2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include <linux/slab.h>
37 * Translate binary channel representation in EEPROM to frequency
39 static u16
ath5k_eeprom_bin2freq(struct ath5k_eeprom_info
*ee
, u16 bin
,
44 if (bin
== AR5K_EEPROM_CHANNEL_DIS
)
47 if (mode
== AR5K_EEPROM_MODE_11A
) {
48 if (ee
->ee_version
> AR5K_EEPROM_VERSION_3_2
)
49 val
= (5 * bin
) + 4800;
51 val
= bin
> 62 ? (10 * 62) + (5 * (bin
- 62)) + 5100 :
54 if (ee
->ee_version
> AR5K_EEPROM_VERSION_3_2
)
69 * Initialize eeprom & capabilities structs
72 ath5k_eeprom_init_header(struct ath5k_hw
*ah
)
74 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
76 u32 cksum
, offset
, eep_max
= AR5K_EEPROM_INFO_MAX
;
79 * Read values from EEPROM and store them in the capability structure
81 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC
, ee_magic
);
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT
, ee_protect
);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN
, ee_regdomain
);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION
, ee_version
);
85 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR
, ee_header
);
87 /* Return if we have an old EEPROM */
88 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_3_0
)
92 * Validate the checksum of the EEPROM date. There are some
93 * devices with invalid EEPROMs.
95 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER
, val
);
97 eep_max
= (val
& AR5K_EEPROM_SIZE_UPPER_MASK
) <<
98 AR5K_EEPROM_SIZE_ENDLOC_SHIFT
;
99 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER
, val
);
100 eep_max
= (eep_max
| val
) - AR5K_EEPROM_INFO_BASE
;
103 * Fail safe check to prevent stupid loops due
104 * to busted EEPROMs. XXX: This value is likely too
105 * big still, waiting on a better value.
107 if (eep_max
> (3 * AR5K_EEPROM_INFO_MAX
)) {
108 ATH5K_ERR(ah
, "Invalid max custom EEPROM size: "
109 "%d (0x%04x) max expected: %d (0x%04x)\n",
111 3 * AR5K_EEPROM_INFO_MAX
,
112 3 * AR5K_EEPROM_INFO_MAX
);
117 for (cksum
= 0, offset
= 0; offset
< eep_max
; offset
++) {
118 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset
), val
);
121 if (cksum
!= AR5K_EEPROM_INFO_CKSUM
) {
122 ATH5K_ERR(ah
, "Invalid EEPROM "
123 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
125 eep_max
== AR5K_EEPROM_INFO_MAX
?
126 "default size" : "custom size");
130 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah
->ah_ee_version
),
133 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
) {
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0
, ee_misc0
);
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1
, ee_misc1
);
137 /* XXX: Don't know which versions include these two */
138 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2
, ee_misc2
);
140 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_4_3
)
141 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3
, ee_misc3
);
143 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_5_0
) {
144 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4
, ee_misc4
);
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5
, ee_misc5
);
146 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6
, ee_misc6
);
150 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_3_3
) {
151 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ
, val
);
152 ee
->ee_ob
[AR5K_EEPROM_MODE_11B
][0] = val
& 0x7;
153 ee
->ee_db
[AR5K_EEPROM_MODE_11B
][0] = (val
>> 3) & 0x7;
155 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ
, val
);
156 ee
->ee_ob
[AR5K_EEPROM_MODE_11G
][0] = val
& 0x7;
157 ee
->ee_db
[AR5K_EEPROM_MODE_11G
][0] = (val
>> 3) & 0x7;
160 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63
, val
);
162 if ((ah
->ah_mac_version
== (AR5K_SREV_AR2425
>> 4)) && val
)
163 ee
->ee_is_hb63
= true;
165 ee
->ee_is_hb63
= false;
167 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL
, val
);
168 ee
->ee_rfkill_pin
= (u8
) AR5K_REG_MS(val
, AR5K_EEPROM_RFKILL_GPIO_SEL
);
169 ee
->ee_rfkill_pol
= val
& AR5K_EEPROM_RFKILL_POLARITY
? true : false;
171 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
172 * and enable serdes programming if needed.
174 * XXX: Serdes values seem to be fixed so
175 * no need to read them here, we write them
176 * during ath5k_hw_init */
177 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET
, val
);
178 ee
->ee_serdes
= (val
== AR5K_EEPROM_PCIE_SERDES_SECTION
) ?
186 * Read antenna infos from eeprom
188 static int ath5k_eeprom_read_ants(struct ath5k_hw
*ah
, u32
*offset
,
191 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
196 AR5K_EEPROM_READ(o
++, val
);
197 ee
->ee_switch_settling
[mode
] = (val
>> 8) & 0x7f;
198 ee
->ee_atn_tx_rx
[mode
] = (val
>> 2) & 0x3f;
199 ee
->ee_ant_control
[mode
][i
] = (val
<< 4) & 0x3f;
201 AR5K_EEPROM_READ(o
++, val
);
202 ee
->ee_ant_control
[mode
][i
++] |= (val
>> 12) & 0xf;
203 ee
->ee_ant_control
[mode
][i
++] = (val
>> 6) & 0x3f;
204 ee
->ee_ant_control
[mode
][i
++] = val
& 0x3f;
206 AR5K_EEPROM_READ(o
++, val
);
207 ee
->ee_ant_control
[mode
][i
++] = (val
>> 10) & 0x3f;
208 ee
->ee_ant_control
[mode
][i
++] = (val
>> 4) & 0x3f;
209 ee
->ee_ant_control
[mode
][i
] = (val
<< 2) & 0x3f;
211 AR5K_EEPROM_READ(o
++, val
);
212 ee
->ee_ant_control
[mode
][i
++] |= (val
>> 14) & 0x3;
213 ee
->ee_ant_control
[mode
][i
++] = (val
>> 8) & 0x3f;
214 ee
->ee_ant_control
[mode
][i
++] = (val
>> 2) & 0x3f;
215 ee
->ee_ant_control
[mode
][i
] = (val
<< 4) & 0x3f;
217 AR5K_EEPROM_READ(o
++, val
);
218 ee
->ee_ant_control
[mode
][i
++] |= (val
>> 12) & 0xf;
219 ee
->ee_ant_control
[mode
][i
++] = (val
>> 6) & 0x3f;
220 ee
->ee_ant_control
[mode
][i
++] = val
& 0x3f;
222 /* Get antenna switch tables */
223 ah
->ah_ant_ctl
[mode
][AR5K_ANT_CTL
] =
224 (ee
->ee_ant_control
[mode
][0] << 4);
225 ah
->ah_ant_ctl
[mode
][AR5K_ANT_SWTABLE_A
] =
226 ee
->ee_ant_control
[mode
][1] |
227 (ee
->ee_ant_control
[mode
][2] << 6) |
