2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency
= 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG
;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity
= 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency
= 8;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly
;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield
;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
90 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
93 * The exponential sliding window over which load is averaged for shares
97 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
99 static const struct sched_class fair_sched_class
;
101 /**************************************************************
102 * CFS operations on generic schedulable entities:
105 #ifdef CONFIG_FAIR_GROUP_SCHED
107 /* cpu runqueue to which this cfs_rq is attached */
108 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
113 /* An entity is a task if it doesn't "own" a runqueue */
114 #define entity_is_task(se) (!se->my_q)
116 static inline struct task_struct
*task_of(struct sched_entity
*se
)
118 #ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se
));
121 return container_of(se
, struct task_struct
, se
);
124 /* Walk up scheduling entities hierarchy */
125 #define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
128 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
133 /* runqueue on which this entity is (to be) queued */
134 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
139 /* runqueue "owned" by this group */
140 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
145 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
148 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
150 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
153 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
155 if (!cfs_rq
->on_list
) {
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
162 if (cfs_rq
->tg
->parent
&&
163 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
164 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
165 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
167 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
168 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
175 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
177 if (cfs_rq
->on_list
) {
178 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
183 /* Iterate thr' all leaf cfs_rq's on a runqueue */
184 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
187 /* Do the two (enqueued) entities belong to the same group ? */
189 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
191 if (se
->cfs_rq
== pse
->cfs_rq
)
197 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
202 /* return depth at which a sched entity is present in the hierarchy */
203 static inline int depth_se(struct sched_entity
*se
)
207 for_each_sched_entity(se
)
214 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
216 int se_depth
, pse_depth
;
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
225 /* First walk up until both entities are at same depth */
226 se_depth
= depth_se(*se
);
227 pse_depth
= depth_se(*pse
);
229 while (se_depth
> pse_depth
) {
231 *se
= parent_entity(*se
);
234 while (pse_depth
> se_depth
) {
236 *pse
= parent_entity(*pse
);
239 while (!is_same_group(*se
, *pse
)) {
240 *se
= parent_entity(*se
);
241 *pse
= parent_entity(*pse
);
245 #else /* !CONFIG_FAIR_GROUP_SCHED */
247 static inline struct task_struct
*task_of(struct sched_entity
*se
)
249 return container_of(se
, struct task_struct
, se
);
252 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
254 return container_of(cfs_rq
, struct rq
, cfs
);
257 #define entity_is_task(se) 1
259 #define for_each_sched_entity(se) \
260 for (; se; se = NULL)
262 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
264 return &task_rq(p
)->cfs
;
267 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
269 struct task_struct
*p
= task_of(se
);
270 struct rq
*rq
= task_rq(p
);
275 /* runqueue "owned" by this group */
276 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
281 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
283 return &cpu_rq(this_cpu
)->cfs
;
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
290 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
294 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
298 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
303 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
309 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
313 #endif /* CONFIG_FAIR_GROUP_SCHED */
316 /**************************************************************
317 * Scheduling class tree data structure manipulation methods:
320 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
322 s64 delta
= (s64
)(vruntime
- min_vruntime
);
324 min_vruntime
= vruntime
;
329 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
331 s64 delta
= (s64
)(vruntime
- min_vruntime
);
333 min_vruntime
= vruntime
;
338 static inline int entity_before(struct sched_entity
*a
,
339 struct sched_entity
*b
)
341 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
344 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
346 return se
->vruntime
- cfs_rq
->min_vruntime
;
349 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
351 u64 vruntime
= cfs_rq
->min_vruntime
;
354 vruntime
= cfs_rq
->curr
->vruntime
;
356 if (cfs_rq
->rb_leftmost
) {
357 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
362 vruntime
= se
->vruntime
;
364 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
367 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
371 * Enqueue an entity into the rb-tree:
373 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
375 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
376 struct rb_node
*parent
= NULL
;
377 struct sched_entity
*entry
;
378 s64 key
= entity_key(cfs_rq
, se
);
382 * Find the right place in the rbtree:
386 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
391 if (key
< entity_key(cfs_rq
, entry
)) {
392 link
= &parent
->rb_left
;
394 link
= &parent
->rb_right
;
400 * Maintain a cache of leftmost tree entries (it is frequently
404 cfs_rq
->rb_leftmost
= &se
->run_node
;
406 rb_link_node(&se
->run_node
, parent
, link
);
407 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
410 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
412 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
413 struct rb_node
*next_node
;
415 next_node
= rb_next(&se
->run_node
);
416 cfs_rq
->rb_leftmost
= next_node
;
419 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
422 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
424 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
429 return rb_entry(left
, struct sched_entity
, run_node
);
432 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
434 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
439 return rb_entry(last
, struct sched_entity
, run_node
);
442 /**************************************************************
443 * Scheduling class statistics methods:
446 #ifdef CONFIG_SCHED_DEBUG
447 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
448 void __user
*buffer
, size_t *lenp
,
451 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
452 int factor
= get_update_sysctl_factor();
457 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
458 sysctl_sched_min_granularity
);
460 #define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity
);
463 WRT_SYSCTL(sched_latency
);
464 WRT_SYSCTL(sched_wakeup_granularity
);
474 static inline unsigned long
475 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
477 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
478 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
484 * The idea is to set a period in which each task runs once.
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
489 * p = (nr <= nl) ? l : l*nr/nl
491 static u64
__sched_period(unsigned long nr_running
)
493 u64 period
= sysctl_sched_latency
;
494 unsigned long nr_latency
= sched_nr_latency
;
496 if (unlikely(nr_running
> nr_latency
)) {
497 period
= sysctl_sched_min_granularity
;
498 period
*= nr_running
;
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
510 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
512 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
514 for_each_sched_entity(se
) {
515 struct load_weight
*load
;
516 struct load_weight lw
;
518 cfs_rq
= cfs_rq_of(se
);
519 load
= &cfs_rq
->load
;
521 if (unlikely(!se
->on_rq
)) {
524 update_load_add(&lw
, se
->load
.weight
);
527 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
533 * We calculate the vruntime slice of a to be inserted task
537 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
539 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
542 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
);
543 static void update_cfs_shares(struct cfs_rq
*cfs_rq
, long weight_delta
);
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
550 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
551 unsigned long delta_exec
)
553 unsigned long delta_exec_weighted
;
555 schedstat_set(curr
->statistics
.exec_max
,
556 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
558 curr
->sum_exec_runtime
+= delta_exec
;
559 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
560 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
562 curr
->vruntime
+= delta_exec_weighted
;
563 update_min_vruntime(cfs_rq
);
565 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
566 cfs_rq
->load_unacc_exec_time
+= delta_exec
;
570 static void update_curr(struct cfs_rq
*cfs_rq
)
572 struct sched_entity
*curr
= cfs_rq
->curr
;
573 u64 now
= rq_of(cfs_rq
)->clock_task
;
574 unsigned long delta_exec
;
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
584 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
588 __update_curr(cfs_rq
, curr
, delta_exec
);
589 curr
->exec_start
= now
;
591 if (entity_is_task(curr
)) {
592 struct task_struct
*curtask
= task_of(curr
);
594 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
595 cpuacct_charge(curtask
, delta_exec
);
596 account_group_exec_runtime(curtask
, delta_exec
);
601 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
603 schedstat_set(se
->statistics
.wait_start
, rq_of(cfs_rq
)->clock
);
607 * Task is being enqueued - update stats:
609 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
615 if (se
!= cfs_rq
->curr
)
616 update_stats_wait_start(cfs_rq
, se
);
620 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
622 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
623 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
));
624 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
625 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
626 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
627 #ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se
)) {
629 trace_sched_stat_wait(task_of(se
),
630 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
633 schedstat_set(se
->statistics
.wait_start
, 0);
637 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
640 * Mark the end of the wait period if dequeueing a
643 if (se
!= cfs_rq
->curr
)
644 update_stats_wait_end(cfs_rq
, se
);
648 * We are picking a new current task - update its stats:
651 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
654 * We are starting a new run period:
656 se
->exec_start
= rq_of(cfs_rq
)->clock_task
;
659 /**************************************************
660 * Scheduling class queueing methods:
663 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
665 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
667 cfs_rq
->task_weight
+= weight
;
671 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
677 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
679 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
680 if (!parent_entity(se
))
681 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
682 if (entity_is_task(se
)) {
683 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
684 list_add(&se
->group_node
, &cfs_rq
->tasks
);
686 cfs_rq
->nr_running
++;
690 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
692 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
693 if (!parent_entity(se
))
694 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
695 if (entity_is_task(se
)) {
696 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
697 list_del_init(&se
->group_node
);
699 cfs_rq
->nr_running
--;
702 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
703 static void update_cfs_rq_load_contribution(struct cfs_rq
*cfs_rq
,
706 struct task_group
*tg
= cfs_rq
->tg
;
709 load_avg
= div64_u64(cfs_rq
->load_avg
, cfs_rq
->load_period
+1);
710 load_avg
-= cfs_rq
->load_contribution
;
712 if (global_update
|| abs(load_avg
) > cfs_rq
->load_contribution
/ 8) {
713 atomic_add(load_avg
, &tg
->load_weight
);
714 cfs_rq
->load_contribution
+= load_avg
;
718 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
720 u64 period
= sysctl_sched_shares_window
;
722 unsigned long load
= cfs_rq
->load
.weight
;
727 now
= rq_of(cfs_rq
)->clock
;
728 delta
= now
- cfs_rq
->load_stamp
;
730 /* truncate load history at 4 idle periods */
731 if (cfs_rq
->load_stamp
> cfs_rq
->load_last
&&
732 now
- cfs_rq
->load_last
> 4 * period
) {
733 cfs_rq
->load_period
= 0;
734 cfs_rq
->load_avg
= 0;
737 cfs_rq
->load_stamp
= now
;
738 cfs_rq
->load_unacc_exec_time
= 0;
739 cfs_rq
->load_period
+= delta
;
741 cfs_rq
->load_last
= now
;
742 cfs_rq
->load_avg
+= delta
* load
;
745 /* consider updating load contribution on each fold or truncate */
746 if (global_update
|| cfs_rq
->load_period
> period
747 || !cfs_rq
->load_period
)
748 update_cfs_rq_load_contribution(cfs_rq
, global_update
);
750 while (cfs_rq
->load_period
> period
) {
752 * Inline assembly required to prevent the compiler
753 * optimising this loop into a divmod call.
754 * See __iter_div_u64_rem() for another example of this.
