case to see a transition
977 * to the link being up.
979 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
980 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
981 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
983 /* The remote-fault indication is only valid
984 * when autoneg has completed.
986 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
987 PCS_MII_STATUS_REMOTE_FAULT
)) ==
988 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
)) {
989 if (netif_msg_link(cp
))
990 printk(KERN_INFO
"%s: PCS RemoteFault\n",
994 /* work around link detection issue by querying the PCS state
997 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
998 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
999 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1000 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1001 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1004 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1005 if (cp
->lstate
!= link_up
) {
1007 cp
->lstate
= link_up
;
1008 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1010 cas_set_link_modes(cp
);
1011 netif_carrier_on(cp
->dev
);
1014 } else if (cp
->lstate
== link_up
) {
1015 cp
->lstate
= link_down
;
1016 if (link_transition_timeout
!= 0 &&
1017 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1018 !cp
->link_transition_jiffies_valid
) {
1020 * force a reset, as a workaround for the
1021 * link-failure problem. May want to move this to a
1022 * point a bit earlier in the sequence. If we had
1023 * generated a reset a short time ago, we'll wait for
1024 * the link timer to check the status until a
1025 * timer expires (link_transistion_jiffies_valid is
1026 * true when the timer is running.) Instead of using
1027 * a system timer, we just do a check whenever the
1028 * link timer is running - this clears the flag after
1032 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1033 cp
->link_transition_jiffies
= jiffies
;
1034 cp
->link_transition_jiffies_valid
= 1;
1036 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1038 netif_carrier_off(cp
->dev
);
1039 if (cp
->opened
&& netif_msg_link(cp
)) {
1040 printk(KERN_INFO
"%s: PCS link down.\n",
1044 /* Cassini only: if you force a mode, there can be
1045 * sync problems on link down. to fix that, the following
1046 * things need to be checked:
1047 * 1) read serialink state register
1048 * 2) read pcs status register to verify link down.
1049 * 3) if link down and serial link == 0x03, then you need
1050 * to global reset the chip.
1052 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1053 /* should check to see if we're in a forced mode */
1054 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1058 } else if (cp
->lstate
== link_down
) {
1059 if (link_transition_timeout
!= 0 &&
1060 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1061 !cp
->link_transition_jiffies_valid
) {
1062 /* force a reset, as a workaround for the
1063 * link-failure problem. May want to move
1064 * this to a point a bit earlier in the
1068 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1069 cp
->link_transition_jiffies
= jiffies
;
1070 cp
->link_transition_jiffies_valid
= 1;
1072 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1079 static int cas_pcs_interrupt(struct net_device
*dev
,
1080 struct cas
*cp
, u32 status
)
1082 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1084 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1086 return cas_pcs_link_check(cp
);
1089 static int cas_txmac_interrupt(struct net_device
*dev
,
1090 struct cas
*cp
, u32 status
)
1092 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1097 if (netif_msg_intr(cp
))
1098 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
1099 cp
->dev
->name
, txmac_stat
);
1101 /* Defer timer expiration is quite normal,
1102 * don't even log the event.
1104 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1105 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1108 spin_lock(&cp
->stat_lock
[0]);
1109 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1110 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
1112 cp
->net_stats
[0].tx_fifo_errors
++;
1115 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1116 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
1118 cp
->net_stats
[0].tx_errors
++;
1121 /* The rest are all cases of one of the 16-bit TX
1122 * counters expiring.
1124 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1125 cp
->net_stats
[0].collisions
+= 0x10000;
1127 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1128 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1129 cp
->net_stats
[0].collisions
+= 0x10000;
1132 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1133 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1134 cp
->net_stats
[0].collisions
+= 0x10000;
1136 spin_unlock(&cp
->stat_lock
[0]);
1138 /* We do not keep track of MAC_TX_COLL_FIRST and
1139 * MAC_TX_PEAK_ATTEMPTS events.
1144 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1146 cas_hp_inst_t
*inst
;
1151 while ((inst
= firmware
) && inst
->note
) {
1152 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1154 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1155 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1156 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1158 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1159 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1160 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1161 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1162 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1163 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1164 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1165 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1167 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1168 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1169 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1170 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1171 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1177 static void cas_init_rx_dma(struct cas
*cp
)
1179 u64 desc_dma
= cp
->block_dvma
;
1183 /* rx free descriptors */
1184 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1185 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1186 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1187 if ((N_RX_DESC_RINGS
> 1) &&
1188 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1189 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1190 writel(val
, cp
->regs
+ REG_RX_CFG
);
1192 val
= (unsigned long) cp
->init_rxds
[0] -
1193 (unsigned long) cp
->init_block
;
1194 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1195 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1196 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1198 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1199 /* rx desc 2 is for IPSEC packets. however,
1200 * we don't it that for that purpose.
1202 val
= (unsigned long) cp
->init_rxds
[1] -
1203 (unsigned long) cp
->init_block
;
1204 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1205 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1206 REG_PLUS_RX_DB1_LOW
);
1207 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1211 /* rx completion registers */
1212 val
= (unsigned long) cp
->init_rxcs
[0] -
1213 (unsigned long) cp
->init_block
;
1214 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1215 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1217 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1219 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1220 val
= (unsigned long) cp
->init_rxcs
[i
] -
1221 (unsigned long) cp
->init_block
;
1222 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1223 REG_PLUS_RX_CBN_HI(i
));
1224 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1225 REG_PLUS_RX_CBN_LOW(i
));
1229 /* read selective clear regs to prevent spurious interrupts
1230 * on reset because complete == kick.
1231 * selective clear set up to prevent interrupts on resets
1233 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1234 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1235 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1236 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1237 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1239 /* 2 is different from 3 and 4 */
1240 if (N_RX_COMP_RINGS
> 1)
1241 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1242 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1244 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1245 writel(INTR_RX_DONE_ALT
,
1246 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1249 /* set up pause thresholds */
1250 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1251 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1252 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1253 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1254 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1256 /* zero out dma reassembly buffers */
1257 for (i
= 0; i
< 64; i
++) {
1258 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1259 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1260 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1261 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1264 /* make sure address register is 0 for normal operation */
1265 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1266 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1268 /* interrupt mitigation */
1270 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1271 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1272 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1274 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1277 /* interrupt generation as a function of low water marks for
1278 * free desc and completion entries. these are used to trigger
1279 * housekeeping for rx descs. we don't use the free interrupt
1280 * as it's not very useful
1282 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1283 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1284 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1285 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1286 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1287 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1290 /* Random early detect registers. useful for congestion avoidance.
1291 * this should be tunable.
1293 writel(0x0, cp
->regs
+ REG_RX_RED
);
1295 /* receive page sizes. default == 2K (0x800) */
1297 if (cp
->page_size
== 0x1000)
1299 else if (cp
->page_size
== 0x2000)
1301 else if (cp
->page_size
== 0x4000)
1304 /* round mtu + offset. constrain to page size. */
1305 size
= cp
->dev
->mtu
+ 64;
1306 if (size
> cp
->page_size
)
1307 size
= cp
->page_size
;
1311 else if (size
<= 0x800)
1313 else if (size
<= 0x1000)
1318 cp
->mtu_stride
= 1 << (i
+ 10);
1319 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1320 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1321 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1322 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1323 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1325 /* enable the header parser if desired */
1326 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1329 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1330 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1331 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1332 writel(val
, cp
->regs
+ REG_HP_CFG
);
1335 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1337 memset(rxc
, 0, sizeof(*rxc
));
1338 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1341 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1342 * flipping is protected by the fact that the chip will not
1343 * hand back the same page index while it's being processed.
1345 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1347 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1350 if (page_count(page
->buffer
) == 1)
1353 new = cas_page_dequeue(cp
);
1355 spin_lock(&cp
->rx_inuse_lock
);
1356 list_add(&page
->list
, &cp
->rx_inuse_list
);
1357 spin_unlock(&cp
->rx_inuse_lock
);
1362 /* this needs to be changed if we actually use the ENC RX DESC ring */
1363 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1366 cas_page_t
**page0
= cp
->rx_pages
[0];
1367 cas_page_t
**page1
= cp
->rx_pages
[1];
1369 /* swap if buffer is in use */
1370 if (page_count(page0
[index
]->buffer
) > 1) {
1371 cas_page_t
*new = cas_page_spare(cp
, index
);
1373 page1
[index
] = page0
[index
];
1377 RX_USED_SET(page0
[index
], 0);
1378 return page0
[index
];
1381 static void cas_clean_rxds(struct cas
*cp
)
1383 /* only clean ring 0 as ring 1 is used for spare buffers */
1384 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1387 /* release all rx flows */
1388 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1389 struct sk_buff
*skb
;
1390 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1391 cas_skb_release(skb
);
1395 /* initialize descriptors */
1396 size
= RX_DESC_RINGN_SIZE(0);
1397 for (i
= 0; i
< size
; i
++) {
1398 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1399 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1400 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1401 CAS_BASE(RX_INDEX_RING
, 0));
1404 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1406 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1409 static void cas_clean_rxcs(struct cas
*cp
)
1413 /* take ownership of rx comp descriptors */
1414 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1415 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1416 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1417 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1418 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1419 cas_rxc_init(rxc
+ j
);
1425 /* When we get a RX fifo overflow, the RX unit is probably hung
1426 * so we do the following.
1428 * If any part of the reset goes wrong, we return 1 and that causes the
1429 * whole chip to be reset.
1431 static int cas_rxmac_reset(struct cas
*cp
)
1433 struct net_device
*dev
= cp
->dev
;
1437 /* First, reset MAC RX. */
1438 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1439 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1440 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1444 if (limit
== STOP_TRIES
) {
1445 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
1446 "chip.\n", dev
->name
);
1450 /* Second, disable RX DMA. */
1451 writel(0, cp
->regs
+ REG_RX_CFG
);
1452 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1453 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1457 if (limit
== STOP_TRIES
) {
1458 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
1459 "chip.\n", dev
->name
);
1465 /* Execute RX reset command. */
1466 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1467 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1468 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1472 if (limit
== STOP_TRIES
) {
1473 printk(KERN_ERR
"%s: RX reset command will not execute, "
1474 "resetting whole chip.\n", dev
->name
);
1478 /* reset driver rx state */
1482 /* Now, reprogram the rest of RX unit. */
1483 cas_init_rx_dma(cp
);
1486 val
= readl(cp
->regs
+ REG_RX_CFG
);
1487 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1488 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1489 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1490 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1495 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1498 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1503 if (netif_msg_intr(cp
))
1504 printk(KERN_DEBUG
"%s: rxmac interrupt, stat: 0x%x\n",
1505 cp
->dev
->name
, stat
);
1507 /* these are all rollovers */
1508 spin_lock(&cp
->stat_lock
[0]);
1509 if (stat
& MAC_RX_ALIGN_ERR
)
1510 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1512 if (stat
& MAC_RX_CRC_ERR
)
1513 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1515 if (stat
& MAC_RX_LEN_ERR
)
1516 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1518 if (stat
& MAC_RX_OVERFLOW
) {
1519 cp
->net_stats
[0].rx_over_errors
++;
1520 cp
->net_stats
[0].rx_fifo_errors
++;
1523 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1526 spin_unlock(&cp
->stat_lock
[0]);
1530 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1533 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1538 if (netif_msg_intr(cp
))
1539 printk(KERN_DEBUG
"%s: mac interrupt, stat: 0x%x\n",
1540 cp
->dev
->name
, stat
);
1542 /* This interrupt is just for pause frame and pause
1543 * tracking. It is useful for diagnostics and debug
1544 * but probably by default we will mask these events.
