[SPARC64]: Kill pci_controller->base_address_update().
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc64 / kernel / pci_sabre.c
blobf3ec7bdacdc0372fb04f3e5e975788ed295bda08
1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
7 */
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
16 #include <asm/apb.h>
17 #include <asm/pbm.h>
18 #include <asm/iommu.h>
19 #include <asm/irq.h>
20 #include <asm/smp.h>
21 #include <asm/oplib.h>
22 #include <asm/prom.h>
24 #include "pci_impl.h"
25 #include "iommu_common.h"
27 /* All SABRE registers are 64-bits. The following accessor
28 * routines are how they are accessed. The REG parameter
29 * is a physical address.
31 #define sabre_read(__reg) \
32 ({ u64 __ret; \
33 __asm__ __volatile__("ldxa [%1] %2, %0" \
34 : "=r" (__ret) \
35 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
36 : "memory"); \
37 __ret; \
39 #define sabre_write(__reg, __val) \
40 __asm__ __volatile__("stxa %0, [%1] %2" \
41 : /* no outputs */ \
42 : "r" (__val), "r" (__reg), \
43 "i" (ASI_PHYS_BYPASS_EC_E) \
44 : "memory")
46 /* SABRE PCI controller register offsets and definitions. */
47 #define SABRE_UE_AFSR 0x0030UL
48 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
49 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
50 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
51 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
52 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
53 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
54 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
55 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
56 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
57 #define SABRE_UECE_AFAR 0x0038UL
58 #define SABRE_CE_AFSR 0x0040UL
59 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
60 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
61 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
62 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
63 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
64 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
65 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
66 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
67 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
68 #define SABRE_IOMMU_CONTROL 0x0200UL
69 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
70 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
71 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
72 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
73 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
74 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
75 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
76 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
77 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
78 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
79 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
80 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
81 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
82 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
83 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
84 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
85 #define SABRE_IOMMU_TSBBASE 0x0208UL
86 #define SABRE_IOMMU_FLUSH 0x0210UL
87 #define SABRE_IMAP_A_SLOT0 0x0c00UL
88 #define SABRE_IMAP_B_SLOT0 0x0c20UL
89 #define SABRE_IMAP_SCSI 0x1000UL
90 #define SABRE_IMAP_ETH 0x1008UL
91 #define SABRE_IMAP_BPP 0x1010UL
92 #define SABRE_IMAP_AU_REC 0x1018UL
93 #define SABRE_IMAP_AU_PLAY 0x1020UL
94 #define SABRE_IMAP_PFAIL 0x1028UL
95 #define SABRE_IMAP_KMS 0x1030UL
96 #define SABRE_IMAP_FLPY 0x1038UL
97 #define SABRE_IMAP_SHW 0x1040UL
98 #define SABRE_IMAP_KBD 0x1048UL
99 #define SABRE_IMAP_MS 0x1050UL
100 #define SABRE_IMAP_SER 0x1058UL
101 #define SABRE_IMAP_UE 0x1070UL
102 #define SABRE_IMAP_CE 0x1078UL
103 #define SABRE_IMAP_PCIERR 0x1080UL
104 #define SABRE_IMAP_GFX 0x1098UL
105 #define SABRE_IMAP_EUPA 0x10a0UL
106 #define SABRE_ICLR_A_SLOT0 0x1400UL
107 #define SABRE_ICLR_B_SLOT0 0x1480UL
108 #define SABRE_ICLR_SCSI 0x1800UL
109 #define SABRE_ICLR_ETH 0x1808UL
110 #define SABRE_ICLR_BPP 0x1810UL
111 #define SABRE_ICLR_AU_REC 0x1818UL
112 #define SABRE_ICLR_AU_PLAY 0x1820UL
113 #define SABRE_ICLR_PFAIL 0x1828UL
114 #define SABRE_ICLR_KMS 0x1830UL
115 #define SABRE_ICLR_FLPY 0x1838UL
116 #define SABRE_ICLR_SHW 0x1840UL
117 #define SABRE_ICLR_KBD 0x1848UL
118 #define SABRE_ICLR_MS 0x1850UL
119 #define SABRE_ICLR_SER 0x1858UL
120 #define SABRE_ICLR_UE 0x1870UL
121 #define SABRE_ICLR_CE 0x1878UL
122 #define SABRE_ICLR_PCIERR 0x1880UL
123 #define SABRE_WRSYNC 0x1c20UL
124 #define SABRE_PCICTRL 0x2000UL
125 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
126 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
127 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
128 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
129 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
130 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
131 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
132 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
133 #define SABRE_PIOAFSR 0x2010UL
134 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
135 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
136 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
137 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
138 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
139 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
140 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
141 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
142 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
143 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
144 #define SABRE_PIOAFAR 0x2018UL
145 #define SABRE_PCIDIAG 0x2020UL
146 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
147 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
148 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
149 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
150 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