756 asm("" : "+rm" (cfs_rq
->load_period
));
757 cfs_rq
->load_period
/= 2;
758 cfs_rq
->load_avg
/= 2;
761 if (!cfs_rq
->curr
&& !cfs_rq
->nr_running
&& !cfs_rq
->load_avg
)
762 list_del_leaf_cfs_rq(cfs_rq
);
765 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
766 unsigned long weight
)
769 /* commit outstanding execution time */
770 if (cfs_rq
->curr
== se
)
772 account_entity_dequeue(cfs_rq
, se
);
775 update_load_set(&se
->load
, weight
);
778 account_entity_enqueue(cfs_rq
, se
);
781 static void update_cfs_shares(struct cfs_rq
*cfs_rq
, long weight_delta
)
783 struct task_group
*tg
;
784 struct sched_entity
*se
;
785 long load_weight
, load
, shares
;
791 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
795 load
= cfs_rq
->load
.weight
+ weight_delta
;
797 load_weight
= atomic_read(&tg
->load_weight
);
798 load_weight
-= cfs_rq
->load_contribution
;
801 shares
= (tg
->shares
* load
);
803 shares
/= load_weight
;
805 if (shares
< MIN_SHARES
)
807 if (shares
> tg
->shares
)
810 reweight_entity(cfs_rq_of(se
), se
, shares
);
813 static void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
815 if (cfs_rq
->load_unacc_exec_time
> sysctl_sched_shares_window
) {
816 update_cfs_load(cfs_rq
, 0);
817 update_cfs_shares(cfs_rq
, 0);
820 #else /* CONFIG_FAIR_GROUP_SCHED */
821 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
825 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
, long weight_delta
)
829 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
832 #endif /* CONFIG_FAIR_GROUP_SCHED */
834 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
836 #ifdef CONFIG_SCHEDSTATS
837 struct task_struct
*tsk
= NULL
;
839 if (entity_is_task(se
))
842 if (se
->statistics
.sleep_start
) {
843 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.sleep_start
;
848 if (unlikely(delta
> se
->statistics
.sleep_max
))
849 se
->statistics
.sleep_max
= delta
;
851 se
->statistics
.sleep_start
= 0;
852 se
->statistics
.sum_sleep_runtime
+= delta
;
855 account_scheduler_latency(tsk
, delta
>> 10, 1);
856 trace_sched_stat_sleep(tsk
, delta
);
859 if (se
->statistics
.block_start
) {
860 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.block_start
;
865 if (unlikely(delta
> se
->statistics
.block_max
))
866 se
->statistics
.block_max
= delta
;
868 se
->statistics
.block_start
= 0;
869 se
->statistics
.sum_sleep_runtime
+= delta
;
872 if (tsk
->in_iowait
) {
873 se
->statistics
.iowait_sum
+= delta
;
874 se
->statistics
.iowait_count
++;
875 trace_sched_stat_iowait(tsk
, delta
);
879 * Blocking time is in units of nanosecs, so shift by
880 * 20 to get a milliseconds-range estimation of the
881 * amount of time that the task spent sleeping:
883 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
884 profile_hits(SLEEP_PROFILING
,
885 (void *)get_wchan(tsk
),
888 account_scheduler_latency(tsk
, delta
>> 10, 0);
894 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
896 #ifdef CONFIG_SCHED_DEBUG
897 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
902 if (d
> 3*sysctl_sched_latency
)
903 schedstat_inc(cfs_rq
, nr_spread_over
);
908 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
910 u64 vruntime
= cfs_rq
->min_vruntime
;
913 * The 'current' period is already promised to the current tasks,
914 * however the extra weight of the new task will slow them down a
915 * little, place the new task so that it fits in the slot that
916 * stays open at the end.
918 if (initial
&& sched_feat(START_DEBIT
))
919 vruntime
+= sched_vslice(cfs_rq
, se
);
921 /* sleeps up to a single latency don't count. */
923 unsigned long thresh
= sysctl_sched_latency
;
926 * Halve their sleep time's effect, to allow
927 * for a gentler effect of sleepers:
929 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
935 /* ensure we never gain time by being placed backwards. */
936 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
938 se
->vruntime
= vruntime
;
942 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
945 * Update the normalized vruntime before updating min_vruntime
946 * through callig update_curr().
948 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
949 se
->vruntime
+= cfs_rq
->min_vruntime
;
952 * Update run-time statistics of the 'current'.
955 update_cfs_load(cfs_rq
, 0);
956 update_cfs_shares(cfs_rq
, se
->load
.weight
);
957 account_entity_enqueue(cfs_rq
, se
);
959 if (flags
& ENQUEUE_WAKEUP
) {
960 place_entity(cfs_rq
, se
, 0);
961 enqueue_sleeper(cfs_rq
, se
);
964 update_stats_enqueue(cfs_rq
, se
);
965 check_spread(cfs_rq
, se
);
966 if (se
!= cfs_rq
->curr
)
967 __enqueue_entity(cfs_rq
, se
);
970 if (cfs_rq
->nr_running
== 1)
971 list_add_leaf_cfs_rq(cfs_rq
);
974 static void __clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
976 if (!se
|| cfs_rq
->last
== se
)
979 if (!se
|| cfs_rq
->next
== se
)
983 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
985 for_each_sched_entity(se
)
986 __clear_buddies(cfs_rq_of(se
), se
);
990 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
993 * Update run-time statistics of the 'current'.
997 update_stats_dequeue(cfs_rq
, se
);
998 if (flags
& DEQUEUE_SLEEP
) {
999 #ifdef CONFIG_SCHEDSTATS
1000 if (entity_is_task(se
)) {
1001 struct task_struct
*tsk
= task_of(se
);
1003 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1004 se
->statistics
.sleep_start
= rq_of(cfs_rq
)->clock
;
1005 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1006 se
->statistics
.block_start
= rq_of(cfs_rq
)->clock
;
1011 clear_buddies(cfs_rq
, se
);
1013 if (se
!= cfs_rq
->curr
)
1014 __dequeue_entity(cfs_rq
, se
);
1016 update_cfs_load(cfs_rq
, 0);
1017 account_entity_dequeue(cfs_rq
, se
);
1018 update_min_vruntime(cfs_rq
);
1019 update_cfs_shares(cfs_rq
, 0);
1022 * Normalize the entity after updating the min_vruntime because the
1023 * update can refer to the ->curr item and we need to reflect this
1024 * movement in our normalized position.
1026 if (!(flags
& DEQUEUE_SLEEP
))
1027 se
->vruntime
-= cfs_rq
->min_vruntime
;
1031 * Preempt the current task with a newly woken task if needed:
1034 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1036 unsigned long ideal_runtime
, delta_exec
;
1038 ideal_runtime
= sched_slice(cfs_rq
, curr
);
1039 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1040 if (delta_exec
> ideal_runtime
) {
1041 resched_task(rq_of(cfs_rq
)->curr
);
1043 * The current task ran long enough, ensure it doesn't get
1044 * re-elected due to buddy favours.
1046 clear_buddies(cfs_rq
, curr
);
1051 * Ensure that a task that missed wakeup preemption by a
1052 * narrow margin doesn't have to wait for a full slice.
1053 * This also mitigates buddy induced latencies under load.
1055 if (!sched_feat(WAKEUP_PREEMPT
))
1058 if (delta_exec
< sysctl_sched_min_granularity
)
1061 if (cfs_rq
->nr_running
> 1) {
1062 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
1063 s64 delta
= curr
->vruntime
- se
->vruntime
;
1068 if (delta
> ideal_runtime
)
1069 resched_task(rq_of(cfs_rq
)->curr
);
1074 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1076 /* 'current' is not kept within the tree. */
1079 * Any task has to be enqueued before it get to execute on
1080 * a CPU. So account for the time it spent waiting on the
1083 update_stats_wait_end(cfs_rq
, se
);
1084 __dequeue_entity(cfs_rq
, se
);
1087 update_stats_curr_start(cfs_rq
, se
);
1089 #ifdef CONFIG_SCHEDSTATS
1091 * Track our maximum slice length, if the CPU's load is at
1092 * least twice that of our own weight (i.e. dont track it
1093 * when there are only lesser-weight tasks around):
1095 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
1096 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
1097 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
1100 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
1104 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
1106 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
1108 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
1109 struct sched_entity
*left
= se
;
1111 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
1115 * Prefer last buddy, try to return the CPU to a preempted task.
1117 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
1120 clear_buddies(cfs_rq
, se
);
1125 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
1128 * If still on the runqueue then deactivate_task()
1129 * was not called and update_curr() has to be done:
1132 update_curr(cfs_rq
);
1134 check_spread(cfs_rq
, prev
);
1136 update_stats_wait_start(cfs_rq
, prev
);
1137 /* Put 'current' back into the tree. */
1138 __enqueue_entity(cfs_rq
, prev
);
1140 cfs_rq
->curr
= NULL
;
1144 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
1147 * Update run-time statistics of the 'current'.
1149 update_curr(cfs_rq
);
1152 * Update share accounting for long-running entities.
1154 update_entity_shares_tick(cfs_rq
);
1156 #ifdef CONFIG_SCHED_HRTICK
1158 * queued ticks are scheduled to match the slice, so don't bother
1159 * validating it and just reschedule.
1162 resched_task(rq_of(cfs_rq
)->curr
);
1166 * don't let the period tick interfere with the hrtick preemption
1168 if (!sched_feat(DOUBLE_TICK
) &&
1169 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
1173 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
1174 check_preempt_tick(cfs_rq
, curr
);
1177 /**************************************************
1178 * CFS operations on tasks:
1181 #ifdef CONFIG_SCHED_HRTICK
1182 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1184 struct sched_entity
*se
= &p
->se
;
1185 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1187 WARN_ON(task_rq(p
) != rq
);
1189 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
1190 u64 slice
= sched_slice(cfs_rq
, se
);
1191 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
1192 s64 delta
= slice
- ran
;
1201 * Don't schedule slices shorter than 10000ns, that just
1202 * doesn't make sense. Rely on vruntime for fairness.
1205 delta
= max_t(s64
, 10000LL, delta
);
1207 hrtick_start(rq
, delta
);
1212 * called from enqueue/dequeue and updates the hrtick when the
1213 * current task is from our class and nr_running is low enough
1216 static void hrtick_update(struct rq
*rq
)
1218 struct task_struct
*curr
= rq
->curr
;
1220 if (curr
->sched_class
!= &fair_sched_class
)
1223 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1224 hrtick_start_fair(rq
, curr
);
1226 #else /* !CONFIG_SCHED_HRTICK */
1228 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1232 static inline void hrtick_update(struct rq
*rq
)
1238 * The enqueue_task method is called before nr_running is
1239 * increased. Here we update the fair scheduling stats and
1240 * then put the task into the rbtree:
1243 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1245 struct cfs_rq
*cfs_rq
;
1246 struct sched_entity
*se
= &p
->se
;
1248 for_each_sched_entity(se
) {
1251 cfs_rq
= cfs_rq_of(se
);
1252 enqueue_entity(cfs_rq
, se
, flags
);
1253 flags
= ENQUEUE_WAKEUP
;
1256 for_each_sched_entity(se
) {
1257 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1259 update_cfs_load(cfs_rq
, 0);
1260 update_cfs_shares(cfs_rq
, 0);
1267 * The dequeue_task method is called before nr_running is
1268 * decreased. We remove the task from the rbtree and
1269 * update the fair scheduling stats:
1271 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1273 struct cfs_rq
*cfs_rq
;
1274 struct sched_entity
*se
= &p
->se
;
1276 for_each_sched_entity(se
) {
1277 cfs_rq
= cfs_rq_of(se
);
1278 dequeue_entity(cfs_rq
, se
, flags
);
1280 /* Don't dequeue parent if it has other entities besides us */
1281 if (cfs_rq
->load
.weight
)
1283 flags
|= DEQUEUE_SLEEP
;
1286 for_each_sched_entity(se
) {
1287 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1289 update_cfs_load(cfs_rq
, 0);
1290 update_cfs_shares(cfs_rq
, 0);
1297 * sched_yield() support is very simple - we dequeue and enqueue.
1299 * If compat_yield is turned on then we requeue to the end of the tree.
1301 static void yield_task_fair(struct rq
*rq
)
1303 struct task_struct
*curr
= rq
->curr
;
1304 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1305 struct sched_entity
*rightmost
, *se
= &curr
->se
;
1308 * Are we the only task in the tree?
1310 if (unlikely(cfs_rq
->nr_running
== 1))
1313 clear_buddies(cfs_rq
, se
);
1315 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
1316 update_rq_clock(rq
);
1318 * Update run-time statistics of the 'current'.
