xfs: make use of new shrinker callout for the inode cache
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / linux-2.6 / xfs_sync.c
blob9bd7e895a4e28433750979b4f705c795e4b4878f
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
43 struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
51 #define XFS_LOOKUP_BATCH 32
53 STATIC int
54 xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
57 struct inode *inode = VFS_I(ip);
59 ASSERT(rcu_read_lock_held());
62 * check for stale RCU freed inode
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
92 /* inode is valid */
93 return 0;
95 out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
100 STATIC int
101 xfs_inode_ag_walk(
102 struct xfs_mount *mp,
103 struct xfs_perag *pag,
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
106 int flags)
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
111 int done;
112 int nr_found;
114 restart:
115 done = 0;
116 skipped = 0;
117 first_index = 0;
118 nr_found = 0;
119 do {
120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
121 int error = 0;
122 int i;
124 rcu_read_lock();
125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
128 if (!nr_found) {
129 rcu_read_unlock();
130 break;
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
162 /* unlock now we've grabbed the inodes. */
163 rcu_read_unlock();
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
178 /* bail out if the filesystem is corrupted. */
179 if (error == EFSCORRUPTED)
180 break;
182 cond_resched();
184 } while (nr_found && !done);
186 if (skipped) {
187 delay(1);
188 goto restart;
190 return last_error;
194 xfs_inode_ag_iterator(
195 struct xfs_mount *mp,
196 int (*execute)(struct xfs_inode *ip,
197 struct xfs_perag *pag, int flags),
198 int flags)
200 struct xfs_perag *pag;
201 int error = 0;
202 int last_error = 0;
203 xfs_agnumber_t ag;
205 ag = 0;
206 while ((pag = xfs_perag_get(mp, ag))) {
207 ag = pag->pag_agno + 1;
208 error = xfs_inode_ag_walk(mp, pag, execute, flags);
209 xfs_perag_put(pag);
210 if (error) {
211 last_error = error;
212 if (error == EFSCORRUPTED)
213 break;
216 return XFS_ERROR(last_error);
219 STATIC int
220 xfs_sync_inode_data(
221 struct xfs_inode *ip,
222 struct xfs_perag *pag,
223 int flags)
225 struct inode *inode = VFS_I(ip);
226 struct address_space *mapping = inode->i_mapping;
227 int error = 0;
229 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
230 goto out_wait;
232 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
233 if (flags & SYNC_TRYLOCK)
234 goto out_wait;
235 xfs_ilock(ip, XFS_IOLOCK_SHARED);
238 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
239 0 : XBF_ASYNC, FI_NONE);
240 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
242 out_wait:
243 if (flags & SYNC_WAIT)
244 xfs_ioend_wait(ip);
245 return error;
248 STATIC int
249 xfs_sync_inode_attr(
250 struct xfs_inode *ip,
251 struct xfs_perag *pag,
252 int flags)
254 int error = 0;
256 xfs_ilock(ip, XFS_ILOCK_SHARED);
257 if (xfs_inode_clean(ip))
258 goto out_unlock;
259 if (!xfs_iflock_nowait(ip)) {
260 if (!(flags & SYNC_WAIT))
261 goto out_unlock;
262 xfs_iflock(ip);
265 if (xfs_inode_clean(ip)) {
266 xfs_ifunlock(ip);
267 goto out_unlock;
270 error = xfs_iflush(ip, flags);
273 * We don't want to try again on non-blocking flushes that can't run
274 * again immediately. If an inode really must be written, then that's
275 * what the SYNC_WAIT flag is for.
277 if (error == EAGAIN) {
278 ASSERT(!(flags & SYNC_WAIT));
279 error = 0;
282 out_unlock:
283 xfs_iunlock(ip, XFS_ILOCK_SHARED);
284 return error;
288 * Write out pagecache data for the whole filesystem.