151 #define SABRE_PCITASR 0x2028UL
152 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
153 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
154 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
155 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
156 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
157 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
158 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
159 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
160 #define SABRE_PIOBUF_DIAG 0x5000UL
161 #define SABRE_DMABUF_DIAGLO 0x5100UL
162 #define SABRE_DMABUF_DIAGHI 0x51c0UL
163 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
164 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
165 #define SABRE_IOMMU_VADIAG 0xa400UL
166 #define SABRE_IOMMU_TCDIAG 0xa408UL
167 #define SABRE_IOMMU_TAG 0xa580UL
168 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
169 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
170 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
171 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
172 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
173 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
174 #define SABRE_IOMMU_DATA 0xa600UL
175 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
176 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
177 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
178 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
179 #define SABRE_PCI_IRQSTATE 0xa800UL
180 #define SABRE_OBIO_IRQSTATE 0xa808UL
181 #define SABRE_FFBCFG 0xf000UL
182 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
183 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
184 #define SABRE_MCCTRL0 0xf010UL
185 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
186 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
187 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
188 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
189 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
190 #define SABRE_MCCTRL1 0xf018UL
191 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
192 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
193 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
194 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
195 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
196 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
197 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
198 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
199 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
200 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
201 #define SABRE_RESETCTRL 0xf020UL
203 #define SABRE_CONFIGSPACE 0x001000000UL
204 #define SABRE_IOSPACE 0x002000000UL
205 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
206 #define SABRE_MEMSPACE 0x100000000UL
207 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
209 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
210 * configuration space address format:
212 * 32 24 23 16 15 11 10 8 7 2 1 0
213 * ---------------------------------------------------------
214 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
215 * ---------------------------------------------------------
217 #define SABRE_CONFIG_BASE(PBM) \
218 ((PBM)->config_space | (1UL << 24))
219 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
220 (((unsigned long)(BUS) << 16) | \
221 ((unsigned long)(DEVFN) << 8) | \
222 ((unsigned long)(REG)))
224 static int hummingbird_p;
225 static struct pci_bus *sabre_root_bus;
227 static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
228 unsigned char bus,
229 unsigned int devfn,
230 int where)
232 if (!pbm)
233 return NULL;
234 return (void *)
235 (SABRE_CONFIG_BASE(pbm) |
236 SABRE_CONFIG_ENCODE(bus, devfn, where));
239 static int sabre_out_of_range(unsigned char devfn)
241 if (hummingbird_p)
242 return 0;
244 return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
245 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
246 (PCI_SLOT(devfn) > 1));
249 static int __sabre_out_of_range(struct pci_pbm_info *pbm,
250 unsigned char bus,
251 unsigned char devfn)
253 if (hummingbird_p)
254 return 0;
256 return ((pbm->parent == 0) ||
257 ((pbm == &pbm->parent->pbm_A) &&
258 (bus == pbm->pci_first_busno) &&
259 PCI_SLOT(devfn) > 8));
262 static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
263 int where, int size, u32 *value)
265 struct pci_pbm_info *pbm = bus_dev->sysdata;
266 unsigned char bus = bus_dev->number;
267 u32 *addr;
268 u16 tmp16;
269 u8 tmp8;
271 switch (size) {
272 case 1:
273 *value = 0xff;
274 break;
275 case 2:
276 *value = 0xffff;
277 break;
278 case 4:
279 *value = 0xffffffff;
280 break;
283 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
284 if (!addr)
285 return PCIBIOS_SUCCESSFUL;
287 if (__sabre_out_of_range(pbm, bus, devfn))
288 return PCIBIOS_SUCCESSFUL;
290 switch (size) {
291 case 1:
292 pci_config_read8((u8 *) addr, &tmp8);
293 *value = tmp8;
294 break;
296 case 2:
297 if (where & 0x01) {
298 printk("pci_read_config_word: misaligned reg [%x]\n",
299 where);
300 return PCIBIOS_SUCCESSFUL;
302 pci_config_read16((u16 *) addr, &tmp16);
303 *value = tmp16;
304 break;
306 case 4:
307 if (where & 0x03) {
308 printk("pci_read_config_dword: misaligned reg [%x]\n",
309 where);
310 return PCIBIOS_SUCCESSFUL;
312 pci_config_read32(addr, value);
313 break;
316 return PCIBIOS_SUCCESSFUL;
319 static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
320 int where, int size, u32 *value)
322 if (!bus->number && sabre_out_of_range(devfn)) {
323 switch (size) {
324 case 1:
325 *value = 0xff;
326 break;
327 case 2:
328 *value = 0xffff;
329 break;
330 case 4:
331 *value = 0xffffffff;
332 break;
334 return PCIBIOS_SUCCESSFUL;
337 if (bus->number || PCI_SLOT(devfn))
338 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
340 /* When accessing PCI config space of the PCI controller itself (bus
341 * 0, device slot 0, function 0) there are restrictions. Each
342 * register must be accessed as it's natural size. Thus, for example
343 * the Vendor ID must be accessed as a 16-bit quantity.