1320 update_curr(cfs_rq
);
1325 * Find the rightmost entry in the rbtree:
1327 rightmost
= __pick_last_entity(cfs_rq
);
1329 * Already in the rightmost position?
1331 if (unlikely(!rightmost
|| entity_before(rightmost
, se
)))
1335 * Minimally necessary key value to be last in the tree:
1336 * Upon rescheduling, sched_class::put_prev_task() will place
1337 * 'current' within the tree based on its new key value.
1339 se
->vruntime
= rightmost
->vruntime
+ 1;
1344 static void task_waking_fair(struct rq
*rq
, struct task_struct
*p
)
1346 struct sched_entity
*se
= &p
->se
;
1347 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1349 se
->vruntime
-= cfs_rq
->min_vruntime
;
1352 #ifdef CONFIG_FAIR_GROUP_SCHED
1354 * effective_load() calculates the load change as seen from the root_task_group
1356 * Adding load to a group doesn't make a group heavier, but can cause movement
1357 * of group shares between cpus. Assuming the shares were perfectly aligned one
1358 * can calculate the shift in shares.
1360 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
1362 struct sched_entity
*se
= tg
->se
[cpu
];
1367 for_each_sched_entity(se
) {
1371 w
= se
->my_q
->load
.weight
;
1373 /* use this cpu's instantaneous contribution */
1374 lw
= atomic_read(&tg
->load_weight
);
1375 lw
-= se
->my_q
->load_contribution
;
1380 if (lw
> 0 && wl
< lw
)
1381 wl
= (wl
* tg
->shares
) / lw
;
1385 /* zero point is MIN_SHARES */
1386 if (wl
< MIN_SHARES
)
1388 wl
-= se
->load
.weight
;
1397 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1398 unsigned long wl
, unsigned long wg
)
1405 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1407 unsigned long this_load
, load
;
1408 int idx
, this_cpu
, prev_cpu
;
1409 unsigned long tl_per_task
;
1410 struct task_group
*tg
;
1411 unsigned long weight
;
1415 this_cpu
= smp_processor_id();
1416 prev_cpu
= task_cpu(p
);
1417 load
= source_load(prev_cpu
, idx
);
1418 this_load
= target_load(this_cpu
, idx
);
1421 * If sync wakeup then subtract the (maximum possible)
1422 * effect of the currently running task from the load
1423 * of the current CPU:
1427 tg
= task_group(current
);
1428 weight
= current
->se
.load
.weight
;
1430 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1431 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1435 weight
= p
->se
.load
.weight
;
1438 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1439 * due to the sync cause above having dropped this_load to 0, we'll
1440 * always have an imbalance, but there's really nothing you can do
1441 * about that, so that's good too.
1443 * Otherwise check if either cpus are near enough in load to allow this
1444 * task to be woken on this_cpu.
1447 unsigned long this_eff_load
, prev_eff_load
;
1449 this_eff_load
= 100;
1450 this_eff_load
*= power_of(prev_cpu
);
1451 this_eff_load
*= this_load
+
1452 effective_load(tg
, this_cpu
, weight
, weight
);
1454 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
1455 prev_eff_load
*= power_of(this_cpu
);
1456 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
1458 balanced
= this_eff_load
<= prev_eff_load
;
1464 * If the currently running task will sleep within
1465 * a reasonable amount of time then attract this newly
1468 if (sync
&& balanced
)
1471 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
1472 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1475 (this_load
<= load
&&
1476 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1478 * This domain has SD_WAKE_AFFINE and
1479 * p is cache cold in this domain, and
1480 * there is no bad imbalance.
1482 schedstat_inc(sd
, ttwu_move_affine
);
1483 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
1491 * find_idlest_group finds and returns the least busy CPU group within the
1494 static struct sched_group
*
1495 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1496 int this_cpu
, int load_idx
)
1498 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
1499 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1500 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1503 unsigned long load
, avg_load
;
1507 /* Skip over this group if it has no CPUs allowed */
1508 if (!cpumask_intersects(sched_group_cpus(group
),
1512 local_group
= cpumask_test_cpu(this_cpu
,
1513 sched_group_cpus(group
));
1515 /* Tally up the load of all CPUs in the group */
1518 for_each_cpu(i
, sched_group_cpus(group
)) {
1519 /* Bias balancing toward cpus of our domain */
1521 load
= source_load(i
, load_idx
);
1523 load
= target_load(i
, load_idx
);
1528 /* Adjust by relative CPU power of the group */
1529 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1532 this_load
= avg_load
;
1533 } else if (avg_load
< min_load
) {
1534 min_load
= avg_load
;
1537 } while (group
= group
->next
, group
!= sd
->groups
);
1539 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1545 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1548 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1550 unsigned long load
, min_load
= ULONG_MAX
;
1554 /* Traverse only the allowed CPUs */
1555 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1556 load
= weighted_cpuload(i
);
1558 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1568 * Try and locate an idle CPU in the sched_domain.
1570 static int select_idle_sibling(struct task_struct
*p
, int target
)
1572 int cpu
= smp_processor_id();
1573 int prev_cpu
= task_cpu(p
);
1574 struct sched_domain
*sd
;
1578 * If the task is going to be woken-up on this cpu and if it is
1579 * already idle, then it is the right target.
1581 if (target
== cpu
&& idle_cpu(cpu
))
1585 * If the task is going to be woken-up on the cpu where it previously
1586 * ran and if it is currently idle, then it the right target.
1588 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
1592 * Otherwise, iterate the domains and find an elegible idle cpu.
1594 for_each_domain(target
, sd
) {
1595 if (!(sd
->flags
& SD_SHARE_PKG_RESOURCES
))
1598 for_each_cpu_and(i
, sched_domain_span(sd
), &p
->cpus_allowed
) {
1606 * Lets stop looking for an idle sibling when we reached
1607 * the domain that spans the current cpu and prev_cpu.
1609 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
)) &&
1610 cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
1618 * sched_balance_self: balance the current task (running on cpu) in domains
1619 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1622 * Balance, ie. select the least loaded group.
1624 * Returns the target CPU number, or the same CPU if no balancing is needed.
1626 * preempt must be disabled.
1629 select_task_rq_fair(struct rq
*rq
, struct task_struct
*p
, int sd_flag
, int wake_flags
)
1631 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1632 int cpu
= smp_processor_id();
1633 int prev_cpu
= task_cpu(p
);
1635 int want_affine
= 0;
1637 int sync
= wake_flags
& WF_SYNC
;
1639 if (sd_flag
& SD_BALANCE_WAKE
) {
1640 if (cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1645 for_each_domain(cpu
, tmp
) {
1646 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
1650 * If power savings logic is enabled for a domain, see if we
1651 * are not overloaded, if so, don't balance wider.
1653 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1654 unsigned long power
= 0;
1655 unsigned long nr_running
= 0;
1656 unsigned long capacity
;
1659 for_each_cpu(i
, sched_domain_span(tmp
)) {
1660 power
+= power_of(i
);
1661 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1664 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
1666 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1669 if (nr_running
< capacity
)
1674 * If both cpu and prev_cpu are part of this domain,
1675 * cpu is a valid SD_WAKE_AFFINE target.
1677 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
1678 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
1683 if (!want_sd
&& !want_affine
)
1686 if (!(tmp
->flags
& sd_flag
))
1694 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
1695 return select_idle_sibling(p
, cpu
);
1697 return select_idle_sibling(p
, prev_cpu
);
1701 int load_idx
= sd
->forkexec_idx
;
1702 struct sched_group
*group
;
1705 if (!(sd
->flags
& sd_flag
)) {
1710 if (sd_flag
& SD_BALANCE_WAKE
)
1711 load_idx
= sd
->wake_idx
;
1713 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1719 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1720 if (new_cpu
== -1 || new_cpu
== cpu
) {
1721 /* Now try balancing at a lower domain level of cpu */
1726 /* Now try balancing at a lower domain level of new_cpu */
1728 weight
= sd
->span_weight
;
1730 for_each_domain(cpu
, tmp
) {
1731 if (weight
<= tmp
->span_weight
)
1733 if (tmp
->flags
& sd_flag
)
1736 /* while loop will break here if sd == NULL */
1741 #endif /* CONFIG_SMP */
1743 static unsigned long
1744 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1746 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1749 * Since its curr running now, convert the gran from real-time
1750 * to virtual-time in his units.
1752 * By using 'se' instead of 'curr' we penalize light tasks, so
1753 * they get preempted easier. That is, if 'se' < 'curr' then
1754 * the resulting gran will be larger, therefore penalizing the
1755 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1756 * be smaller, again penalizing the lighter task.
1758 * This is especially important for buddies when the leftmost
1759 * task is higher priority than the buddy.
1761 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
1762 gran
= calc_delta_fair(gran
, se
);
1768 * Should 'se' preempt 'curr'.
1782 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1784 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1789 gran
= wakeup_gran(curr
, se
);
1796 static void set_last_buddy(struct sched_entity
*se
)
1798 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1799 for_each_sched_entity(se
)
1800 cfs_rq_of(se
)->last
= se
;
1804 static void set_next_buddy(struct sched_entity
*se
)
1806 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1807 for_each_sched_entity(se
)
1808 cfs_rq_of(se
)->next
= se
;
1813 * Preempt the current task with a newly woken task if needed:
1815 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1817 struct task_struct
*curr
= rq
->curr
;
1818 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1819 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1820 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1822 if (unlikely(se
== pse
))
1825 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
))
1826 set_next_buddy(pse
);
1829 * We can come here with TIF_NEED_RESCHED already set from new task
1832 if (test_tsk_need_resched(curr
))
1836 * Batch and idle tasks do not preempt (their preemption is driven by
1839 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1842 /* Idle tasks are by definition preempted by everybody. */
1843 if (unlikely(curr
->policy
== SCHED_IDLE
))
1846 if (!sched_feat(WAKEUP_PREEMPT
))
1849 update_curr(cfs_rq
);
1850 find_matching_se(&se
, &pse
);
1852 if (wakeup_preempt_entity(se
, pse
) == 1)
1860 * Only set the backward buddy when the current task is still
1861 * on the rq. This can happen when a wakeup gets interleaved
1862 * with schedule on the ->pre_schedule() or idle_balance()
1863 * point, either of which can * drop the rq lock.
1865 * Also, during early boot the idle thread is in the fair class,
1866 * for obvious reasons its a bad idea to schedule back to it.
1868 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1871 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1875 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1877 struct task_struct
*p
;
1878 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1879 struct sched_entity
*se
;
1881 if (!cfs_rq
->nr_running
)
1885 se
= pick_next_entity(cfs_rq
);
1886 set_next_entity(cfs_rq
, se
);
1887 cfs_rq
= group_cfs_rq(se
);
1891 hrtick_start_fair(rq
, p
);
1897 * Account for a descheduled task:
1899 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1901 struct sched_entity
*se
= &prev
->se
;
1902 struct cfs_rq
*cfs_rq
;
1904 for_each_sched_entity(se
) {
1905 cfs_rq
= cfs_rq_of(se
);
1906 put_prev_entity(cfs_rq
, se
);
1911 /**************************************************
1912 * Fair scheduling class load-balancing methods:
1916 * pull_task - move a task from a remote runqueue to the local runqueue.
1917 * Both runqueues must be locked.
1919 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
1920 struct rq
*this_rq
, int this_cpu
)
1922 deactivate_task(src_rq
, p
, 0);
1923 set_task_cpu(p
, this_cpu
);
1924 activate_task(this_rq
, p
, 0);
1925 check_preempt_curr(this_rq
, p
, 0);
1929 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1932 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
1933 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1936 int tsk_cache_hot
= 0;
1938 * We do not migrate tasks that are:
1939 * 1) running (obviously), or
1940 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1941 * 3) are cache-hot on their current CPU.
