[SCSI] NCR5380: fix NCR53C400_PSEUDO_DMA is not defined
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sh64 / kernel / process.c
blobceb9458abda4bdec2415eda4925dcd618a33c32b
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * arch/sh64/kernel/process.c
8 * Copyright (C) 2000, 2001 Paolo Alberelli
9 * Copyright (C) 2003 Paul Mundt
10 * Copyright (C) 2003, 2004 Richard Curnow
12 * Started from SH3/4 version:
13 * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
15 * In turn started from i386 version:
16 * Copyright (C) 1995 Linus Torvalds
21 * This file handles the architecture-dependent parts of process handling..
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <asm/uaccess.h>
30 #include <asm/pgtable.h>
32 struct task_struct *last_task_used_math = NULL;
34 static int hlt_counter = 1;
36 #define HARD_IDLE_TIMEOUT (HZ / 3)
38 void disable_hlt(void)
40 hlt_counter++;
43 void enable_hlt(void)
45 hlt_counter--;
48 static int __init nohlt_setup(char *__unused)
50 hlt_counter = 1;
51 return 1;
54 static int __init hlt_setup(char *__unused)
56 hlt_counter = 0;
57 return 1;
60 __setup("nohlt", nohlt_setup);
61 __setup("hlt", hlt_setup);
63 static inline void hlt(void)
65 __asm__ __volatile__ ("sleep" : : : "memory");
69 * The idle loop on a uniprocessor SH..
71 void cpu_idle(void)
73 /* endless idle loop with no priority at all */
74 while (1) {
75 if (hlt_counter) {
76 while (!need_resched())
77 cpu_relax();
78 } else {
79 local_irq_disable();
80 while (!need_resched()) {
81 local_irq_enable();
82 hlt();
83 local_irq_disable();
85 local_irq_enable();
87 preempt_enable_no_resched();
88 schedule();
89 preempt_disable();
94 void machine_restart(char * __unused)
96 extern void phys_stext(void);
98 phys_stext();
101 void machine_halt(void)
103 for (;;);
106 void machine_power_off(void)
108 extern void enter_deep_standby(void);
110 enter_deep_standby();
113 void (*pm_power_off)(void) = machine_power_off;
114 EXPORT_SYMBOL(pm_power_off);
116 void show_regs(struct pt_regs * regs)
118 unsigned long long ah, al, bh, bl, ch, cl;
120 printk("\n");
122 ah = (regs->pc) >> 32;
123 al = (regs->pc) & 0xffffffff;
124 bh = (regs->regs[18]) >> 32;
125 bl = (regs->regs[18]) & 0xffffffff;
126 ch = (regs->regs[15]) >> 32;
127 cl = (regs->regs[15]) & 0xffffffff;
128 printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
129 ah, al, bh, bl, ch, cl);
131 ah = (regs->sr) >> 32;
132 al = (regs->sr) & 0xffffffff;
133 asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
134 asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
135 bh = (bh) >> 32;
136 bl = (bl) & 0xffffffff;
137 asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
138 asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
139 ch = (ch) >> 32;
140 cl = (cl) & 0xffffffff;
141 printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
142 ah, al, bh, bl, ch, cl);
144 ah = (regs->regs[0]) >> 32;
145 al = (regs->regs[0]) & 0xffffffff;
146 bh = (regs->regs[1]) >> 32;
147 bl = (regs->regs[1]) & 0xffffffff;
148 ch = (regs->regs[2]) >> 32;
149 cl = (regs->regs[2]) & 0xffffffff;
150 printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
151 ah, al, bh, bl, ch, cl);
153 ah = (regs->regs[3]) >> 32;
154 al = (regs->regs[3]) & 0xffffffff;
155 bh = (regs->regs[4]) >> 32;
156 bl = (regs->regs[4]) & 0xffffffff;
157 ch = (regs->regs[5]) >> 32;