228 (ee
->ee_ant_control
[mode
][3] << 12) |
229 (ee
->ee_ant_control
[mode
][4] << 18) |
230 (ee
->ee_ant_control
[mode
][5] << 24);
231 ah
->ah_ant_ctl
[mode
][AR5K_ANT_SWTABLE_B
] =
232 ee
->ee_ant_control
[mode
][6] |
233 (ee
->ee_ant_control
[mode
][7] << 6) |
234 (ee
->ee_ant_control
[mode
][8] << 12) |
235 (ee
->ee_ant_control
[mode
][9] << 18) |
236 (ee
->ee_ant_control
[mode
][10] << 24);
238 /* return new offset */
245 * Read supported modes and some mode-specific calibration data
248 static int ath5k_eeprom_read_modes(struct ath5k_hw
*ah
, u32
*offset
,
251 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
255 ee
->ee_n_piers
[mode
] = 0;
256 AR5K_EEPROM_READ(o
++, val
);
257 ee
->ee_adc_desired_size
[mode
] = (s8
)((val
>> 8) & 0xff);
259 case AR5K_EEPROM_MODE_11A
:
260 ee
->ee_ob
[mode
][3] = (val
>> 5) & 0x7;
261 ee
->ee_db
[mode
][3] = (val
>> 2) & 0x7;
262 ee
->ee_ob
[mode
][2] = (val
<< 1) & 0x7;
264 AR5K_EEPROM_READ(o
++, val
);
265 ee
->ee_ob
[mode
][2] |= (val
>> 15) & 0x1;
266 ee
->ee_db
[mode
][2] = (val
>> 12) & 0x7;
267 ee
->ee_ob
[mode
][1] = (val
>> 9) & 0x7;
268 ee
->ee_db
[mode
][1] = (val
>> 6) & 0x7;
269 ee
->ee_ob
[mode
][0] = (val
>> 3) & 0x7;
270 ee
->ee_db
[mode
][0] = val
& 0x7;
272 case AR5K_EEPROM_MODE_11G
:
273 case AR5K_EEPROM_MODE_11B
:
274 ee
->ee_ob
[mode
][1] = (val
>> 4) & 0x7;
275 ee
->ee_db
[mode
][1] = val
& 0x7;
279 AR5K_EEPROM_READ(o
++, val
);
280 ee
->ee_tx_end2xlna_enable
[mode
] = (val
>> 8) & 0xff;
281 ee
->ee_thr_62
[mode
] = val
& 0xff;
283 if (ah
->ah_ee_version
<= AR5K_EEPROM_VERSION_3_2
)
284 ee
->ee_thr_62
[mode
] = mode
== AR5K_EEPROM_MODE_11A
? 15 : 28;
286 AR5K_EEPROM_READ(o
++, val
);
287 ee
->ee_tx_end2xpa_disable
[mode
] = (val
>> 8) & 0xff;
288 ee
->ee_tx_frm2xpa_enable
[mode
] = val
& 0xff;
290 AR5K_EEPROM_READ(o
++, val
);
291 ee
->ee_pga_desired_size
[mode
] = (val
>> 8) & 0xff;
293 if ((val
& 0xff) & 0x80)
294 ee
->ee_noise_floor_thr
[mode
] = -((((val
& 0xff) ^ 0xff)) + 1);
296 ee
->ee_noise_floor_thr
[mode
] = val
& 0xff;
298 if (ah
->ah_ee_version
<= AR5K_EEPROM_VERSION_3_2
)
299 ee
->ee_noise_floor_thr
[mode
] =
300 mode
== AR5K_EEPROM_MODE_11A
? -54 : -1;
302 AR5K_EEPROM_READ(o
++, val
);
303 ee
->ee_xlna_gain
[mode
] = (val
>> 5) & 0xff;
304 ee
->ee_x_gain
[mode
] = (val
>> 1) & 0xf;
305 ee
->ee_xpd
[mode
] = val
& 0x1;
307 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
&&
308 mode
!= AR5K_EEPROM_MODE_11B
)
309 ee
->ee_fixed_bias
[mode
] = (val
>> 13) & 0x1;
311 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_3_3
) {
312 AR5K_EEPROM_READ(o
++, val
);
313 ee
->ee_false_detect
[mode
] = (val
>> 6) & 0x7f;
315 if (mode
== AR5K_EEPROM_MODE_11A
)
316 ee
->ee_xr_power
[mode
] = val
& 0x3f;
318 /* b_DB_11[bg] and b_OB_11[bg] */
319 ee
->ee_ob
[mode
][0] = val
& 0x7;
320 ee
->ee_db
[mode
][0] = (val
>> 3) & 0x7;
324 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_3_4
) {
325 ee
->ee_i_gain
[mode
] = AR5K_EEPROM_I_GAIN
;
326 ee
->ee_cck_ofdm_power_delta
= AR5K_EEPROM_CCK_OFDM_DELTA
;
328 ee
->ee_i_gain
[mode
] = (val
>> 13) & 0x7;
330 AR5K_EEPROM_READ(o
++, val
);
331 ee
->ee_i_gain
[mode
] |= (val
<< 3) & 0x38;
333 if (mode
== AR5K_EEPROM_MODE_11G
) {
334 ee
->ee_cck_ofdm_power_delta
= (val
>> 3) & 0xff;
335 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_6
)
336 ee
->ee_scaled_cck_delta
= (val
>> 11) & 0x1f;
340 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
&&
341 mode
== AR5K_EEPROM_MODE_11A
) {
342 ee
->ee_i_cal
[mode
] = (val
>> 8) & 0x3f;
343 ee
->ee_q_cal
[mode
] = (val
>> 3) & 0x1f;
346 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_4_0
)
349 /* Note: >= v5 have bg freq piers on another location
350 * so these freq piers are ignored for >= v5 (should be 0xff
353 case AR5K_EEPROM_MODE_11A
:
354 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_4_1
)
357 AR5K_EEPROM_READ(o
++, val
);
358 ee
->ee_margin_tx_rx
[mode
] = val
& 0x3f;
360 case AR5K_EEPROM_MODE_11B
:
361 AR5K_EEPROM_READ(o
++, val
);
363 ee
->ee_pwr_cal_b
[0].freq
=
364 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
365 if (ee
->ee_pwr_cal_b
[0].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
366 ee
->ee_n_piers
[mode
]++;
368 ee
->ee_pwr_cal_b
[1].freq
=
369 ath5k_eeprom_bin2freq(ee
, (val
>> 8) & 0xff, mode
);
370 if (ee
->ee_pwr_cal_b
[1].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
371 ee
->ee_n_piers
[mode
]++;
373 AR5K_EEPROM_READ(o
++, val
);
374 ee
->ee_pwr_cal_b
[2].freq
=
375 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
376 if (ee
->ee_pwr_cal_b
[2].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
377 ee
->ee_n_piers
[mode
]++;
379 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_1
)
380 ee
->ee_margin_tx_rx
[mode
] = (val
>> 8) & 0x3f;
382 case AR5K_EEPROM_MODE_11G
:
383 AR5K_EEPROM_READ(o
++, val
);
385 ee
->ee_pwr_cal_g
[0].freq
=
386 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
387 if (ee
->ee_pwr_cal_g
[0].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
388 ee
->ee_n_piers
[mode
]++;
390 ee
->ee_pwr_cal_g
[1].freq
=
391 ath5k_eeprom_bin2freq(ee
, (val
>> 8) & 0xff, mode
);
392 if (ee
->ee_pwr_cal_g
[1].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
393 ee
->ee_n_piers
[mode
]++;
395 AR5K_EEPROM_READ(o
++, val
);
396 ee
->ee_turbo_max_power
[mode
] = val
& 0x7f;
397 ee
->ee_xr_power
[mode
] = (val
>> 7) & 0x3f;
399 AR5K_EEPROM_READ(o
++, val
);
400 ee
->ee_pwr_cal_g
[2].freq
=
401 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
402 if (ee
->ee_pwr_cal_g
[2].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
403 ee
->ee_n_piers
[mode
]++;
405 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_1
)
406 ee
->ee_margin_tx_rx
[mode
] = (val
>> 8) & 0x3f;
408 AR5K_EEPROM_READ(o
++, val
);
409 ee
->ee_i_cal
[mode
] = (val
>> 5) & 0x3f;
410 ee
->ee_q_cal
[mode
] = val
& 0x1f;