1943 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
1944 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
1949 if (task_running(rq
, p
)) {
1950 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
1955 * Aggressive migration if:
1956 * 1) task is cache cold, or
1957 * 2) too many balance attempts have failed.
1960 tsk_cache_hot
= task_hot(p
, rq
->clock_task
, sd
);
1961 if (!tsk_cache_hot
||
1962 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
1963 #ifdef CONFIG_SCHEDSTATS
1964 if (tsk_cache_hot
) {
1965 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1966 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
1972 if (tsk_cache_hot
) {
1973 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
1980 * move_one_task tries to move exactly one task from busiest to this_rq, as
1981 * part of active balancing operations within "domain".
1982 * Returns 1 if successful and 0 otherwise.
1984 * Called with both runqueues locked.
1987 move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1988 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1990 struct task_struct
*p
, *n
;
1991 struct cfs_rq
*cfs_rq
;
1994 for_each_leaf_cfs_rq(busiest
, cfs_rq
) {
1995 list_for_each_entry_safe(p
, n
, &cfs_rq
->tasks
, se
.group_node
) {
1997 if (!can_migrate_task(p
, busiest
, this_cpu
,
2001 pull_task(busiest
, p
, this_rq
, this_cpu
);
2003 * Right now, this is only the second place pull_task()
2004 * is called, so we can safely collect pull_task()
2005 * stats here rather than inside pull_task().
2007 schedstat_inc(sd
, lb_gained
[idle
]);
2015 static unsigned long
2016 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2017 unsigned long max_load_move
, struct sched_domain
*sd
,
2018 enum cpu_idle_type idle
, int *all_pinned
,
2019 int *this_best_prio
, struct cfs_rq
*busiest_cfs_rq
)
2021 int loops
= 0, pulled
= 0, pinned
= 0;
2022 long rem_load_move
= max_load_move
;
2023 struct task_struct
*p
, *n
;
2025 if (max_load_move
== 0)
2030 list_for_each_entry_safe(p
, n
, &busiest_cfs_rq
->tasks
, se
.group_node
) {
2031 if (loops
++ > sysctl_sched_nr_migrate
)
2034 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2035 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
))
2038 pull_task(busiest
, p
, this_rq
, this_cpu
);
2040 rem_load_move
-= p
->se
.load
.weight
;
2042 #ifdef CONFIG_PREEMPT
2044 * NEWIDLE balancing is a source of latency, so preemptible
2045 * kernels will stop after the first task is pulled to minimize
2046 * the critical section.
2048 if (idle
== CPU_NEWLY_IDLE
)
2053 * We only want to steal up to the prescribed amount of
2056 if (rem_load_move
<= 0)
2059 if (p
->prio
< *this_best_prio
)
2060 *this_best_prio
= p
->prio
;
2064 * Right now, this is one of only two places pull_task() is called,
2065 * so we can safely collect pull_task() stats here rather than
2066 * inside pull_task().
2068 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2071 *all_pinned
= pinned
;
2073 return max_load_move
- rem_load_move
;
2076 #ifdef CONFIG_FAIR_GROUP_SCHED
2078 * update tg->load_weight by folding this cpu's load_avg
2080 static int update_shares_cpu(struct task_group
*tg
, int cpu
)
2082 struct cfs_rq
*cfs_rq
;
2083 unsigned long flags
;
2090 cfs_rq
= tg
->cfs_rq
[cpu
];
2092 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2094 update_rq_clock(rq
);
2095 update_cfs_load(cfs_rq
, 1);
2098 * We need to update shares after updating tg->load_weight in
2099 * order to adjust the weight of groups with long running tasks.
2101 update_cfs_shares(cfs_rq
, 0);
2103 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2108 static void update_shares(int cpu
)
2110 struct cfs_rq
*cfs_rq
;
2111 struct rq
*rq
= cpu_rq(cpu
);
2114 for_each_leaf_cfs_rq(rq
, cfs_rq
)
2115 update_shares_cpu(cfs_rq
->tg
, cpu
);
2119 static unsigned long
2120 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2121 unsigned long max_load_move
,
2122 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2123 int *all_pinned
, int *this_best_prio
)
2125 long rem_load_move
= max_load_move
;
2126 int busiest_cpu
= cpu_of(busiest
);
2127 struct task_group
*tg
;
2130 update_h_load(busiest_cpu
);
2132 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
2133 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
2134 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
2135 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
2136 u64 rem_load
, moved_load
;
2141 if (!busiest_cfs_rq
->task_weight
)
2144 rem_load
= (u64
)rem_load_move
* busiest_weight
;
2145 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
2147 moved_load
= balance_tasks(this_rq
, this_cpu
, busiest
,
2148 rem_load
, sd
, idle
, all_pinned
, this_best_prio
,
2154 moved_load
*= busiest_h_load
;
2155 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
2157 rem_load_move
-= moved_load
;
2158 if (rem_load_move
< 0)
2163 return max_load_move
- rem_load_move
;
2166 static inline void update_shares(int cpu
)
2170 static unsigned long
2171 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2172 unsigned long max_load_move
,
2173 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2174 int *all_pinned
, int *this_best_prio
)
2176 return balance_tasks(this_rq
, this_cpu
, busiest
,
2177 max_load_move
, sd
, idle
, all_pinned
,
2178 this_best_prio
, &busiest
->cfs
);
2183 * move_tasks tries to move up to max_load_move weighted load from busiest to
2184 * this_rq, as part of a balancing operation within domain "sd".
2185 * Returns 1 if successful and 0 otherwise.
2187 * Called with both runqueues locked.
2189 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2190 unsigned long max_load_move
,
2191 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2194 unsigned long total_load_moved
= 0, load_moved
;
2195 int this_best_prio
= this_rq
->curr
->prio
;
2198 load_moved
= load_balance_fair(this_rq
, this_cpu
, busiest
,
2199 max_load_move
- total_load_moved
,
2200 sd
, idle
, all_pinned
, &this_best_prio
);
2202 total_load_moved
+= load_moved
;
2204 #ifdef CONFIG_PREEMPT
2206 * NEWIDLE balancing is a source of latency, so preemptible
2207 * kernels will stop after the first task is pulled to minimize
2208 * the critical section.
2210 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
2213 if (raw_spin_is_contended(&this_rq
->lock
) ||
2214 raw_spin_is_contended(&busiest
->lock
))
2217 } while (load_moved
&& max_load_move
> total_load_moved
);
2219 return total_load_moved
> 0;
2222 /********** Helpers for find_busiest_group ************************/
2224 * sd_lb_stats - Structure to store the statistics of a sched_domain
2225 * during load balancing.
2227 struct sd_lb_stats
{
2228 struct sched_group
*busiest
; /* Busiest group in this sd */
2229 struct sched_group
*this; /* Local group in this sd */
2230 unsigned long total_load
; /* Total load of all groups in sd */
2231 unsigned long total_pwr
; /* Total power of all groups in sd */
2232 unsigned long avg_load
; /* Average load across all groups in sd */
2234 /** Statistics of this group */
2235 unsigned long this_load
;
2236 unsigned long this_load_per_task
;
2237 unsigned long this_nr_running
;
2238 unsigned long this_has_capacity
;
2239 unsigned int this_idle_cpus
;
2241 /* Statistics of the busiest group */
2242 unsigned int busiest_idle_cpus
;
2243 unsigned long max_load
;
2244 unsigned long busiest_load_per_task
;
2245 unsigned long busiest_nr_running
;
2246 unsigned long busiest_group_capacity
;
2247 unsigned long busiest_has_capacity
;
2248 unsigned int busiest_group_weight
;
2250 int group_imb
; /* Is there imbalance in this sd */
2251 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2252 int power_savings_balance
; /* Is powersave balance needed for this sd */
2253 struct sched_group
*group_min
; /* Least loaded group in sd */
2254 struct sched_group
*group_leader
; /* Group which relieves group_min */
2255 unsigned long min_load_per_task
; /* load_per_task in group_min */
2256 unsigned long leader_nr_running
; /* Nr running of group_leader */
2257 unsigned long min_nr_running
; /* Nr running of group_min */
2262 * sg_lb_stats - stats of a sched_group required for load_balancing
2264 struct sg_lb_stats
{
2265 unsigned long avg_load
; /*Avg load across the CPUs of the group */
2266 unsigned long group_load
; /* Total load over the CPUs of the group */
2267 unsigned long sum_nr_running
; /* Nr tasks running in the group */
2268 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
2269 unsigned long group_capacity
;
2270 unsigned long idle_cpus
;
2271 unsigned long group_weight
;
2272 int group_imb
; /* Is there an imbalance in the group ? */
2273 int group_has_capacity
; /* Is there extra capacity in the group? */
2277 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2278 * @group: The group whose first cpu is to be returned.
2280 static inline unsigned int group_first_cpu(struct sched_group
*group
)
2282 return cpumask_first(sched_group_cpus(group
));
2286 * get_sd_load_idx - Obtain the load index for a given sched domain.
2287 * @sd: The sched_domain whose load_idx is to be obtained.
2288 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2290 static inline int get_sd_load_idx(struct sched_domain
*sd
,
2291 enum cpu_idle_type idle
)
2297 load_idx
= sd
->busy_idx
;
2300 case CPU_NEWLY_IDLE
:
2301 load_idx
= sd
->newidle_idx
;
2304 load_idx
= sd
->idle_idx
;
2312 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2314 * init_sd_power_savings_stats - Initialize power savings statistics for
2315 * the given sched_domain, during load balancing.
2317 * @sd: Sched domain whose power-savings statistics are to be initialized.
2318 * @sds: Variable containing the statistics for sd.
2319 * @idle: Idle status of the CPU at which we're performing load-balancing.
2321 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2322 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2325 * Busy processors will not participate in power savings
2328 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2329 sds
->power_savings_balance
= 0;
2331 sds
->power_savings_balance
= 1;
2332 sds
->min_nr_running
= ULONG_MAX
;
2333 sds
->leader_nr_running
= 0;
2338 * update_sd_power_savings_stats - Update the power saving stats for a
2339 * sched_domain while performing load balancing.
2341 * @group: sched_group belonging to the sched_domain under consideration.
2342 * @sds: Variable containing the statistics of the sched_domain
2343 * @local_group: Does group contain the CPU for which we're performing
2345 * @sgs: Variable containing the statistics of the group.
2347 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2348 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2351 if (!sds
->power_savings_balance
)
2355 * If the local group is idle or completely loaded
2356 * no need to do power savings balance at this domain
2358 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
2359 !sds
->this_nr_running
))
2360 sds
->power_savings_balance
= 0;
2363 * If a group is already running at full capacity or idle,
2364 * don't include that group in power savings calculations
2366 if (!sds
->power_savings_balance
||
2367 sgs
->sum_nr_running
>= sgs
->group_capacity
||
2368 !sgs
->sum_nr_running
)
2372 * Calculate the group which has the least non-idle load.
2373 * This is the group from where we need to pick up the load
2376 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
2377 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
2378 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
2379 sds
->group_min
= group
;
2380 sds
->min_nr_running
= sgs
->sum_nr_running
;
2381 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
2382 sgs
->sum_nr_running
;
2386 * Calculate the group which is almost near its
2387 * capacity but still has some space to pick up some load
2388 * from other group and save more power
2390 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
2393 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
2394 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
2395 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
2396 sds
->group_leader
= group
;
2397 sds
->leader_nr_running
= sgs
->sum_nr_running
;
2402 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2403 * @sds: Variable containing the statistics of the sched_domain
2404 * under consideration.