158 cl = (regs->regs[5]) & 0xffffffff;
159 printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
160 ah, al, bh, bl, ch, cl);
162 ah = (regs->regs[6]) >> 32;
163 al = (regs->regs[6]) & 0xffffffff;
164 bh = (regs->regs[7]) >> 32;
165 bl = (regs->regs[7]) & 0xffffffff;
166 ch = (regs->regs[8]) >> 32;
167 cl = (regs->regs[8]) & 0xffffffff;
168 printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
169 ah, al, bh, bl, ch, cl);
171 ah = (regs->regs[9]) >> 32;
172 al = (regs->regs[9]) & 0xffffffff;
173 bh = (regs->regs[10]) >> 32;
174 bl = (regs->regs[10]) & 0xffffffff;
175 ch = (regs->regs[11]) >> 32;
176 cl = (regs->regs[11]) & 0xffffffff;
177 printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
178 ah, al, bh, bl, ch, cl);
180 ah = (regs->regs[12]) >> 32;
181 al = (regs->regs[12]) & 0xffffffff;
182 bh = (regs->regs[13]) >> 32;
183 bl = (regs->regs[13]) & 0xffffffff;
184 ch = (regs->regs[14]) >> 32;
185 cl = (regs->regs[14]) & 0xffffffff;
186 printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
187 ah, al, bh, bl, ch, cl);
189 ah = (regs->regs[16]) >> 32;
190 al = (regs->regs[16]) & 0xffffffff;
191 bh = (regs->regs[17]) >> 32;
192 bl = (regs->regs[17]) & 0xffffffff;
193 ch = (regs->regs[19]) >> 32;
194 cl = (regs->regs[19]) & 0xffffffff;
195 printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
196 ah, al, bh, bl, ch, cl);
198 ah = (regs->regs[20]) >> 32;
199 al = (regs->regs[20]) & 0xffffffff;
200 bh = (regs->regs[21]) >> 32;
201 bl = (regs->regs[21]) & 0xffffffff;
202 ch = (regs->regs[22]) >> 32;
203 cl = (regs->regs[22]) & 0xffffffff;
204 printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
205 ah, al, bh, bl, ch, cl);
207 ah = (regs->regs[23]) >> 32;
208 al = (regs->regs[23]) & 0xffffffff;
209 bh = (regs->regs[24]) >> 32;
210 bl = (regs->regs[24]) & 0xffffffff;
211 ch = (regs->regs[25]) >> 32;
212 cl = (regs->regs[25]) & 0xffffffff;
213 printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
214 ah, al, bh, bl, ch, cl);
216 ah = (regs->regs[26]) >> 32;
217 al = (regs->regs[26]) & 0xffffffff;
218 bh = (regs->regs[27]) >> 32;
219 bl = (regs->regs[27]) & 0xffffffff;
220 ch = (regs->regs[28]) >> 32;
221 cl = (regs->regs[28]) & 0xffffffff;
222 printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
223 ah, al, bh, bl, ch, cl);
225 ah = (regs->regs[29]) >> 32;
226 al = (regs->regs[29]) & 0xffffffff;
227 bh = (regs->regs[30]) >> 32;
228 bl = (regs->regs[30]) & 0xffffffff;
229 ch = (regs->regs[31]) >> 32;
230 cl = (regs->regs[31]) & 0xffffffff;
231 printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
232 ah, al, bh, bl, ch, cl);
234 ah = (regs->regs[32]) >> 32;
235 al = (regs->regs[32]) & 0xffffffff;
236 bh = (regs->regs[33]) >> 32;
237 bl = (regs->regs[33]) & 0xffffffff;
238 ch = (regs->regs[34]) >> 32;
239 cl = (regs->regs[34]) & 0xffffffff;
240 printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
241 ah, al, bh, bl, ch, cl);
243 ah = (regs->regs[35]) >> 32;
244 al = (regs->regs[35]) & 0xffffffff;
245 bh = (regs->regs[36]) >> 32;
246 bl = (regs->regs[36]) & 0xffffffff;
247 ch = (regs->regs[37]) >> 32;
248 cl = (regs->regs[37]) & 0xffffffff;
249 printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
250 ah, al, bh, bl, ch, cl);
252 ah = (regs->regs[38]) >> 32;
253 al = (regs->regs[38]) & 0xffffffff;
254 bh = (regs->regs[39]) >> 32;
