hrtimer: export ktime_add_safe
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / hrtimer.c
blob18f6906169dab70136d424689d8da2c5a55bb7e9
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
47 #include <asm/uaccess.h>
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
52 * returns the time in ktime_t format
54 ktime_t ktime_get(void)
56 struct timespec now;
58 ktime_get_ts(&now);
60 return timespec_to_ktime(now);
62 EXPORT_SYMBOL_GPL(ktime_get);
64 /**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
67 * returns the time in ktime_t format
69 ktime_t ktime_get_real(void)
71 struct timespec now;
73 getnstimeofday(&now);
75 return timespec_to_ktime(now);
78 EXPORT_SYMBOL_GPL(ktime_get_real);
81 * The timer bases:
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92 .clock_base =
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
97 .resolution = KTIME_LOW_RES,
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 .resolution = KTIME_LOW_RES,
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
115 void ktime_get_ts(struct timespec *ts)
117 struct timespec tomono;
118 unsigned long seq;
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
125 } while (read_seqretry(&xtime_lock, seq));
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 ktime_t xtim, tomono;
139 struct timespec xts, tom;
140 unsigned long seq;
142 do {
143 seq = read_seqbegin(&xtime_lock);
144 xts = current_kernel_time();
145 tom = wall_to_monotonic;
146 } while (read_seqretry(&xtime_lock, seq));
148 xtim = timespec_to_ktime(xts);
149 tomono = timespec_to_ktime(tom);
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
156 * Functions and macros which are different for UP/SMP systems are kept in a
157 * single place
159 #ifdef CONFIG_SMP
162 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
163 * means that all timers which are tied to this base via timer->base are
164 * locked, and the base itself is locked too.
166 * So __run_timers/migrate_timers can safely modify all timers which could
167 * be found on the lists/queues.
169 * When the timer's base is locked, and the timer removed from list, it is
170 * possible to set timer->base = NULL and drop the lock: the timer remains
171 * locked.
173 static
174 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
175 unsigned long *flags)
177 struct hrtimer_clock_base *base;
179 for (;;) {
180 base = timer->base;
181 if (likely(base != NULL)) {
182 spin_lock_irqsave(&base->cpu_base->lock, *flags);
183 if (likely(base == timer->base))
184 return base;
185 /* The timer has migrated to another CPU: */
186 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
188 cpu_relax();
193 * Switch the timer base to the current CPU when possible.
195 static inline struct hrtimer_clock_base *
196 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
198 struct hrtimer_clock_base *new_base;
199 struct hrtimer_cpu_base *new_cpu_base;
201 new_cpu_base = &__get_cpu_var(hrtimer_bases);
202 new_base = &new_cpu_base->clock_base[base->index];
204 if (base != new_base) {
206 * We are trying to schedule the timer on the local CPU.
207 * However we can't change timer's base while it is running,
208 * so we keep it on the same CPU. No hassle vs. reprogramming
209 * the event source in the high resolution case. The softirq
210 * code will take care of this when the timer function has
211 * completed. There is no conflict as we hold the lock until
212 * the timer is enqueued.
214 if (unlikely(hrtimer_callback_running(timer)))
215 return base;
217 /* See the comment in lock_timer_base() */
218 timer->base = NULL;
219 spin_unlock(&base->cpu_base->lock);
220 spin_lock(&new_base->cpu_base->lock);
221 timer->base = new_base;
223 return new_base;
226 #else /* CONFIG_SMP */
228 static inline struct hrtimer_clock_base *
229 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
231 struct hrtimer_clock_base *base = timer->base;
233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
235 return base;
238 # define switch_hrtimer_base(t, b) (b)
240 #endif /* !CONFIG_SMP */
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
246 #if BITS_PER_LONG < 64
247 # ifndef CONFIG_KTIME_SCALAR
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
253 * Returns the sum of kt and nsec in ktime_t format
255 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257 ktime_t tmp;
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
264 tmp = ktime_set((long)nsec, rem);
267 return ktime_add(kt, tmp);
270 EXPORT_SYMBOL_GPL(ktime_add_ns);
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
277 * Returns the subtraction of @nsec from @kt in ktime_t format
279 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281 ktime_t tmp;
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
288 tmp = ktime_set((long)nsec, rem);
291 return ktime_sub(kt, tmp);
294 EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 # endif /* !CONFIG_KTIME_SCALAR */
298 * Divide a ktime value by a nanosecond value
300 u64 ktime_divns(const ktime_t kt, s64 div)
302 u64 dclc;
303 int sft = 0;
305 dclc = ktime_to_ns(kt);
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
314 return dclc;
316 #endif /* BITS_PER_LONG >= 64 */
319 * Add two ktime values and do a safety check for overflow:
321 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
323 ktime_t res = ktime_add(lhs, rhs);
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
332 return res;