290 STATIC int
291 xfs_sync_data(
292 struct xfs_mount *mp,
293 int flags)
295 int error;
297 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
299 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
300 if (error)
301 return XFS_ERROR(error);
303 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
304 return 0;
308 * Write out inode metadata (attributes) for the whole filesystem.
310 STATIC int
311 xfs_sync_attr(
312 struct xfs_mount *mp,
313 int flags)
315 ASSERT((flags & ~SYNC_WAIT) == 0);
317 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
320 STATIC int
321 xfs_sync_fsdata(
322 struct xfs_mount *mp)
324 struct xfs_buf *bp;
327 * If the buffer is pinned then push on the log so we won't get stuck
328 * waiting in the write for someone, maybe ourselves, to flush the log.
330 * Even though we just pushed the log above, we did not have the
331 * superblock buffer locked at that point so it can become pinned in
332 * between there and here.
334 bp = xfs_getsb(mp, 0);
335 if (XFS_BUF_ISPINNED(bp))
336 xfs_log_force(mp, 0);
338 return xfs_bwrite(mp, bp);
342 * When remounting a filesystem read-only or freezing the filesystem, we have
343 * two phases to execute. This first phase is syncing the data before we
344 * quiesce the filesystem, and the second is flushing all the inodes out after
345 * we've waited for all the transactions created by the first phase to
346 * complete. The second phase ensures that the inodes are written to their
347 * location on disk rather than just existing in transactions in the log. This
348 * means after a quiesce there is no log replay required to write the inodes to
349 * disk (this is the main difference between a sync and a quiesce).
352 * First stage of freeze - no writers will make progress now we are here,
353 * so we flush delwri and delalloc buffers here, then wait for all I/O to
354 * complete. Data is frozen at that point. Metadata is not frozen,
355 * transactions can still occur here so don't bother flushing the buftarg
356 * because it'll just get dirty again.
359 xfs_quiesce_data(
360 struct xfs_mount *mp)
362 int error, error2 = 0;
364 /* push non-blocking */
365 xfs_sync_data(mp, 0);
366 xfs_qm_sync(mp, SYNC_TRYLOCK);
368 /* push and block till complete */
369 xfs_sync_data(mp, SYNC_WAIT);
370 xfs_qm_sync(mp, SYNC_WAIT);
372 /* write superblock and hoover up shutdown errors */
373 error = xfs_sync_fsdata(mp);
375 /* make sure all delwri buffers are written out */
376 xfs_flush_buftarg(mp->m_ddev_targp, 1);
378 /* mark the log as covered if needed */
379 if (xfs_log_need_covered(mp))
380 error2 = xfs_fs_log_dummy(mp);
382 /* flush data-only devices */
383 if (mp->m_rtdev_targp)
384 XFS_bflush(mp->m_rtdev_targp);
386 return error ? error : error2;
389 STATIC void
390 xfs_quiesce_fs(
391 struct xfs_mount *mp)
393 int count = 0, pincount;
395 xfs_reclaim_inodes(mp, 0);
396 xfs_flush_buftarg(mp->m_ddev_targp, 0);
399 * This loop must run at least twice. The first instance of the loop
400 * will flush most meta data but that will generate more meta data
401 * (typically directory updates). Which then must be flushed and
402 * logged before we can write the unmount record. We also so sync
403 * reclaim of inodes to catch any that the above delwri flush skipped.
405 do {
406 xfs_reclaim_inodes(mp, SYNC_WAIT);
407 xfs_sync_attr(mp, SYNC_WAIT);
408 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
409 if (!pincount) {
410 delay(50);
411 count++;
413 } while (count < 2);
417 * Second stage of a quiesce. The data is already synced, now we have to take
418 * care of the metadata. New transactions are already blocked, so we need to
419 * wait for any remaining transactions to drain out before proceeding.