412 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_2
) {
413 AR5K_EEPROM_READ(o
++, val
);
414 ee
->ee_cck_ofdm_gain_delta
= val
& 0xff;
420 * Read turbo mode information on newer EEPROM versions
422 if (ee
->ee_version
< AR5K_EEPROM_VERSION_5_0
)
426 case AR5K_EEPROM_MODE_11A
:
427 ee
->ee_switch_settling_turbo
[mode
] = (val
>> 6) & 0x7f;
429 ee
->ee_atn_tx_rx_turbo
[mode
] = (val
>> 13) & 0x7;
430 AR5K_EEPROM_READ(o
++, val
);
431 ee
->ee_atn_tx_rx_turbo
[mode
] |= (val
& 0x7) << 3;
432 ee
->ee_margin_tx_rx_turbo
[mode
] = (val
>> 3) & 0x3f;
434 ee
->ee_adc_desired_size_turbo
[mode
] = (val
>> 9) & 0x7f;
435 AR5K_EEPROM_READ(o
++, val
);
436 ee
->ee_adc_desired_size_turbo
[mode
] |= (val
& 0x1) << 7;
437 ee
->ee_pga_desired_size_turbo
[mode
] = (val
>> 1) & 0xff;
439 if (AR5K_EEPROM_EEMAP(ee
->ee_misc0
) >= 2)
440 ee
->ee_pd_gain_overlap
= (val
>> 9) & 0xf;
442 case AR5K_EEPROM_MODE_11G
:
443 ee
->ee_switch_settling_turbo
[mode
] = (val
>> 8) & 0x7f;
445 ee
->ee_atn_tx_rx_turbo
[mode
] = (val
>> 15) & 0x7;
446 AR5K_EEPROM_READ(o
++, val
);
447 ee
->ee_atn_tx_rx_turbo
[mode
] |= (val
& 0x1f) << 1;
448 ee
->ee_margin_tx_rx_turbo
[mode
] = (val
>> 5) & 0x3f;
450 ee
->ee_adc_desired_size_turbo
[mode
] = (val
>> 11) & 0x7f;
451 AR5K_EEPROM_READ(o
++, val
);
452 ee
->ee_adc_desired_size_turbo
[mode
] |= (val
& 0x7) << 5;
453 ee
->ee_pga_desired_size_turbo
[mode
] = (val
>> 3) & 0xff;
458 /* return new offset */
464 /* Read mode-specific data (except power calibration data) */
466 ath5k_eeprom_init_modes(struct ath5k_hw
*ah
)
468 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
475 * Get values for all modes
477 mode_offset
[AR5K_EEPROM_MODE_11A
] = AR5K_EEPROM_MODES_11A(ah
->ah_ee_version
);
478 mode_offset
[AR5K_EEPROM_MODE_11B
] = AR5K_EEPROM_MODES_11B(ah
->ah_ee_version
);
479 mode_offset
[AR5K_EEPROM_MODE_11G
] = AR5K_EEPROM_MODES_11G(ah
->ah_ee_version
);
481 ee
->ee_turbo_max_power
[AR5K_EEPROM_MODE_11A
] =
482 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee
->ee_header
);
484 for (mode
= AR5K_EEPROM_MODE_11A
; mode
<= AR5K_EEPROM_MODE_11G
; mode
++) {
485 offset
= mode_offset
[mode
];
487 ret
= ath5k_eeprom_read_ants(ah
, &offset
, mode
);
491 ret
= ath5k_eeprom_read_modes(ah
, &offset
, mode
);
496 /* override for older eeprom versions for better performance */
497 if (ah
->ah_ee_version
<= AR5K_EEPROM_VERSION_3_2
) {
498 ee
->ee_thr_62
[AR5K_EEPROM_MODE_11A
] = 15;
499 ee
->ee_thr_62
[AR5K_EEPROM_MODE_11B
] = 28;
500 ee
->ee_thr_62
[AR5K_EEPROM_MODE_11G
] = 28;
506 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
509 ath5k_eeprom_read_freq_list(struct ath5k_hw
*ah
, int *offset
, int max
,
510 struct ath5k_chan_pcal_info
*pc
, unsigned int mode
)
512 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
518 ee
->ee_n_piers
[mode
] = 0;
520 AR5K_EEPROM_READ(o
++, val
);
526 pc
[i
++].freq
= ath5k_eeprom_bin2freq(ee
,
528 ee
->ee_n_piers
[mode
]++;
530 freq2
= (val
>> 8) & 0xff;
534 pc
[i
++].freq
= ath5k_eeprom_bin2freq(ee
,
536 ee
->ee_n_piers
[mode
]++;
539 /* return new offset */
545 /* Read frequency piers for 802.11a */
547 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw
*ah
, int offset
)
549 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
550 struct ath5k_chan_pcal_info
*pcal
= ee
->ee_pwr_cal_a
;
555 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_3_3
) {
556 ath5k_eeprom_read_freq_list(ah
, &offset
,
557 AR5K_EEPROM_N_5GHZ_CHAN
, pcal
,
558 AR5K_EEPROM_MODE_11A
);
560 mask
= AR5K_EEPROM_FREQ_M(ah
->ah_ee_version
);
562 AR5K_EEPROM_READ(offset
++, val
);
563 pcal
[0].freq
= (val
>> 9) & mask
;
564 pcal
[1].freq
= (val
>> 2) & mask
;
565 pcal
[2].freq
= (val
<< 5) & mask
;
567 AR5K_EEPROM_READ(offset
++, val
);
568 pcal
[2].freq
|= (val
>> 11) & 0x1f;
569 pcal
[3].freq
= (val
>> 4) & mask
;
570 pcal
[4].freq
= (val
<< 3) & mask
;
572 AR5K_EEPROM_READ(offset
++, val
);
573 pcal
[4].freq
|= (val
>> 13) & 0x7;
574 pcal
[5].freq
= (val
>> 6) & mask
;
575 pcal
[6].freq
= (val
<< 1) & mask
;
577 AR5K_EEPROM_READ(offset
++, val
);
578 pcal
[6].freq
|= (val
>> 15) & 0x1;
579 pcal
[7].freq
= (val
>> 8) & mask
;
580 pcal
[8].freq
= (val
>> 1) & mask
;
581 pcal
[9].freq
= (val
<< 6) & mask
;
583 AR5K_EEPROM_READ(offset
++, val
);
584 pcal
[9].freq
|= (val
>> 10) & 0x3f;
586 /* Fixed number of piers */
587 ee
->ee_n_piers
[AR5K_EEPROM_MODE_11A
] = 10;
589 for (i
= 0; i
< AR5K_EEPROM_N_5GHZ_CHAN
; i
++) {
590 pcal
[i
].freq
= ath5k_eeprom_bin2freq(ee
,
591 pcal
[i
].freq
, AR5K_EEPROM_MODE_11A
);
598 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
600 ath5k_eeprom_init_11bg_2413(struct ath5k_hw
*ah
, unsigned int mode
, int offset
)
602 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
603 struct ath5k_chan_pcal_info
*pcal
;
606 case AR5K_EEPROM_MODE_11B
:
607 pcal
= ee
->ee_pwr_cal_b
;
609 case AR5K_EEPROM_MODE_11G
:
610 pcal
= ee
->ee_pwr_cal_g
;
616 ath5k_eeprom_read_freq_list(ah
, &offset
,
617 AR5K_EEPROM_N_2GHZ_CHAN_2413
, pcal
,
625 * Read power calibration for RF5111 chips
627 * For RF5111 we have an XPD -eXternal Power Detector- curve
628 * for each calibrated channel. Each curve has 0,5dB Power steps
629 * on x axis and PCDAC steps (offsets) on y axis and looks like an
630 * exponential function. To recreate the curve we read 11 points
631 * here and interpolate later.
634 /* Used to match PCDAC steps with power values on RF5111 chips
635 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
636 * steps that match with the power values we read from eeprom. On
637 * older eeprom versions (< 3.2) these steps are equally spaced at
638 * 10% of the pcdac curve -until the curve reaches its maximum-
639 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
640 * these 11 steps are spaced in a different way. This function returns
641 * the pcdac steps based on eeprom version and curve min/max so that we
642 * can have pcdac/pwr points.