335 EXPORT_SYMBOL_GPL(ktime_add_safe);
337 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
339 static struct debug_obj_descr hrtimer_debug_descr;
342 * fixup_init is called when:
343 * - an active object is initialized
345 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
347 struct hrtimer *timer = addr;
349 switch (state) {
350 case ODEBUG_STATE_ACTIVE:
351 hrtimer_cancel(timer);
352 debug_object_init(timer, &hrtimer_debug_descr);
353 return 1;
354 default:
355 return 0;
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
364 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
366 switch (state) {
368 case ODEBUG_STATE_NOTAVAILABLE:
369 WARN_ON_ONCE(1);
370 return 0;
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
375 default:
376 return 0;
381 * fixup_free is called when:
382 * - an active object is freed
384 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
386 struct hrtimer *timer = addr;
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 hrtimer_cancel(timer);
391 debug_object_free(timer, &hrtimer_debug_descr);
392 return 1;
393 default:
394 return 0;
398 static struct debug_obj_descr hrtimer_debug_descr = {
399 .name = "hrtimer",
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
405 static inline void debug_hrtimer_init(struct hrtimer *timer)
407 debug_object_init(timer, &hrtimer_debug_descr);
410 static inline void debug_hrtimer_activate(struct hrtimer *timer)
412 debug_object_activate(timer, &hrtimer_debug_descr);
415 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
417 debug_object_deactivate(timer, &hrtimer_debug_descr);
420 static inline void debug_hrtimer_free(struct hrtimer *timer)
422 debug_object_free(timer, &hrtimer_debug_descr);
425 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
426 enum hrtimer_mode mode);
428 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode)
431 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
432 __hrtimer_init(timer, clock_id, mode);
435 void destroy_hrtimer_on_stack(struct hrtimer *timer)
437 debug_object_free(timer, &hrtimer_debug_descr);
440 #else
441 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
442 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
443 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
444 #endif
446 /* High resolution timer related functions */
447 #ifdef CONFIG_HIGH_RES_TIMERS
450 * High resolution timer enabled ?
452 static int hrtimer_hres_enabled __read_mostly = 1;
455 * Enable / Disable high resolution mode
457 static int __init setup_hrtimer_hres(char *str)
459 if (!strcmp(str, "off"))
460 hrtimer_hres_enabled = 0;
461 else if (!strcmp(str, "on"))
462 hrtimer_hres_enabled = 1;
463 else
464 return 0;
465 return 1;
468 __setup("highres=", setup_hrtimer_hres);
471 * hrtimer_high_res_enabled - query, if the highres mode is enabled
473 static inline int hrtimer_is_hres_enabled(void)
475 return hrtimer_hres_enabled;
479 * Is the high resolution mode active ?
481 static inline int hrtimer_hres_active(void)
483 return __get_cpu_var(hrtimer_bases).hres_active;
487 * Reprogram the event source with checking both queues for the
488 * next event
489 * Called with interrupts disabled and base->lock held
491 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
493 int i;
494 struct hrtimer_clock_base *base = cpu_base->clock_base;
495 ktime_t expires;
497 cpu_base->expires_next.tv64 = KTIME_MAX;
499 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
500 struct hrtimer *timer;
502 if (!base->first)
503 continue;
504 timer = rb_entry(base->first, struct hrtimer, node);
505 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
507 * clock_was_set() has changed base->offset so the
508 * result might be negative. Fix it up to prevent a
509 * false positive in clockevents_program_event()
511 if (expires.tv64 < 0)
512 expires.tv64 = 0;
513 if (expires.tv64 < cpu_base->expires_next.tv64)
514 cpu_base->expires_next = expires;
517 if (cpu_base->expires_next.tv64 != KTIME_MAX)
518 tick_program_event(cpu_base->expires_next, 1);
522 * Shared reprogramming for clock_realtime and clock_monotonic
524 * When a timer is enqueued and expires earlier than the already enqueued
525 * timers, we have to check, whether it expires earlier than the timer for
526 * which the clock event device was armed.
528 * Called with interrupts disabled and base->cpu_base.lock held
530 static int hrtimer_reprogram(struct hrtimer *timer,
531 struct hrtimer_clock_base *base)
533 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
534 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
535 int res;
537 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
540 * When the callback is running, we do not reprogram the clock event
541 * device. The timer callback is either running on a different CPU or
542 * the callback is executed in the hrtimer_interrupt context. The
543 * reprogramming is handled either by the softirq, which called the
544 * callback or at the end of the hrtimer_interrupt.
546 if (hrtimer_callback_running(timer))
547 return 0;
550 * CLOCK_REALTIME timer might be requested with an absolute
551 * expiry time which is less than base->offset. Nothing wrong
552 * about that, just avoid to call into the tick code, which
553 * has now objections against negative expiry values.
555 if (expires.tv64 < 0)
556 return -ETIME;
558 if (expires.tv64 >= expires_next->tv64)
559 return 0;
562 * Clockevents returns -ETIME, when the event was in the past.