421 void
422 xfs_quiesce_attr(
423 struct xfs_mount *mp)
425 int error = 0;
427 /* wait for all modifications to complete */
428 while (atomic_read(&mp->m_active_trans) > 0)
429 delay(100);
431 /* flush inodes and push all remaining buffers out to disk */
432 xfs_quiesce_fs(mp);
435 * Just warn here till VFS can correctly support
436 * read-only remount without racing.
438 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
440 /* Push the superblock and write an unmount record */
441 error = xfs_log_sbcount(mp, 1);
442 if (error)
443 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
444 "Frozen image may not be consistent.");
445 xfs_log_unmount_write(mp);
446 xfs_unmountfs_writesb(mp);
449 static void
450 xfs_syncd_queue_sync(
451 struct xfs_mount *mp)
453 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
454 msecs_to_jiffies(xfs_syncd_centisecs * 10));
458 * Every sync period we need to unpin all items, reclaim inodes and sync
459 * disk quotas. We might need to cover the log to indicate that the
460 * filesystem is idle and not frozen.
462 STATIC void
463 xfs_sync_worker(
464 struct work_struct *work)
466 struct xfs_mount *mp = container_of(to_delayed_work(work),
467 struct xfs_mount, m_sync_work);
468 int error;
470 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
471 /* dgc: errors ignored here */
472 if (mp->m_super->s_frozen == SB_UNFROZEN &&
473 xfs_log_need_covered(mp))
474 error = xfs_fs_log_dummy(mp);
475 else
476 xfs_log_force(mp, 0);
477 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
479 /* start pushing all the metadata that is currently dirty */
480 xfs_ail_push_all(mp->m_ail);
483 /* queue us up again */
484 xfs_syncd_queue_sync(mp);
488 * Queue a new inode reclaim pass if there are reclaimable inodes and there
489 * isn't a reclaim pass already in progress. By default it runs every 5s based
490 * on the xfs syncd work default of 30s. Perhaps this should have it's own
491 * tunable, but that can be done if this method proves to be ineffective or too
492 * aggressive.
494 static void
495 xfs_syncd_queue_reclaim(
496 struct xfs_mount *mp)
500 * We can have inodes enter reclaim after we've shut down the syncd
501 * workqueue during unmount, so don't allow reclaim work to be queued
502 * during unmount.
504 if (!(mp->m_super->s_flags & MS_ACTIVE))
505 return;
507 rcu_read_lock();
508 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
509 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
510 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
512 rcu_read_unlock();
516 * This is a fast pass over the inode cache to try to get reclaim moving on as
517 * many inodes as possible in a short period of time. It kicks itself every few
518 * seconds, as well as being kicked by the inode cache shrinker when memory
519 * goes low. It scans as quickly as possible avoiding locked inodes or those
520 * already being flushed, and once done schedules a future pass.
522 STATIC void
523 xfs_reclaim_worker(
524 struct work_struct *work)
526 struct xfs_mount *mp = container_of(to_delayed_work(work),
527 struct xfs_mount, m_reclaim_work);
529 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
530 xfs_syncd_queue_reclaim(mp);
534 * Flush delayed allocate data, attempting to free up reserved space
535 * from existing allocations. At this point a new allocation attempt
536 * has failed with ENOSPC and we are in the process of scratching our
537 * heads, looking about for more room.
539 * Queue a new data flush if there isn't one already in progress and
540 * wait for completion of the flush. This means that we only ever have one
541 * inode flush in progress no matter how many ENOSPC events are occurring and
542 * so will prevent the system from bogging down due to every concurrent
543 * ENOSPC event scanning all the active inodes in the system for writeback.