1546 if (stat
& MAC_CTRL_PAUSE_STATE
)
1547 cp
->pause_entered
++;
1549 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1550 cp
->pause_last_time_recvd
= (stat
>> 16);
1556 /* Must be invoked under cp->lock. */
1557 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1561 switch (cp
->lstate
) {
1562 case link_force_ret
:
1563 if (netif_msg_link(cp
))
1564 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1565 " forced mode\n", cp
->dev
->name
);
1566 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1567 cp
->timer_ticks
= 5;
1568 cp
->lstate
= link_force_ok
;
1569 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1573 val
= cas_phy_read(cp
, MII_BMCR
);
1575 /* Try forced modes. we try things in the following order:
1576 * 1000 full -> 100 full/half -> 10 half
1578 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1579 val
|= BMCR_FULLDPLX
;
1580 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1581 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1582 cas_phy_write(cp
, MII_BMCR
, val
);
1583 cp
->timer_ticks
= 5;
1584 cp
->lstate
= link_force_try
;
1585 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1588 case link_force_try
:
1589 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1590 val
= cas_phy_read(cp
, MII_BMCR
);
1591 cp
->timer_ticks
= 5;
1592 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1593 val
&= ~CAS_BMCR_SPEED1000
;
1594 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1595 cas_phy_write(cp
, MII_BMCR
, val
);
1599 if (val
& BMCR_SPEED100
) {
1600 if (val
& BMCR_FULLDPLX
) /* fd failed */
1601 val
&= ~BMCR_FULLDPLX
;
1602 else { /* 100Mbps failed */
1603 val
&= ~BMCR_SPEED100
;
1605 cas_phy_write(cp
, MII_BMCR
, val
);
1615 /* must be invoked with cp->lock held */
1616 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1620 if (bmsr
& BMSR_LSTATUS
) {
1621 /* Ok, here we got a link. If we had it due to a forced
1622 * fallback, and we were configured for autoneg, we
1623 * retry a short autoneg pass. If you know your hub is
1624 * broken, use ethtool ;)
1626 if ((cp
->lstate
== link_force_try
) &&
1627 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1628 cp
->lstate
= link_force_ret
;
1629 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1630 cas_mif_poll(cp
, 0);
1631 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1632 cp
->timer_ticks
= 5;
1633 if (cp
->opened
&& netif_msg_link(cp
))
1634 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1635 " autoneg once...\n", cp
->dev
->name
);
1636 cas_phy_write(cp
, MII_BMCR
,
1637 cp
->link_fcntl
| BMCR_ANENABLE
|
1639 cas_mif_poll(cp
, 1);
1641 } else if (cp
->lstate
!= link_up
) {
1642 cp
->lstate
= link_up
;
1643 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1646 cas_set_link_modes(cp
);
1647 netif_carrier_on(cp
->dev
);
1653 /* link not up. if the link was previously up, we restart the
1657 if (cp
->lstate
== link_up
) {
1658 cp
->lstate
= link_down
;
1659 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1661 netif_carrier_off(cp
->dev
);
1662 if (cp
->opened
&& netif_msg_link(cp
))
1663 printk(KERN_INFO
"%s: Link down\n",
1667 } else if (++cp
->timer_ticks
> 10)
1668 cas_mdio_link_not_up(cp
);
1673 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1676 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1679 /* check for a link change */
1680 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1683 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1684 return cas_mii_link_check(cp
, bmsr
);
1687 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1690 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1695 printk(KERN_ERR
"%s: PCI error [%04x:%04x] ", dev
->name
, stat
,
1696 readl(cp
->regs
+ REG_BIM_DIAG
));
1698 /* cassini+ has this reserved */
1699 if ((stat
& PCI_ERR_BADACK
) &&
1700 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1701 printk("<No ACK64# during ABS64 cycle> ");
1703 if (stat
& PCI_ERR_DTRTO
)
1704 printk("<Delayed transaction timeout> ");
1705 if (stat
& PCI_ERR_OTHER
)
1707 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1708 printk("<BIM DMA 0 write req> ");
1709 if (stat
& PCI_ERR_BIM_DMA_READ
)
1710 printk("<BIM DMA 0 read req> ");
1713 if (stat
& PCI_ERR_OTHER
) {
1716 /* Interrogate PCI config space for the
1719 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1720 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
1722 if (cfg
& PCI_STATUS_PARITY
)
1723 printk(KERN_ERR
"%s: PCI parity error detected.\n",
1725 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1726 printk(KERN_ERR
"%s: PCI target abort.\n",
1728 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1729 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
1731 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1732 printk(KERN_ERR
"%s: PCI master abort.\n", dev
->name
);
1733 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1734 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
1736 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1737 printk(KERN_ERR
"%s: PCI parity error.\n",
1740 /* Write the error bits back to clear them. */
1741 cfg
&= (PCI_STATUS_PARITY
|
1742 PCI_STATUS_SIG_TARGET_ABORT
|
1743 PCI_STATUS_REC_TARGET_ABORT
|
1744 PCI_STATUS_REC_MASTER_ABORT
|
1745 PCI_STATUS_SIG_SYSTEM_ERROR
|
1746 PCI_STATUS_DETECTED_PARITY
);
1747 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1750 /* For all PCI errors, we should reset the chip. */
1754 /* All non-normal interrupt conditions get serviced here.
1755 * Returns non-zero if we should just exit the interrupt
1756 * handler right now (ie. if we reset the card which invalidates
1757 * all of the other original irq status bits).
1759 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1762 if (status
& INTR_RX_TAG_ERROR
) {
1763 /* corrupt RX tag framing */
1764 if (netif_msg_rx_err(cp
))
1765 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
1767 spin_lock(&cp
->stat_lock
[0]);
1768 cp
->net_stats
[0].rx_errors
++;
1769 spin_unlock(&cp
->stat_lock
[0]);
1773 if (status
& INTR_RX_LEN_MISMATCH
) {
1774 /* length mismatch. */
1775 if (netif_msg_rx_err(cp
))
1776 printk(KERN_DEBUG
"%s: length mismatch for rx frame\n",
1778 spin_lock(&cp
->stat_lock
[0]);
1779 cp
->net_stats
[0].rx_errors
++;
1780 spin_unlock(&cp
->stat_lock
[0]);
1784 if (status
& INTR_PCS_STATUS
) {
1785 if (cas_pcs_interrupt(dev
, cp
, status
))
1789 if (status
& INTR_TX_MAC_STATUS
) {
1790 if (cas_txmac_interrupt(dev
, cp
, status
))
1794 if (status
& INTR_RX_MAC_STATUS
) {
1795 if (cas_rxmac_interrupt(dev
, cp
, status
))
1799 if (status
& INTR_MAC_CTRL_STATUS
) {
1800 if (cas_mac_interrupt(dev
, cp
, status
))
1804 if (status
& INTR_MIF_STATUS
) {
1805 if (cas_mif_interrupt(dev
, cp
, status
))
1809 if (status
& INTR_PCI_ERROR_STATUS
) {
1810 if (cas_pci_interrupt(dev
, cp
, status
))
1817 atomic_inc(&cp
->reset_task_pending
);
1818 atomic_inc(&cp
->reset_task_pending_all
);
1819 printk(KERN_ERR
"%s:reset called in cas_abnormal_irq [0x%x]\n",
1821 schedule_work(&cp
->reset_task
);
1823 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1824 printk(KERN_ERR
"reset called in cas_abnormal_irq\n");
1825 schedule_work(&cp
->reset_task
);
1830 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1831 * determining whether to do a netif_stop/wakeup
1833 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1834 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1835 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1838 unsigned long off
= addr
+ len
;
1840 if (CAS_TABORT(cp
) == 1)
1842 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1844 return TX_TARGET_ABORT_LEN
;
1847 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1849 struct cas_tx_desc
*txds
;
1850 struct sk_buff
**skbs
;
1851 struct net_device
*dev
= cp
->dev
;
1854 spin_lock(&cp
->tx_lock
[ring
]);
1855 txds
= cp
->init_txds
[ring
];
1856 skbs
= cp
->tx_skbs
[ring
];
1857 entry
= cp
->tx_old
[ring
];
1859 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1860 while (entry
!= limit
) {
1861 struct sk_buff
*skb
= skbs
[entry
];
1867 /* this should never occur */
1868 entry
= TX_DESC_NEXT(ring
, entry
);
1872 /* however, we might get only a partial skb release. */
1873 count
-= skb_shinfo(skb
)->nr_frags
+
1874 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1878 if (netif_msg_tx_done(cp
))
1879 printk(KERN_DEBUG
"%s: tx[%d] done, slot %d\n",
1880 cp
->dev
->name
, ring
, entry
);
1883 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1885 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1886 struct cas_tx_desc
*txd
= txds
+ entry
;
1888 daddr
= le64_to_cpu(txd
->buffer
);
1889 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1890 le64_to_cpu(txd
->control
));
1891 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1893 entry
= TX_DESC_NEXT(ring
, entry
);
1895 /* tiny buffer may follow */
1896 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1897 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1898 entry
= TX_DESC_NEXT(ring
, entry
);
1902 spin_lock(&cp
->stat_lock
[ring
]);
1903 cp
->net_stats
[ring
].tx_packets
++;
1904 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1905 spin_unlock(&cp
->stat_lock
[ring
]);
1906 dev_kfree_skb_irq(skb
);
1908 cp
->tx_old
[ring
] = entry
;
1910 /* this is wrong for multiple tx rings. the net device needs
1911 * multiple queues for this to do the right thing. we wait
1912 * for 2*packets to be available when using tiny buffers
1914 if (netif_queue_stopped(dev
) &&
1915 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1916 netif_wake_queue(dev
);
1917 spin_unlock(&cp
->tx_lock
[ring
]);
1920 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1924 #ifdef USE_TX_COMPWB
1925 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1927 if (netif_msg_intr(cp
))
1928 printk(KERN_DEBUG
"%s: tx interrupt, status: 0x%x, %lx\n",
1929 cp
->dev
->name
, status
, compwb
);
1930 /* process all the rings */
1931 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1932 #ifdef USE_TX_COMPWB
1933 /* use the completion writeback registers */
1934 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1935 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1936 compwb
= TX_COMPWB_NEXT(compwb
);
1938 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1940 if (cp
->tx_old
[ring
] != limit
)
1941 cas_tx_ringN(cp
, ring
, limit
);
1946 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1947 int entry
, const u64
*words
,
1948 struct sk_buff
**skbref
)
1950 int dlen
, hlen
, len
, i
, alloclen
;
1951 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1952 struct cas_page
*page
;
1953 struct sk_buff
*skb
;
1954 void *addr
, *crcaddr
;
1957 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1958 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1961 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1964 alloclen
= max(hlen
, RX_COPY_MIN
);
1966 skb
= dev_alloc_skb(alloclen
+ swivel
+ cp
->crc_size
);
1972 skb_reserve(skb
, swivel
);
1975 addr
= crcaddr
= NULL
;
1976 if (hlen
) { /* always copy header pages */
1977 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
1978 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1979 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
1983 if (!dlen
) /* attach FCS */
1985 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
1986 PCI_DMA_FROMDEVICE
);
1987 addr
= cas_page_map(page
->buffer
);
1988 memcpy(p
, addr
+ off
, i
);
1989 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
1990 PCI_DMA_FROMDEVICE
);
1991 cas_page_unmap(addr
);
1992 RX_USED_ADD(page
, 0x100);
1998 if (alloclen
< (hlen
+ dlen
)) {
1999 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
2001 /* normal or jumbo packets. we use frags */
2002 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2003 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2004 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2006 hlen
= min(cp
->page_size
- off
, dlen
);
2008 if (netif_msg_rx_err(cp
)) {
2009 printk(KERN_DEBUG
"%s: rx page overflow: "
2010 "%d\n", cp
->dev
->name
, hlen
);
2012 dev_kfree_skb_irq(skb
);
2016 if (i
== dlen
) /* attach FCS */
2018 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2019 PCI_DMA_FROMDEVICE
);
2021 /* make sure we always copy a header */
2023 if (p
== (char *) skb
->data
) { /* not split */
2024 addr
= cas_page_map(page
->buffer
);
2025 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2026 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2027 PCI_DMA_FROMDEVICE
);
2028 cas_page_unmap(addr
);
2030 swivel
= RX_COPY_MIN
;
2031 RX_USED_ADD(page
, cp
->mtu_stride
);
2033 RX_USED_ADD(page
, hlen
);
2035 skb_put(skb
, alloclen
);
2037 skb_shinfo(skb
)->nr_frags
++;
2038 skb
->data_len
+= hlen
- swivel
;
2039 skb
->len
+= hlen
- swivel
;
2041 get_page(page
->buffer
);
2042 frag
->page
= page
->buffer
;
2043 frag
->page_offset
= off
;
2044 frag
->size
= hlen
- swivel
;
2046 /* any more data? */
2047 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2051 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2052 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2053 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2054 hlen
+ cp
->crc_size
,
2055 PCI_DMA_FROMDEVICE
);
2056 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2057 hlen
+ cp
->crc_size
,
2058 PCI_DMA_FROMDEVICE
);
2060 skb_shinfo(skb
)->nr_frags
++;
2061 skb
->data_len
+= hlen
;
2065 get_page(page
->buffer
);
2066 frag
->page
= page
->buffer
;
2067 frag
->page_offset
= 0;
2069 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2073 addr
= cas_page_map(page
->buffer
);
2074 crcaddr
= addr
+ off
+ hlen
;
2078 /* copying packet */
2082 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2083 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2084 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2085 hlen
= min(cp
->page_size
- off
, dlen
);
2087 if (netif_msg_rx_err(cp
)) {
2088 printk(KERN_DEBUG
"%s: rx page overflow: "
2089 "%d\n", cp
->dev
->name
, hlen
);
2091 dev_kfree_skb_irq(skb
);
2095 if (i
== dlen
) /* attach FCS */
2097 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2098 PCI_DMA_FROMDEVICE
);
2099 addr
= cas_page_map(page
->buffer
);
2100 memcpy(p
, addr
+ off
, i
);
2101 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2102 PCI_DMA_FROMDEVICE
);
2103 cas_page_unmap(addr
);
2104 if (p
== (char *) skb
->data
) /* not split */
2105 RX_USED_ADD(page
, cp
->mtu_stride
);
2107 RX_USED_ADD(page
, i
);
2109 /* any more data? */
2110 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2112 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2113 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2114 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2115 dlen
+ cp
->crc_size
,
2116 PCI_DMA_FROMDEVICE
);
2117 addr
= cas_page_map(page
->buffer
);
2118 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2119 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2120 dlen
+ cp
->crc_size
,
2121 PCI_DMA_FROMDEVICE
);
2122 cas_page_unmap(addr
);
2123 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2128 crcaddr
= skb
->data
+ alloclen
;
2130 skb_put(skb
, alloclen
);
2133 i
= CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]);
2135 /* checksum includes FCS. strip it out. */
2136 i
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
, i
));
2138 cas_page_unmap(addr
);
2140 skb
->csum
= ntohs(i
^ 0xffff);
2141 skb
->ip_summed
= CHECKSUM_HW
;
2142 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2147 /* we can handle up to 64 rx flows at a time. we do the same thing
2148 * as nonreassm except that we batch up the buffers.