645 ath5k_get_pcdac_intercepts(struct ath5k_hw
*ah
, u8 min
, u8 max
, u8
*vp
)
647 static const u16 intercepts3
[] = {
648 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
650 static const u16 intercepts3_2
[] = {
651 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
656 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_3_2
)
661 for (i
= 0; i
< ARRAY_SIZE(intercepts3
); i
++)
662 vp
[i
] = (ip
[i
] * max
+ (100 - ip
[i
]) * min
) / 100;
666 ath5k_eeprom_free_pcal_info(struct ath5k_hw
*ah
, int mode
)
668 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
669 struct ath5k_chan_pcal_info
*chinfo
;
673 case AR5K_EEPROM_MODE_11A
:
674 if (!AR5K_EEPROM_HDR_11A(ee
->ee_header
))
676 chinfo
= ee
->ee_pwr_cal_a
;
678 case AR5K_EEPROM_MODE_11B
:
679 if (!AR5K_EEPROM_HDR_11B(ee
->ee_header
))
681 chinfo
= ee
->ee_pwr_cal_b
;
683 case AR5K_EEPROM_MODE_11G
:
684 if (!AR5K_EEPROM_HDR_11G(ee
->ee_header
))
686 chinfo
= ee
->ee_pwr_cal_g
;
692 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
693 if (!chinfo
[pier
].pd_curves
)
696 for (pdg
= 0; pdg
< AR5K_EEPROM_N_PD_CURVES
; pdg
++) {
697 struct ath5k_pdgain_info
*pd
=
698 &chinfo
[pier
].pd_curves
[pdg
];
704 kfree(chinfo
[pier
].pd_curves
);
710 /* Convert RF5111 specific data to generic raw data
711 * used by interpolation code */
713 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw
*ah
, int mode
,
714 struct ath5k_chan_pcal_info
*chinfo
)
716 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
717 struct ath5k_chan_pcal_info_rf5111
*pcinfo
;
718 struct ath5k_pdgain_info
*pd
;
720 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
722 /* Fill raw data for each calibration pier */
723 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
725 pcinfo
= &chinfo
[pier
].rf5111_info
;
727 /* Allocate pd_curves for this cal pier */
728 chinfo
[pier
].pd_curves
=
729 kcalloc(AR5K_EEPROM_N_PD_CURVES
,
730 sizeof(struct ath5k_pdgain_info
),
733 if (!chinfo
[pier
].pd_curves
)
736 /* Only one curve for RF5111
737 * find out which one and place
739 * Note: ee_x_gain is reversed here */
740 for (idx
= 0; idx
< AR5K_EEPROM_N_PD_CURVES
; idx
++) {
742 if (!((ee
->ee_x_gain
[mode
] >> idx
) & 0x1)) {
748 ee
->ee_pd_gains
[mode
] = 1;
750 pd
= &chinfo
[pier
].pd_curves
[idx
];
752 pd
->pd_points
= AR5K_EEPROM_N_PWR_POINTS_5111
;
754 /* Allocate pd points for this curve */
755 pd
->pd_step
= kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111
,
756 sizeof(u8
), GFP_KERNEL
);
760 pd
->pd_pwr
= kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111
,
761 sizeof(s16
), GFP_KERNEL
);
766 * (convert power to 0.25dB units
767 * for RF5112 compatibility) */
768 for (point
= 0; point
< pd
->pd_points
; point
++) {
770 /* Absolute values */
771 pd
->pd_pwr
[point
] = 2 * pcinfo
->pwr
[point
];
774 pd
->pd_step
[point
] = pcinfo
->pcdac
[point
];
777 /* Set min/max pwr */
778 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
779 chinfo
[pier
].max_pwr
= pd
->pd_pwr
[10];
786 ath5k_eeprom_free_pcal_info(ah
, mode
);
790 /* Parse EEPROM data */
792 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw
*ah
, int mode
)
794 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
795 struct ath5k_chan_pcal_info
*pcal
;
800 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
802 case AR5K_EEPROM_MODE_11A
:
803 if (!AR5K_EEPROM_HDR_11A(ee
->ee_header
))
806 ret
= ath5k_eeprom_init_11a_pcal_freq(ah
,
807 offset
+ AR5K_EEPROM_GROUP1_OFFSET
);
811 offset
+= AR5K_EEPROM_GROUP2_OFFSET
;
812 pcal
= ee
->ee_pwr_cal_a
;
814 case AR5K_EEPROM_MODE_11B
:
815 if (!AR5K_EEPROM_HDR_11B(ee
->ee_header
) &&
816 !AR5K_EEPROM_HDR_11G(ee
->ee_header
))
819 pcal
= ee
->ee_pwr_cal_b
;
820 offset
+= AR5K_EEPROM_GROUP3_OFFSET
;
826 ee
->ee_n_piers
[mode
] = 3;
828 case AR5K_EEPROM_MODE_11G
:
829 if (!AR5K_EEPROM_HDR_11G(ee
->ee_header
))
832 pcal
= ee
->ee_pwr_cal_g
;
833 offset
+= AR5K_EEPROM_GROUP4_OFFSET
;
839 ee
->ee_n_piers
[mode
] = 3;
845 for (i
= 0; i
< ee
->ee_n_piers
[mode
]; i
++) {
846 struct ath5k_chan_pcal_info_rf5111
*cdata
=
847 &pcal
[i
].rf5111_info
;
849 AR5K_EEPROM_READ(offset
++, val
);
850 cdata
->pcdac_max
= ((val
>> 10) & AR5K_EEPROM_PCDAC_M
);
851 cdata
->pcdac_min
= ((val
>> 4) & AR5K_EEPROM_PCDAC_M
);
852 cdata
->pwr
[0] = ((val
<< 2) & AR5K_EEPROM_POWER_M
);
854 AR5K_EEPROM_READ(offset
++, val
);
855 cdata
->pwr
[0] |= ((val
>> 14) & 0x3);
856 cdata
->pwr
[1] = ((val
>> 8) & AR5K_EEPROM_POWER_M
);
857 cdata
->pwr
[2] = ((val
>> 2) & AR5K_EEPROM_POWER_M
);
858 cdata
->pwr
[3] = ((val
<< 4) & AR5K_EEPROM_POWER_M
);
860 AR5K_EEPROM_READ(offset
++, val
);
861 cdata
->pwr
[3] |= ((val
>> 12) & 0xf);
862 cdata
->pwr
[4] = ((val
>> 6) & AR5K_EEPROM_POWER_M
);
863 cdata
->pwr
[5] = (val
& AR5K_EEPROM_POWER_M
);
865 AR5K_EEPROM_READ(offset
++, val
);
866 cdata
->pwr
[6] = ((val
>> 10) & AR5K_EEPROM_POWER_M
);
867 cdata
->pwr
[7] = ((val
>> 4) & AR5K_EEPROM_POWER_M
);
868 cdata
->pwr
[8] = ((val
<< 2) & AR5K_EEPROM_POWER_M
);
870 AR5K_EEPROM_READ(offset
++, val
);
871 cdata
->pwr
[8] |= ((val
>> 14) & 0x3);
872 cdata
->pwr
[9] = ((val
>> 8) & AR5K_EEPROM_POWER_M
);
873 cdata
->pwr
[10] = ((val
>> 2) & AR5K_EEPROM_POWER_M
);
875 ath5k_get_pcdac_intercepts(ah
, cdata
->pcdac_min
,
876 cdata
->pcdac_max
, cdata
->pcdac
);
879 return ath5k_eeprom_convert_pcal_info_5111(ah
, mode
, pcal
);
884 * Read power calibration for RF5112 chips
886 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
887 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
888 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
889 * power steps on x axis and PCDAC steps on y axis and looks like a
890 * linear function. To recreate the curve and pass the power values
891 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
892 * and 3 points for xpd 3 (higher gain -> lower power) here and
895 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
898 /* Convert RF5112 specific data to generic raw data
899 * used by interpolation code */
901 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw
*ah
, int mode
,
902 struct ath5k_chan_pcal_info
*chinfo
)
904 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
905 struct ath5k_chan_pcal_info_rf5112
*pcinfo
;
906 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
907 unsigned int pier
, pdg
, point
;
909 /* Fill raw data for each calibration pier */
910 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
912 pcinfo
= &chinfo
[pier
].rf5112_info
;
914 /* Allocate pd_curves for this cal pier */
915 chinfo
[pier
].pd_curves
=
916 kcalloc(AR5K_EEPROM_N_PD_CURVES
,
917 sizeof(struct ath5k_pdgain_info
),
920 if (!chinfo
[pier
].pd_curves
)
924 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[mode
]; pdg
++) {
926 u8 idx
= pdgain_idx
[pdg
];
927 struct ath5k_pdgain_info
*pd
=
928 &chinfo
[pier
].pd_curves
[idx
];
930 /* Lowest gain curve (max power) */
932 /* One more point for better accuracy */
933 pd
->pd_points
= AR5K_EEPROM_N_XPD0_POINTS
;
935 /* Allocate pd points for this curve */
936 pd
->pd_step
= kcalloc(pd
->pd_points
,
937 sizeof(u8
), GFP_KERNEL
);
942 pd
->pd_pwr
= kcalloc(pd
->pd_points
,
943 sizeof(s16
), GFP_KERNEL
);
949 * (all power levels are in 0.25dB units) */
950 pd
->pd_step
[0] = pcinfo
->pcdac_x0
[0];
951 pd
->pd_pwr
[0] = pcinfo
->pwr_x0
[0];
953 for (point
= 1; point
< pd
->pd_points
;
955 /* Absolute values */
957 pcinfo
->pwr_x0
[point
];
961 pd
->pd_step
[point
- 1] +
962 pcinfo
->pcdac_x0
[point
];
965 /* Set min power for this frequency */
966 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
968 /* Highest gain curve (min power) */
969 } else if (pdg
== 1) {
971 pd
->pd_points
= AR5K_EEPROM_N_XPD3_POINTS
;
973 /* Allocate pd points for this curve */
974 pd
->pd_step
= kcalloc(pd
->pd_points
,
975 sizeof(u8
), GFP_KERNEL
);
980 pd
->pd_pwr
= kcalloc(pd
->pd_points
,
981 sizeof(s16
), GFP_KERNEL
);
987 * (all power levels are in 0.25dB units) */
988 for (point
= 0; point
< pd
->pd_points
;
990 /* Absolute values */
992 pcinfo
->pwr_x3
[point
];
996 pcinfo
->pcdac_x3
[point
];
999 /* Since we have a higher gain curve
1000 * override min power */
1001 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
1009 ath5k_eeprom_free_pcal_info(ah
, mode
);
1013 /* Parse EEPROM data */
1015 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw
*ah
, int mode
)
1017 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1018 struct ath5k_chan_pcal_info_rf5112
*chan_pcal_info
;
1019 struct ath5k_chan_pcal_info
*gen_chan_info
;
1020 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
1026 /* Count how many curves we have and
1027 * identify them (which one of the 4
1028 * available curves we have on each count).