2405 * @this_cpu: Cpu at which we're currently performing load-balancing.
2406 * @imbalance: Variable to store the imbalance.
2409 * Check if we have potential to perform some power-savings balance.
2410 * If yes, set the busiest group to be the least loaded group in the
2411 * sched_domain, so that it's CPUs can be put to idle.
2413 * Returns 1 if there is potential to perform power-savings balance.
2416 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2417 int this_cpu
, unsigned long *imbalance
)
2419 if (!sds
->power_savings_balance
)
2422 if (sds
->this != sds
->group_leader
||
2423 sds
->group_leader
== sds
->group_min
)
2426 *imbalance
= sds
->min_load_per_task
;
2427 sds
->busiest
= sds
->group_min
;
2432 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2433 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2434 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2439 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2440 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2445 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2446 int this_cpu
, unsigned long *imbalance
)
2450 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2453 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2455 return SCHED_LOAD_SCALE
;
2458 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2460 return default_scale_freq_power(sd
, cpu
);
2463 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2465 unsigned long weight
= sd
->span_weight
;
2466 unsigned long smt_gain
= sd
->smt_gain
;
2473 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2475 return default_scale_smt_power(sd
, cpu
);
2478 unsigned long scale_rt_power(int cpu
)
2480 struct rq
*rq
= cpu_rq(cpu
);
2481 u64 total
, available
;
2483 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
2485 if (unlikely(total
< rq
->rt_avg
)) {
2486 /* Ensures that power won't end up being negative */
2489 available
= total
- rq
->rt_avg
;
2492 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
2493 total
= SCHED_LOAD_SCALE
;
2495 total
>>= SCHED_LOAD_SHIFT
;
2497 return div_u64(available
, total
);
2500 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
2502 unsigned long weight
= sd
->span_weight
;
2503 unsigned long power
= SCHED_LOAD_SCALE
;
2504 struct sched_group
*sdg
= sd
->groups
;
2506 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
2507 if (sched_feat(ARCH_POWER
))
2508 power
*= arch_scale_smt_power(sd
, cpu
);
2510 power
*= default_scale_smt_power(sd
, cpu
);
2512 power
>>= SCHED_LOAD_SHIFT
;
2515 sdg
->cpu_power_orig
= power
;
2517 if (sched_feat(ARCH_POWER
))
2518 power
*= arch_scale_freq_power(sd
, cpu
);
2520 power
*= default_scale_freq_power(sd
, cpu
);
2522 power
>>= SCHED_LOAD_SHIFT
;
2524 power
*= scale_rt_power(cpu
);
2525 power
>>= SCHED_LOAD_SHIFT
;
2530 cpu_rq(cpu
)->cpu_power
= power
;
2531 sdg
->cpu_power
= power
;
2534 static void update_group_power(struct sched_domain
*sd
, int cpu
)
2536 struct sched_domain
*child
= sd
->child
;
2537 struct sched_group
*group
, *sdg
= sd
->groups
;
2538 unsigned long power
;
2541 update_cpu_power(sd
, cpu
);
2547 group
= child
->groups
;
2549 power
+= group
->cpu_power
;
2550 group
= group
->next
;
2551 } while (group
!= child
->groups
);
2553 sdg
->cpu_power
= power
;
2557 * Try and fix up capacity for tiny siblings, this is needed when
2558 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2559 * which on its own isn't powerful enough.
2561 * See update_sd_pick_busiest() and check_asym_packing().
2564 fix_small_capacity(struct sched_domain
*sd
, struct sched_group
*group
)
2567 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2569 if (sd
->level
!= SD_LV_SIBLING
)
2573 * If ~90% of the cpu_power is still there, we're good.
2575 if (group
->cpu_power
* 32 > group
->cpu_power_orig
* 29)
2582 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2583 * @sd: The sched_domain whose statistics are to be updated.
2584 * @group: sched_group whose statistics are to be updated.
2585 * @this_cpu: Cpu for which load balance is currently performed.
2586 * @idle: Idle status of this_cpu
2587 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2588 * @sd_idle: Idle status of the sched_domain containing group.
2589 * @local_group: Does group contain this_cpu.
2590 * @cpus: Set of cpus considered for load balancing.
2591 * @balance: Should we balance.
2592 * @sgs: variable to hold the statistics for this group.
2594 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
2595 struct sched_group
*group
, int this_cpu
,
2596 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
2597 int local_group
, const struct cpumask
*cpus
,
2598 int *balance
, struct sg_lb_stats
*sgs
)
2600 unsigned long load
, max_cpu_load
, min_cpu_load
, max_nr_running
;
2602 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2603 unsigned long avg_load_per_task
= 0;
2606 balance_cpu
= group_first_cpu(group
);
2608 /* Tally up the load of all CPUs in the group */
2610 min_cpu_load
= ~0UL;
2613 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
2614 struct rq
*rq
= cpu_rq(i
);
2616 if (*sd_idle
&& rq
->nr_running
)
2619 /* Bias balancing toward cpus of our domain */
2621 if (idle_cpu(i
) && !first_idle_cpu
) {
2626 load
= target_load(i
, load_idx
);
2628 load
= source_load(i
, load_idx
);
2629 if (load
> max_cpu_load
) {
2630 max_cpu_load
= load
;
2631 max_nr_running
= rq
->nr_running
;
2633 if (min_cpu_load
> load
)
2634 min_cpu_load
= load
;
2637 sgs
->group_load
+= load
;
2638 sgs
->sum_nr_running
+= rq
->nr_running
;
2639 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
2645 * First idle cpu or the first cpu(busiest) in this sched group
2646 * is eligible for doing load balancing at this and above
2647 * domains. In the newly idle case, we will allow all the cpu's
2648 * to do the newly idle load balance.
2650 if (idle
!= CPU_NEWLY_IDLE
&& local_group
) {
2651 if (balance_cpu
!= this_cpu
) {
2655 update_group_power(sd
, this_cpu
);
2658 /* Adjust by relative CPU power of the group */
2659 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
2662 * Consider the group unbalanced when the imbalance is larger
2663 * than the average weight of two tasks.
2665 * APZ: with cgroup the avg task weight can vary wildly and
2666 * might not be a suitable number - should we keep a
2667 * normalized nr_running number somewhere that negates
2670 if (sgs
->sum_nr_running
)
2671 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
2673 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
&& max_nr_running
> 1)
2676 sgs
->group_capacity
= DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
2677 if (!sgs
->group_capacity
)
2678 sgs
->group_capacity
= fix_small_capacity(sd
, group
);
2679 sgs
->group_weight
= group
->group_weight
;
2681 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
2682 sgs
->group_has_capacity
= 1;
2686 * update_sd_pick_busiest - return 1 on busiest group
2687 * @sd: sched_domain whose statistics are to be checked
2688 * @sds: sched_domain statistics
2689 * @sg: sched_group candidate to be checked for being the busiest
2690 * @sgs: sched_group statistics
2691 * @this_cpu: the current cpu
2693 * Determine if @sg is a busier group than the previously selected
2696 static bool update_sd_pick_busiest(struct sched_domain
*sd
,
2697 struct sd_lb_stats
*sds
,
2698 struct sched_group
*sg
,
2699 struct sg_lb_stats
*sgs
,
2702 if (sgs
->avg_load
<= sds
->max_load
)
2705 if (sgs
->sum_nr_running
> sgs
->group_capacity
)
2712 * ASYM_PACKING needs to move all the work to the lowest
2713 * numbered CPUs in the group, therefore mark all groups
2714 * higher than ourself as busy.
2716 if ((sd
->flags
& SD_ASYM_PACKING
) && sgs
->sum_nr_running
&&
2717 this_cpu
< group_first_cpu(sg
)) {
2721 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
2729 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2730 * @sd: sched_domain whose statistics are to be updated.
2731 * @this_cpu: Cpu for which load balance is currently performed.
2732 * @idle: Idle status of this_cpu
2733 * @sd_idle: Idle status of the sched_domain containing sg.
2734 * @cpus: Set of cpus considered for load balancing.
2735 * @balance: Should we balance.
2736 * @sds: variable to hold the statistics for this sched_domain.
2738 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
2739 enum cpu_idle_type idle
, int *sd_idle
,
2740 const struct cpumask
*cpus
, int *balance
,
2741 struct sd_lb_stats
*sds
)
2743 struct sched_domain
*child
= sd
->child
;
2744 struct sched_group
*sg
= sd
->groups
;
2745 struct sg_lb_stats sgs
;
2746 int load_idx
, prefer_sibling
= 0;
2748 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
2751 init_sd_power_savings_stats(sd
, sds
, idle
);
2752 load_idx
= get_sd_load_idx(sd
, idle
);
2757 local_group
= cpumask_test_cpu(this_cpu
, sched_group_cpus(sg
));
2758 memset(&sgs
, 0, sizeof(sgs
));
2759 update_sg_lb_stats(sd
, sg
, this_cpu
, idle
, load_idx
, sd_idle
,
2760 local_group
, cpus
, balance
, &sgs
);
2762 if (local_group
&& !(*balance
))
2765 sds
->total_load
+= sgs
.group_load
;
2766 sds
->total_pwr
+= sg
->cpu_power
;
2769 * In case the child domain prefers tasks go to siblings
2770 * first, lower the sg capacity to one so that we'll try
2771 * and move all the excess tasks away. We lower the capacity
2772 * of a group only if the local group has the capacity to fit
2773 * these excess tasks, i.e. nr_running < group_capacity. The
2774 * extra check prevents the case where you always pull from the
2775 * heaviest group when it is already under-utilized (possible
2776 * with a large weight task outweighs the tasks on the system).
2778 if (prefer_sibling
&& !local_group
&& sds
->this_has_capacity
)
2779 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
2782 sds
->this_load
= sgs
.avg_load
;
2784 sds
->this_nr_running
= sgs
.sum_nr_running
;
2785 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
2786 sds
->this_has_capacity
= sgs
.group_has_capacity
;
2787 sds
->this_idle_cpus
= sgs
.idle_cpus
;
2788 } else if (update_sd_pick_busiest(sd
, sds
, sg
, &sgs
, this_cpu
)) {
2789 sds
->max_load
= sgs
.avg_load
;
2791 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
2792 sds
->busiest_idle_cpus
= sgs
.idle_cpus
;
2793 sds
->busiest_group_capacity
= sgs
.group_capacity
;
2794 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
2795 sds
->busiest_has_capacity
= sgs
.group_has_capacity
;
2796 sds
->busiest_group_weight
= sgs
.group_weight
;
2797 sds
->group_imb
= sgs
.group_imb
;
2800 update_sd_power_savings_stats(sg
, sds
, local_group
, &sgs
);
2802 } while (sg
!= sd
->groups
);
2805 int __weak
arch_sd_sibling_asym_packing(void)
2807 return 0*SD_ASYM_PACKING
;
2811 * check_asym_packing - Check to see if the group is packed into the
2814 * This is primarily intended to used at the sibling level. Some
2815 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2816 * case of POWER7, it can move to lower SMT modes only when higher
2817 * threads are idle. When in lower SMT modes, the threads will
2818 * perform better since they share less core resources. Hence when we
2819 * have idle threads, we want them to be the higher ones.
2821 * This packing function is run on idle threads. It checks to see if
2822 * the busiest CPU in this domain (core in the P7 case) has a higher
2823 * CPU number than the packing function is being run on. Here we are
2824 * assuming lower CPU number will be equivalent to lower a SMT thread
2827 * Returns 1 when packing is required and a task should be moved to
2828 * this CPU. The amount of the imbalance is returned in *imbalance.