2149 * NOTE: we currently just treat each flow as a bunch of packets that
2150 * we pass up. a better way would be to coalesce the packets
2151 * into a jumbo packet. to do that, we need to do the following:
2152 * 1) the first packet will have a clean split between header and
2154 * 2) each time the next flow packet comes in, extend the
2155 * data length and merge the checksums.
2156 * 3) on flow release, fix up the header.
2157 * 4) make sure the higher layer doesn't care.
2158 * because packets get coalesced, we shouldn't run into fragment count
2161 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2162 struct sk_buff
*skb
)
2164 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2165 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2167 /* this is protected at a higher layer, so no need to
2168 * do any additional locking here. stick the buffer
2171 __skb_insert(skb
, flow
->prev
, (struct sk_buff
*) flow
, flow
);
2172 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2173 while ((skb
= __skb_dequeue(flow
))) {
2174 cas_skb_release(skb
);
2179 /* put rx descriptor back on ring. if a buffer is in use by a higher
2180 * layer, this will need to put in a replacement.
2182 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2187 entry
= cp
->rx_old
[ring
];
2189 new = cas_page_swap(cp
, ring
, index
);
2190 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2191 cp
->init_rxds
[ring
][entry
].index
=
2192 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2193 CAS_BASE(RX_INDEX_RING
, ring
));
2195 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2196 cp
->rx_old
[ring
] = entry
;
2202 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2203 else if ((N_RX_DESC_RINGS
> 1) &&
2204 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2205 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2209 /* only when things are bad */
2210 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2212 unsigned int entry
, last
, count
, released
;
2214 cas_page_t
**page
= cp
->rx_pages
[ring
];
2216 entry
= cp
->rx_old
[ring
];
2218 if (netif_msg_intr(cp
))
2219 printk(KERN_DEBUG
"%s: rxd[%d] interrupt, done: %d\n",
2220 cp
->dev
->name
, ring
, entry
);
2223 count
= entry
& 0x3;
2224 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2226 while (entry
!= last
) {
2227 /* make a new buffer if it's still in use */
2228 if (page_count(page
[entry
]->buffer
) > 1) {
2229 cas_page_t
*new = cas_page_dequeue(cp
);
2231 /* let the timer know that we need to
2234 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2235 if (!timer_pending(&cp
->link_timer
))
2236 mod_timer(&cp
->link_timer
, jiffies
+
2237 CAS_LINK_FAST_TIMEOUT
);
2238 cp
->rx_old
[ring
] = entry
;
2239 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2242 spin_lock(&cp
->rx_inuse_lock
);
2243 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2244 spin_unlock(&cp
->rx_inuse_lock
);
2245 cp
->init_rxds
[ring
][entry
].buffer
=
2246 cpu_to_le64(new->dma_addr
);
2256 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2258 cp
->rx_old
[ring
] = entry
;
2264 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2265 else if ((N_RX_DESC_RINGS
> 1) &&
2266 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2267 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2272 /* process a completion ring. packets are set up in three basic ways:
2273 * small packets: should be copied header + data in single buffer.
2274 * large packets: header and data in a single buffer.
2275 * split packets: header in a separate buffer from data.
2276 * data may be in multiple pages. data may be > 256
2277 * bytes but in a single page.
2279 * NOTE: RX page posting is done in this routine as well. while there's
2280 * the capability of using multiple RX completion rings, it isn't
2281 * really worthwhile due to the fact that the page posting will
2282 * force serialization on the single descriptor ring.
2284 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2286 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2290 if (netif_msg_intr(cp
))
2291 printk(KERN_DEBUG
"%s: rx[%d] interrupt, done: %d/%d\n",
2292 cp
->dev
->name
, ring
,
2293 readl(cp
->regs
+ REG_RX_COMP_HEAD
),
2296 entry
= cp
->rx_new
[ring
];
2299 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2300 struct sk_buff
*skb
;
2305 words
[0] = le64_to_cpu(rxc
->word1
);
2306 words
[1] = le64_to_cpu(rxc
->word2
);
2307 words
[2] = le64_to_cpu(rxc
->word3
);
2308 words
[3] = le64_to_cpu(rxc
->word4
);
2310 /* don't touch if still owned by hw */
2311 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2315 /* hw hasn't cleared the zero bit yet */
2316 if (words
[3] & RX_COMP4_ZERO
) {
2320 /* get info on the packet */
2321 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2322 spin_lock(&cp
->stat_lock
[ring
]);
2323 cp
->net_stats
[ring
].rx_errors
++;
2324 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2325 cp
->net_stats
[ring
].rx_length_errors
++;
2326 if (words
[3] & RX_COMP4_BAD
)
2327 cp
->net_stats
[ring
].rx_crc_errors
++;
2328 spin_unlock(&cp
->stat_lock
[ring
]);
2330 /* We'll just return it to Cassini. */
2332 spin_lock(&cp
->stat_lock
[ring
]);
2333 ++cp
->net_stats
[ring
].rx_dropped
;
2334 spin_unlock(&cp
->stat_lock
[ring
]);
2338 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2344 /* see if it's a flow re-assembly or not. the driver
2345 * itself handles release back up.
2347 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2348 /* non-reassm: these always get released */
2349 cas_skb_release(skb
);
2351 cas_rx_flow_pkt(cp
, words
, skb
);
2354 spin_lock(&cp
->stat_lock
[ring
]);
2355 cp
->net_stats
[ring
].rx_packets
++;
2356 cp
->net_stats
[ring
].rx_bytes
+= len
;
2357 spin_unlock(&cp
->stat_lock
[ring
]);
2358 cp
->dev
->last_rx
= jiffies
;
2363 /* should it be released? */
2364 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2365 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2366 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2367 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2368 cas_post_page(cp
, dring
, i
);
2371 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2372 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2373 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2374 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2375 cas_post_page(cp
, dring
, i
);
2378 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2379 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2380 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2381 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2382 cas_post_page(cp
, dring
, i
);
2385 /* skip to the next entry */
2386 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2387 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2389 if (budget
&& (npackets
>= budget
))
2393 cp
->rx_new
[ring
] = entry
;
2396 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
2402 /* put completion entries back on the ring */
2403 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2404 struct cas
*cp
, int ring
)
2406 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2409 last
= cp
->rx_cur
[ring
];
2410 entry
= cp
->rx_new
[ring
];
2411 if (netif_msg_intr(cp
))
2412 printk(KERN_DEBUG
"%s: rxc[%d] interrupt, done: %d/%d\n",
2413 dev
->name
, ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
),
2416 /* zero and re-mark descriptors */
2417 while (last
!= entry
) {
2418 cas_rxc_init(rxc
+ last
);
2419 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2421 cp
->rx_cur
[ring
] = last
;
2424 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2425 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2426 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2431 /* cassini can use all four PCI interrupts for the completion ring.
2432 * rings 3 and 4 are identical
2434 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2435 static inline void cas_handle_irqN(struct net_device
*dev
,
2436 struct cas
*cp
, const u32 status
,
2439 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2440 cas_post_rxcs_ringN(dev
, cp
, ring
);
2443 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
, struct pt_regs
*regs
)
2445 struct net_device
*dev
= dev_id
;
2446 struct cas
*cp
= netdev_priv(dev
);
2447 unsigned long flags
;
2449 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2451 /* check for shared irq */
2455 ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2456 spin_lock_irqsave(&cp
->lock
, flags
);
2457 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2460 netif_rx_schedule(dev
);
2462 cas_rx_ringN(cp
, ring
, 0);
2464 status
&= ~INTR_RX_DONE_ALT
;
2468 cas_handle_irqN(dev
, cp
, status
, ring
);
2469 spin_unlock_irqrestore(&cp
->lock
, flags
);
2475 /* everything but rx packets */
2476 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2478 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2479 /* Frame arrived, no free RX buffers available.
2480 * NOTE: we can get this on a link transition. */
2481 cas_post_rxds_ringN(cp
, 1, 0);
2482 spin_lock(&cp
->stat_lock
[1]);
2483 cp
->net_stats
[1].rx_dropped
++;
2484 spin_unlock(&cp
->stat_lock
[1]);
2487 if (status
& INTR_RX_BUF_AE_1
)
2488 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2489 RX_AE_FREEN_VAL(1));
2491 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2492 cas_post_rxcs_ringN(cp
, 1);
2495 /* ring 2 handles a few more events than 3 and 4 */
2496 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
, struct pt_regs
*regs
)
2498 struct net_device
*dev
= dev_id
;
2499 struct cas
*cp
= netdev_priv(dev
);
2500 unsigned long flags
;
2501 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2503 /* check for shared interrupt */
2507 spin_lock_irqsave(&cp
->lock
, flags
);
2508 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2511 netif_rx_schedule(dev
);
2513 cas_rx_ringN(cp
, 1, 0);
2515 status
&= ~INTR_RX_DONE_ALT
;
2518 cas_handle_irq1(cp
, status
);
2519 spin_unlock_irqrestore(&cp
->lock
, flags
);
2524 static inline void cas_handle_irq(struct net_device
*dev
,
2525 struct cas
*cp
, const u32 status
)
2527 /* housekeeping interrupts */
2528 if (status
& INTR_ERROR_MASK
)
2529 cas_abnormal_irq(dev
, cp
, status
);
2531 if (status
& INTR_RX_BUF_UNAVAIL
) {
2532 /* Frame arrived, no free RX buffers available.
2533 * NOTE: we can get this on a link transition.