1029 * Curves are stored from lower (x0) to
1030 * higher (x3) gain */
1031 for (i
= 0; i
< AR5K_EEPROM_N_PD_CURVES
; i
++) {
1032 /* ee_x_gain[mode] is x gain mask */
1033 if ((ee
->ee_x_gain
[mode
] >> i
) & 0x1)
1034 pdgain_idx
[pd_gains
++] = i
;
1036 ee
->ee_pd_gains
[mode
] = pd_gains
;
1038 if (pd_gains
== 0 || pd_gains
> 2)
1042 case AR5K_EEPROM_MODE_11A
:
1044 * Read 5GHz EEPROM channels
1046 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1047 ath5k_eeprom_init_11a_pcal_freq(ah
, offset
);
1049 offset
+= AR5K_EEPROM_GROUP2_OFFSET
;
1050 gen_chan_info
= ee
->ee_pwr_cal_a
;
1052 case AR5K_EEPROM_MODE_11B
:
1053 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1054 if (AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1055 offset
+= AR5K_EEPROM_GROUP3_OFFSET
;
1057 /* NB: frequency piers parsed during mode init */
1058 gen_chan_info
= ee
->ee_pwr_cal_b
;
1060 case AR5K_EEPROM_MODE_11G
:
1061 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1062 if (AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1063 offset
+= AR5K_EEPROM_GROUP4_OFFSET
;
1064 else if (AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1065 offset
+= AR5K_EEPROM_GROUP2_OFFSET
;
1067 /* NB: frequency piers parsed during mode init */
1068 gen_chan_info
= ee
->ee_pwr_cal_g
;
1074 for (i
= 0; i
< ee
->ee_n_piers
[mode
]; i
++) {
1075 chan_pcal_info
= &gen_chan_info
[i
].rf5112_info
;
1077 /* Power values in quarter dB
1078 * for the lower xpd gain curve
1079 * (0 dBm -> higher output power) */
1080 for (c
= 0; c
< AR5K_EEPROM_N_XPD0_POINTS
; c
++) {
1081 AR5K_EEPROM_READ(offset
++, val
);
1082 chan_pcal_info
->pwr_x0
[c
] = (s8
) (val
& 0xff);
1083 chan_pcal_info
->pwr_x0
[++c
] = (s8
) ((val
>> 8) & 0xff);
1087 * corresponding to the above power
1089 AR5K_EEPROM_READ(offset
++, val
);
1090 chan_pcal_info
->pcdac_x0
[1] = (val
& 0x1f);
1091 chan_pcal_info
->pcdac_x0
[2] = ((val
>> 5) & 0x1f);
1092 chan_pcal_info
->pcdac_x0
[3] = ((val
>> 10) & 0x1f);
1094 /* Power values in quarter dB
1095 * for the higher xpd gain curve
1096 * (18 dBm -> lower output power) */
1097 AR5K_EEPROM_READ(offset
++, val
);
1098 chan_pcal_info
->pwr_x3
[0] = (s8
) (val
& 0xff);
1099 chan_pcal_info
->pwr_x3
[1] = (s8
) ((val
>> 8) & 0xff);
1101 AR5K_EEPROM_READ(offset
++, val
);
1102 chan_pcal_info
->pwr_x3
[2] = (val
& 0xff);
1105 * corresponding to the above power
1106 * measurements (fixed) */
1107 chan_pcal_info
->pcdac_x3
[0] = 20;
1108 chan_pcal_info
->pcdac_x3
[1] = 35;
1109 chan_pcal_info
->pcdac_x3
[2] = 63;
1111 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_4_3
) {
1112 chan_pcal_info
->pcdac_x0
[0] = ((val
>> 8) & 0x3f);
1114 /* Last xpd0 power level is also channel maximum */
1115 gen_chan_info
[i
].max_pwr
= chan_pcal_info
->pwr_x0
[3];
1117 chan_pcal_info
->pcdac_x0
[0] = 1;
1118 gen_chan_info
[i
].max_pwr
= (s8
) ((val
>> 8) & 0xff);
1123 return ath5k_eeprom_convert_pcal_info_5112(ah
, mode
, gen_chan_info
);
1128 * Read power calibration for RF2413 chips
1130 * For RF2413 we have a Power to PDDAC table (Power Detector)
1131 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1132 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1133 * axis and looks like an exponential function like the RF5111 curve.
1135 * To recreate the curves we read here the points and interpolate
1136 * later. Note that in most cases only 2 (higher and lower) curves are
1137 * used (like RF5112) but vendors have the opportunity to include all
1138 * 4 curves on eeprom. The final curve (higher power) has an extra
1139 * point for better accuracy like RF5112.
1142 /* For RF2413 power calibration data doesn't start on a fixed location and
1143 * if a mode is not supported, its section is missing -not zeroed-.