346 switch (size) {
347 case 1:
348 if (where < 8) {
349 u32 tmp32;
350 u16 tmp16;
352 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
353 tmp16 = (u16) tmp32;
354 if (where & 1)
355 *value = tmp16 >> 8;
356 else
357 *value = tmp16 & 0xff;
358 } else
359 return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
360 break;
362 case 2:
363 if (where < 8)
364 return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
365 else {
366 u32 tmp32;
367 u8 tmp8;
369 __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
370 tmp8 = (u8) tmp32;
371 *value = tmp8;
372 __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
373 tmp8 = (u8) tmp32;
374 *value |= tmp8 << 8;
376 break;
378 case 4: {
379 u32 tmp32;
380 u16 tmp16;
382 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
383 tmp16 = (u16) tmp32;
384 *value = tmp16;
385 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
386 tmp16 = (u16) tmp32;
387 *value |= tmp16 << 16;
388 break;
391 return PCIBIOS_SUCCESSFUL;
394 static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
395 int where, int size, u32 value)
397 struct pci_pbm_info *pbm = bus_dev->sysdata;
398 unsigned char bus = bus_dev->number;
399 u32 *addr;
401 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
402 if (!addr)
403 return PCIBIOS_SUCCESSFUL;
405 if (__sabre_out_of_range(pbm, bus, devfn))
406 return PCIBIOS_SUCCESSFUL;
408 switch (size) {
409 case 1:
410 pci_config_write8((u8 *) addr, value);
411 break;
413 case 2:
414 if (where & 0x01) {
415 printk("pci_write_config_word: misaligned reg [%x]\n",
416 where);
417 return PCIBIOS_SUCCESSFUL;
419 pci_config_write16((u16 *) addr, value);
420 break;
422 case 4:
423 if (where & 0x03) {
424 printk("pci_write_config_dword: misaligned reg [%x]\n",
425 where);
426 return PCIBIOS_SUCCESSFUL;
428 pci_config_write32(addr, value);
429 break;
432 return PCIBIOS_SUCCESSFUL;
435 static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
436 int where, int size, u32 value)
438 if (bus->number)
439 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
441 if (sabre_out_of_range(devfn))
442 return PCIBIOS_SUCCESSFUL;
444 switch (size) {
445 case 1:
446 if (where < 8) {
447 u32 tmp32;
448 u16 tmp16;
450 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
451 tmp16 = (u16) tmp32;
452 if (where & 1) {
453 value &= 0x00ff;
454 value |= tmp16 << 8;
455 } else {
456 value &= 0xff00;
457 value |= tmp16;
459 tmp32 = (u32) tmp16;
460 return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
461 } else
462 return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
463 break;
464 case 2:
465 if (where < 8)
466 return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
467 else {
468 __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
469 __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
471 break;
472 case 4:
473 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
474 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
475 break;
477 return PCIBIOS_SUCCESSFUL;
480 static struct pci_ops sabre_ops = {
481 .read = sabre_read_pci_cfg,
482 .write = sabre_write_pci_cfg,
485 /* SABRE error handling support. */
486 static void sabre_check_iommu_error(struct pci_controller_info *p,
487 unsigned long afsr,
488 unsigned long afar)
490 struct pci_iommu *iommu = p->pbm_A.iommu;
491 unsigned long iommu_tag[16];
492 unsigned long iommu_data[16];
493 unsigned long flags;
494 u64 control;
495 int i;
497 spin_lock_irqsave(&iommu->lock, flags);
498 control = sabre_read(iommu->iommu_control);
499 if (control & SABRE_IOMMUCTRL_ERR) {
500 char *type_string;
502 /* Clear the error encountered bit.
503 * NOTE: On Sabre this is write 1 to clear,
504 * which is different from Psycho.