2535 cas_post_rxds_ringN(cp
, 0, 0);
2536 spin_lock(&cp
->stat_lock
[0]);
2537 cp
->net_stats
[0].rx_dropped
++;
2538 spin_unlock(&cp
->stat_lock
[0]);
2539 } else if (status
& INTR_RX_BUF_AE
) {
2540 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2541 RX_AE_FREEN_VAL(0));
2544 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2545 cas_post_rxcs_ringN(dev
, cp
, 0);
2548 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
2550 struct net_device
*dev
= dev_id
;
2551 struct cas
*cp
= netdev_priv(dev
);
2552 unsigned long flags
;
2553 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2558 spin_lock_irqsave(&cp
->lock
, flags
);
2559 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2560 cas_tx(dev
, cp
, status
);
2561 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2564 if (status
& INTR_RX_DONE
) {
2567 netif_rx_schedule(dev
);
2569 cas_rx_ringN(cp
, 0, 0);
2571 status
&= ~INTR_RX_DONE
;
2575 cas_handle_irq(dev
, cp
, status
);
2576 spin_unlock_irqrestore(&cp
->lock
, flags
);
2582 static int cas_poll(struct net_device
*dev
, int *budget
)
2584 struct cas
*cp
= netdev_priv(dev
);
2585 int i
, enable_intr
, todo
, credits
;
2586 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2587 unsigned long flags
;
2589 spin_lock_irqsave(&cp
->lock
, flags
);
2590 cas_tx(dev
, cp
, status
);
2591 spin_unlock_irqrestore(&cp
->lock
, flags
);
2593 /* NAPI rx packets. we spread the credits across all of the
2596 todo
= min(*budget
, dev
->quota
);
2598 /* to make sure we're fair with the work we loop through each
2599 * ring N_RX_COMP_RING times with a request of
2600 * todo / N_RX_COMP_RINGS
2604 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2606 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2607 credits
+= cas_rx_ringN(cp
, j
, todo
/ N_RX_COMP_RINGS
);
2608 if (credits
>= todo
) {
2617 dev
->quota
-= credits
;
2619 /* final rx completion */
2620 spin_lock_irqsave(&cp
->lock
, flags
);
2622 cas_handle_irq(dev
, cp
, status
);
2625 if (N_RX_COMP_RINGS
> 1) {
2626 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2628 cas_handle_irq1(dev
, cp
, status
);
2633 if (N_RX_COMP_RINGS
> 2) {
2634 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2636 cas_handle_irqN(dev
, cp
, status
, 2);
2641 if (N_RX_COMP_RINGS
> 3) {
2642 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2644 cas_handle_irqN(dev
, cp
, status
, 3);
2647 spin_unlock_irqrestore(&cp
->lock
, flags
);
2649 netif_rx_complete(dev
);
2650 cas_unmask_intr(cp
);
2657 #ifdef CONFIG_NET_POLL_CONTROLLER
2658 static void cas_netpoll(struct net_device
*dev
)
2660 struct cas
*cp
= netdev_priv(dev
);
2662 cas_disable_irq(cp
, 0);
2663 cas_interrupt(cp
->pdev
->irq
, dev
, NULL
);
2664 cas_enable_irq(cp
, 0);
2667 if (N_RX_COMP_RINGS
> 1) {
2668 /* cas_interrupt1(); */
2672 if (N_RX_COMP_RINGS
> 2) {
2673 /* cas_interruptN(); */
2677 if (N_RX_COMP_RINGS
> 3) {
2678 /* cas_interruptN(); */
2684 static void cas_tx_timeout(struct net_device
*dev
)
2686 struct cas
*cp
= netdev_priv(dev
);
2688 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
2689 if (!cp
->hw_running
) {
2690 printk("%s: hrm.. hw not running!\n", dev
->name
);
2694 printk(KERN_ERR
"%s: MIF_STATE[%08x]\n",
2695 dev
->name
, readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2697 printk(KERN_ERR
"%s: MAC_STATE[%08x]\n",
2698 dev
->name
, readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2700 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x] "
2701 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2703 readl(cp
->regs
+ REG_TX_CFG
),
2704 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2705 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2706 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2707 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2708 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2709 readl(cp
->regs
+ REG_TX_SM_1
),
2710 readl(cp
->regs
+ REG_TX_SM_2
));
2712 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
2714 readl(cp
->regs
+ REG_RX_CFG
),
2715 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2716 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2718 printk(KERN_ERR
"%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2720 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2721 readl(cp
->regs
+ REG_HP_STATUS0
),
2722 readl(cp
->regs
+ REG_HP_STATUS1
),
2723 readl(cp
->regs
+ REG_HP_STATUS2
));
2726 atomic_inc(&cp
->reset_task_pending
);
2727 atomic_inc(&cp
->reset_task_pending_all
);
2728 schedule_work(&cp
->reset_task
);
2730 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2731 schedule_work(&cp
->reset_task
);
2735 static inline int cas_intme(int ring
, int entry
)
2737 /* Algorithm: IRQ every 1/2 of descriptors. */
2738 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2744 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2745 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2747 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2749 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2750 if (cas_intme(ring
, entry
))
2751 ctrl
|= TX_DESC_INTME
;
2753 ctrl
|= TX_DESC_EOF
;
2754 txd
->control
= cpu_to_le64(ctrl
);
2755 txd
->buffer
= cpu_to_le64(mapping
);
2758 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2761 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2764 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2765 const int entry
, const int tentry
)
2767 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2768 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2769 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2772 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2773 struct sk_buff
*skb
)
2775 struct net_device
*dev
= cp
->dev
;
2776 int entry
, nr_frags
, frag
, tabort
, tentry
;
2778 unsigned long flags
;
2782 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2784 /* This is a hard error, log it. */
2785 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2786 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2787 netif_stop_queue(dev
);
2788 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2789 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when "
2790 "queue awake!\n", dev
->name
);
2795 if (skb
->ip_summed
== CHECKSUM_HW
) {
2796 u64 csum_start_off
, csum_stuff_off
;
2798 csum_start_off
= (u64
) (skb
->h
.raw
- skb
->data
);
2799 csum_stuff_off
= (u64
) ((skb
->h
.raw
+ skb
->csum
) - skb
->data
);
2801 ctrl
= TX_DESC_CSUM_EN
|
2802 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2803 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2806 entry
= cp
->tx_new
[ring
];
2807 cp
->tx_skbs
[ring
][entry
] = skb
;
2809 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2810 len
= skb_headlen(skb
);
2811 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2812 offset_in_page(skb
->data
), len
,
2816 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2817 if (unlikely(tabort
)) {
2818 /* NOTE: len is always > tabort */
2819 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2820 ctrl
| TX_DESC_SOF
, 0);
2821 entry
= TX_DESC_NEXT(ring
, entry
);
2823 memcpy(tx_tiny_buf(cp
, ring
, entry
), skb
->data
+
2824 len
- tabort
, tabort
);
2825 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2826 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2829 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2830 TX_DESC_SOF
, (nr_frags
== 0));
2832 entry
= TX_DESC_NEXT(ring
, entry
);
2834 for (frag
= 0; frag
< nr_frags
; frag
++) {
2835 skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2838 mapping
= pci_map_page(cp
->pdev
, fragp
->page
,
2839 fragp
->page_offset
, len
,
2842 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2843 if (unlikely(tabort
)) {
2846 /* NOTE: len is always > tabort */
2847 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2849 entry
= TX_DESC_NEXT(ring
, entry
);
2851 addr
= cas_page_map(fragp
->page
);
2852 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2853 addr
+ fragp
->page_offset
+ len
- tabort
,
2855 cas_page_unmap(addr
);
2856 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2860 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2861 (frag
+ 1 == nr_frags
));
2862 entry
= TX_DESC_NEXT(ring
, entry
);
2865 cp
->tx_new
[ring
] = entry
;
2866 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2867 netif_stop_queue(dev
);
2869 if (netif_msg_tx_queued(cp
))
2870 printk(KERN_DEBUG
"%s: tx[%d] queued, slot %d, skblen %d, "
2872 dev
->name
, ring
, entry
, skb
->len
,
2873 TX_BUFFS_AVAIL(cp
, ring
));
2874 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2875 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2879 static int cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2881 struct cas
*cp
= netdev_priv(dev
);
2883 /* this is only used as a load-balancing hint, so it doesn't
2884 * need to be SMP safe
2888 skb
= skb_padto(skb
, cp
->min_frame_size
);
2892 /* XXX: we need some higher-level QoS hooks to steer packets to
2893 * individual queues.
2895 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2897 dev
->trans_start
= jiffies
;
2901 static void cas_init_tx_dma(struct cas
*cp
)
2903 u64 desc_dma
= cp
->block_dvma
;
2908 /* set up tx completion writeback registers. must be 8-byte aligned */
2909 #ifdef USE_TX_COMPWB
2910 off
= offsetof(struct cas_init_block
, tx_compwb
);
2911 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2912 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2915 /* enable completion writebacks, enable paced mode,
2916 * disable read pipe, and disable pre-interrupt compwbs
2918 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2919 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2920 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2921 TX_CFG_INTR_COMPWB_DIS
;
2923 /* write out tx ring info and tx desc bases */
2924 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2925 off
= (unsigned long) cp
->init_txds
[i
] -
2926 (unsigned long) cp
->init_block
;
2928 val
|= CAS_TX_RINGN_BASE(i
);
2929 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2930 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2932 /* don't zero out the kick register here as the system
2936 writel(val
, cp
->regs
+ REG_TX_CFG
);
2938 /* program max burst sizes. these numbers should be different
2942 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2943 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2944 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2945 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2947 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2948 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2949 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2950 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2954 /* Must be invoked under cp->lock. */
2955 static inline void cas_init_dma(struct cas
*cp
)
2957 cas_init_tx_dma(cp
);
2958 cas_init_rx_dma(cp
);
2961 /* Must be invoked under cp->lock. */
2962 static u32
cas_setup_multicast(struct cas
*cp
)
2967 if (cp
->dev
->flags
& IFF_PROMISC
) {
2968 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
2970 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
2971 for (i
=0; i
< 16; i
++)
2972 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2973 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
2978 struct dev_mc_list
*dmi
= cp
->dev
->mc_list
;
2981 /* use the alternate mac address registers for the
2982 * first 15 multicast addresses
2984 for (i
= 1; i
<= CAS_MC_EXACT_MATCH_SIZE
; i
++) {
2986 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2987 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2988 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2991 writel((dmi
->dmi_addr
[4] << 8) | dmi
->dmi_addr
[5],
2992 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2993 writel((dmi
->dmi_addr
[2] << 8) | dmi
->dmi_addr
[3],
2994 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2995 writel((dmi
->dmi_addr
[0] << 8) | dmi
->dmi_addr
[1],
2996 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
3000 /* use hw hash table for the next series of
3001 * multicast addresses
3003 memset(hash_table
, 0, sizeof(hash_table
));
3005 crc
= ether_crc_le(ETH_ALEN
, dmi
->dmi_addr
);
3007 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
3010 for (i
=0; i
< 16; i
++)
3011 writel(hash_table
[i
], cp
->regs
+
3012 REG_MAC_HASH_TABLEN(i
));
3013 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3019 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3020 static void cas_clear_mac_err(struct cas
*cp
)
3022 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3023 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3024 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3025 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3026 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3027 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3028 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3029 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3030 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3031 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3032 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3036 static void cas_mac_reset(struct cas
*cp
)
3040 /* do both TX and RX reset */
3041 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3042 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3047 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3055 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3060 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3061 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3062 printk(KERN_ERR
"%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3063 cp
->dev
->name
, readl(cp
->regs
+ REG_MAC_TX_RESET
),
3064 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3065 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3069 /* Must be invoked under cp->lock. */
3070 static void cas_init_mac(struct cas
*cp
)
3072 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3074 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3079 /* setup core arbitration weight register */
3080 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3082 /* XXX Use pci_dma_burst_advice() */
3083 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3084 /* set the infinite burst register for chips that don't have
3087 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3088 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3091 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3093 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3094 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3095 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3097 /* change later for 802.3z */
3098 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3100 /* min frame + FCS */
3101 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3103 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3104 * specify the maximum frame size to prevent RX tag errors on
3107 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3108 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3109 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3110 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3112 /* NOTE: crc_size is used as a surrogate for half-duplex.
3113 * workaround saturn half-duplex issue by increasing preamble
3116 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3117 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3119 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3120 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3121 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3122 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3124 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3126 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3127 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3128 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3129 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3130 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3132 /* setup mac address in perfect filter array */
3133 for (i
= 0; i
< 45; i
++)
3134 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3136 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3137 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3138 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3140 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3141 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3142 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3144 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3145 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3147 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3148 * a writel does not seem to be necessary because Cassini
3149 * seems to preserve the configuration when we do the reset.