564 res = tick_program_event(expires, 0);
565 if (!IS_ERR_VALUE(res))
566 *expires_next = expires;
567 return res;
572 * Retrigger next event is called after clock was set
574 * Called with interrupts disabled via on_each_cpu()
576 static void retrigger_next_event(void *arg)
578 struct hrtimer_cpu_base *base;
579 struct timespec realtime_offset;
580 unsigned long seq;
582 if (!hrtimer_hres_active())
583 return;
585 do {
586 seq = read_seqbegin(&xtime_lock);
587 set_normalized_timespec(&realtime_offset,
588 -wall_to_monotonic.tv_sec,
589 -wall_to_monotonic.tv_nsec);
590 } while (read_seqretry(&xtime_lock, seq));
592 base = &__get_cpu_var(hrtimer_bases);
594 /* Adjust CLOCK_REALTIME offset */
595 spin_lock(&base->lock);
596 base->clock_base[CLOCK_REALTIME].offset =
597 timespec_to_ktime(realtime_offset);
599 hrtimer_force_reprogram(base);
600 spin_unlock(&base->lock);
604 * Clock realtime was set
606 * Change the offset of the realtime clock vs. the monotonic
607 * clock.
609 * We might have to reprogram the high resolution timer interrupt. On
610 * SMP we call the architecture specific code to retrigger _all_ high
611 * resolution timer interrupts. On UP we just disable interrupts and
612 * call the high resolution interrupt code.
614 void clock_was_set(void)
616 /* Retrigger the CPU local events everywhere */
617 on_each_cpu(retrigger_next_event, NULL, 1);
621 * During resume we might have to reprogram the high resolution timer
622 * interrupt (on the local CPU):
624 void hres_timers_resume(void)
626 WARN_ONCE(!irqs_disabled(),
627 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
629 retrigger_next_event(NULL);
633 * Initialize the high resolution related parts of cpu_base
635 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
637 base->expires_next.tv64 = KTIME_MAX;
638 base->hres_active = 0;
642 * Initialize the high resolution related parts of a hrtimer
644 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
650 * When High resolution timers are active, try to reprogram. Note, that in case
651 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
652 * check happens. The timer gets enqueued into the rbtree. The reprogramming
653 * and expiry check is done in the hrtimer_interrupt or in the softirq.
655 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
656 struct hrtimer_clock_base *base,
657 int wakeup)
659 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
660 if (wakeup) {
661 spin_unlock(&base->cpu_base->lock);
662 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
663 spin_lock(&base->cpu_base->lock);
664 } else
665 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
667 return 1;
670 return 0;
674 * Switch to high resolution mode
676 static int hrtimer_switch_to_hres(void)
678 int cpu = smp_processor_id();
679 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
680 unsigned long flags;
682 if (base->hres_active)
683 return 1;
685 local_irq_save(flags);
687 if (tick_init_highres()) {
688 local_irq_restore(flags);
689 printk(KERN_WARNING "Could not switch to high resolution "
690 "mode on CPU %d\n", cpu);
691 return 0;
693 base->hres_active = 1;
694 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
695 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
697 tick_setup_sched_timer();
699 /* "Retrigger" the interrupt to get things going */
700 retrigger_next_event(NULL);
701 local_irq_restore(flags);
702 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
703 smp_processor_id());
704 return 1;
707 #else
709 static inline int hrtimer_hres_active(void) { return 0; }
710 static inline int hrtimer_is_hres_enabled(void) { return 0; }
711 static inline int hrtimer_switch_to_hres(void) { return 0; }
712 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
713 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
714 struct hrtimer_clock_base *base,
715 int wakeup)
717 return 0;
719 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
720 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
722 #endif /* CONFIG_HIGH_RES_TIMERS */
724 #ifdef CONFIG_TIMER_STATS
725 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
727 if (timer->start_site)
728 return;
730 timer->start_site = addr;
731 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
732 timer->start_pid = current->pid;
734 #endif
737 * Counterpart to lock_hrtimer_base above:
739 static inline
740 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
742 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
746 * hrtimer_forward - forward the timer expiry
747 * @timer: hrtimer to forward
748 * @now: forward past this time
749 * @interval: the interval to forward
751 * Forward the timer expiry so it will expire in the future.
752 * Returns the number of overruns.
754 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
756 u64 orun = 1;
757 ktime_t delta;
759 delta = ktime_sub(now, hrtimer_get_expires(timer));
761 if (delta.tv64 < 0)
762 return 0;
764 if (interval.tv64 < timer->base->resolution.tv64)
765 interval.tv64 = timer->base->resolution.tv64;
767 if (unlikely(delta.tv64 >= interval.tv64)) {
768 s64 incr = ktime_to_ns(interval);
770 orun = ktime_divns(delta, incr);
771 hrtimer_add_expires_ns(timer, incr * orun);
772 if (hrtimer_get_expires_tv64(timer) > now.tv64)
773 return orun;
775 * This (and the ktime_add() below) is the
776 * correction for exact:
778 orun++;
780 hrtimer_add_expires(timer, interval);
782 return orun;
784 EXPORT_SYMBOL_GPL(hrtimer_forward);
787 * enqueue_hrtimer - internal function to (re)start a timer
789 * The timer is inserted in expiry order. Insertion into the
790 * red black tree is O(log(n)). Must hold the base lock.