1144 * So we need to calculate the starting offset for each section by using
1145 * these two functions */
1147 /* Return the size of each section based on the mode and the number of pd
1148 * gains available (maximum 4). */
1149 static inline unsigned int
1150 ath5k_pdgains_size_2413(struct ath5k_eeprom_info
*ee
, unsigned int mode
)
1152 static const unsigned int pdgains_size
[] = { 4, 6, 9, 12 };
1155 sz
= pdgains_size
[ee
->ee_pd_gains
[mode
] - 1];
1156 sz
*= ee
->ee_n_piers
[mode
];
1161 /* Return the starting offset for a section based on the modes supported
1162 * and each section's size. */
1164 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info
*ee
, int mode
)
1166 u32 offset
= AR5K_EEPROM_CAL_DATA_START(ee
->ee_misc4
);
1169 case AR5K_EEPROM_MODE_11G
:
1170 if (AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1171 offset
+= ath5k_pdgains_size_2413(ee
,
1172 AR5K_EEPROM_MODE_11B
) +
1173 AR5K_EEPROM_N_2GHZ_CHAN_2413
/ 2;
1175 case AR5K_EEPROM_MODE_11B
:
1176 if (AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1177 offset
+= ath5k_pdgains_size_2413(ee
,
1178 AR5K_EEPROM_MODE_11A
) +
1179 AR5K_EEPROM_N_5GHZ_CHAN
/ 2;
1181 case AR5K_EEPROM_MODE_11A
:
1190 /* Convert RF2413 specific data to generic raw data
1191 * used by interpolation code */
1193 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw
*ah
, int mode
,
1194 struct ath5k_chan_pcal_info
*chinfo
)
1196 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1197 struct ath5k_chan_pcal_info_rf2413
*pcinfo
;
1198 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
1199 unsigned int pier
, pdg
, point
;
1201 /* Fill raw data for each calibration pier */
1202 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
1204 pcinfo
= &chinfo
[pier
].rf2413_info
;
1206 /* Allocate pd_curves for this cal pier */
1207 chinfo
[pier
].pd_curves
=
1208 kcalloc(AR5K_EEPROM_N_PD_CURVES
,
1209 sizeof(struct ath5k_pdgain_info
),
1212 if (!chinfo
[pier
].pd_curves
)
1215 /* Fill pd_curves */
1216 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[mode
]; pdg
++) {
1218 u8 idx
= pdgain_idx
[pdg
];
1219 struct ath5k_pdgain_info
*pd
=
1220 &chinfo
[pier
].pd_curves
[idx
];
1222 /* One more point for the highest power
1223 * curve (lowest gain) */
1224 if (pdg
== ee
->ee_pd_gains
[mode
] - 1)
1225 pd
->pd_points
= AR5K_EEPROM_N_PD_POINTS
;
1227 pd
->pd_points
= AR5K_EEPROM_N_PD_POINTS
- 1;
1229 /* Allocate pd points for this curve */
1230 pd
->pd_step
= kcalloc(pd
->pd_points
,
1231 sizeof(u8
), GFP_KERNEL
);
1236 pd
->pd_pwr
= kcalloc(pd
->pd_points
,
1237 sizeof(s16
), GFP_KERNEL
);
1243 * convert all pwr levels to
1244 * quarter dB for RF5112 compatibility */
1245 pd
->pd_step
[0] = pcinfo
->pddac_i
[pdg
];
1246 pd
->pd_pwr
[0] = 4 * pcinfo
->pwr_i
[pdg
];
1248 for (point
= 1; point
< pd
->pd_points
; point
++) {
1250 pd
->pd_pwr
[point
] = pd
->pd_pwr
[point
- 1] +
1251 2 * pcinfo
->pwr
[pdg
][point
- 1];
1253 pd
->pd_step
[point
] = pd
->pd_step
[point
- 1] +
1254 pcinfo
->pddac
[pdg
][point
- 1];
1258 /* Highest gain curve -> min power */
1260 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
1262 /* Lowest gain curve -> max power */
1263 if (pdg
== ee
->ee_pd_gains
[mode
] - 1)
1264 chinfo
[pier
].max_pwr
=
1265 pd
->pd_pwr
[pd
->pd_points
- 1];
1272 ath5k_eeprom_free_pcal_info(ah
, mode
);
1276 /* Parse EEPROM data */
1278 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw
*ah
, int mode
)
1280 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1281 struct ath5k_chan_pcal_info_rf2413
*pcinfo
;
1282 struct ath5k_chan_pcal_info
*chinfo
;
1283 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
1289 /* Count how many curves we have and
1290 * identify them (which one of the 4
1291 * available curves we have on each count).
1292 * Curves are stored from higher to
1293 * lower gain so we go backwards */
1294 for (idx
= AR5K_EEPROM_N_PD_CURVES
- 1; idx
>= 0; idx
--) {
1295 /* ee_x_gain[mode] is x gain mask */
1296 if ((ee
->ee_x_gain
[mode
] >> idx
) & 0x1)
1297 pdgain_idx
[pd_gains
++] = idx
;
1300 ee
->ee_pd_gains
[mode
] = pd_gains
;
1305 offset
= ath5k_cal_data_offset_2413(ee
, mode
);
1307 case AR5K_EEPROM_MODE_11A
:
1308 if (!AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1311 ath5k_eeprom_init_11a_pcal_freq(ah
, offset
);
1312 offset
+= AR5K_EEPROM_N_5GHZ_CHAN
/ 2;
1313 chinfo
= ee
->ee_pwr_cal_a
;
1315 case AR5K_EEPROM_MODE_11B
:
1316 if (!AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1319 ath5k_eeprom_init_11bg_2413(ah
, mode
, offset
);
1320 offset
+= AR5K_EEPROM_N_2GHZ_CHAN_2413
/ 2;
1321 chinfo
= ee
->ee_pwr_cal_b
;
1323 case AR5K_EEPROM_MODE_11G
:
1324 if (!AR5K_EEPROM_HDR_11G(ee
->ee_header
))
1327 ath5k_eeprom_init_11bg_2413(ah
, mode
, offset
);
1328 offset
+= AR5K_EEPROM_N_2GHZ_CHAN_2413
/ 2;
1329 chinfo
= ee
->ee_pwr_cal_g
;
1335 for (i
= 0; i
< ee
->ee_n_piers
[mode
]; i
++) {
1336 pcinfo
= &chinfo
[i
].rf2413_info
;
1339 * Read pwr_i, pddac_i and the first
1340 * 2 pd points (pwr, pddac)
1342 AR5K_EEPROM_READ(offset
++, val
);
1343 pcinfo
->pwr_i
[0] = val
& 0x1f;
1344 pcinfo
->pddac_i
[0] = (val
>> 5) & 0x7f;
1345 pcinfo
->pwr
[0][0] = (val
>> 12) & 0xf;
1347 AR5K_EEPROM_READ(offset
++, val
);
1348 pcinfo
->pddac
[0][0] = val
& 0x3f;
1349 pcinfo
->pwr
[0][1] = (val
>> 6) & 0xf;
1350 pcinfo
->pddac
[0][1] = (val
>> 10) & 0x3f;
1352 AR5K_EEPROM_READ(offset
++, val
);
1353 pcinfo
->pwr
[0][2] = val
& 0xf;
1354 pcinfo
->pddac
[0][2] = (val
>> 4) & 0x3f;
1356 pcinfo
->pwr
[0][3] = 0;
1357 pcinfo
->pddac
[0][3] = 0;
1361 * Pd gain 0 is not the last pd gain
1362 * so it only has 2 pd points.
1363 * Continue with pd gain 1.
1365 pcinfo
->pwr_i
[1] = (val
>> 10) & 0x1f;
1367 pcinfo
->pddac_i
[1] = (val
>> 15) & 0x1;
1368 AR5K_EEPROM_READ(offset
++, val
);
1369 pcinfo
->pddac_i
[1] |= (val
& 0x3F) << 1;
1371 pcinfo
->pwr
[1][0] = (val
>> 6) & 0xf;
1372 pcinfo
->pddac
[1][0] = (val
>> 10) & 0x3f;
1374 AR5K_EEPROM_READ(offset
++, val
);
1375 pcinfo
->pwr
[1][1] = val
& 0xf;
1376 pcinfo
->pddac
[1][1] = (val
>> 4) & 0x3f;
1377 pcinfo
->pwr
[1][2] = (val
>> 10) & 0xf;
1379 pcinfo
->pddac
[1][2] = (val
>> 14) & 0x3;
1380 AR5K_EEPROM_READ(offset
++, val
);
1381 pcinfo
->pddac
[1][2] |= (val
& 0xF) << 2;
1383 pcinfo
->pwr
[1][3] = 0;
1384 pcinfo
->pddac
[1][3] = 0;
1385 } else if (pd_gains
== 1) {
1387 * Pd gain 0 is the last one so
1388 * read the extra point.