3150 * If the chip is in trouble, though, it is not clear if we
3151 * can really count on this behavior. cas_set_multicast uses
3152 * spin_lock_irqsave, but we are called only in cas_init_hw and
3153 * cas_init_hw is protected by cas_lock_all, which calls
3154 * spin_lock_irq (so it doesn't need to save the flags, and
3155 * we should be OK for the writel, as that is the only
3158 cp
->mac_rx_cfg
= rxcfg
= cas_setup_multicast(cp
);
3159 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
3161 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3162 cas_clear_mac_err(cp
);
3163 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3165 /* Setup MAC interrupts. We want to get all of the interesting
3166 * counter expiration events, but we do not want to hear about
3167 * normal rx/tx as the DMA engine tells us that.
3169 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3170 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3172 /* Don't enable even the PAUSE interrupts for now, we
3173 * make no use of those events other than to record them.
3175 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3178 /* Must be invoked under cp->lock. */
3179 static void cas_init_pause_thresholds(struct cas
*cp
)
3181 /* Calculate pause thresholds. Setting the OFF threshold to the
3182 * full RX fifo size effectively disables PAUSE generation
3184 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3185 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3187 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3188 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3189 cp
->rx_pause_off
= 7104;
3190 cp
->rx_pause_on
= 960;
3192 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3193 int on
= off
- max_frame
;
3194 cp
->rx_pause_off
= off
;
3195 cp
->rx_pause_on
= on
;
3200 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3202 int len
= strlen(str
) + 1;
3205 for (i
= 0; i
< len
; i
++) {
3206 if (readb(p
+ i
) != str
[i
])
3213 /* get the mac address by reading the vpd information in the rom.
3214 * also get the phy type and determine if there's an entropy generator.
3215 * NOTE: this is a bit convoluted for the following reasons:
3216 * 1) vpd info has order-dependent mac addresses for multinic cards
3217 * 2) the only way to determine the nic order is to use the slot
3219 * 3) fiber cards don't have bridges, so their slot numbers don't
3221 * 4) we don't actually know we have a fiber card until after
3222 * the mac addresses are parsed.
3224 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3227 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3228 void __iomem
*base
, *kstart
;
3231 #define VPD_FOUND_MAC 0x01
3232 #define VPD_FOUND_PHY 0x02
3234 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3237 /* give us access to the PROM */
3238 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3239 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3241 /* check for an expansion rom */
3242 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3243 goto use_random_mac_addr
;
3245 /* search for beginning of vpd */
3247 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3248 /* check for PCIR */
3249 if ((readb(p
+ i
+ 0) == 0x50) &&
3250 (readb(p
+ i
+ 1) == 0x43) &&
3251 (readb(p
+ i
+ 2) == 0x49) &&
3252 (readb(p
+ i
+ 3) == 0x52)) {
3253 base
= p
+ (readb(p
+ i
+ 8) |
3254 (readb(p
+ i
+ 9) << 8));
3259 if (!base
|| (readb(base
) != 0x82))
3260 goto use_random_mac_addr
;
3262 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3263 while (i
< EXPANSION_ROM_SIZE
) {
3264 if (readb(base
+ i
) != 0x90) /* no vpd found */
3265 goto use_random_mac_addr
;
3267 /* found a vpd field */
3268 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3270 /* extract keywords */
3271 kstart
= base
+ i
+ 3;
3273 while ((p
- kstart
) < len
) {
3274 int klen
= readb(p
+ 2);
3280 /* look for the following things:
3281 * -- correct length == 29
3282 * 3 (type) + 2 (size) +
3283 * 18 (strlen("local-mac-address") + 1) +
3285 * -- VPD Instance 'I'
3286 * -- VPD Type Bytes 'B'
3287 * -- VPD data length == 6
3288 * -- property string == local-mac-address
3290 * -- correct length == 24
3291 * 3 (type) + 2 (size) +
3292 * 12 (strlen("entropy-dev") + 1) +
3293 * 7 (strlen("vms110") + 1)
3294 * -- VPD Instance 'I'
3295 * -- VPD Type String 'B'
3296 * -- VPD data length == 7
3297 * -- property string == entropy-dev
3299 * -- correct length == 18
3300 * 3 (type) + 2 (size) +
3301 * 9 (strlen("phy-type") + 1) +
3302 * 4 (strlen("pcs") + 1)
3303 * -- VPD Instance 'I'
3304 * -- VPD Type String 'S'
3305 * -- VPD data length == 4
3306 * -- property string == phy-type
3308 * -- correct length == 23
3309 * 3 (type) + 2 (size) +
3310 * 14 (strlen("phy-interface") + 1) +
3311 * 4 (strlen("pcs") + 1)
3312 * -- VPD Instance 'I'
3313 * -- VPD Type String 'S'
3314 * -- VPD data length == 4
3315 * -- property string == phy-interface
3317 if (readb(p
) != 'I')
3320 /* finally, check string and length */
3321 type
= readb(p
+ 3);
3323 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3324 cas_vpd_match(p
+ 5,
3325 "local-mac-address")) {
3326 if (mac_off
++ > offset
)
3329 /* set mac address */
3330 for (j
= 0; j
< 6; j
++)
3340 #ifdef USE_ENTROPY_DEV
3342 cas_vpd_match(p
+ 5, "entropy-dev") &&
3343 cas_vpd_match(p
+ 17, "vms110")) {
3344 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3349 if (found
& VPD_FOUND_PHY
)
3352 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3353 cas_vpd_match(p
+ 5, "phy-type")) {
3354 if (cas_vpd_match(p
+ 14, "pcs")) {
3355 phy_type
= CAS_PHY_SERDES
;
3360 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3361 cas_vpd_match(p
+ 5, "phy-interface")) {
3362 if (cas_vpd_match(p
+ 19, "pcs")) {
3363 phy_type
= CAS_PHY_SERDES
;
3368 found
|= VPD_FOUND_MAC
;
3372 found
|= VPD_FOUND_PHY
;
3380 use_random_mac_addr
:
3381 if (found
& VPD_FOUND_MAC
)
3384 /* Sun MAC prefix then 3 random bytes. */
3385 printk(PFX
"MAC address not found in ROM VPD\n");
3389 get_random_bytes(dev_addr
+ 3, 3);
3392 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3396 /* check pci invariants */
3397 static void cas_check_pci_invariants(struct cas
*cp
)
3399 struct pci_dev
*pdev
= cp
->pdev
;
3403 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev
);
3404 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3405 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3406 if (rev
>= CAS_ID_REVPLUS
)
3407 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3408 if (rev
< CAS_ID_REVPLUS02u
)
3409 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3411 /* Original Cassini supports HW CSUM, but it's not
3412 * enabled by default as it can trigger TX hangs.
3414 if (rev
< CAS_ID_REV2
)
3415 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3417 /* Only sun has original cassini chips. */
3418 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3420 /* We use a flag because the same phy might be externally
3423 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3424 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3425 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3430 static int cas_check_invariants(struct cas
*cp
)
3432 struct pci_dev
*pdev
= cp
->pdev
;
3436 /* get page size for rx buffers. */
3438 #ifdef USE_PAGE_ORDER
3439 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3440 /* see if we can allocate larger pages */
3441 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3442 CAS_JUMBO_PAGE_SHIFT
-
3445 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3446 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3448 printk(PFX
"MTU limited to %d bytes\n", CAS_MAX_MTU
);
3452 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3454 /* Fetch the FIFO configurations. */
3455 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3456 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3458 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3459 * they're both connected.
3461 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3462 PCI_SLOT(pdev
->devfn
));
3463 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3464 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3465 return 0; /* no more checking needed */
3469 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3470 if (cfg
& MIF_CFG_MDIO_1
) {
3471 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3472 } else if (cfg
& MIF_CFG_MDIO_0
) {
3473 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3476 cas_mif_poll(cp
, 0);
3477 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3479 for (i
= 0; i
< 32; i
++) {
3483 for (j
= 0; j
< 3; j
++) {
3485 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3486 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3487 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3488 cp
->phy_id
= phy_id
;
3493 printk(KERN_ERR PFX
"MII phy did not respond [%08x]\n",
3494 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3498 /* see if we can do gigabit */
3499 cfg
= cas_phy_read(cp
, MII_BMSR
);
3500 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3501 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3502 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3506 /* Must be invoked under cp->lock. */
3507 static inline void cas_start_dma(struct cas
*cp
)
3514 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3515 writel(val
, cp
->regs
+ REG_TX_CFG
);
3516 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3517 writel(val
, cp
->regs
+ REG_RX_CFG
);
3519 /* enable the mac */
3520 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3521 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3522 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3523 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3527 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3528 if ((val
& MAC_TX_CFG_EN
))
3532 if (i
< 0) txfailed
= 1;
3535 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3536 if ((val
& MAC_RX_CFG_EN
)) {
3539 "%s: enabling mac failed [tx:%08x:%08x].\n",
3541 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3542 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3544 goto enable_rx_done
;
3548 printk(KERN_ERR
"%s: enabling mac failed [%s:%08x:%08x].\n",
3550 (txfailed
? "tx,rx":"rx"),
3551 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3552 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3555 cas_unmask_intr(cp
); /* enable interrupts */
3556 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3557 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3559 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3560 if (N_RX_DESC_RINGS
> 1)
3561 writel(RX_DESC_RINGN_SIZE(1) - 4,
3562 cp
->regs
+ REG_PLUS_RX_KICK1
);
3564 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3565 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3569 /* Must be invoked under cp->lock. */
3570 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3573 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3574 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3575 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3576 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3581 /* Must be invoked under cp->lock. */
3582 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3591 /* use GMII registers */
3592 val
= cas_phy_read(cp
, MII_LPA
);
3593 if (val
& CAS_LPA_PAUSE
)
3596 if (val
& CAS_LPA_ASYM_PAUSE
)
3599 if (val
& LPA_DUPLEX
)
3604 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3605 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3606 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3608 if (val
& CAS_LPA_1000FULL
)
3613 /* A link-up condition has occurred, initialize and enable the
3616 * Must be invoked under cp->lock.
3618 static void cas_set_link_modes(struct cas
*cp
)
3621 int full_duplex
, speed
, pause
;
3627 if (CAS_PHY_MII(cp
->phy_type
)) {
3628 cas_mif_poll(cp
, 0);
3629 val
= cas_phy_read(cp
, MII_BMCR
);
3630 if (val
& BMCR_ANENABLE
) {
3631 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3634 if (val
& BMCR_FULLDPLX
)
3637 if (val
& BMCR_SPEED100
)
3639 else if (val
& CAS_BMCR_SPEED1000
)
3640 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3643 cas_mif_poll(cp
, 1);
3646 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3647 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3648 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3649 if (val
& PCS_MII_CTRL_DUPLEX
)
3654 if (netif_msg_link(cp
))
3655 printk(KERN_INFO
"%s: Link up at %d Mbps, %s-duplex.\n",
3656 cp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
3658 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3659 if (CAS_PHY_MII(cp
->phy_type
)) {
3660 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3662 val
|= MAC_XIF_DISABLE_ECHO
;
3665 val
|= MAC_XIF_FDPLX_LED
;
3667 val
|= MAC_XIF_GMII_MODE
;
3668 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3670 /* deal with carrier and collision detect. */
3671 val
= MAC_TX_CFG_IPG_EN
;
3673 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3674 val
|= MAC_TX_CFG_IGNORE_COLL
;
3676 #ifndef USE_CSMA_CD_PROTO
3677 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3678 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3681 /* val now set up for REG_MAC_TX_CFG */
3683 /* If gigabit and half-duplex, enable carrier extension
3684 * mode. increase slot time to 512 bytes as well.
3685 * else, disable it and make sure slot time is 64 bytes.