792 * Returns 1 when the new timer is the leftmost timer in the tree.
794 static int enqueue_hrtimer(struct hrtimer *timer,
795 struct hrtimer_clock_base *base)
797 struct rb_node **link = &base->active.rb_node;
798 struct rb_node *parent = NULL;
799 struct hrtimer *entry;
800 int leftmost = 1;
802 debug_hrtimer_activate(timer);
805 * Find the right place in the rbtree:
807 while (*link) {
808 parent = *link;
809 entry = rb_entry(parent, struct hrtimer, node);
811 * We dont care about collisions. Nodes with
812 * the same expiry time stay together.
814 if (hrtimer_get_expires_tv64(timer) <
815 hrtimer_get_expires_tv64(entry)) {
816 link = &(*link)->rb_left;
817 } else {
818 link = &(*link)->rb_right;
819 leftmost = 0;
824 * Insert the timer to the rbtree and check whether it
825 * replaces the first pending timer
827 if (leftmost)
828 base->first = &timer->node;
830 rb_link_node(&timer->node, parent, link);
831 rb_insert_color(&timer->node, &base->active);
833 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
834 * state of a possibly running callback.
836 timer->state |= HRTIMER_STATE_ENQUEUED;
838 return leftmost;
842 * __remove_hrtimer - internal function to remove a timer
844 * Caller must hold the base lock.
846 * High resolution timer mode reprograms the clock event device when the
847 * timer is the one which expires next. The caller can disable this by setting
848 * reprogram to zero. This is useful, when the context does a reprogramming
849 * anyway (e.g. timer interrupt)
851 static void __remove_hrtimer(struct hrtimer *timer,
852 struct hrtimer_clock_base *base,
853 unsigned long newstate, int reprogram)
855 if (timer->state & HRTIMER_STATE_ENQUEUED) {
857 * Remove the timer from the rbtree and replace the
858 * first entry pointer if necessary.
860 if (base->first == &timer->node) {
861 base->first = rb_next(&timer->node);
862 /* Reprogram the clock event device. if enabled */
863 if (reprogram && hrtimer_hres_active())
864 hrtimer_force_reprogram(base->cpu_base);
866 rb_erase(&timer->node, &base->active);
868 timer->state = newstate;
872 * remove hrtimer, called with base lock held
874 static inline int
875 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
877 if (hrtimer_is_queued(timer)) {
878 int reprogram;
881 * Remove the timer and force reprogramming when high
882 * resolution mode is active and the timer is on the current
883 * CPU. If we remove a timer on another CPU, reprogramming is
884 * skipped. The interrupt event on this CPU is fired and
885 * reprogramming happens in the interrupt handler. This is a
886 * rare case and less expensive than a smp call.
888 debug_hrtimer_deactivate(timer);
889 timer_stats_hrtimer_clear_start_info(timer);
890 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
891 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
892 reprogram);
893 return 1;
895 return 0;
898 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
899 unsigned long delta_ns, const enum hrtimer_mode mode,
900 int wakeup)
902 struct hrtimer_clock_base *base, *new_base;
903 unsigned long flags;
904 int ret, leftmost;
906 base = lock_hrtimer_base(timer, &flags);
908 /* Remove an active timer from the queue: */
909 ret = remove_hrtimer(timer, base);
911 /* Switch the timer base, if necessary: */
912 new_base = switch_hrtimer_base(timer, base);
914 if (mode == HRTIMER_MODE_REL) {
915 tim = ktime_add_safe(tim, new_base->get_time());
917 * CONFIG_TIME_LOW_RES is a temporary way for architectures
918 * to signal that they simply return xtime in
919 * do_gettimeoffset(). In this case we want to round up by
920 * resolution when starting a relative timer, to avoid short
921 * timeouts. This will go away with the GTOD framework.
923 #ifdef CONFIG_TIME_LOW_RES
924 tim = ktime_add_safe(tim, base->resolution);
925 #endif
928 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
930 timer_stats_hrtimer_set_start_info(timer);
932 leftmost = enqueue_hrtimer(timer, new_base);
935 * Only allow reprogramming if the new base is on this CPU.
936 * (it might still be on another CPU if the timer was pending)
938 * XXX send_remote_softirq() ?