506 sabre_write(iommu->iommu_control, control);
507 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
508 case 1:
509 type_string = "Invalid Error";
510 break;
511 case 3:
512 type_string = "ECC Error";
513 break;
514 default:
515 type_string = "Unknown";
516 break;
518 printk("SABRE%d: IOMMU Error, type[%s]\n",
519 p->index, type_string);
521 /* Enter diagnostic mode and probe for error'd
522 * entries in the IOTLB.
524 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
525 sabre_write(iommu->iommu_control,
526 (control | SABRE_IOMMUCTRL_DENAB));
527 for (i = 0; i < 16; i++) {
528 unsigned long base = p->pbm_A.controller_regs;
530 iommu_tag[i] =
531 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
532 iommu_data[i] =
533 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
534 sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
535 sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
537 sabre_write(iommu->iommu_control, control);
539 for (i = 0; i < 16; i++) {
540 unsigned long tag, data;
542 tag = iommu_tag[i];
543 if (!(tag & SABRE_IOMMUTAG_ERR))
544 continue;
546 data = iommu_data[i];
547 switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
548 case 1:
549 type_string = "Invalid Error";
550 break;
551 case 3:
552 type_string = "ECC Error";
553 break;
554 default:
555 type_string = "Unknown";
556 break;
558 printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
559 p->index, i, tag, type_string,
560 ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
561 ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
562 ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
563 printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
564 p->index, i, data,
565 ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
566 ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
567 ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
568 ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
571 spin_unlock_irqrestore(&iommu->lock, flags);
574 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
576 struct pci_controller_info *p = dev_id;
577 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
578 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
579 unsigned long afsr, afar, error_bits;
580 int reported;
582 /* Latch uncorrectable error status. */
583 afar = sabre_read(afar_reg);
584 afsr = sabre_read(afsr_reg);
586 /* Clear the primary/secondary error status bits. */
587 error_bits = afsr &
588 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
589 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
590 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
591 if (!error_bits)
592 return IRQ_NONE;
593 sabre_write(afsr_reg, error_bits);
595 /* Log the error. */
596 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
597 p->index,
598 ((error_bits & SABRE_UEAFSR_PDRD) ?
599 "DMA Read" :
600 ((error_bits & SABRE_UEAFSR_PDWR) ?
601 "DMA Write" : "???")),
602 ((error_bits & SABRE_UEAFSR_PDTE) ?
603 ":Translation Error" : ""));
604 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
605 p->index,
606 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
607 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
608 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
609 printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
610 printk("SABRE%d: UE Secondary errors [", p->index);
611 reported = 0;
612 if (afsr & SABRE_UEAFSR_SDRD) {
613 reported++;
614 printk("(DMA Read)");
616 if (afsr & SABRE_UEAFSR_SDWR) {
617 reported++;
618 printk("(DMA Write)");
620 if (afsr & SABRE_UEAFSR_SDTE) {
621 reported++;
622 printk("(Translation Error)");
624 if (!reported)
625 printk("(none)");
626 printk("]\n");
628 /* Interrogate IOMMU for error status. */
629 sabre_check_iommu_error(p, afsr, afar);
631 return IRQ_HANDLED;
634 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
636 struct pci_controller_info *p = dev_id;
637 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
638 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
639 unsigned long afsr, afar, error_bits;
640 int reported;
642 /* Latch error status. */
643 afar = sabre_read(afar_reg);
644 afsr = sabre_read(afsr_reg);
646 /* Clear primary/secondary error status bits. */
647 error_bits = afsr &
648 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
649 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
650 if (!error_bits)
651 return IRQ_NONE;
652 sabre_write(afsr_reg, error_bits);
654 /* Log the error. */
655 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
656 p->index,
657 ((error_bits & SABRE_CEAFSR_PDRD) ?
658 "DMA Read" :
659 ((error_bits & SABRE_CEAFSR_PDWR) ?