545 void
546 xfs_flush_inodes(
547 struct xfs_inode *ip)
549 struct xfs_mount *mp = ip->i_mount;
551 queue_work(xfs_syncd_wq, &mp->m_flush_work);
552 flush_work_sync(&mp->m_flush_work);
555 STATIC void
556 xfs_flush_worker(
557 struct work_struct *work)
559 struct xfs_mount *mp = container_of(work,
560 struct xfs_mount, m_flush_work);
562 xfs_sync_data(mp, SYNC_TRYLOCK);
563 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
567 xfs_syncd_init(
568 struct xfs_mount *mp)
570 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
571 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
572 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
574 xfs_syncd_queue_sync(mp);
575 xfs_syncd_queue_reclaim(mp);
577 return 0;
580 void
581 xfs_syncd_stop(
582 struct xfs_mount *mp)
584 cancel_delayed_work_sync(&mp->m_sync_work);
585 cancel_delayed_work_sync(&mp->m_reclaim_work);
586 cancel_work_sync(&mp->m_flush_work);
589 void
590 __xfs_inode_set_reclaim_tag(
591 struct xfs_perag *pag,
592 struct xfs_inode *ip)
594 radix_tree_tag_set(&pag->pag_ici_root,
595 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
596 XFS_ICI_RECLAIM_TAG);
598 if (!pag->pag_ici_reclaimable) {
599 /* propagate the reclaim tag up into the perag radix tree */
600 spin_lock(&ip->i_mount->m_perag_lock);
601 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
602 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
603 XFS_ICI_RECLAIM_TAG);
604 spin_unlock(&ip->i_mount->m_perag_lock);
606 /* schedule periodic background inode reclaim */
607 xfs_syncd_queue_reclaim(ip->i_mount);
609 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
610 -1, _RET_IP_);
612 pag->pag_ici_reclaimable++;
616 * We set the inode flag atomically with the radix tree tag.
617 * Once we get tag lookups on the radix tree, this inode flag
618 * can go away.
620 void
621 xfs_inode_set_reclaim_tag(
622 xfs_inode_t *ip)
624 struct xfs_mount *mp = ip->i_mount;
625 struct xfs_perag *pag;
627 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
628 spin_lock(&pag->pag_ici_lock);
629 spin_lock(&ip->i_flags_lock);
630 __xfs_inode_set_reclaim_tag(pag, ip);
631 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
632 spin_unlock(&ip->i_flags_lock);
633 spin_unlock(&pag->pag_ici_lock);
634 xfs_perag_put(pag);
637 STATIC void
638 __xfs_inode_clear_reclaim(
639 xfs_perag_t *pag,
640 xfs_inode_t *ip)
642 pag->pag_ici_reclaimable--;
643 if (!pag->pag_ici_reclaimable) {
644 /* clear the reclaim tag from the perag radix tree */
645 spin_lock(&ip->i_mount->m_perag_lock);
646 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
647 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
648 XFS_ICI_RECLAIM_TAG);
649 spin_unlock(&ip->i_mount->m_perag_lock);
650 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
651 -1, _RET_IP_);
655 void
656 __xfs_inode_clear_reclaim_tag(
657 xfs_mount_t *mp,
658 xfs_perag_t *pag,
659 xfs_inode_t *ip)
661 radix_tree_tag_clear(&pag->pag_ici_root,
662 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
663 __xfs_inode_clear_reclaim(pag, ip);
667 * Grab the inode for reclaim exclusively.
668 * Return 0 if we grabbed it, non-zero otherwise.
670 STATIC int
671 xfs_reclaim_inode_grab(
672 struct xfs_inode *ip,
673 int flags)
675 ASSERT(rcu_read_lock_held());
677 /* quick check for stale RCU freed inode */
678 if (!ip->i_ino)
679 return 1;
682 * do some unlocked checks first to avoid unnecessary lock traffic.
683 * The first is a flush lock check, the second is a already in reclaim
684 * check. Only do these checks if we are not going to block on locks.
686 if ((flags & SYNC_TRYLOCK) &&
687 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
688 return 1;
692 * The radix tree lock here protects a thread in xfs_iget from racing
693 * with us starting reclaim on the inode. Once we have the
694 * XFS_IRECLAIM flag set it will not touch us.