940 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
941 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
943 unlock_hrtimer_base(timer, &flags);
945 return ret;
949 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
950 * @timer: the timer to be added
951 * @tim: expiry time
952 * @delta_ns: "slack" range for the timer
953 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
955 * Returns:
956 * 0 on success
957 * 1 when the timer was active
959 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
960 unsigned long delta_ns, const enum hrtimer_mode mode)
962 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
964 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
967 * hrtimer_start - (re)start an hrtimer on the current CPU
968 * @timer: the timer to be added
969 * @tim: expiry time
970 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
972 * Returns:
973 * 0 on success
974 * 1 when the timer was active
977 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
979 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
981 EXPORT_SYMBOL_GPL(hrtimer_start);
985 * hrtimer_try_to_cancel - try to deactivate a timer
986 * @timer: hrtimer to stop
988 * Returns:
989 * 0 when the timer was not active
990 * 1 when the timer was active
991 * -1 when the timer is currently excuting the callback function and
992 * cannot be stopped
994 int hrtimer_try_to_cancel(struct hrtimer *timer)
996 struct hrtimer_clock_base *base;
997 unsigned long flags;
998 int ret = -1;
1000 base = lock_hrtimer_base(timer, &flags);
1002 if (!hrtimer_callback_running(timer))
1003 ret = remove_hrtimer(timer, base);
1005 unlock_hrtimer_base(timer, &flags);
1007 return ret;
1010 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1013 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1014 * @timer: the timer to be cancelled
1016 * Returns:
1017 * 0 when the timer was not active
1018 * 1 when the timer was active
1020 int hrtimer_cancel(struct hrtimer *timer)
1022 for (;;) {
1023 int ret = hrtimer_try_to_cancel(timer);
1025 if (ret >= 0)
1026 return ret;
1027 cpu_relax();
1030 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1033 * hrtimer_get_remaining - get remaining time for the timer
1034 * @timer: the timer to read
1036 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1038 struct hrtimer_clock_base *base;
1039 unsigned long flags;
1040 ktime_t rem;
1042 base = lock_hrtimer_base(timer, &flags);
1043 rem = hrtimer_expires_remaining(timer);
1044 unlock_hrtimer_base(timer, &flags);
1046 return rem;
1048 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1050 #ifdef CONFIG_NO_HZ
1052 * hrtimer_get_next_event - get the time until next expiry event
1054 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1055 * is pending.
1057 ktime_t hrtimer_get_next_event(void)
1059 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1060 struct hrtimer_clock_base *base = cpu_base->clock_base;
1061 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1062 unsigned long flags;
1063 int i;
1065 spin_lock_irqsave(&cpu_base->lock, flags);
1067 if (!hrtimer_hres_active()) {
1068 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1069 struct hrtimer *timer;
1071 if (!base->first)
1072 continue;
1074 timer = rb_entry(base->first, struct hrtimer, node);
1075 delta.tv64 = hrtimer_get_expires_tv64(timer);
1076 delta = ktime_sub(delta, base->get_time());
1077 if (delta.tv64 < mindelta.tv64)
1078 mindelta.tv64 = delta.tv64;
1082 spin_unlock_irqrestore(&cpu_base->lock, flags);
1084 if (mindelta.tv64 < 0)
1085 mindelta.tv64 = 0;
1086 return mindelta;
1088 #endif
1090 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1091 enum hrtimer_mode mode)
1093 struct hrtimer_cpu_base *cpu_base;
1095 memset(timer, 0, sizeof(struct hrtimer));
1097 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1099 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1100 clock_id = CLOCK_MONOTONIC;
1102 timer->base = &cpu_base->clock_base[clock_id];
1103 INIT_LIST_HEAD(&timer->cb_entry);
1104 hrtimer_init_timer_hres(timer);
1106 #ifdef CONFIG_TIMER_STATS
1107 timer->start_site = NULL;
1108 timer->start_pid = -1;
1109 memset(timer->start_comm, 0, TASK_COMM_LEN);
1110 #endif
1114 * hrtimer_init - initialize a timer to the given clock
1115 * @timer: the timer to be initialized
1116 * @clock_id: the clock to be used
1117 * @mode: timer mode abs/rel
1119 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1120 enum hrtimer_mode mode)
1122 debug_hrtimer_init(timer);
1123 __hrtimer_init(timer, clock_id, mode);
1125 EXPORT_SYMBOL_GPL(hrtimer_init);
1128 * hrtimer_get_res - get the timer resolution for a clock
1129 * @which_clock: which clock to query
1130 * @tp: pointer to timespec variable to store the resolution
1132 * Store the resolution of the clock selected by @which_clock in the
1133 * variable pointed to by @tp.
1135 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1137 struct hrtimer_cpu_base *cpu_base;
1139 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1140 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1142 return 0;
1144 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1146 static void __run_hrtimer(struct hrtimer *timer)
1148 struct hrtimer_clock_base *base = timer->base;
1149 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1150 enum hrtimer_restart (*fn)(struct hrtimer *);
1151 int restart;
1153 WARN_ON(!irqs_disabled());
1155 debug_hrtimer_deactivate(timer);
1156 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1157 timer_stats_account_hrtimer(timer);
1158 fn = timer->function;
1161 * Because we run timers from hardirq context, there is no chance
1162 * they get migrated to another cpu, therefore its safe to unlock
1163 * the timer base.
1165 spin_unlock(&cpu_base->lock);
1166 restart = fn(timer);
1167 spin_lock(&cpu_base->lock);
1170 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1171 * we do not reprogramm the event hardware. Happens either in
1172 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1174 if (restart != HRTIMER_NORESTART) {
1175 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1176 enqueue_hrtimer(timer, base);
1178 timer->state &= ~HRTIMER_STATE_CALLBACK;
1181 #ifdef CONFIG_HIGH_RES_TIMERS
1183 static int force_clock_reprogram;
1186 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1187 * is hanging, which could happen with something that slows the interrupt
1188 * such as the tracing. Then we force the clock reprogramming for each future
1189 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1190 * threshold that we will overwrite.