2830 * @sd: The sched_domain whose packing is to be checked.
2831 * @sds: Statistics of the sched_domain which is to be packed
2832 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2833 * @imbalance: returns amount of imbalanced due to packing.
2835 static int check_asym_packing(struct sched_domain
*sd
,
2836 struct sd_lb_stats
*sds
,
2837 int this_cpu
, unsigned long *imbalance
)
2841 if (!(sd
->flags
& SD_ASYM_PACKING
))
2847 busiest_cpu
= group_first_cpu(sds
->busiest
);
2848 if (this_cpu
> busiest_cpu
)
2851 *imbalance
= DIV_ROUND_CLOSEST(sds
->max_load
* sds
->busiest
->cpu_power
,
2857 * fix_small_imbalance - Calculate the minor imbalance that exists
2858 * amongst the groups of a sched_domain, during
2860 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2861 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2862 * @imbalance: Variable to store the imbalance.
2864 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
2865 int this_cpu
, unsigned long *imbalance
)
2867 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
2868 unsigned int imbn
= 2;
2869 unsigned long scaled_busy_load_per_task
;
2871 if (sds
->this_nr_running
) {
2872 sds
->this_load_per_task
/= sds
->this_nr_running
;
2873 if (sds
->busiest_load_per_task
>
2874 sds
->this_load_per_task
)
2877 sds
->this_load_per_task
=
2878 cpu_avg_load_per_task(this_cpu
);
2880 scaled_busy_load_per_task
= sds
->busiest_load_per_task
2882 scaled_busy_load_per_task
/= sds
->busiest
->cpu_power
;
2884 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
2885 (scaled_busy_load_per_task
* imbn
)) {
2886 *imbalance
= sds
->busiest_load_per_task
;
2891 * OK, we don't have enough imbalance to justify moving tasks,
2892 * however we may be able to increase total CPU power used by
2896 pwr_now
+= sds
->busiest
->cpu_power
*
2897 min(sds
->busiest_load_per_task
, sds
->max_load
);
2898 pwr_now
+= sds
->this->cpu_power
*
2899 min(sds
->this_load_per_task
, sds
->this_load
);
2900 pwr_now
/= SCHED_LOAD_SCALE
;
2902 /* Amount of load we'd subtract */
2903 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
2904 sds
->busiest
->cpu_power
;
2905 if (sds
->max_load
> tmp
)
2906 pwr_move
+= sds
->busiest
->cpu_power
*
2907 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
2909 /* Amount of load we'd add */
2910 if (sds
->max_load
* sds
->busiest
->cpu_power
<
2911 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
2912 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
2913 sds
->this->cpu_power
;
2915 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
2916 sds
->this->cpu_power
;
2917 pwr_move
+= sds
->this->cpu_power
*
2918 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
2919 pwr_move
/= SCHED_LOAD_SCALE
;
2921 /* Move if we gain throughput */
2922 if (pwr_move
> pwr_now
)
2923 *imbalance
= sds
->busiest_load_per_task
;
2927 * calculate_imbalance - Calculate the amount of imbalance present within the
2928 * groups of a given sched_domain during load balance.
2929 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2930 * @this_cpu: Cpu for which currently load balance is being performed.
2931 * @imbalance: The variable to store the imbalance.
2933 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
2934 unsigned long *imbalance
)
2936 unsigned long max_pull
, load_above_capacity
= ~0UL;
2938 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
2939 if (sds
->group_imb
) {
2940 sds
->busiest_load_per_task
=
2941 min(sds
->busiest_load_per_task
, sds
->avg_load
);
2945 * In the presence of smp nice balancing, certain scenarios can have
2946 * max load less than avg load(as we skip the groups at or below
2947 * its cpu_power, while calculating max_load..)
2949 if (sds
->max_load
< sds
->avg_load
) {
2951 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
2954 if (!sds
->group_imb
) {
2956 * Don't want to pull so many tasks that a group would go idle.
2958 load_above_capacity
= (sds
->busiest_nr_running
-
2959 sds
->busiest_group_capacity
);
2961 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_LOAD_SCALE
);
2963 load_above_capacity
/= sds
->busiest
->cpu_power
;
2967 * We're trying to get all the cpus to the average_load, so we don't
2968 * want to push ourselves above the average load, nor do we wish to
2969 * reduce the max loaded cpu below the average load. At the same time,
2970 * we also don't want to reduce the group load below the group capacity
2971 * (so that we can implement power-savings policies etc). Thus we look
2972 * for the minimum possible imbalance.
2973 * Be careful of negative numbers as they'll appear as very large values
2974 * with unsigned longs.
2976 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
2978 /* How much load to actually move to equalise the imbalance */
2979 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
2980 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
2984 * if *imbalance is less than the average load per runnable task
2985 * there is no gaurantee that any tasks will be moved so we'll have
2986 * a think about bumping its value to force at least one task to be
2989 if (*imbalance
< sds
->busiest_load_per_task
)
2990 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
2994 /******* find_busiest_group() helpers end here *********************/
2997 * find_busiest_group - Returns the busiest group within the sched_domain
2998 * if there is an imbalance. If there isn't an imbalance, and
2999 * the user has opted for power-savings, it returns a group whose
3000 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3001 * such a group exists.
3003 * Also calculates the amount of weighted load which should be moved
3004 * to restore balance.
3006 * @sd: The sched_domain whose busiest group is to be returned.
3007 * @this_cpu: The cpu for which load balancing is currently being performed.
3008 * @imbalance: Variable which stores amount of weighted load which should
3009 * be moved to restore balance/put a group to idle.
3010 * @idle: The idle status of this_cpu.
3011 * @sd_idle: The idleness of sd
3012 * @cpus: The set of CPUs under consideration for load-balancing.
3013 * @balance: Pointer to a variable indicating if this_cpu
3014 * is the appropriate cpu to perform load balancing at this_level.
3016 * Returns: - the busiest group if imbalance exists.
3017 * - If no imbalance and user has opted for power-savings balance,
3018 * return the least loaded group whose CPUs can be
3019 * put to idle by rebalancing its tasks onto our group.
3021 static struct sched_group
*
3022 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3023 unsigned long *imbalance
, enum cpu_idle_type idle
,
3024 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3026 struct sd_lb_stats sds
;
3028 memset(&sds
, 0, sizeof(sds
));
3031 * Compute the various statistics relavent for load balancing at
3034 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
3037 /* Cases where imbalance does not exist from POV of this_cpu */
3038 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3040 * 2) There is no busy sibling group to pull from.
3041 * 3) This group is the busiest group.
3042 * 4) This group is more busy than the avg busieness at this
3044 * 5) The imbalance is within the specified limit.
3046 * Note: when doing newidle balance, if the local group has excess
3047 * capacity (i.e. nr_running < group_capacity) and the busiest group
3048 * does not have any capacity, we force a load balance to pull tasks
3049 * to the local group. In this case, we skip past checks 3, 4 and 5.
3054 if ((idle
== CPU_IDLE
|| idle
== CPU_NEWLY_IDLE
) &&
3055 check_asym_packing(sd
, &sds
, this_cpu
, imbalance
))
3058 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3061 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3062 if (idle
== CPU_NEWLY_IDLE
&& sds
.this_has_capacity
&&
3063 !sds
.busiest_has_capacity
)
3066 if (sds
.this_load
>= sds
.max_load
)
3069 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3071 if (sds
.this_load
>= sds
.avg_load
)
3075 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3076 * And to check for busy balance use !idle_cpu instead of
3077 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3078 * even when they are idle.
3080 if (idle
== CPU_NEWLY_IDLE
|| !idle_cpu(this_cpu
)) {
3081 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3085 * This cpu is idle. If the busiest group load doesn't
3086 * have more tasks than the number of available cpu's and
3087 * there is no imbalance between this and busiest group
3088 * wrt to idle cpu's, it is balanced.
3090 if ((sds
.this_idle_cpus
<= sds
.busiest_idle_cpus
+ 1) &&
3091 sds
.busiest_nr_running
<= sds
.busiest_group_weight
)
3096 /* Looks like there is an imbalance. Compute it */
3097 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3102 * There is no obvious imbalance. But check if we can do some balancing
3105 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3113 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3116 find_busiest_queue(struct sched_domain
*sd
, struct sched_group
*group
,
3117 enum cpu_idle_type idle
, unsigned long imbalance
,
3118 const struct cpumask
*cpus
)
3120 struct rq
*busiest
= NULL
, *rq
;
3121 unsigned long max_load
= 0;
3124 for_each_cpu(i
, sched_group_cpus(group
)) {
3125 unsigned long power
= power_of(i
);
3126 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
3130 capacity
= fix_small_capacity(sd
, group
);
3132 if (!cpumask_test_cpu(i
, cpus
))
3136 wl
= weighted_cpuload(i
);
3139 * When comparing with imbalance, use weighted_cpuload()
3140 * which is not scaled with the cpu power.
3142 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
3146 * For the load comparisons with the other cpu's, consider
3147 * the weighted_cpuload() scaled with the cpu power, so that
3148 * the load can be moved away from the cpu that is potentially
3149 * running at a lower capacity.
3151 wl
= (wl
* SCHED_LOAD_SCALE
) / power
;
3153 if (wl
> max_load
) {
3163 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3164 * so long as it is large enough.
3166 #define MAX_PINNED_INTERVAL 512
3168 /* Working cpumask for load_balance and load_balance_newidle. */
3169 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
3171 static int need_active_balance(struct sched_domain
*sd
, int sd_idle
, int idle
,
3172 int busiest_cpu
, int this_cpu
)
3174 if (idle
== CPU_NEWLY_IDLE
) {
3177 * ASYM_PACKING needs to force migrate tasks from busy but
3178 * higher numbered CPUs in order to pack all tasks in the
3179 * lowest numbered CPUs.
3181 if ((sd
->flags
& SD_ASYM_PACKING
) && busiest_cpu
> this_cpu
)
3185 * The only task running in a non-idle cpu can be moved to this
3186 * cpu in an attempt to completely freeup the other CPU
3189 * The package power saving logic comes from
3190 * find_busiest_group(). If there are no imbalance, then
3191 * f_b_g() will return NULL. However when sched_mc={1,2} then
3192 * f_b_g() will select a group from which a running task may be
3193 * pulled to this cpu in order to make the other package idle.
3194 * If there is no opportunity to make a package idle and if
3195 * there are no imbalance, then f_b_g() will return NULL and no
3196 * action will be taken in load_balance_newidle().
3198 * Under normal task pull operation due to imbalance, there
3199 * will be more than one task in the source run queue and
3200 * move_tasks() will succeed. ld_moved will be true and this
3201 * active balance code will not be triggered.
3203 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3204 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3207 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3211 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
3214 static int active_load_balance_cpu_stop(void *data
);
3217 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3218 * tasks if there is an imbalance.
3220 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3221 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3224 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3225 struct sched_group
*group
;
3226 unsigned long imbalance
;
3228 unsigned long flags
;
3229 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
3231 cpumask_copy(cpus
, cpu_active_mask
);
3234 * When power savings policy is enabled for the parent domain, idle
3235 * sibling can pick up load irrespective of busy siblings. In this case,
3236 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3237 * portraying it as CPU_NOT_IDLE.