3686 * also activate checksum bug workaround
3688 if ((speed
== 1000) && !full_duplex
) {
3689 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3690 cp
->regs
+ REG_MAC_TX_CFG
);
3692 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3693 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3694 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3695 cp
->regs
+ REG_MAC_RX_CFG
);
3697 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3700 /* minimum size gigabit frame at half duplex */
3701 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3704 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3706 /* checksum bug workaround. don't strip FCS when in
3709 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3711 val
|= MAC_RX_CFG_STRIP_FCS
;
3713 cp
->min_frame_size
= CAS_MIN_MTU
;
3715 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3717 cp
->min_frame_size
= CAS_MIN_FRAME
;
3719 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3720 cp
->regs
+ REG_MAC_RX_CFG
);
3721 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3724 if (netif_msg_link(cp
)) {
3726 printk(KERN_INFO
"%s: Pause is enabled "
3727 "(rxfifo: %d off: %d on: %d)\n",
3732 } else if (pause
& 0x10) {
3733 printk(KERN_INFO
"%s: TX pause enabled\n",
3736 printk(KERN_INFO
"%s: Pause is disabled\n",
3741 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3742 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3743 if (pause
) { /* symmetric or asymmetric pause */
3744 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3745 if (pause
& 0x01) { /* symmetric pause */
3746 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3749 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3753 /* Must be invoked under cp->lock. */
3754 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3759 cas_init_pause_thresholds(cp
);
3764 /* Default aneg parameters */
3765 cp
->timer_ticks
= 0;
3766 cas_begin_auto_negotiation(cp
, NULL
);
3767 } else if (cp
->lstate
== link_up
) {
3768 cas_set_link_modes(cp
);
3769 netif_carrier_on(cp
->dev
);
3773 /* Must be invoked under cp->lock. on earlier cassini boards,
3774 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3775 * let it settle out, and then restore pci state.
3777 static void cas_hard_reset(struct cas
*cp
)
3779 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3781 pci_restore_state(cp
->pdev
);
3785 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3789 /* issue a global reset. don't use RSTOUT. */
3790 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3791 /* For PCS, when the blkflag is set, we should set the
3792 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3793 * the last autonegotiation from being cleared. We'll
3794 * need some special handling if the chip is set into a
3797 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3798 cp
->regs
+ REG_SW_RESET
);
3800 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3803 /* need to wait at least 3ms before polling register */
3807 while (limit
-- > 0) {
3808 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3809 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3813 printk(KERN_ERR
"%s: sw reset failed.\n", cp
->dev
->name
);
3816 /* enable various BIM interrupts */
3817 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3818 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3820 /* clear out pci error status mask for handled errors.
3821 * we don't deal with DMA counter overflows as they happen
3824 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3825 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3826 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3827 REG_PCI_ERR_STATUS_MASK
);
3829 /* set up for MII by default to address mac rx reset timeout
3832 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3835 static void cas_reset(struct cas
*cp
, int blkflag
)
3840 cas_global_reset(cp
, blkflag
);
3842 cas_entropy_reset(cp
);
3844 /* disable dma engines. */
3845 val
= readl(cp
->regs
+ REG_TX_CFG
);
3846 val
&= ~TX_CFG_DMA_EN
;
3847 writel(val
, cp
->regs
+ REG_TX_CFG
);
3849 val
= readl(cp
->regs
+ REG_RX_CFG
);
3850 val
&= ~RX_CFG_DMA_EN
;
3851 writel(val
, cp
->regs
+ REG_RX_CFG
);
3853 /* program header parser */
3854 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3855 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3856 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3858 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3861 /* clear out error registers */
3862 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3863 cas_clear_mac_err(cp
);
3864 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3867 /* Shut down the chip, must be called with pm_sem held. */
3868 static void cas_shutdown(struct cas
*cp
)
3870 unsigned long flags
;
3872 /* Make us not-running to avoid timers respawning */
3875 del_timer_sync(&cp
->link_timer
);
3877 /* Stop the reset task */
3879 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3880 atomic_read(&cp
->reset_task_pending_spare
) ||
3881 atomic_read(&cp
->reset_task_pending_all
))
3885 while (atomic_read(&cp
->reset_task_pending
))
3888 /* Actually stop the chip */
3889 cas_lock_all_save(cp
, flags
);
3891 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3892 cas_phy_powerdown(cp
);
3893 cas_unlock_all_restore(cp
, flags
);
3896 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3898 struct cas
*cp
= netdev_priv(dev
);
3900 if (new_mtu
< CAS_MIN_MTU
|| new_mtu
> CAS_MAX_MTU
)
3904 if (!netif_running(dev
) || !netif_device_present(dev
))
3907 /* let the reset task handle it */
3909 atomic_inc(&cp
->reset_task_pending
);
3910 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3911 atomic_inc(&cp
->reset_task_pending_all
);
3913 atomic_inc(&cp
->reset_task_pending_mtu
);
3915 schedule_work(&cp
->reset_task
);
3917 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3918 CAS_RESET_ALL
: CAS_RESET_MTU
);
3919 printk(KERN_ERR
"reset called in cas_change_mtu\n");
3920 schedule_work(&cp
->reset_task
);
3923 flush_scheduled_work();
3927 static void cas_clean_txd(struct cas
*cp
, int ring
)
3929 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3930 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3934 size
= TX_DESC_RINGN_SIZE(ring
);
3935 for (i
= 0; i
< size
; i
++) {
3938 if (skbs
[i
] == NULL
)
3944 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3945 int ent
= i
& (size
- 1);
3947 /* first buffer is never a tiny buffer and so
3948 * needs to be unmapped.
3950 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3951 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3952 le64_to_cpu(txd
[ent
].control
));
3953 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3956 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3959 /* next buffer might by a tiny buffer.
3962 ent
= i
& (size
- 1);
3963 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3967 dev_kfree_skb_any(skb
);
3970 /* zero out tiny buf usage */
3971 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
3974 /* freed on close */
3975 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
3977 cas_page_t
**page
= cp
->rx_pages
[ring
];
3980 size
= RX_DESC_RINGN_SIZE(ring
);
3981 for (i
= 0; i
< size
; i
++) {
3983 cas_page_free(cp
, page
[i
]);
3989 static void cas_free_rxds(struct cas
*cp
)
3993 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
3994 cas_free_rx_desc(cp
, i
);
3997 /* Must be invoked under cp->lock. */
3998 static void cas_clean_rings(struct cas
*cp
)
4002 /* need to clean all tx rings */
4003 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
4004 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
4005 for (i
= 0; i
< N_TX_RINGS
; i
++)
4006 cas_clean_txd(cp
, i
);
4008 /* zero out init block */
4009 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
4014 /* allocated on open */
4015 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
4017 cas_page_t
**page
= cp
->rx_pages
[ring
];
4020 size
= RX_DESC_RINGN_SIZE(ring
);
4021 for (i
= 0; i
< size
; i
++) {
4022 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
4028 static int cas_alloc_rxds(struct cas
*cp
)
4032 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
4033 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4041 static void cas_reset_task(void *data
)
4043 struct cas
*cp
= (struct cas
*) data
;
4045 int pending
= atomic_read(&cp
->reset_task_pending
);
4047 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4048 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4049 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4051 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4052 /* We can have more tasks scheduled than actually
4055 atomic_dec(&cp
->reset_task_pending
);
4059 /* The link went down, we reset the ring, but keep
4060 * DMA stopped. Use this function for reset
4063 if (cp
->hw_running
) {
4064 unsigned long flags
;
4066 /* Make sure we don't get interrupts or tx packets */
4067 netif_device_detach(cp
->dev
);
4068 cas_lock_all_save(cp
, flags
);
4071 /* We call cas_spare_recover when we call cas_open.
4072 * but we do not initialize the lists cas_spare_recover
4073 * uses until cas_open is called.
4075 cas_spare_recover(cp
, GFP_ATOMIC
);
4078 /* test => only pending_spare set */
4079 if (!pending_all
&& !pending_mtu
)
4082 if (pending
== CAS_RESET_SPARE
)
4085 /* when pending == CAS_RESET_ALL, the following
4086 * call to cas_init_hw will restart auto negotiation.
4087 * Setting the second argument of cas_reset to
4088 * !(pending == CAS_RESET_ALL) will set this argument
4089 * to 1 (avoiding reinitializing the PHY for the normal
4090 * PCS case) when auto negotiation is not restarted.
4093 cas_reset(cp
, !(pending_all
> 0));
4095 cas_clean_rings(cp
);
4096 cas_init_hw(cp
, (pending_all
> 0));
4098 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4100 cas_clean_rings(cp
);
4101 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4105 cas_unlock_all_restore(cp
, flags
);
4106 netif_device_attach(cp
->dev
);
4109 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4110 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4111 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4112 atomic_dec(&cp
->reset_task_pending
);
4114 atomic_set(&cp
->reset_task_pending
, 0);
4118 static void cas_link_timer(unsigned long data
)
4120 struct cas
*cp
= (struct cas
*) data
;
4121 int mask
, pending
= 0, reset
= 0;
4122 unsigned long flags
;
4124 if (link_transition_timeout
!= 0 &&
4125 cp
->link_transition_jiffies_valid
&&
4126 ((jiffies
- cp
->link_transition_jiffies
) >
4127 (link_transition_timeout
))) {
4128 /* One-second counter so link-down workaround doesn't
4129 * cause resets to occur so fast as to fool the switch
4130 * into thinking the link is down.
4132 cp
->link_transition_jiffies_valid
= 0;
4135 if (!cp
->hw_running
)
4138 spin_lock_irqsave(&cp
->lock
, flags
);
4140 cas_entropy_gather(cp
);
4142 /* If the link task is still pending, we just
4143 * reschedule the link timer
4146 if (atomic_read(&cp
->reset_task_pending_all
) ||
4147 atomic_read(&cp
->reset_task_pending_spare
) ||
4148 atomic_read(&cp
->reset_task_pending_mtu
))
4151 if (atomic_read(&cp
->reset_task_pending
))
4155 /* check for rx cleaning */
4156 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4159 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4160 rmask
= CAS_FLAG_RXD_POST(i
);
4161 if ((mask
& rmask
) == 0)
4164 /* post_rxds will do a mod_timer */
4165 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4169 cp
->cas_flags
&= ~rmask
;
4173 if (CAS_PHY_MII(cp
->phy_type
)) {
4175 cas_mif_poll(cp
, 0);
4176 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4177 /* WTZ: Solaris driver reads this twice, but that
4178 * may be due to the PCS case and the use of a
4179 * common implementation. Read it twice here to be
4182 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4183 cas_mif_poll(cp
, 1);
4184 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4185 reset
= cas_mii_link_check(cp
, bmsr
);
4187 reset
= cas_pcs_link_check(cp
);
4193 /* check for tx state machine confusion */
4194 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4195 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4197 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4199 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4200 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4201 if (netif_msg_tx_err(cp
))
4202 printk(KERN_DEBUG
"%s: tx err: "
4203 "MAC_STATE[%08x]\n",
4204 cp
->dev
->name
, val
);
4209 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4210 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4211 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4212 if ((val
== 0) && (wptr
!= rptr
)) {
4213 if (netif_msg_tx_err(cp
))
4214 printk(KERN_DEBUG
"%s: tx err: "
4215 "TX_FIFO[%08x:%08x:%08x]\n",
4216 cp
->dev
->name
, val
, wptr
, rptr
);
4227 atomic_inc(&cp
->reset_task_pending
);
4228 atomic_inc(&cp
->reset_task_pending_all
);
4229 schedule_work(&cp
->reset_task
);
4231 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4232 printk(KERN_ERR
"reset called in cas_link_timer\n");
4233 schedule_work(&cp
->reset_task
);
4238 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4240 spin_unlock_irqrestore(&cp
->lock
, flags
);
4243 /* tiny buffers are used to avoid target abort issues with
4246 static void cas_tx_tiny_free(struct cas
*cp
)
4248 struct pci_dev
*pdev
= cp
->pdev
;
4251 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4252 if (!cp
->tx_tiny_bufs
[i
])
4255 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4256 cp
->tx_tiny_bufs
[i
],
4257 cp
->tx_tiny_dvma
[i
]);
4258 cp
->tx_tiny_bufs
[i
] = NULL
;
4262 static int cas_tx_tiny_alloc(struct cas
*cp
)
4264 struct pci_dev
*pdev
= cp
->pdev
;
4267 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4268 cp
->tx_tiny_bufs
[i
] =
4269 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4270 &cp
->tx_tiny_dvma
[i
]);
4271 if (!cp
->tx_tiny_bufs
[i
]) {
4272 cas_tx_tiny_free(cp
);
4280 static int cas_open(struct net_device
*dev
)
4282 struct cas
*cp
= netdev_priv(dev
);
4284 unsigned long flags
;
4288 hw_was_up
= cp
->hw_running
;
4290 /* The power-management semaphore protects the hw_running
4291 * etc. state so it is safe to do this bit without cp->lock
4293 if (!cp
->hw_running
) {
4294 /* Reset the chip */
4295 cas_lock_all_save(cp
, flags
);
4296 /* We set the second arg to cas_reset to zero
4297 * because cas_init_hw below will have its second
4298 * argument set to non-zero, which will force
4299 * autonegotiation to start.