1191 * The next tick event will be scheduled to 3 times we currently spend on
1192 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1193 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1194 * let it running without serious starvation.
1197 static inline void
1198 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1199 ktime_t try_time)
1201 force_clock_reprogram = 1;
1202 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1203 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1204 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1207 * High resolution timer interrupt
1208 * Called with interrupts disabled
1210 void hrtimer_interrupt(struct clock_event_device *dev)
1212 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1213 struct hrtimer_clock_base *base;
1214 ktime_t expires_next, now;
1215 int nr_retries = 0;
1216 int i;
1218 BUG_ON(!cpu_base->hres_active);
1219 cpu_base->nr_events++;
1220 dev->next_event.tv64 = KTIME_MAX;
1222 retry:
1223 /* 5 retries is enough to notice a hang */
1224 if (!(++nr_retries % 5))
1225 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1227 now = ktime_get();
1229 expires_next.tv64 = KTIME_MAX;
1231 base = cpu_base->clock_base;
1233 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1234 ktime_t basenow;
1235 struct rb_node *node;
1237 spin_lock(&cpu_base->lock);
1239 basenow = ktime_add(now, base->offset);
1241 while ((node = base->first)) {
1242 struct hrtimer *timer;
1244 timer = rb_entry(node, struct hrtimer, node);
1247 * The immediate goal for using the softexpires is
1248 * minimizing wakeups, not running timers at the
1249 * earliest interrupt after their soft expiration.
1250 * This allows us to avoid using a Priority Search
1251 * Tree, which can answer a stabbing querry for
1252 * overlapping intervals and instead use the simple
1253 * BST we already have.
1254 * We don't add extra wakeups by delaying timers that
1255 * are right-of a not yet expired timer, because that
1256 * timer will have to trigger a wakeup anyway.
1259 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1260 ktime_t expires;
1262 expires = ktime_sub(hrtimer_get_expires(timer),
1263 base->offset);
1264 if (expires.tv64 < expires_next.tv64)
1265 expires_next = expires;
1266 break;
1269 __run_hrtimer(timer);
1271 spin_unlock(&cpu_base->lock);
1272 base++;
1275 cpu_base->expires_next = expires_next;
1277 /* Reprogramming necessary ? */
1278 if (expires_next.tv64 != KTIME_MAX) {
1279 if (tick_program_event(expires_next, force_clock_reprogram))
1280 goto retry;
1285 * local version of hrtimer_peek_ahead_timers() called with interrupts
1286 * disabled.
1288 static void __hrtimer_peek_ahead_timers(void)
1290 struct tick_device *td;
1292 if (!hrtimer_hres_active())
1293 return;
1295 td = &__get_cpu_var(tick_cpu_device);
1296 if (td && td->evtdev)
1297 hrtimer_interrupt(td->evtdev);
1301 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1303 * hrtimer_peek_ahead_timers will peek at the timer queue of
1304 * the current cpu and check if there are any timers for which
1305 * the soft expires time has passed. If any such timers exist,
1306 * they are run immediately and then removed from the timer queue.
1309 void hrtimer_peek_ahead_timers(void)
1311 unsigned long flags;
1313 local_irq_save(flags);
1314 __hrtimer_peek_ahead_timers();
1315 local_irq_restore(flags);
1318 static void run_hrtimer_softirq(struct softirq_action *h)
1320 hrtimer_peek_ahead_timers();
1323 #else /* CONFIG_HIGH_RES_TIMERS */
1325 static inline void __hrtimer_peek_ahead_timers(void) { }
1327 #endif /* !CONFIG_HIGH_RES_TIMERS */
1330 * Called from timer softirq every jiffy, expire hrtimers:
1332 * For HRT its the fall back code to run the softirq in the timer
1333 * softirq context in case the hrtimer initialization failed or has
1334 * not been done yet.
1336 void hrtimer_run_pending(void)
1338 if (hrtimer_hres_active())
1339 return;
1342 * This _is_ ugly: We have to check in the softirq context,
1343 * whether we can switch to highres and / or nohz mode. The
1344 * clocksource switch happens in the timer interrupt with
1345 * xtime_lock held. Notification from there only sets the
1346 * check bit in the tick_oneshot code, otherwise we might
1347 * deadlock vs. xtime_lock.