696 * Due to RCU lookup, we may find inodes that have been freed and only
697 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
698 * aren't candidates for reclaim at all, so we must check the
699 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
701 spin_lock(&ip->i_flags_lock);
702 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
703 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
704 /* not a reclaim candidate. */
705 spin_unlock(&ip->i_flags_lock);
706 return 1;
708 __xfs_iflags_set(ip, XFS_IRECLAIM);
709 spin_unlock(&ip->i_flags_lock);
710 return 0;
714 * Inodes in different states need to be treated differently, and the return
715 * value of xfs_iflush is not sufficient to get this right. The following table
716 * lists the inode states and the reclaim actions necessary for non-blocking
717 * reclaim:
720 * inode state iflush ret required action
721 * --------------- ---------- ---------------
722 * bad - reclaim
723 * shutdown EIO unpin and reclaim
724 * clean, unpinned 0 reclaim
725 * stale, unpinned 0 reclaim
726 * clean, pinned(*) 0 requeue
727 * stale, pinned EAGAIN requeue
728 * dirty, delwri ok 0 requeue
729 * dirty, delwri blocked EAGAIN requeue
730 * dirty, sync flush 0 reclaim
732 * (*) dgc: I don't think the clean, pinned state is possible but it gets
733 * handled anyway given the order of checks implemented.
735 * As can be seen from the table, the return value of xfs_iflush() is not
736 * sufficient to correctly decide the reclaim action here. The checks in
737 * xfs_iflush() might look like duplicates, but they are not.
739 * Also, because we get the flush lock first, we know that any inode that has
740 * been flushed delwri has had the flush completed by the time we check that
741 * the inode is clean. The clean inode check needs to be done before flushing
742 * the inode delwri otherwise we would loop forever requeuing clean inodes as
743 * we cannot tell apart a successful delwri flush and a clean inode from the
744 * return value of xfs_iflush().
746 * Note that because the inode is flushed delayed write by background
747 * writeback, the flush lock may already be held here and waiting on it can
748 * result in very long latencies. Hence for sync reclaims, where we wait on the
749 * flush lock, the caller should push out delayed write inodes first before
750 * trying to reclaim them to minimise the amount of time spent waiting. For
751 * background relaim, we just requeue the inode for the next pass.
753 * Hence the order of actions after gaining the locks should be:
754 * bad => reclaim
755 * shutdown => unpin and reclaim
756 * pinned, delwri => requeue
757 * pinned, sync => unpin
758 * stale => reclaim
759 * clean => reclaim
760 * dirty, delwri => flush and requeue
761 * dirty, sync => flush, wait and reclaim
763 STATIC int
764 xfs_reclaim_inode(
765 struct xfs_inode *ip,
766 struct xfs_perag *pag,
767 int sync_mode)
769 int error;
771 restart:
772 error = 0;
773 xfs_ilock(ip, XFS_ILOCK_EXCL);
774 if (!xfs_iflock_nowait(ip)) {
775 if (!(sync_mode & SYNC_WAIT))
776 goto out;
777 xfs_iflock(ip);
780 if (is_bad_inode(VFS_I(ip)))
781 goto reclaim;
782 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
783 xfs_iunpin_wait(ip);
784 goto reclaim;
786 if (xfs_ipincount(ip)) {
787 if (!(sync_mode & SYNC_WAIT)) {
788 xfs_ifunlock(ip);
789 goto out;
791 xfs_iunpin_wait(ip);
793 if (xfs_iflags_test(ip, XFS_ISTALE))
794 goto reclaim;
795 if (xfs_inode_clean(ip))
796 goto reclaim;
799 * Now we have an inode that needs flushing.
801 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
802 * reclaim as we can deadlock with inode cluster removal.
803 * xfs_ifree_cluster() can lock the inode buffer before it locks the
804 * ip->i_lock, and we are doing the exact opposite here. As a result,
805 * doing a blocking xfs_itobp() to get the cluster buffer will result
806 * in an ABBA deadlock with xfs_ifree_cluster().