4303 cas_unlock_all_restore(cp
, flags
);
4306 if (cas_tx_tiny_alloc(cp
) < 0)
4309 /* alloc rx descriptors */
4311 if (cas_alloc_rxds(cp
) < 0)
4314 /* allocate spares */
4316 cas_spare_recover(cp
, GFP_KERNEL
);
4318 /* We can now request the interrupt as we know it's masked
4319 * on the controller. cassini+ has up to 4 interrupts
4320 * that can be used, but you need to do explicit pci interrupt
4321 * mapping to expose them
4323 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4324 SA_SHIRQ
, dev
->name
, (void *) dev
)) {
4325 printk(KERN_ERR
"%s: failed to request irq !\n",
4332 cas_lock_all_save(cp
, flags
);
4333 cas_clean_rings(cp
);
4334 cas_init_hw(cp
, !hw_was_up
);
4336 cas_unlock_all_restore(cp
, flags
);
4338 netif_start_queue(dev
);
4346 cas_tx_tiny_free(cp
);
4351 static int cas_close(struct net_device
*dev
)
4353 unsigned long flags
;
4354 struct cas
*cp
= netdev_priv(dev
);
4356 /* Make sure we don't get distracted by suspend/resume */
4359 netif_stop_queue(dev
);
4361 /* Stop traffic, mark us closed */
4362 cas_lock_all_save(cp
, flags
);
4366 cas_begin_auto_negotiation(cp
, NULL
);
4367 cas_clean_rings(cp
);
4368 cas_unlock_all_restore(cp
, flags
);
4370 free_irq(cp
->pdev
->irq
, (void *) dev
);
4373 cas_tx_tiny_free(cp
);
4379 const char name
[ETH_GSTRING_LEN
];
4380 } ethtool_cassini_statnames
[] = {
4387 {"rx_frame_errors"},
4388 {"rx_length_errors"},
4391 {"tx_aborted_errors"},
4398 #define CAS_NUM_STAT_KEYS (sizeof(ethtool_cassini_statnames)/ETH_GSTRING_LEN)
4401 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4402 } ethtool_register_table
[] = {
4417 {REG_PCS_MII_STATUS
},
4418 {REG_PCS_STATE_MACHINE
},
4419 {REG_MAC_COLL_EXCESS
},
4422 #define CAS_REG_LEN (sizeof(ethtool_register_table)/sizeof(int))
4423 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4425 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4429 unsigned long flags
;
4431 spin_lock_irqsave(&cp
->lock
, flags
);
4432 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4435 if (ethtool_register_table
[i
].offsets
< 0) {
4436 hval
= cas_phy_read(cp
,
4437 -ethtool_register_table
[i
].offsets
);
4440 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4442 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4444 spin_unlock_irqrestore(&cp
->lock
, flags
);
4447 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4449 struct cas
*cp
= netdev_priv(dev
);
4450 struct net_device_stats
*stats
= cp
->net_stats
;
4451 unsigned long flags
;
4455 /* we collate all of the stats into net_stats[N_TX_RING] */
4456 if (!cp
->hw_running
)
4457 return stats
+ N_TX_RINGS
;
4459 /* collect outstanding stats */
4460 /* WTZ: the Cassini spec gives these as 16 bit counters but
4461 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4462 * in case the chip somehow puts any garbage in the other bits.
4463 * Also, counter usage didn't seem to mach what Adrian did
4464 * in the parts of the code that set these quantities. Made
4467 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4468 stats
[N_TX_RINGS
].rx_crc_errors
+=
4469 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4470 stats
[N_TX_RINGS
].rx_frame_errors
+=
4471 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4472 stats
[N_TX_RINGS
].rx_length_errors
+=
4473 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4475 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4476 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4477 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4478 stats
[N_TX_RINGS
].collisions
+=
4479 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4481 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4482 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4483 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4484 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4486 cas_clear_mac_err(cp
);
4488 /* saved bits that are unique to ring 0 */
4489 spin_lock(&cp
->stat_lock
[0]);
4490 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4491 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4492 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4493 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4494 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4495 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4496 spin_unlock(&cp
->stat_lock
[0]);
4498 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4499 spin_lock(&cp
->stat_lock
[i
]);
4500 stats
[N_TX_RINGS
].rx_length_errors
+=
4501 stats
[i
].rx_length_errors
;
4502 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4503 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4504 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4505 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4506 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4507 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4508 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4509 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4510 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4511 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4512 spin_unlock(&cp
->stat_lock
[i
]);
4514 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4515 return stats
+ N_TX_RINGS
;
4519 static void cas_set_multicast(struct net_device
*dev
)
4521 struct cas
*cp
= netdev_priv(dev
);
4522 u32 rxcfg
, rxcfg_new
;
4523 unsigned long flags
;
4524 int limit
= STOP_TRIES
;
4526 if (!cp
->hw_running
)
4529 spin_lock_irqsave(&cp
->lock
, flags
);
4530 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4532 /* disable RX MAC and wait for completion */
4533 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4534 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4540 /* disable hash filter and wait for completion */
4542 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4543 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4544 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4550 /* program hash filters */
4551 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4553 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4554 spin_unlock_irqrestore(&cp
->lock
, flags
);
4557 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4559 struct cas
*cp
= netdev_priv(dev
);
4560 strncpy(info
->driver
, DRV_MODULE_NAME
, ETHTOOL_BUSINFO_LEN
);
4561 strncpy(info
->version
, DRV_MODULE_VERSION
, ETHTOOL_BUSINFO_LEN
);
4562 info
->fw_version
[0] = '\0';
4563 strncpy(info
->bus_info
, pci_name(cp
->pdev
), ETHTOOL_BUSINFO_LEN
);
4564 info
->regdump_len
= cp
->casreg_len
< CAS_MAX_REGS
?
4565 cp
->casreg_len
: CAS_MAX_REGS
;
4566 info
->n_stats
= CAS_NUM_STAT_KEYS
;
4569 static int cas_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4571 struct cas
*cp
= netdev_priv(dev
);
4573 int full_duplex
, speed
, pause
;
4574 unsigned long flags
;
4575 enum link_state linkstate
= link_up
;
4577 cmd
->advertising
= 0;
4578 cmd
->supported
= SUPPORTED_Autoneg
;
4579 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4580 cmd
->supported
|= SUPPORTED_1000baseT_Full
;
4581 cmd
->advertising
|= ADVERTISED_1000baseT_Full
;
4584 /* Record PHY settings if HW is on. */
4585 spin_lock_irqsave(&cp
->lock
, flags
);
4587 linkstate
= cp
->lstate
;
4588 if (CAS_PHY_MII(cp
->phy_type
)) {
4589 cmd
->port
= PORT_MII
;
4590 cmd
->transceiver
= (cp
->cas_flags
& CAS_FLAG_SATURN
) ?
4591 XCVR_INTERNAL
: XCVR_EXTERNAL
;
4592 cmd
->phy_address
= cp
->phy_addr
;
4593 cmd
->advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4594 ADVERTISED_10baseT_Half
|
4595 ADVERTISED_10baseT_Full
|
4596 ADVERTISED_100baseT_Half
|
4597 ADVERTISED_100baseT_Full
;
4600 (SUPPORTED_10baseT_Half
|
4601 SUPPORTED_10baseT_Full
|
4602 SUPPORTED_100baseT_Half
|
4603 SUPPORTED_100baseT_Full
|
4604 SUPPORTED_TP
| SUPPORTED_MII
);
4606 if (cp
->hw_running
) {
4607 cas_mif_poll(cp
, 0);
4608 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4609 cas_read_mii_link_mode(cp
, &full_duplex
,
4611 cas_mif_poll(cp
, 1);
4615 cmd
->port
= PORT_FIBRE
;
4616 cmd
->transceiver
= XCVR_INTERNAL
;
4617 cmd
->phy_address
= 0;
4618 cmd
->supported
|= SUPPORTED_FIBRE
;
4619 cmd
->advertising
|= ADVERTISED_FIBRE
;
4621 if (cp
->hw_running
) {
4622 /* pcs uses the same bits as mii */
4623 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4624 cas_read_pcs_link_mode(cp
, &full_duplex
,
4628 spin_unlock_irqrestore(&cp
->lock
, flags
);
4630 if (bmcr
& BMCR_ANENABLE
) {
4631 cmd
->advertising
|= ADVERTISED_Autoneg
;
4632 cmd
->autoneg
= AUTONEG_ENABLE
;
4633 cmd
->speed
= ((speed
== 10) ?
4636 SPEED_1000
: SPEED_100
));
4637 cmd
->duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4639 cmd
->autoneg
= AUTONEG_DISABLE
;
4641 (bmcr
& CAS_BMCR_SPEED1000
) ?
4643 ((bmcr
& BMCR_SPEED100
) ? SPEED_100
:
4646 (bmcr
& BMCR_FULLDPLX
) ?
4647 DUPLEX_FULL
: DUPLEX_HALF
;
4649 if (linkstate
!= link_up
) {
4650 /* Force these to "unknown" if the link is not up and
4651 * autonogotiation in enabled. We can set the link
4652 * speed to 0, but not cmd->duplex,
4653 * because its legal values are 0 and 1. Ethtool will
4654 * print the value reported in parentheses after the
4655 * word "Unknown" for unrecognized values.
4657 * If in forced mode, we report the speed and duplex
4658 * settings that we configured.
4660 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4664 cmd
->speed
= SPEED_10
;
4665 if (cp
->link_cntl
& BMCR_SPEED100
) {
4666 cmd
->speed
= SPEED_100
;
4667 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4668 cmd
->speed
= SPEED_1000
;
4670 cmd
->duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
)?
4671 DUPLEX_FULL
: DUPLEX_HALF
;
4677 static int cas_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4679 struct cas
*cp
= netdev_priv(dev
);
4680 unsigned long flags
;
4682 /* Verify the settings we care about. */
4683 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
4684 cmd
->autoneg
!= AUTONEG_DISABLE
)
4687 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
4688 ((cmd
->speed
!= SPEED_1000
&&
4689 cmd
->speed
!= SPEED_100
&&
4690 cmd
->speed
!= SPEED_10
) ||
4691 (cmd
->duplex
!= DUPLEX_HALF
&&
4692 cmd
->duplex
!= DUPLEX_FULL
)))
4695 /* Apply settings and restart link process. */
4696 spin_lock_irqsave(&cp
->lock
, flags
);
4697 cas_begin_auto_negotiation(cp
, cmd
);
4698 spin_unlock_irqrestore(&cp
->lock
, flags
);
4702 static int cas_nway_reset(struct net_device
*dev
)
4704 struct cas
*cp
= netdev_priv(dev
);
4705 unsigned long flags
;
4707 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4710 /* Restart link process. */
4711 spin_lock_irqsave(&cp
->lock
, flags
);
4712 cas_begin_auto_negotiation(cp
, NULL
);
4713 spin_unlock_irqrestore(&cp
->lock
, flags
);
4718 static u32
cas_get_link(struct net_device
*dev
)
4720 struct cas
*cp
= netdev_priv(dev
);
4721 return cp
->lstate
== link_up
;
4724 static u32
cas_get_msglevel(struct net_device
*dev
)
4726 struct cas
*cp
= netdev_priv(dev
);
4727 return cp
->msg_enable
;
4730 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4732 struct cas
*cp
= netdev_priv(dev
);
4733 cp
->msg_enable
= value
;
4736 static int cas_get_regs_len(struct net_device
*dev
)
4738 struct cas
*cp
= netdev_priv(dev
);
4739 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4742 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4745 struct cas
*cp
= netdev_priv(dev
);
4747 /* cas_read_regs handles locks (cp->lock). */
4748 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4751 static int cas_get_stats_count(struct net_device
*dev
)
4753 return CAS_NUM_STAT_KEYS
;
4756 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4758 memcpy(data
, ðtool_cassini_statnames
,
4759 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4762 static void cas_get_ethtool_stats(struct net_device
*dev
,
4763 struct ethtool_stats
*estats
, u64
*data
)
4765 struct cas
*cp
= netdev_priv(dev
);
4766 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4768 data
[i
++] = stats
->collisions
;
4769 data
[i
++] = stats
->rx_bytes
;
4770 data
[i
++] = stats
->rx_crc_errors
;
4771 data
[i
++] = stats
->rx_dropped
;
4772 data
[i
++] = stats
->rx_errors
;
4773 data
[i
++] = stats
->rx_fifo_errors
;
4774 data
[i
++] = stats
->rx_frame_errors
;
4775 data
[i
++] = stats
->rx_length_errors
;
4776 data
[i
++] = stats
->rx_over_errors
;
4777 data
[i
++] = stats
->rx_packets
;
4778 data
[i
++] = stats
->tx_aborted_errors
;
4779 data
[i
++] = stats
->tx_bytes
;
4780 data
[i
++] = stats
->tx_dropped
;
4781 data
[i
++] = stats
->tx_errors
;
4782 data
[i
++] = stats
->tx_fifo_errors
;
4783 data
[i
++] = stats
->tx_packets
;
4784 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4787 static struct ethtool_ops cas_ethtool_ops
= {
4788 .get_drvinfo
= cas_get_drvinfo
,
4789 .get_settings
= cas_get_settings
,
4790 .set_settings
= cas_set_settings
,
4791 .nway_reset
= cas_nway_reset
,
4792 .get_link
= cas_get_link
,
4793 .get_msglevel
= cas_get_msglevel
,
4794 .set_msglevel
= cas_set_msglevel
,
4795 .get_regs_len
= cas_get_regs_len
,
4796 .get_regs
= cas_get_regs
,
4797 .get_stats_count
= cas_get_stats_count
,
4798 .get_strings
= cas_get_strings
,
4799 .get_ethtool_stats
= cas_get_ethtool_stats
,
4802 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4804 struct cas
*cp
= netdev_priv(dev
);
4805 struct mii_ioctl_data
*data
= if_mii(ifr
);
4806 unsigned long flags
;
4807 int rc
= -EOPNOTSUPP
;
4809 /* Hold the PM semaphore while doing ioctl's or we may collide
4810 * with open/close and power management and oops.