1349 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1350 hrtimer_switch_to_hres();
1354 * Called from hardirq context every jiffy
1356 void hrtimer_run_queues(void)
1358 struct rb_node *node;
1359 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1360 struct hrtimer_clock_base *base;
1361 int index, gettime = 1;
1363 if (hrtimer_hres_active())
1364 return;
1366 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1367 base = &cpu_base->clock_base[index];
1369 if (!base->first)
1370 continue;
1372 if (gettime) {
1373 hrtimer_get_softirq_time(cpu_base);
1374 gettime = 0;
1377 spin_lock(&cpu_base->lock);
1379 while ((node = base->first)) {
1380 struct hrtimer *timer;
1382 timer = rb_entry(node, struct hrtimer, node);
1383 if (base->softirq_time.tv64 <=
1384 hrtimer_get_expires_tv64(timer))
1385 break;
1387 __run_hrtimer(timer);
1389 spin_unlock(&cpu_base->lock);
1394 * Sleep related functions:
1396 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1398 struct hrtimer_sleeper *t =
1399 container_of(timer, struct hrtimer_sleeper, timer);
1400 struct task_struct *task = t->task;
1402 t->task = NULL;
1403 if (task)
1404 wake_up_process(task);
1406 return HRTIMER_NORESTART;
1409 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1411 sl->timer.function = hrtimer_wakeup;
1412 sl->task = task;
1415 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1417 hrtimer_init_sleeper(t, current);
1419 do {
1420 set_current_state(TASK_INTERRUPTIBLE);
1421 hrtimer_start_expires(&t->timer, mode);
1422 if (!hrtimer_active(&t->timer))
1423 t->task = NULL;
1425 if (likely(t->task))
1426 schedule();
1428 hrtimer_cancel(&t->timer);
1429 mode = HRTIMER_MODE_ABS;
1431 } while (t->task && !signal_pending(current));
1433 __set_current_state(TASK_RUNNING);
1435 return t->task == NULL;
1438 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1440 struct timespec rmt;
1441 ktime_t rem;
1443 rem = hrtimer_expires_remaining(timer);
1444 if (rem.tv64 <= 0)
1445 return 0;
1446 rmt = ktime_to_timespec(rem);
1448 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1449 return -EFAULT;
1451 return 1;
1454 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1456 struct hrtimer_sleeper t;
1457 struct timespec __user *rmtp;
1458 int ret = 0;
1460 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1461 HRTIMER_MODE_ABS);
1462 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1464 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1465 goto out;
1467 rmtp = restart->nanosleep.rmtp;
1468 if (rmtp) {
1469 ret = update_rmtp(&t.timer, rmtp);
1470 if (ret <= 0)
1471 goto out;
1474 /* The other values in restart are already filled in */
1475 ret = -ERESTART_RESTARTBLOCK;
1476 out:
1477 destroy_hrtimer_on_stack(&t.timer);
1478 return ret;
1481 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1482 const enum hrtimer_mode mode, const clockid_t clockid)
1484 struct restart_block *restart;
1485 struct hrtimer_sleeper t;
1486 int ret = 0;
1487 unsigned long slack;
1489 slack = current->timer_slack_ns;
1490 if (rt_task(current))
1491 slack = 0;
1493 hrtimer_init_on_stack(&t.timer, clockid, mode);
1494 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1495 if (do_nanosleep(&t, mode))
1496 goto out;
1498 /* Absolute timers do not update the rmtp value and restart: */
1499 if (mode == HRTIMER_MODE_ABS) {
1500 ret = -ERESTARTNOHAND;
1501 goto out;
1504 if (rmtp) {
1505 ret = update_rmtp(&t.timer, rmtp);
1506 if (ret <= 0)
1507 goto out;
1510 restart = &current_thread_info()->restart_block;
1511 restart->fn = hrtimer_nanosleep_restart;
1512 restart->nanosleep.index = t.timer.base->index;
1513 restart->nanosleep.rmtp = rmtp;
1514 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1516 ret = -ERESTART_RESTARTBLOCK;
1517 out:
1518 destroy_hrtimer_on_stack(&t.timer);
1519 return ret;
1522 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1523 struct timespec __user *, rmtp)
1525 struct timespec tu;
1527 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1528 return -EFAULT;
1530 if (!timespec_valid(&tu))
1531 return -EINVAL;
1533 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1537 * Functions related to boot-time initialization:
1539 static void __cpuinit init_hrtimers_cpu(int cpu)
1541 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1542 int i;
1544 spin_lock_init(&cpu_base->lock);
1546 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1547 cpu_base->clock_base[i].cpu_base = cpu_base;
1549 hrtimer_init_hres(cpu_base);
1552 #ifdef CONFIG_HOTPLUG_CPU
1554 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1555 struct hrtimer_clock_base *new_base)
1557 struct hrtimer *timer;
1558 struct rb_node *node;
1560 while ((node = rb_first(&old_base->active))) {
1561 timer = rb_entry(node, struct hrtimer, node);
1562 BUG_ON(hrtimer_callback_running(timer));
1563 debug_hrtimer_deactivate(timer);
1566 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1567 * timer could be seen as !active and just vanish away
1568 * under us on another CPU
1570 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1571 timer->base = new_base;
1573 * Enqueue the timers on the new cpu. This does not
1574 * reprogram the event device in case the timer
1575 * expires before the earliest on this CPU, but we run
1576 * hrtimer_interrupt after we migrated everything to
1577 * sort out already expired timers and reprogram the
1578 * event device.