1390 pcinfo
->pwr
[0][3] = (val
>> 10) & 0xf;
1392 pcinfo
->pddac
[0][3] = (val
>> 14) & 0x3;
1393 AR5K_EEPROM_READ(offset
++, val
);
1394 pcinfo
->pddac
[0][3] |= (val
& 0xF) << 2;
1398 * Proceed with the other pd_gains
1402 pcinfo
->pwr_i
[2] = (val
>> 4) & 0x1f;
1403 pcinfo
->pddac_i
[2] = (val
>> 9) & 0x7f;
1405 AR5K_EEPROM_READ(offset
++, val
);
1406 pcinfo
->pwr
[2][0] = (val
>> 0) & 0xf;
1407 pcinfo
->pddac
[2][0] = (val
>> 4) & 0x3f;
1408 pcinfo
->pwr
[2][1] = (val
>> 10) & 0xf;
1410 pcinfo
->pddac
[2][1] = (val
>> 14) & 0x3;
1411 AR5K_EEPROM_READ(offset
++, val
);
1412 pcinfo
->pddac
[2][1] |= (val
& 0xF) << 2;
1414 pcinfo
->pwr
[2][2] = (val
>> 4) & 0xf;
1415 pcinfo
->pddac
[2][2] = (val
>> 8) & 0x3f;
1417 pcinfo
->pwr
[2][3] = 0;
1418 pcinfo
->pddac
[2][3] = 0;
1419 } else if (pd_gains
== 2) {
1420 pcinfo
->pwr
[1][3] = (val
>> 4) & 0xf;
1421 pcinfo
->pddac
[1][3] = (val
>> 8) & 0x3f;
1425 pcinfo
->pwr_i
[3] = (val
>> 14) & 0x3;
1426 AR5K_EEPROM_READ(offset
++, val
);
1427 pcinfo
->pwr_i
[3] |= ((val
>> 0) & 0x7) << 2;
1429 pcinfo
->pddac_i
[3] = (val
>> 3) & 0x7f;
1430 pcinfo
->pwr
[3][0] = (val
>> 10) & 0xf;
1431 pcinfo
->pddac
[3][0] = (val
>> 14) & 0x3;
1433 AR5K_EEPROM_READ(offset
++, val
);
1434 pcinfo
->pddac
[3][0] |= (val
& 0xF) << 2;
1435 pcinfo
->pwr
[3][1] = (val
>> 4) & 0xf;
1436 pcinfo
->pddac
[3][1] = (val
>> 8) & 0x3f;
1438 pcinfo
->pwr
[3][2] = (val
>> 14) & 0x3;
1439 AR5K_EEPROM_READ(offset
++, val
);
1440 pcinfo
->pwr
[3][2] |= ((val
>> 0) & 0x3) << 2;
1442 pcinfo
->pddac
[3][2] = (val
>> 2) & 0x3f;
1443 pcinfo
->pwr
[3][3] = (val
>> 8) & 0xf;
1445 pcinfo
->pddac
[3][3] = (val
>> 12) & 0xF;
1446 AR5K_EEPROM_READ(offset
++, val
);
1447 pcinfo
->pddac
[3][3] |= ((val
>> 0) & 0x3) << 4;
1448 } else if (pd_gains
== 3) {
1449 pcinfo
->pwr
[2][3] = (val
>> 14) & 0x3;
1450 AR5K_EEPROM_READ(offset
++, val
);
1451 pcinfo
->pwr
[2][3] |= ((val
>> 0) & 0x3) << 2;
1453 pcinfo
->pddac
[2][3] = (val
>> 2) & 0x3f;
1457 return ath5k_eeprom_convert_pcal_info_2413(ah
, mode
, chinfo
);
1462 * Read per rate target power (this is the maximum tx power
1463 * supported by the card). This info is used when setting
1464 * tx power, no matter the channel.
1466 * This also works for v5 EEPROMs.
1469 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw
*ah
, unsigned int mode
)
1471 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1472 struct ath5k_rate_pcal_info
*rate_pcal_info
;
1473 u8
*rate_target_pwr_num
;
1478 offset
= AR5K_EEPROM_TARGET_PWRSTART(ee
->ee_misc1
);
1479 rate_target_pwr_num
= &ee
->ee_rate_target_pwr_num
[mode
];
1481 case AR5K_EEPROM_MODE_11A
:
1482 offset
+= AR5K_EEPROM_TARGET_PWR_OFF_11A(ee
->ee_version
);
1483 rate_pcal_info
= ee
->ee_rate_tpwr_a
;
1484 ee
->ee_rate_target_pwr_num
[mode
] = AR5K_EEPROM_N_5GHZ_CHAN
;
1486 case AR5K_EEPROM_MODE_11B
:
1487 offset
+= AR5K_EEPROM_TARGET_PWR_OFF_11B(ee
->ee_version
);
1488 rate_pcal_info
= ee
->ee_rate_tpwr_b
;
1489 ee
->ee_rate_target_pwr_num
[mode
] = 2; /* 3rd is g mode's 1st */
1491 case AR5K_EEPROM_MODE_11G
:
1492 offset
+= AR5K_EEPROM_TARGET_PWR_OFF_11G(ee
->ee_version
);
1493 rate_pcal_info
= ee
->ee_rate_tpwr_g
;
1494 ee
->ee_rate_target_pwr_num
[mode
] = AR5K_EEPROM_N_2GHZ_CHAN
;
1500 /* Different freq mask for older eeproms (<= v3.2) */
1501 if (ee
->ee_version
<= AR5K_EEPROM_VERSION_3_2
) {
1502 for (i
= 0; i
< (*rate_target_pwr_num
); i
++) {
1503 AR5K_EEPROM_READ(offset
++, val
);
1504 rate_pcal_info
[i
].freq
=
1505 ath5k_eeprom_bin2freq(ee
, (val
>> 9) & 0x7f, mode
);
1507 rate_pcal_info
[i
].target_power_6to24
= ((val
>> 3) & 0x3f);
1508 rate_pcal_info
[i
].target_power_36
= (val
<< 3) & 0x3f;
1510 AR5K_EEPROM_READ(offset
++, val
);
1512 if (rate_pcal_info
[i
].freq
== AR5K_EEPROM_CHANNEL_DIS
||
1514 (*rate_target_pwr_num
) = i
;
1518 rate_pcal_info
[i
].target_power_36
|= ((val
>> 13) & 0x7);
1519 rate_pcal_info
[i
].target_power_48
= ((val
>> 7) & 0x3f);
1520 rate_pcal_info
[i
].target_power_54
= ((val
>> 1) & 0x3f);
1523 for (i
= 0; i
< (*rate_target_pwr_num
); i
++) {
1524 AR5K_EEPROM_READ(offset
++, val
);
1525 rate_pcal_info
[i
].freq
=
1526 ath5k_eeprom_bin2freq(ee
, (val
>> 8) & 0xff, mode
);
1528 rate_pcal_info
[i
].target_power_6to24
= ((val
>> 2) & 0x3f);
1529 rate_pcal_info
[i
].target_power_36
= (val
<< 4) & 0x3f;
1531 AR5K_EEPROM_READ(offset
++, val
);
1533 if (rate_pcal_info
[i
].freq
== AR5K_EEPROM_CHANNEL_DIS
||
1535 (*rate_target_pwr_num
) = i
;
1539 rate_pcal_info
[i
].target_power_36
|= (val
>> 12) & 0xf;
1540 rate_pcal_info
[i
].target_power_48
= ((val
>> 6) & 0x3f);
1541 rate_pcal_info
[i
].target_power_54
= (val
& 0x3f);
1550 * Read per channel calibration info from EEPROM
1552 * This info is used to calibrate the baseband power table. Imagine
1553 * that for each channel there is a power curve that's hw specific
1554 * (depends on amplifier etc) and we try to "correct" this curve using
1555 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1556 * it can use accurate power values when setting tx power (takes amplifier's
1557 * performance on each channel into account).
1559 * EEPROM provides us with the offsets for some pre-calibrated channels
1560 * and we have to interpolate to create the full table for these channels and
1561 * also the table for any channel.