3239 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3240 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3243 schedstat_inc(sd
, lb_count
[idle
]);
3246 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3253 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3257 busiest
= find_busiest_queue(sd
, group
, idle
, imbalance
, cpus
);
3259 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3263 BUG_ON(busiest
== this_rq
);
3265 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3268 if (busiest
->nr_running
> 1) {
3270 * Attempt to move tasks. If find_busiest_group has found
3271 * an imbalance but busiest->nr_running <= 1, the group is
3272 * still unbalanced. ld_moved simply stays zero, so it is
3273 * correctly treated as an imbalance.
3275 local_irq_save(flags
);
3276 double_rq_lock(this_rq
, busiest
);
3277 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3278 imbalance
, sd
, idle
, &all_pinned
);
3279 double_rq_unlock(this_rq
, busiest
);
3280 local_irq_restore(flags
);
3283 * some other cpu did the load balance for us.
3285 if (ld_moved
&& this_cpu
!= smp_processor_id())
3286 resched_cpu(this_cpu
);
3288 /* All tasks on this runqueue were pinned by CPU affinity */
3289 if (unlikely(all_pinned
)) {
3290 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3291 if (!cpumask_empty(cpus
))
3298 schedstat_inc(sd
, lb_failed
[idle
]);
3300 * Increment the failure counter only on periodic balance.
3301 * We do not want newidle balance, which can be very
3302 * frequent, pollute the failure counter causing
3303 * excessive cache_hot migrations and active balances.
3305 if (idle
!= CPU_NEWLY_IDLE
)
3306 sd
->nr_balance_failed
++;
3308 if (need_active_balance(sd
, sd_idle
, idle
, cpu_of(busiest
),
3310 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
3312 /* don't kick the active_load_balance_cpu_stop,
3313 * if the curr task on busiest cpu can't be
3316 if (!cpumask_test_cpu(this_cpu
,
3317 &busiest
->curr
->cpus_allowed
)) {
3318 raw_spin_unlock_irqrestore(&busiest
->lock
,
3321 goto out_one_pinned
;
3325 * ->active_balance synchronizes accesses to
3326 * ->active_balance_work. Once set, it's cleared
3327 * only after active load balance is finished.
3329 if (!busiest
->active_balance
) {
3330 busiest
->active_balance
= 1;
3331 busiest
->push_cpu
= this_cpu
;
3334 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
3337 stop_one_cpu_nowait(cpu_of(busiest
),
3338 active_load_balance_cpu_stop
, busiest
,
3339 &busiest
->active_balance_work
);
3342 * We've kicked active balancing, reset the failure
3345 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3348 sd
->nr_balance_failed
= 0;
3350 if (likely(!active_balance
)) {
3351 /* We were unbalanced, so reset the balancing interval */
3352 sd
->balance_interval
= sd
->min_interval
;
3355 * If we've begun active balancing, start to back off. This
3356 * case may not be covered by the all_pinned logic if there
3357 * is only 1 task on the busy runqueue (because we don't call
3360 if (sd
->balance_interval
< sd
->max_interval
)
3361 sd
->balance_interval
*= 2;
3364 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3365 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3371 schedstat_inc(sd
, lb_balanced
[idle
]);
3373 sd
->nr_balance_failed
= 0;
3376 /* tune up the balancing interval */
3377 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3378 (sd
->balance_interval
< sd
->max_interval
))
3379 sd
->balance_interval
*= 2;
3381 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3382 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3391 * idle_balance is called by schedule() if this_cpu is about to become
3392 * idle. Attempts to pull tasks from other CPUs.
3394 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3396 struct sched_domain
*sd
;
3397 int pulled_task
= 0;
3398 unsigned long next_balance
= jiffies
+ HZ
;
3400 this_rq
->idle_stamp
= this_rq
->clock
;
3402 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
3406 * Drop the rq->lock, but keep IRQ/preempt disabled.
3408 raw_spin_unlock(&this_rq
->lock
);
3410 update_shares(this_cpu
);
3411 for_each_domain(this_cpu
, sd
) {
3412 unsigned long interval
;
3415 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3418 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
3419 /* If we've pulled tasks over stop searching: */
3420 pulled_task
= load_balance(this_cpu
, this_rq
,
3421 sd
, CPU_NEWLY_IDLE
, &balance
);
3424 interval
= msecs_to_jiffies(sd
->balance_interval
);
3425 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3426 next_balance
= sd
->last_balance
+ interval
;
3428 this_rq
->idle_stamp
= 0;
3433 raw_spin_lock(&this_rq
->lock
);
3435 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3437 * We are going idle. next_balance may be set based on
3438 * a busy processor. So reset next_balance.
3440 this_rq
->next_balance
= next_balance
;
3445 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3446 * running tasks off the busiest CPU onto idle CPUs. It requires at
3447 * least 1 task to be running on each physical CPU where possible, and
3448 * avoids physical / logical imbalances.
3450 static int active_load_balance_cpu_stop(void *data
)
3452 struct rq
*busiest_rq
= data
;
3453 int busiest_cpu
= cpu_of(busiest_rq
);
3454 int target_cpu
= busiest_rq
->push_cpu
;
3455 struct rq
*target_rq
= cpu_rq(target_cpu
);
3456 struct sched_domain
*sd
;
3458 raw_spin_lock_irq(&busiest_rq
->lock
);
3460 /* make sure the requested cpu hasn't gone down in the meantime */
3461 if (unlikely(busiest_cpu
!= smp_processor_id() ||
3462 !busiest_rq
->active_balance
))
3465 /* Is there any task to move? */
3466 if (busiest_rq
->nr_running
<= 1)
3470 * This condition is "impossible", if it occurs
3471 * we need to fix it. Originally reported by
3472 * Bjorn Helgaas on a 128-cpu setup.
3474 BUG_ON(busiest_rq
== target_rq
);
3476 /* move a task from busiest_rq to target_rq */
3477 double_lock_balance(busiest_rq
, target_rq
);
3479 /* Search for an sd spanning us and the target CPU. */
3480 for_each_domain(target_cpu
, sd
) {
3481 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3482 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3487 schedstat_inc(sd
, alb_count
);
3489 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3491 schedstat_inc(sd
, alb_pushed
);
3493 schedstat_inc(sd
, alb_failed
);
3495 double_unlock_balance(busiest_rq
, target_rq
);
3497 busiest_rq
->active_balance
= 0;
3498 raw_spin_unlock_irq(&busiest_rq
->lock
);
3504 static DEFINE_PER_CPU(struct call_single_data
, remote_sched_softirq_cb
);
3506 static void trigger_sched_softirq(void *data
)
3508 raise_softirq_irqoff(SCHED_SOFTIRQ
);
3511 static inline void init_sched_softirq_csd(struct call_single_data
*csd
)
3513 csd
->func
= trigger_sched_softirq
;
3520 * idle load balancing details
3521 * - One of the idle CPUs nominates itself as idle load_balancer, while
3523 * - This idle load balancer CPU will also go into tickless mode when
3524 * it is idle, just like all other idle CPUs
3525 * - When one of the busy CPUs notice that there may be an idle rebalancing
3526 * needed, they will kick the idle load balancer, which then does idle
3527 * load balancing for all the idle CPUs.
3530 atomic_t load_balancer
;
3531 atomic_t first_pick_cpu
;
3532 atomic_t second_pick_cpu
;
3533 cpumask_var_t idle_cpus_mask
;
3534 cpumask_var_t grp_idle_mask
;
3535 unsigned long next_balance
; /* in jiffy units */
3536 } nohz ____cacheline_aligned
;
3538 int get_nohz_load_balancer(void)
3540 return atomic_read(&nohz
.load_balancer
);
3543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3545 * lowest_flag_domain - Return lowest sched_domain containing flag.
3546 * @cpu: The cpu whose lowest level of sched domain is to
3548 * @flag: The flag to check for the lowest sched_domain
3549 * for the given cpu.
3551 * Returns the lowest sched_domain of a cpu which contains the given flag.
3553 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
3555 struct sched_domain
*sd
;
3557 for_each_domain(cpu
, sd
)
3558 if (sd
&& (sd
->flags
& flag
))
3565 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3566 * @cpu: The cpu whose domains we're iterating over.
3567 * @sd: variable holding the value of the power_savings_sd
3569 * @flag: The flag to filter the sched_domains to be iterated.
3571 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3572 * set, starting from the lowest sched_domain to the highest.
3574 #define for_each_flag_domain(cpu, sd, flag) \
3575 for (sd = lowest_flag_domain(cpu, flag); \
3576 (sd && (sd->flags & flag)); sd = sd->parent)
3579 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3580 * @ilb_group: group to be checked for semi-idleness
3582 * Returns: 1 if the group is semi-idle. 0 otherwise.
3584 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3585 * and atleast one non-idle CPU. This helper function checks if the given
3586 * sched_group is semi-idle or not.
3588 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
3590 cpumask_and(nohz
.grp_idle_mask
, nohz
.idle_cpus_mask
,
3591 sched_group_cpus(ilb_group
));
3594 * A sched_group is semi-idle when it has atleast one busy cpu
3595 * and atleast one idle cpu.
3597 if (cpumask_empty(nohz
.grp_idle_mask
))
3600 if (cpumask_equal(nohz
.grp_idle_mask
, sched_group_cpus(ilb_group
)))
3606 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3607 * @cpu: The cpu which is nominating a new idle_load_balancer.
3609 * Returns: Returns the id of the idle load balancer if it exists,
3610 * Else, returns >= nr_cpu_ids.
3612 * This algorithm picks the idle load balancer such that it belongs to a
3613 * semi-idle powersavings sched_domain. The idea is to try and avoid
3614 * completely idle packages/cores just for the purpose of idle load balancing
3615 * when there are other idle cpu's which are better suited for that job.
3617 static int find_new_ilb(int cpu
)
3619 struct sched_domain
*sd
;
3620 struct sched_group
*ilb_group
;
3623 * Have idle load balancer selection from semi-idle packages only
3624 * when power-aware load balancing is enabled
3626 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
3630 * Optimize for the case when we have no idle CPUs or only one
3631 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3633 if (cpumask_weight(nohz
.idle_cpus_mask
) < 2)
3636 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
3637 ilb_group
= sd
->groups
;
3640 if (is_semi_idle_group(ilb_group
))
3641 return cpumask_first(nohz
.grp_idle_mask
);
3643 ilb_group
= ilb_group
->next
;
3645 } while (ilb_group
!= sd
->groups
);
3651 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3652 static inline int find_new_ilb(int call_cpu
)
3659 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3660 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3661 * CPU (if there is one).
3663 static void nohz_balancer_kick(int cpu
)
3667 nohz
.next_balance
++;
3669 ilb_cpu
= get_nohz_load_balancer();
3671 if (ilb_cpu
>= nr_cpu_ids
) {
3672 ilb_cpu
= cpumask_first(nohz
.idle_cpus_mask
);
3673 if (ilb_cpu
>= nr_cpu_ids
)
3677 if (!cpu_rq(ilb_cpu
)->nohz_balance_kick
) {
3678 struct call_single_data
*cp
;
3680 cpu_rq(ilb_cpu
)->nohz_balance_kick
= 1;
3681 cp
= &per_cpu(remote_sched_softirq_cb
, cpu
);
3682 __smp_call_function_single(ilb_cpu
, cp
, 0);
3688 * This routine will try to nominate the ilb (idle load balancing)
3689 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3690 * load balancing on behalf of all those cpus.
3692 * When the ilb owner becomes busy, we will not have new ilb owner until some
3693 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3694 * idle load balancing by kicking one of the idle CPUs.
3696 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3697 * ilb owner CPU in future (when there is a need for idle load balancing on
3698 * behalf of all idle CPUs).