1580 enqueue_hrtimer(timer, new_base);
1582 /* Clear the migration state bit */
1583 timer->state &= ~HRTIMER_STATE_MIGRATE;
1587 static void migrate_hrtimers(int scpu)
1589 struct hrtimer_cpu_base *old_base, *new_base;
1590 int i;
1592 BUG_ON(cpu_online(scpu));
1593 tick_cancel_sched_timer(scpu);
1595 local_irq_disable();
1596 old_base = &per_cpu(hrtimer_bases, scpu);
1597 new_base = &__get_cpu_var(hrtimer_bases);
1599 * The caller is globally serialized and nobody else
1600 * takes two locks at once, deadlock is not possible.
1602 spin_lock(&new_base->lock);
1603 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1605 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1606 migrate_hrtimer_list(&old_base->clock_base[i],
1607 &new_base->clock_base[i]);
1610 spin_unlock(&old_base->lock);
1611 spin_unlock(&new_base->lock);
1613 /* Check, if we got expired work to do */
1614 __hrtimer_peek_ahead_timers();
1615 local_irq_enable();
1618 #endif /* CONFIG_HOTPLUG_CPU */
1620 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1621 unsigned long action, void *hcpu)
1623 int scpu = (long)hcpu;
1625 switch (action) {
1627 case CPU_UP_PREPARE:
1628 case CPU_UP_PREPARE_FROZEN:
1629 init_hrtimers_cpu(scpu);
1630 break;
1632 #ifdef CONFIG_HOTPLUG_CPU
1633 case CPU_DYING:
1634 case CPU_DYING_FROZEN:
1635 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1636 break;
1637 case CPU_DEAD:
1638 case CPU_DEAD_FROZEN:
1640 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1641 migrate_hrtimers(scpu);
1642 break;
1644 #endif
1646 default:
1647 break;
1650 return NOTIFY_OK;
1653 static struct notifier_block __cpuinitdata hrtimers_nb = {
1654 .notifier_call = hrtimer_cpu_notify,
1657 void __init hrtimers_init(void)
1659 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1660 (void *)(long)smp_processor_id());
1661 register_cpu_notifier(&hrtimers_nb);
1662 #ifdef CONFIG_HIGH_RES_TIMERS
1663 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1664 #endif
1668 * schedule_hrtimeout_range - sleep until timeout
1669 * @expires: timeout value (ktime_t)
1670 * @delta: slack in expires timeout (ktime_t)
1671 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1673 * Make the current task sleep until the given expiry time has
1674 * elapsed. The routine will return immediately unless
1675 * the current task state has been set (see set_current_state()).
1677 * The @delta argument gives the kernel the freedom to schedule the
1678 * actual wakeup to a time that is both power and performance friendly.
1679 * The kernel give the normal best effort behavior for "@expires+@delta",
1680 * but may decide to fire the timer earlier, but no earlier than @expires.
1682 * You can set the task state as follows -
1684 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1685 * pass before the routine returns.
1687 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1688 * delivered to the current task.
1690 * The current task state is guaranteed to be TASK_RUNNING when this
1691 * routine returns.
1693 * Returns 0 when the timer has expired otherwise -EINTR
1695 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1696 const enum hrtimer_mode mode)
1698 struct hrtimer_sleeper t;
1701 * Optimize when a zero timeout value is given. It does not
1702 * matter whether this is an absolute or a relative time.
1704 if (expires && !expires->tv64) {
1705 __set_current_state(TASK_RUNNING);
1706 return 0;
1710 * A NULL parameter means "inifinte"
1712 if (!expires) {
1713 schedule();
1714 __set_current_state(TASK_RUNNING);
1715 return -EINTR;
1718 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1719 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1721 hrtimer_init_sleeper(&t, current);
1723 hrtimer_start_expires(&t.timer, mode);
1724 if (!hrtimer_active(&t.timer))
1725 t.task = NULL;
1727 if (likely(t.task))
1728 schedule();
1730 hrtimer_cancel(&t.timer);
1731 destroy_hrtimer_on_stack(&t.timer);
1733 __set_current_state(TASK_RUNNING);
1735 return !t.task ? 0 : -EINTR;
1737 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1740 * schedule_hrtimeout - sleep until timeout
1741 * @expires: timeout value (ktime_t)
1742 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1744 * Make the current task sleep until the given expiry time has
1745 * elapsed. The routine will return immediately unless
1746 * the current task state has been set (see set_current_state()).
1748 * You can set the task state as follows -
1750 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1751 * pass before the routine returns.
1753 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1754 * delivered to the current task.
1756 * The current task state is guaranteed to be TASK_RUNNING when this
1757 * routine returns.
1759 * Returns 0 when the timer has expired otherwise -EINTR
1761 int __sched schedule_hrtimeout(ktime_t *expires,
1762 const enum hrtimer_mode mode)
1764 return schedule_hrtimeout_range(expires, 0, mode);
1766 EXPORT_SYMBOL_GPL(schedule_hrtimeout);