255 bl = (regs->regs[39]) & 0xffffffff;
256 ch = (regs->regs[40]) >> 32;
257 cl = (regs->regs[40]) & 0xffffffff;
258 printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
259 ah, al, bh, bl, ch, cl);
261 ah = (regs->regs[41]) >> 32;
262 al = (regs->regs[41]) & 0xffffffff;
263 bh = (regs->regs[42]) >> 32;
264 bl = (regs->regs[42]) & 0xffffffff;
265 ch = (regs->regs[43]) >> 32;
266 cl = (regs->regs[43]) & 0xffffffff;
267 printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
268 ah, al, bh, bl, ch, cl);
270 ah = (regs->regs[44]) >> 32;
271 al = (regs->regs[44]) & 0xffffffff;
272 bh = (regs->regs[45]) >> 32;
273 bl = (regs->regs[45]) & 0xffffffff;
274 ch = (regs->regs[46]) >> 32;
275 cl = (regs->regs[46]) & 0xffffffff;
276 printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
277 ah, al, bh, bl, ch, cl);
279 ah = (regs->regs[47]) >> 32;
280 al = (regs->regs[47]) & 0xffffffff;
281 bh = (regs->regs[48]) >> 32;
282 bl = (regs->regs[48]) & 0xffffffff;
283 ch = (regs->regs[49]) >> 32;
284 cl = (regs->regs[49]) & 0xffffffff;
285 printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
286 ah, al, bh, bl, ch, cl);
288 ah = (regs->regs[50]) >> 32;
289 al = (regs->regs[50]) & 0xffffffff;
290 bh = (regs->regs[51]) >> 32;
291 bl = (regs->regs[51]) & 0xffffffff;
292 ch = (regs->regs[52]) >> 32;
293 cl = (regs->regs[52]) & 0xffffffff;
294 printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
295 ah, al, bh, bl, ch, cl);
297 ah = (regs->regs[53]) >> 32;
298 al = (regs->regs[53]) & 0xffffffff;
299 bh = (regs->regs[54]) >> 32;
300 bl = (regs->regs[54]) & 0xffffffff;
301 ch = (regs->regs[55]) >> 32;
302 cl = (regs->regs[55]) & 0xffffffff;
303 printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
304 ah, al, bh, bl, ch, cl);
306 ah = (regs->regs[56]) >> 32;
307 al = (regs->regs[56]) & 0xffffffff;
308 bh = (regs->regs[57]) >> 32;
309 bl = (regs->regs[57]) & 0xffffffff;
310 ch = (regs->regs[58]) >> 32;
311 cl = (regs->regs[58]) & 0xffffffff;
312 printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
313 ah, al, bh, bl, ch, cl);
315 ah = (regs->regs[59]) >> 32;
316 al = (regs->regs[59]) & 0xffffffff;
317 bh = (regs->regs[60]) >> 32;
318 bl = (regs->regs[60]) & 0xffffffff;
319 ch = (regs->regs[61]) >> 32;
320 cl = (regs->regs[61]) & 0xffffffff;
321 printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
322 ah, al, bh, bl, ch, cl);
324 ah = (regs->regs[62]) >> 32;
325 al = (regs->regs[62]) & 0xffffffff;
326 bh = (regs->tregs[0]) >> 32;
327 bl = (regs->tregs[0]) & 0xffffffff;
328 ch = (regs->tregs[1]) >> 32;
329 cl = (regs->tregs[1]) & 0xffffffff;
330 printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
331 ah, al, bh, bl, ch, cl);
333 ah = (regs->tregs[2]) >> 32;
334 al = (regs->tregs[2]) & 0xffffffff;
335 bh = (regs->tregs[3]) >> 32;
336 bl = (regs->tregs[3]) & 0xffffffff;
337 ch = (regs->tregs[4]) >> 32;
338 cl = (regs->tregs[4]) & 0xffffffff;
339 printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
340 ah, al, bh, bl, ch, cl);
342 ah = (regs->tregs[5]) >> 32;
343 al = (regs->tregs[5]) & 0xffffffff;
344 bh = (regs->tregs[6]) >> 32;
345 bl = (regs->tregs[6]) & 0xffffffff;
346 ch = (regs->tregs[7]) >> 32;
347 cl = (regs->tregs[7]) & 0xffffffff;
348 printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
349 ah, al, bh, bl, ch, cl);
352 * If we're in kernel mode, dump the stack too..