808 * As xfs_ifree_cluser() must gather all inodes that are active in the
809 * cache to mark them stale, if we hit this case we don't actually want
810 * to do IO here - we want the inode marked stale so we can simply
811 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
812 * just unlock the inode, back off and try again. Hopefully the next
813 * pass through will see the stale flag set on the inode.
815 error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
816 if (sync_mode & SYNC_WAIT) {
817 if (error == EAGAIN) {
818 xfs_iunlock(ip, XFS_ILOCK_EXCL);
819 /* backoff longer than in xfs_ifree_cluster */
820 delay(2);
821 goto restart;
823 xfs_iflock(ip);
824 goto reclaim;
828 * When we have to flush an inode but don't have SYNC_WAIT set, we
829 * flush the inode out using a delwri buffer and wait for the next
830 * call into reclaim to find it in a clean state instead of waiting for
831 * it now. We also don't return errors here - if the error is transient
832 * then the next reclaim pass will flush the inode, and if the error
833 * is permanent then the next sync reclaim will reclaim the inode and
834 * pass on the error.
836 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
837 xfs_warn(ip->i_mount,
838 "inode 0x%llx background reclaim flush failed with %d",
839 (long long)ip->i_ino, error);
841 out:
842 xfs_iflags_clear(ip, XFS_IRECLAIM);
843 xfs_iunlock(ip, XFS_ILOCK_EXCL);
845 * We could return EAGAIN here to make reclaim rescan the inode tree in
846 * a short while. However, this just burns CPU time scanning the tree
847 * waiting for IO to complete and xfssyncd never goes back to the idle
848 * state. Instead, return 0 to let the next scheduled background reclaim
849 * attempt to reclaim the inode again.
851 return 0;
853 reclaim:
854 xfs_ifunlock(ip);
855 xfs_iunlock(ip, XFS_ILOCK_EXCL);
857 XFS_STATS_INC(xs_ig_reclaims);
859 * Remove the inode from the per-AG radix tree.
861 * Because radix_tree_delete won't complain even if the item was never
862 * added to the tree assert that it's been there before to catch
863 * problems with the inode life time early on.
865 spin_lock(&pag->pag_ici_lock);
866 if (!radix_tree_delete(&pag->pag_ici_root,
867 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
868 ASSERT(0);
869 __xfs_inode_clear_reclaim(pag, ip);
870 spin_unlock(&pag->pag_ici_lock);
873 * Here we do an (almost) spurious inode lock in order to coordinate
874 * with inode cache radix tree lookups. This is because the lookup
875 * can reference the inodes in the cache without taking references.
877 * We make that OK here by ensuring that we wait until the inode is
878 * unlocked after the lookup before we go ahead and free it. We get
879 * both the ilock and the iolock because the code may need to drop the
880 * ilock one but will still hold the iolock.
882 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
883 xfs_qm_dqdetach(ip);
884 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
886 xfs_inode_free(ip);
887 return error;
892 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
893 * corrupted, we still want to try to reclaim all the inodes. If we don't,
894 * then a shut down during filesystem unmount reclaim walk leak all the
895 * unreclaimed inodes.