3700 void select_nohz_load_balancer(int stop_tick
)
3702 int cpu
= smp_processor_id();
3705 if (!cpu_active(cpu
)) {
3706 if (atomic_read(&nohz
.load_balancer
) != cpu
)
3710 * If we are going offline and still the leader,
3713 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3720 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
3722 if (atomic_read(&nohz
.first_pick_cpu
) == cpu
)
3723 atomic_cmpxchg(&nohz
.first_pick_cpu
, cpu
, nr_cpu_ids
);
3724 if (atomic_read(&nohz
.second_pick_cpu
) == cpu
)
3725 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
3727 if (atomic_read(&nohz
.load_balancer
) >= nr_cpu_ids
) {
3730 /* make me the ilb owner */
3731 if (atomic_cmpxchg(&nohz
.load_balancer
, nr_cpu_ids
,
3736 * Check to see if there is a more power-efficient
3739 new_ilb
= find_new_ilb(cpu
);
3740 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
3741 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
3742 resched_cpu(new_ilb
);
3748 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
3751 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
3753 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3754 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3762 static DEFINE_SPINLOCK(balancing
);
3765 * It checks each scheduling domain to see if it is due to be balanced,
3766 * and initiates a balancing operation if so.
3768 * Balancing parameters are set up in arch_init_sched_domains.
3770 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3773 struct rq
*rq
= cpu_rq(cpu
);
3774 unsigned long interval
;
3775 struct sched_domain
*sd
;
3776 /* Earliest time when we have to do rebalance again */
3777 unsigned long next_balance
= jiffies
+ 60*HZ
;
3778 int update_next_balance
= 0;
3783 for_each_domain(cpu
, sd
) {
3784 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3787 interval
= sd
->balance_interval
;
3788 if (idle
!= CPU_IDLE
)
3789 interval
*= sd
->busy_factor
;
3791 /* scale ms to jiffies */
3792 interval
= msecs_to_jiffies(interval
);
3793 if (unlikely(!interval
))
3795 if (interval
> HZ
*NR_CPUS
/10)
3796 interval
= HZ
*NR_CPUS
/10;
3798 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3800 if (need_serialize
) {
3801 if (!spin_trylock(&balancing
))
3805 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3806 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3808 * We've pulled tasks over so either we're no
3809 * longer idle, or one of our SMT siblings is
3812 idle
= CPU_NOT_IDLE
;
3814 sd
->last_balance
= jiffies
;
3817 spin_unlock(&balancing
);
3819 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3820 next_balance
= sd
->last_balance
+ interval
;
3821 update_next_balance
= 1;
3825 * Stop the load balance at this level. There is another
3826 * CPU in our sched group which is doing load balancing more
3834 * next_balance will be updated only when there is a need.
3835 * When the cpu is attached to null domain for ex, it will not be
3838 if (likely(update_next_balance
))
3839 rq
->next_balance
= next_balance
;
3844 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3845 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3847 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
)
3849 struct rq
*this_rq
= cpu_rq(this_cpu
);
3853 if (idle
!= CPU_IDLE
|| !this_rq
->nohz_balance_kick
)
3856 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
3857 if (balance_cpu
== this_cpu
)
3861 * If this cpu gets work to do, stop the load balancing
3862 * work being done for other cpus. Next load
3863 * balancing owner will pick it up.
3865 if (need_resched()) {
3866 this_rq
->nohz_balance_kick
= 0;
3870 raw_spin_lock_irq(&this_rq
->lock
);
3871 update_rq_clock(this_rq
);
3872 update_cpu_load(this_rq
);
3873 raw_spin_unlock_irq(&this_rq
->lock
);
3875 rebalance_domains(balance_cpu
, CPU_IDLE
);
3877 rq
= cpu_rq(balance_cpu
);
3878 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3879 this_rq
->next_balance
= rq
->next_balance
;
3881 nohz
.next_balance
= this_rq
->next_balance
;
3882 this_rq
->nohz_balance_kick
= 0;
3886 * Current heuristic for kicking the idle load balancer
3887 * - first_pick_cpu is the one of the busy CPUs. It will kick
3888 * idle load balancer when it has more than one process active. This
3889 * eliminates the need for idle load balancing altogether when we have
3890 * only one running process in the system (common case).
3891 * - If there are more than one busy CPU, idle load balancer may have
3892 * to run for active_load_balance to happen (i.e., two busy CPUs are
3893 * SMT or core siblings and can run better if they move to different
3894 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3895 * which will kick idle load balancer as soon as it has any load.
3897 static inline int nohz_kick_needed(struct rq
*rq
, int cpu
)
3899 unsigned long now
= jiffies
;
3901 int first_pick_cpu
, second_pick_cpu
;
3903 if (time_before(now
, nohz
.next_balance
))
3906 if (rq
->idle_at_tick
)
3909 first_pick_cpu
= atomic_read(&nohz
.first_pick_cpu
);
3910 second_pick_cpu
= atomic_read(&nohz
.second_pick_cpu
);
3912 if (first_pick_cpu
< nr_cpu_ids
&& first_pick_cpu
!= cpu
&&
3913 second_pick_cpu
< nr_cpu_ids
&& second_pick_cpu
!= cpu
)
3916 ret
= atomic_cmpxchg(&nohz
.first_pick_cpu
, nr_cpu_ids
, cpu
);
3917 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
3918 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
3919 if (rq
->nr_running
> 1)
3922 ret
= atomic_cmpxchg(&nohz
.second_pick_cpu
, nr_cpu_ids
, cpu
);
3923 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
3931 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
) { }
3935 * run_rebalance_domains is triggered when needed from the scheduler tick.
3936 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3938 static void run_rebalance_domains(struct softirq_action
*h
)
3940 int this_cpu
= smp_processor_id();
3941 struct rq
*this_rq
= cpu_rq(this_cpu
);
3942 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3943 CPU_IDLE
: CPU_NOT_IDLE
;
3945 rebalance_domains(this_cpu
, idle
);
3948 * If this cpu has a pending nohz_balance_kick, then do the
3949 * balancing on behalf of the other idle cpus whose ticks are
3952 nohz_idle_balance(this_cpu
, idle
);
3955 static inline int on_null_domain(int cpu
)
3957 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
3961 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3963 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3965 /* Don't need to rebalance while attached to NULL domain */
3966 if (time_after_eq(jiffies
, rq
->next_balance
) &&
3967 likely(!on_null_domain(cpu
)))
3968 raise_softirq(SCHED_SOFTIRQ
);
3970 else if (nohz_kick_needed(rq
, cpu
) && likely(!on_null_domain(cpu
)))
3971 nohz_balancer_kick(cpu
);
3975 static void rq_online_fair(struct rq
*rq
)
3980 static void rq_offline_fair(struct rq
*rq
)
3985 #else /* CONFIG_SMP */
3988 * on UP we do not need to balance between CPUs:
3990 static inline void idle_balance(int cpu
, struct rq
*rq
)
3994 #endif /* CONFIG_SMP */
3997 * scheduler tick hitting a task of our scheduling class:
3999 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
4001 struct cfs_rq
*cfs_rq
;
4002 struct sched_entity
*se
= &curr
->se
;
4004 for_each_sched_entity(se
) {
4005 cfs_rq
= cfs_rq_of(se
);
4006 entity_tick(cfs_rq
, se
, queued
);
4011 * called on fork with the child task as argument from the parent's context
4012 * - child not yet on the tasklist
4013 * - preemption disabled
4015 static void task_fork_fair(struct task_struct
*p
)
4017 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
4018 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
4019 int this_cpu
= smp_processor_id();
4020 struct rq
*rq
= this_rq();
4021 unsigned long flags
;
4023 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4025 update_rq_clock(rq
);
4027 if (unlikely(task_cpu(p
) != this_cpu
)) {
4029 __set_task_cpu(p
, this_cpu
);
4033 update_curr(cfs_rq
);
4036 se
->vruntime
= curr
->vruntime
;
4037 place_entity(cfs_rq
, se
, 1);
4039 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
4041 * Upon rescheduling, sched_class::put_prev_task() will place
4042 * 'current' within the tree based on its new key value.
4044 swap(curr
->vruntime
, se
->vruntime
);
4045 resched_task(rq
->curr
);
4048 se
->vruntime
-= cfs_rq
->min_vruntime
;
4050 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4054 * Priority of the task has changed. Check to see if we preempt
4057 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
4058 int oldprio
, int running
)
4061 * Reschedule if we are currently running on this runqueue and
4062 * our priority decreased, or if we are not currently running on
4063 * this runqueue and our priority is higher than the current's
4066 if (p
->prio
> oldprio
)
4067 resched_task(rq
->curr
);
4069 check_preempt_curr(rq
, p
, 0);
4073 * We switched to the sched_fair class.
4075 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
4079 * We were most likely switched from sched_rt, so
4080 * kick off the schedule if running, otherwise just see
4081 * if we can still preempt the current task.
4084 resched_task(rq
->curr
);
4086 check_preempt_curr(rq
, p
, 0);
4089 /* Account for a task changing its policy or group.
4091 * This routine is mostly called to set cfs_rq->curr field when a task
4092 * migrates between groups/classes.
4094 static void set_curr_task_fair(struct rq
*rq
)
4096 struct sched_entity
*se
= &rq
->curr
->se
;
4098 for_each_sched_entity(se
)
4099 set_next_entity(cfs_rq_of(se
), se
);
4102 #ifdef CONFIG_FAIR_GROUP_SCHED
4103 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
4106 * If the task was not on the rq at the time of this cgroup movement
4107 * it must have been asleep, sleeping tasks keep their ->vruntime
4108 * absolute on their old rq until wakeup (needed for the fair sleeper
4109 * bonus in place_entity()).
4111 * If it was on the rq, we've just 'preempted' it, which does convert
4112 * ->vruntime to a relative base.
4114 * Make sure both cases convert their relative position when migrating
4115 * to another cgroup's rq. This does somewhat interfere with the
4116 * fair sleeper stuff for the first placement, but who cares.
4119 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
4120 set_task_rq(p
, task_cpu(p
));
4122 p
->se
.vruntime
+= cfs_rq_of(&p
->se
)->min_vruntime
;
4126 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
4128 struct sched_entity
*se
= &task
->se
;
4129 unsigned int rr_interval
= 0;
4132 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4135 if (rq
->cfs
.load
.weight
)
4136 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
4142 * All the scheduling class methods:
4144 static const struct sched_class fair_sched_class
= {
4145 .next
= &idle_sched_class
,
4146 .enqueue_task
= enqueue_task_fair
,
4147 .dequeue_task
= dequeue_task_fair
,
4148 .yield_task
= yield_task_fair
,
4150 .check_preempt_curr
= check_preempt_wakeup
,
4152 .pick_next_task
= pick_next_task_fair
,
4153 .put_prev_task
= put_prev_task_fair
,
4156 .select_task_rq
= select_task_rq_fair
,
4158 .rq_online
= rq_online_fair
,
4159 .rq_offline
= rq_offline_fair
,
4161 .task_waking
= task_waking_fair
,
4164 .set_curr_task
= set_curr_task_fair
,
4165 .task_tick
= task_tick_fair
,
4166 .task_fork
= task_fork_fair
,
4168 .prio_changed
= prio_changed_fair
,
4169 .switched_to
= switched_to_fair
,
4171 .get_rr_interval
= get_rr_interval_fair
,
4173 #ifdef CONFIG_FAIR_GROUP_SCHED
4174 .task_move_group
= task_move_group_fair
,
4178 #ifdef CONFIG_SCHED_DEBUG
4179 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
4181 struct cfs_rq
*cfs_rq
;
4184 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
4185 print_cfs_rq(m
, cpu
, cfs_rq
);