354 if (!user_mode(regs)) {
355 void show_stack(struct task_struct *tsk, unsigned long *sp);
356 unsigned long sp = regs->regs[15] & 0xffffffff;
357 struct task_struct *tsk = get_current();
359 tsk->thread.kregs = regs;
361 show_stack(tsk, (unsigned long *)sp);
365 struct task_struct * alloc_task_struct(void)
367 /* Get task descriptor pages */
368 return (struct task_struct *)
369 __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
372 void free_task_struct(struct task_struct *p)
374 free_pages((unsigned long) p, get_order(THREAD_SIZE));
378 * Create a kernel thread
380 ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
382 do_exit(fn(arg));
386 * This is the mechanism for creating a new kernel thread.
388 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
389 * who haven't done an "execve()") should use this: it will work within
390 * a system call from a "real" process, but the process memory space will
391 * not be freed until both the parent and the child have exited.
393 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
395 struct pt_regs regs;
397 memset(&regs, 0, sizeof(regs));
398 regs.regs[2] = (unsigned long)arg;
399 regs.regs[3] = (unsigned long)fn;
401 regs.pc = (unsigned long)kernel_thread_helper;
402 regs.sr = (1 << 30);
404 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
405 &regs, 0, NULL, NULL);
409 * Free current thread data structures etc..
411 void exit_thread(void)
413 /* See arch/sparc/kernel/process.c for the precedent for doing this -- RPC.
415 The SH-5 FPU save/restore approach relies on last_task_used_math
416 pointing to a live task_struct. When another task tries to use the
417 FPU for the 1st time, the FPUDIS trap handling (see
418 arch/sh64/kernel/fpu.c) will save the existing FPU state to the
419 FP regs field within last_task_used_math before re-loading the new
420 task's FPU state (or initialising it if the FPU has been used
421 before). So if last_task_used_math is stale, and its page has already been
422 re-allocated for another use, the consequences are rather grim. Unless we
423 null it here, there is no other path through which it would get safely
424 nulled. */
426 #ifdef CONFIG_SH_FPU
427 if (last_task_used_math == current) {
428 last_task_used_math = NULL;
430 #endif
433 void flush_thread(void)
436 /* Called by fs/exec.c (flush_old_exec) to remove traces of a
437 * previously running executable. */
438 #ifdef CONFIG_SH_FPU
439 if (last_task_used_math == current) {
440 last_task_used_math = NULL;
442 /* Force FPU state to be reinitialised after exec */
443 clear_used_math();
444 #endif
446 /* if we are a kernel thread, about to change to user thread,
447 * update kreg
449 if(current->thread.kregs==&fake_swapper_regs) {
450 current->thread.kregs =
451 ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
452 current->thread.uregs = current->thread.kregs;
456 void release_thread(struct task_struct *dead_task)
458 /* do nothing */
461 /* Fill in the fpu structure for a core dump.. */
462 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
464 #ifdef CONFIG_SH_FPU
465 int fpvalid;
466 struct task_struct *tsk = current;
468 fpvalid = !!tsk_used_math(tsk);
469 if (fpvalid) {
470 if (current == last_task_used_math) {
471 grab_fpu();
472 fpsave(&tsk->thread.fpu.hard);
473 release_fpu();
474 last_task_used_math = 0;
475 regs->sr |= SR_FD;
478 memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
481 return fpvalid;
482 #else
483 return 0; /* Task didn't use the fpu at all. */
484 #endif
487 asmlinkage void ret_from_fork(void);
489 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
490 unsigned long unused,
491 struct task_struct *p, struct pt_regs *regs)
493 struct pt_regs *childregs;
494 unsigned long long se; /* Sign extension */
496 #ifdef CONFIG_SH_FPU
497 if(last_task_used_math == current) {
498 grab_fpu();
499 fpsave(&current->thread.fpu.hard);
500 release_fpu();
501 last_task_used_math = NULL;
502 regs->sr |= SR_FD;
504 #endif
505 /* Copy from sh version */
506 childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
508 *childregs = *regs;
510 if (user_mode(regs)) {
511 childregs->regs[15] = usp;
512 p->thread.uregs = childregs;
513 } else {
514 childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
517 childregs->regs[9] = 0; /* Set return value for child */
518 childregs->sr |= SR_FD; /* Invalidate FPU flag */
520 p->thread.sp = (unsigned long) childregs;
521 p->thread.pc = (unsigned long) ret_from_fork;
524 * Sign extend the edited stack.
525 * Note that thread.pc and thread.pc will stay
526 * 32-bit wide and context switch must take care
527 * of NEFF sign extension.