898 xfs_reclaim_inodes_ag(
899 struct xfs_mount *mp,
900 int flags,
901 int *nr_to_scan)
903 struct xfs_perag *pag;
904 int error = 0;
905 int last_error = 0;
906 xfs_agnumber_t ag;
907 int trylock = flags & SYNC_TRYLOCK;
908 int skipped;
910 restart:
911 ag = 0;
912 skipped = 0;
913 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
914 unsigned long first_index = 0;
915 int done = 0;
916 int nr_found = 0;
918 ag = pag->pag_agno + 1;
920 if (trylock) {
921 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
922 skipped++;
923 xfs_perag_put(pag);
924 continue;
926 first_index = pag->pag_ici_reclaim_cursor;
927 } else
928 mutex_lock(&pag->pag_ici_reclaim_lock);
930 do {
931 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
932 int i;
934 rcu_read_lock();
935 nr_found = radix_tree_gang_lookup_tag(
936 &pag->pag_ici_root,
937 (void **)batch, first_index,
938 XFS_LOOKUP_BATCH,
939 XFS_ICI_RECLAIM_TAG);
940 if (!nr_found) {
941 done = 1;
942 rcu_read_unlock();
943 break;
947 * Grab the inodes before we drop the lock. if we found
948 * nothing, nr == 0 and the loop will be skipped.
950 for (i = 0; i < nr_found; i++) {
951 struct xfs_inode *ip = batch[i];
953 if (done || xfs_reclaim_inode_grab(ip, flags))
954 batch[i] = NULL;
957 * Update the index for the next lookup. Catch
958 * overflows into the next AG range which can
959 * occur if we have inodes in the last block of
960 * the AG and we are currently pointing to the
961 * last inode.
963 * Because we may see inodes that are from the
964 * wrong AG due to RCU freeing and
965 * reallocation, only update the index if it
966 * lies in this AG. It was a race that lead us
967 * to see this inode, so another lookup from
968 * the same index will not find it again.
970 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
971 pag->pag_agno)
972 continue;
973 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
974 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
975 done = 1;
978 /* unlock now we've grabbed the inodes. */
979 rcu_read_unlock();
981 for (i = 0; i < nr_found; i++) {
982 if (!batch[i])
983 continue;
984 error = xfs_reclaim_inode(batch[i], pag, flags);
985 if (error && last_error != EFSCORRUPTED)
986 last_error = error;
989 *nr_to_scan -= XFS_LOOKUP_BATCH;
991 cond_resched();
993 } while (nr_found && !done && *nr_to_scan > 0);
995 if (trylock && !done)
996 pag->pag_ici_reclaim_cursor = first_index;
997 else
998 pag->pag_ici_reclaim_cursor = 0;
999 mutex_unlock(&pag->pag_ici_reclaim_lock);
1000 xfs_perag_put(pag);
1004 * if we skipped any AG, and we still have scan count remaining, do
1005 * another pass this time using blocking reclaim semantics (i.e
1006 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1007 * ensure that when we get more reclaimers than AGs we block rather
1008 * than spin trying to execute reclaim.
1010 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1011 trylock = 0;
1012 goto restart;
1014 return XFS_ERROR(last_error);
1018 xfs_reclaim_inodes(
1019 xfs_mount_t *mp,
1020 int mode)
1022 int nr_to_scan = INT_MAX;
1024 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1028 * Scan a certain number of inodes for reclaim.
1030 * When called we make sure that there is a background (fast) inode reclaim in
1031 * progress, while we will throttle the speed of reclaim via doing synchronous
1032 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1033 * them to be cleaned, which we hope will not be very long due to the
1034 * background walker having already kicked the IO off on those dirty inodes.
1036 void
1037 xfs_reclaim_inodes_nr(
1038 struct xfs_mount *mp,
1039 int nr_to_scan)
1041 /* kick background reclaimer and push the AIL */
1042 xfs_syncd_queue_reclaim(mp);
1043 xfs_ail_push_all(mp->m_ail);
1045 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1049 * Return the number of reclaimable inodes in the filesystem for
1050 * the shrinker to determine how much to reclaim.
1053 xfs_reclaim_inodes_count(
1054 struct xfs_mount *mp)
1056 struct xfs_perag *pag;
1057 xfs_agnumber_t ag = 0;
1058 int reclaimable = 0;
1060 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1061 ag = pag->pag_agno + 1;
1062 reclaimable += pag->pag_ici_reclaimable;
1063 xfs_perag_put(pag);
1065 return reclaimable;