4814 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4815 data
->phy_id
= cp
->phy_addr
;
4816 /* Fallthrough... */
4818 case SIOCGMIIREG
: /* Read MII PHY register. */
4819 spin_lock_irqsave(&cp
->lock
, flags
);
4820 cas_mif_poll(cp
, 0);
4821 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4822 cas_mif_poll(cp
, 1);
4823 spin_unlock_irqrestore(&cp
->lock
, flags
);
4827 case SIOCSMIIREG
: /* Write MII PHY register. */
4828 if (!capable(CAP_NET_ADMIN
)) {
4832 spin_lock_irqsave(&cp
->lock
, flags
);
4833 cas_mif_poll(cp
, 0);
4834 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4835 cas_mif_poll(cp
, 1);
4836 spin_unlock_irqrestore(&cp
->lock
, flags
);
4846 static int __devinit
cas_init_one(struct pci_dev
*pdev
,
4847 const struct pci_device_id
*ent
)
4849 static int cas_version_printed
= 0;
4850 unsigned long casreg_base
, casreg_len
;
4851 struct net_device
*dev
;
4853 int i
, err
, pci_using_dac
;
4855 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4857 if (cas_version_printed
++ == 0)
4858 printk(KERN_INFO
"%s", version
);
4860 err
= pci_enable_device(pdev
);
4862 printk(KERN_ERR PFX
"Cannot enable PCI device, "
4867 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4868 printk(KERN_ERR PFX
"Cannot find proper PCI device "
4869 "base address, aborting.\n");
4871 goto err_out_disable_pdev
;
4874 dev
= alloc_etherdev(sizeof(*cp
));
4876 printk(KERN_ERR PFX
"Etherdev alloc failed, aborting.\n");
4878 goto err_out_disable_pdev
;
4880 SET_MODULE_OWNER(dev
);
4881 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4883 err
= pci_request_regions(pdev
, dev
->name
);
4885 printk(KERN_ERR PFX
"Cannot obtain PCI resources, "
4887 goto err_out_free_netdev
;
4889 pci_set_master(pdev
);
4891 /* we must always turn on parity response or else parity
4892 * doesn't get generated properly. disable SERR/PERR as well.
4893 * in addition, we want to turn MWI on.
4895 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4896 pci_cmd
&= ~PCI_COMMAND_SERR
;
4897 pci_cmd
|= PCI_COMMAND_PARITY
;
4898 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4901 * On some architectures, the default cache line size set
4902 * by pci_set_mwi reduces perforamnce. We have to increase
4903 * it for this case. To start, we'll print some configuration
4907 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4908 &orig_cacheline_size
);
4909 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4910 cas_cacheline_size
=
4911 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
4912 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
4913 if (pci_write_config_byte(pdev
,
4914 PCI_CACHE_LINE_SIZE
,
4915 cas_cacheline_size
)) {
4916 printk(KERN_ERR PFX
"Could not set PCI cache "
4918 goto err_write_cacheline
;
4924 /* Configure DMA attributes. */
4925 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
4927 err
= pci_set_consistent_dma_mask(pdev
,
4930 printk(KERN_ERR PFX
"Unable to obtain 64-bit DMA "
4931 "for consistent allocations\n");
4932 goto err_out_free_res
;
4936 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
4938 printk(KERN_ERR PFX
"No usable DMA configuration, "
4940 goto err_out_free_res
;
4945 casreg_base
= pci_resource_start(pdev
, 0);
4946 casreg_len
= pci_resource_len(pdev
, 0);
4948 cp
= netdev_priv(dev
);
4951 /* A value of 0 indicates we never explicitly set it */
4952 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
4955 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
4958 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
4959 cp
->link_transition_jiffies_valid
= 0;
4961 spin_lock_init(&cp
->lock
);
4962 spin_lock_init(&cp
->rx_inuse_lock
);
4963 spin_lock_init(&cp
->rx_spare_lock
);
4964 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4965 spin_lock_init(&cp
->stat_lock
[i
]);
4966 spin_lock_init(&cp
->tx_lock
[i
]);
4968 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
4969 init_MUTEX(&cp
->pm_sem
);
4971 init_timer(&cp
->link_timer
);
4972 cp
->link_timer
.function
= cas_link_timer
;
4973 cp
->link_timer
.data
= (unsigned long) cp
;
4976 /* Just in case the implementation of atomic operations
4977 * change so that an explicit initialization is necessary.
4979 atomic_set(&cp
->reset_task_pending
, 0);
4980 atomic_set(&cp
->reset_task_pending_all
, 0);
4981 atomic_set(&cp
->reset_task_pending_spare
, 0);
4982 atomic_set(&cp
->reset_task_pending_mtu
, 0);
4984 INIT_WORK(&cp
->reset_task
, cas_reset_task
, cp
);
4986 /* Default link parameters */
4987 if (link_mode
>= 0 && link_mode
<= 6)
4988 cp
->link_cntl
= link_modes
[link_mode
];
4990 cp
->link_cntl
= BMCR_ANENABLE
;
4991 cp
->lstate
= link_down
;
4992 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
4993 netif_carrier_off(cp
->dev
);
4994 cp
->timer_ticks
= 0;
4996 /* give us access to cassini registers */
4997 cp
->regs
= ioremap(casreg_base
, casreg_len
);
4998 if (cp
->regs
== 0UL) {
4999 printk(KERN_ERR PFX
"Cannot map device registers, "
5001 goto err_out_free_res
;
5003 cp
->casreg_len
= casreg_len
;
5005 pci_save_state(pdev
);
5006 cas_check_pci_invariants(cp
);
5009 if (cas_check_invariants(cp
))
5010 goto err_out_iounmap
;
5012 cp
->init_block
= (struct cas_init_block
*)
5013 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5015 if (!cp
->init_block
) {
5016 printk(KERN_ERR PFX
"Cannot allocate init block, "
5018 goto err_out_iounmap
;
5021 for (i
= 0; i
< N_TX_RINGS
; i
++)
5022 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5024 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5025 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5027 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5028 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5030 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5031 skb_queue_head_init(&cp
->rx_flows
[i
]);
5033 dev
->open
= cas_open
;
5034 dev
->stop
= cas_close
;
5035 dev
->hard_start_xmit
= cas_start_xmit
;
5036 dev
->get_stats
= cas_get_stats
;
5037 dev
->set_multicast_list
= cas_set_multicast
;
5038 dev
->do_ioctl
= cas_ioctl
;
5039 dev
->ethtool_ops
= &cas_ethtool_ops
;
5040 dev
->tx_timeout
= cas_tx_timeout
;
5041 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5042 dev
->change_mtu
= cas_change_mtu
;
5044 dev
->poll
= cas_poll
;
5047 #ifdef CONFIG_NET_POLL_CONTROLLER
5048 dev
->poll_controller
= cas_netpoll
;
5050 dev
->irq
= pdev
->irq
;
5053 /* Cassini features. */
5054 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5055 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5058 dev
->features
|= NETIF_F_HIGHDMA
;
5060 if (register_netdev(dev
)) {
5061 printk(KERN_ERR PFX
"Cannot register net device, "
5063 goto err_out_free_consistent
;
5066 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5067 printk(KERN_INFO
"%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5068 "Ethernet[%d] ", dev
->name
,
5069 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5070 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5071 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5072 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
);
5074 for (i
= 0; i
< 6; i
++)
5075 printk("%2.2x%c", dev
->dev_addr
[i
],
5076 i
== 5 ? ' ' : ':');
5079 pci_set_drvdata(pdev
, dev
);
5081 cas_entropy_reset(cp
);
5083 cas_begin_auto_negotiation(cp
, NULL
);
5086 err_out_free_consistent
:
5087 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5088 cp
->init_block
, cp
->block_dvma
);
5100 pci_release_regions(pdev
);
5102 err_write_cacheline
:
5103 /* Try to restore it in case the error occured after we
5106 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5108 err_out_free_netdev
:
5111 err_out_disable_pdev
:
5112 pci_disable_device(pdev
);
5113 pci_set_drvdata(pdev
, NULL
);
5117 static void __devexit
cas_remove_one(struct pci_dev
*pdev
)
5119 struct net_device
*dev
= pci_get_drvdata(pdev
);
5124 cp
= netdev_priv(dev
);
5125 unregister_netdev(dev
);
5128 flush_scheduled_work();
5134 if (cp
->orig_cacheline_size
) {
5135 /* Restore the cache line size if we had modified
5138 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5139 cp
->orig_cacheline_size
);
5142 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5143 cp
->init_block
, cp
->block_dvma
);
5146 pci_release_regions(pdev
);
5147 pci_disable_device(pdev
);
5148 pci_set_drvdata(pdev
, NULL
);
5152 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5154 struct net_device
*dev
= pci_get_drvdata(pdev
);
5155 struct cas
*cp
= netdev_priv(dev
);
5156 unsigned long flags
;
5158 /* We hold the PM semaphore during entire driver
5163 /* If the driver is opened, we stop the DMA */
5165 netif_device_detach(dev
);
5167 cas_lock_all_save(cp
, flags
);
5169 /* We can set the second arg of cas_reset to 0
5170 * because on resume, we'll call cas_init_hw with
5171 * its second arg set so that autonegotiation is
5175 cas_clean_rings(cp
);
5176 cas_unlock_all_restore(cp
, flags
);
5185 static int cas_resume(struct pci_dev
*pdev
)
5187 struct net_device
*dev
= pci_get_drvdata(pdev
);
5188 struct cas
*cp
= netdev_priv(dev
);
5190 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
5194 unsigned long flags
;
5195 cas_lock_all_save(cp
, flags
);
5198 cas_clean_rings(cp
);
5200 cas_unlock_all_restore(cp
, flags
);
5202 netif_device_attach(dev
);
5207 #endif /* CONFIG_PM */
5209 static struct pci_driver cas_driver
= {
5210 .name
= DRV_MODULE_NAME
,
5211 .id_table
= cas_pci_tbl
,
5212 .probe
= cas_init_one
,
5213 .remove
= __devexit_p(cas_remove_one
),
5215 .suspend
= cas_suspend
,
5216 .resume
= cas_resume
5220 static int __init
cas_init(void)
5222 if (linkdown_timeout
> 0)
5223 link_transition_timeout
= linkdown_timeout
* HZ
;
5225 link_transition_timeout
= 0;
5227 return pci_module_init(&cas_driver
);
5230 static void __exit
cas_cleanup(void)
5232 pci_unregister_driver(&cas_driver
);
5235 module_init(cas_init
);
5236 module_exit(cas_cleanup
);