530 se = childregs->regs[15];
531 se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
532 childregs->regs[15] = se;
534 return 0;
537 asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
538 unsigned long r4, unsigned long r5,
539 unsigned long r6, unsigned long r7,
540 struct pt_regs *pregs)
542 return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
545 asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
546 unsigned long r4, unsigned long r5,
547 unsigned long r6, unsigned long r7,
548 struct pt_regs *pregs)
550 if (!newsp)
551 newsp = pregs->regs[15];
552 return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
556 * This is trivial, and on the face of it looks like it
557 * could equally well be done in user mode.
559 * Not so, for quite unobvious reasons - register pressure.
560 * In user mode vfork() cannot have a stack frame, and if
561 * done by calling the "clone()" system call directly, you
562 * do not have enough call-clobbered registers to hold all
563 * the information you need.
565 asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
566 unsigned long r4, unsigned long r5,
567 unsigned long r6, unsigned long r7,
568 struct pt_regs *pregs)
570 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
574 * sys_execve() executes a new program.
576 asmlinkage int sys_execve(char *ufilename, char **uargv,
577 char **uenvp, unsigned long r5,
578 unsigned long r6, unsigned long r7,
579 struct pt_regs *pregs)
581 int error;
582 char *filename;
584 lock_kernel();
585 filename = getname((char __user *)ufilename);
586 error = PTR_ERR(filename);
587 if (IS_ERR(filename))
588 goto out;
590 error = do_execve(filename,
591 (char __user * __user *)uargv,
592 (char __user * __user *)uenvp,
593 pregs);
594 if (error == 0) {
595 task_lock(current);
596 current->ptrace &= ~PT_DTRACE;
597 task_unlock(current);
599 putname(filename);
600 out:
601 unlock_kernel();
602 return error;
606 * These bracket the sleeping functions..
608 extern void interruptible_sleep_on(wait_queue_head_t *q);
610 #define mid_sched ((unsigned long) interruptible_sleep_on)
612 static int in_sh64_switch_to(unsigned long pc)
614 extern char __sh64_switch_to_end;
615 /* For a sleeping task, the PC is somewhere in the middle of the function,
616 so we don't have to worry about masking the LSB off */
617 return (pc >= (unsigned long) sh64_switch_to) &&
618 (pc < (unsigned long) &__sh64_switch_to_end);
621 unsigned long get_wchan(struct task_struct *p)
623 unsigned long schedule_fp;
624 unsigned long sh64_switch_to_fp;
625 unsigned long schedule_caller_pc;
626 unsigned long pc;
628 if (!p || p == current || p->state == TASK_RUNNING)
629 return 0;
632 * The same comment as on the Alpha applies here, too ...
634 pc = thread_saved_pc(p);
636 #ifdef CONFIG_FRAME_POINTER
637 if (in_sh64_switch_to(pc)) {
638 sh64_switch_to_fp = (long) p->thread.sp;
639 /* r14 is saved at offset 4 in the sh64_switch_to frame */
640 schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
642 /* and the caller of 'schedule' is (currently!) saved at offset 24
643 in the frame of schedule (from disasm) */
644 schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
645 return schedule_caller_pc;
647 #endif
648 return pc;
651 /* Provide a /proc/asids file that lists out the
652 ASIDs currently associated with the processes. (If the DM.PC register is
653 examined through the debug link, this shows ASID + PC. To make use of this,
654 the PID->ASID relationship needs to be known. This is primarily for
655 debugging.)
658 #if defined(CONFIG_SH64_PROC_ASIDS)
659 #include <linux/init.h>
660 #include <linux/proc_fs.h>
662 static int
663 asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
665 int len=0;
666 struct task_struct *p;
667 read_lock(&tasklist_lock);
668 for_each_process(p) {
669 int pid = p->pid;
670 struct mm_struct *mm;
671 if (!pid) continue;
672 mm = p->mm;
673 if (mm) {
674 unsigned long asid, context;
675 context = mm->context;
676 asid = (context & 0xff);
677 len += sprintf(buf+len, "%5d : %02lx\n", pid, asid);
678 } else {
679 len += sprintf(buf+len, "%5d : (none)\n", pid);
682 read_unlock(&tasklist_lock);
683 *eof = 1;
684 return len;
687 static int __init register_proc_asids(void)
689 create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
690 return 0;
693 __initcall(register_proc_asids);
694 #endif