1564 ath5k_eeprom_read_pcal_info(struct ath5k_hw
*ah
)
1566 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1567 int (*read_pcal
)(struct ath5k_hw
*hw
, int mode
);
1571 if ((ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
) &&
1572 (AR5K_EEPROM_EEMAP(ee
->ee_misc0
) == 1))
1573 read_pcal
= ath5k_eeprom_read_pcal_info_5112
;
1574 else if ((ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_5_0
) &&
1575 (AR5K_EEPROM_EEMAP(ee
->ee_misc0
) == 2))
1576 read_pcal
= ath5k_eeprom_read_pcal_info_2413
;
1578 read_pcal
= ath5k_eeprom_read_pcal_info_5111
;
1581 for (mode
= AR5K_EEPROM_MODE_11A
; mode
<= AR5K_EEPROM_MODE_11G
;
1583 err
= read_pcal(ah
, mode
);
1587 err
= ath5k_eeprom_read_target_rate_pwr_info(ah
, mode
);
1595 /* Read conformance test limits used for regulatory control */
1597 ath5k_eeprom_read_ctl_info(struct ath5k_hw
*ah
)
1599 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1600 struct ath5k_edge_power
*rep
;
1601 unsigned int fmask
, pmask
;
1602 unsigned int ctl_mode
;
1607 pmask
= AR5K_EEPROM_POWER_M
;
1608 fmask
= AR5K_EEPROM_FREQ_M(ee
->ee_version
);
1609 offset
= AR5K_EEPROM_CTL(ee
->ee_version
);
1610 ee
->ee_ctls
= AR5K_EEPROM_N_CTLS(ee
->ee_version
);
1611 for (i
= 0; i
< ee
->ee_ctls
; i
+= 2) {
1612 AR5K_EEPROM_READ(offset
++, val
);
1613 ee
->ee_ctl
[i
] = (val
>> 8) & 0xff;
1614 ee
->ee_ctl
[i
+ 1] = val
& 0xff;
1617 offset
= AR5K_EEPROM_GROUP8_OFFSET
;
1618 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_4_0
)
1619 offset
+= AR5K_EEPROM_TARGET_PWRSTART(ee
->ee_misc1
) -
1620 AR5K_EEPROM_GROUP5_OFFSET
;
1622 offset
+= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1624 rep
= ee
->ee_ctl_pwr
;
1625 for (i
= 0; i
< ee
->ee_ctls
; i
++) {
1626 switch (ee
->ee_ctl
[i
] & AR5K_CTL_MODE_M
) {
1628 case AR5K_CTL_TURBO
:
1629 ctl_mode
= AR5K_EEPROM_MODE_11A
;
1632 ctl_mode
= AR5K_EEPROM_MODE_11G
;
1635 if (ee
->ee_ctl
[i
] == 0) {
1636 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_3_3
)
1640 rep
+= AR5K_EEPROM_N_EDGES
;
1643 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_3_3
) {
1644 for (j
= 0; j
< AR5K_EEPROM_N_EDGES
; j
+= 2) {
1645 AR5K_EEPROM_READ(offset
++, val
);
1646 rep
[j
].freq
= (val
>> 8) & fmask
;
1647 rep
[j
+ 1].freq
= val
& fmask
;
1649 for (j
= 0; j
< AR5K_EEPROM_N_EDGES
; j
+= 2) {
1650 AR5K_EEPROM_READ(offset
++, val
);
1651 rep
[j
].edge
= (val
>> 8) & pmask
;
1652 rep
[j
].flag
= (val
>> 14) & 1;
1653 rep
[j
+ 1].edge
= val
& pmask
;
1654 rep
[j
+ 1].flag
= (val
>> 6) & 1;
1657 AR5K_EEPROM_READ(offset
++, val
);
1658 rep
[0].freq
= (val
>> 9) & fmask
;
1659 rep
[1].freq
= (val
>> 2) & fmask
;
1660 rep
[2].freq
= (val
<< 5) & fmask
;
1662 AR5K_EEPROM_READ(offset
++, val
);
1663 rep
[2].freq
|= (val
>> 11) & 0x1f;
1664 rep
[3].freq
= (val
>> 4) & fmask
;
1665 rep
[4].freq
= (val
<< 3) & fmask
;
1667 AR5K_EEPROM_READ(offset
++, val
);
1668 rep
[4].freq
|= (val
>> 13) & 0x7;
1669 rep
[5].freq
= (val
>> 6) & fmask
;
1670 rep
[6].freq
= (val
<< 1) & fmask
;
1672 AR5K_EEPROM_READ(offset
++, val
);
1673 rep
[6].freq
|= (val
>> 15) & 0x1;
1674 rep
[7].freq
= (val
>> 8) & fmask
;
1676 rep
[0].edge
= (val
>> 2) & pmask
;
1677 rep
[1].edge
= (val
<< 4) & pmask
;
1679 AR5K_EEPROM_READ(offset
++, val
);
1680 rep
[1].edge
|= (val
>> 12) & 0xf;
1681 rep
[2].edge
= (val
>> 6) & pmask
;
1682 rep
[3].edge
= val
& pmask
;
1684 AR5K_EEPROM_READ(offset
++, val
);
1685 rep
[4].edge
= (val
>> 10) & pmask
;
1686 rep
[5].edge
= (val
>> 4) & pmask
;
1687 rep
[6].edge
= (val
<< 2) & pmask
;
1689 AR5K_EEPROM_READ(offset
++, val
);
1690 rep
[6].edge
|= (val
>> 14) & 0x3;
1691 rep
[7].edge
= (val
>> 8) & pmask
;
1693 for (j
= 0; j
< AR5K_EEPROM_N_EDGES
; j
++) {
1694 rep
[j
].freq
= ath5k_eeprom_bin2freq(ee
,
1695 rep
[j
].freq
, ctl_mode
);
1697 rep
+= AR5K_EEPROM_N_EDGES
;
1704 ath5k_eeprom_read_spur_chans(struct ath5k_hw
*ah
)
1706 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1711 offset
= AR5K_EEPROM_CTL(ee
->ee_version
) +
1712 AR5K_EEPROM_N_CTLS(ee
->ee_version
);
1714 if (ee
->ee_version
< AR5K_EEPROM_VERSION_5_3
) {
1715 /* No spur info for 5GHz */
1716 ee
->ee_spur_chans
[0][0] = AR5K_EEPROM_NO_SPUR
;
1717 /* 2 channels for 2GHz (2464/2420) */
1718 ee
->ee_spur_chans
[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1
;
1719 ee
->ee_spur_chans
[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2
;
1720 ee
->ee_spur_chans
[2][1] = AR5K_EEPROM_NO_SPUR
;
1721 } else if (ee
->ee_version
>= AR5K_EEPROM_VERSION_5_3
) {
1722 for (i
= 0; i
< AR5K_EEPROM_N_SPUR_CHANS
; i
++) {
1723 AR5K_EEPROM_READ(offset
, val
);
1724 ee
->ee_spur_chans
[i
][0] = val
;
1725 AR5K_EEPROM_READ(offset
+ AR5K_EEPROM_N_SPUR_CHANS
,
1727 ee
->ee_spur_chans
[i
][1] = val
;
1736 /***********************\
1737 * Init/Detach functions *
1738 \***********************/
1741 * Initialize eeprom data structure
1744 ath5k_eeprom_init(struct ath5k_hw
*ah
)
1748 err
= ath5k_eeprom_init_header(ah
);
1752 err
= ath5k_eeprom_init_modes(ah
);
1756 err
= ath5k_eeprom_read_pcal_info(ah
);
1760 err
= ath5k_eeprom_read_ctl_info(ah
);
1764 err
= ath5k_eeprom_read_spur_chans(ah
);
1772 ath5k_eeprom_detach(struct ath5k_hw
*ah
)
1776 for (mode
= AR5K_EEPROM_MODE_11A
; mode
<= AR5K_EEPROM_MODE_11G
; mode
++)
1777 ath5k_eeprom_free_pcal_info(ah
, mode
);
1781 ath5k_eeprom_mode_from_channel(struct ieee80211_channel
*channel
)
1783 switch (channel
->hw_value
& CHANNEL_MODES
) {
1785 return AR5K_EEPROM_MODE_11A
;
1787 return AR5K_EEPROM_MODE_11G
;
1789 return AR5K_EEPROM_MODE_11B
;