660 "DMA Write" : "???")));
662 /* XXX Use syndrome and afar to print out module string just like
663 * XXX UDB CE trap handler does... -DaveM
665 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
666 "was_block(%d)\n",
667 p->index,
668 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
669 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
670 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
671 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
672 printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
673 printk("SABRE%d: CE Secondary errors [", p->index);
674 reported = 0;
675 if (afsr & SABRE_CEAFSR_SDRD) {
676 reported++;
677 printk("(DMA Read)");
679 if (afsr & SABRE_CEAFSR_SDWR) {
680 reported++;
681 printk("(DMA Write)");
683 if (!reported)
684 printk("(none)");
685 printk("]\n");
687 return IRQ_HANDLED;
690 static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
692 unsigned long csr_reg, csr, csr_error_bits;
693 irqreturn_t ret = IRQ_NONE;
694 u16 stat;
696 csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
697 csr = sabre_read(csr_reg);
698 csr_error_bits =
699 csr & SABRE_PCICTRL_SERR;
700 if (csr_error_bits) {
701 /* Clear the errors. */
702 sabre_write(csr_reg, csr);
704 /* Log 'em. */
705 if (csr_error_bits & SABRE_PCICTRL_SERR)
706 printk("SABRE%d: PCI SERR signal asserted.\n",
707 p->index);
708 ret = IRQ_HANDLED;
710 pci_bus_read_config_word(sabre_root_bus, 0,
711 PCI_STATUS, &stat);
712 if (stat & (PCI_STATUS_PARITY |
713 PCI_STATUS_SIG_TARGET_ABORT |
714 PCI_STATUS_REC_TARGET_ABORT |
715 PCI_STATUS_REC_MASTER_ABORT |
716 PCI_STATUS_SIG_SYSTEM_ERROR)) {
717 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
718 p->index, stat);
719 pci_bus_write_config_word(sabre_root_bus, 0,
720 PCI_STATUS, 0xffff);
721 ret = IRQ_HANDLED;
723 return ret;
726 static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
728 struct pci_controller_info *p = dev_id;
729 unsigned long afsr_reg, afar_reg;
730 unsigned long afsr, afar, error_bits;
731 int reported;
733 afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
734 afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
736 /* Latch error status. */
737 afar = sabre_read(afar_reg);
738 afsr = sabre_read(afsr_reg);
740 /* Clear primary/secondary error status bits. */
741 error_bits = afsr &
742 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
743 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
744 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
745 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
746 if (!error_bits)
747 return sabre_pcierr_intr_other(p);
748 sabre_write(afsr_reg, error_bits);
750 /* Log the error. */
751 printk("SABRE%d: PCI Error, primary error type[%s]\n",
752 p->index,
753 (((error_bits & SABRE_PIOAFSR_PMA) ?
754 "Master Abort" :
755 ((error_bits & SABRE_PIOAFSR_PTA) ?
756 "Target Abort" :
757 ((error_bits & SABRE_PIOAFSR_PRTRY) ?
758 "Excessive Retries" :
759 ((error_bits & SABRE_PIOAFSR_PPERR) ?
760 "Parity Error" : "???"))))));
761 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
762 p->index,
763 (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
764 (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
765 printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
766 printk("SABRE%d: PCI Secondary errors [", p->index);
767 reported = 0;
768 if (afsr & SABRE_PIOAFSR_SMA) {
769 reported++;
770 printk("(Master Abort)");
772 if (afsr & SABRE_PIOAFSR_STA) {
773 reported++;
774 printk("(Target Abort)");
776 if (afsr & SABRE_PIOAFSR_SRTRY) {
777 reported++;
778 printk("(Excessive Retries)");
780 if (afsr & SABRE_PIOAFSR_SPERR) {
781 reported++;
782 printk("(Parity Error)");
784 if (!reported)
785 printk("(none)");
786 printk("]\n");
788 /* For the error types shown, scan both PCI buses for devices
789 * which have logged that error type.
792 /* If we see a Target Abort, this could be the result of an
793 * IOMMU translation error of some sort. It is extremely
794 * useful to log this information as usually it indicates
795 * a bug in the IOMMU support code or a PCI device driver.
797 if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
798 sabre_check_iommu_error(p, afsr, afar);
799 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
801 if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
802 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
804 /* For excessive retries, SABRE/PBM will abort the device
805 * and there is no way to specifically check for excessive
806 * retries in the config space status registers. So what
807 * we hope is that we'll catch it via the master/target
808 * abort events.
811 if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
812 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
814 return IRQ_HANDLED;
817 static void sabre_register_error_handlers(struct pci_controller_info *p)
819 struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
820 struct device_node *dp = pbm->prom_node;
821 struct of_device *op;
822 unsigned long base = pbm->controller_regs;
823 u64 tmp;
825 if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
826 dp = dp->parent;
828 op = of_find_device_by_node(dp);
829 if (!op)
830 return;
832 /* Sabre/Hummingbird IRQ property layout is:
833 * 0: PCI ERR
834 * 1: UE ERR
835 * 2: CE ERR
836 * 3: POWER FAIL
838 if (op->num_irqs < 4)
839 return;
841 /* We clear the error bits in the appropriate AFSR before
842 * registering the handler so that we don't get spurious
843 * interrupts.
845 sabre_write(base + SABRE_UE_AFSR,
846 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
847 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
848 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
850 request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
852 sabre_write(base + SABRE_CE_AFSR,
853 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
854 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
856 request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
857 request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
858 "SABRE PCIERR", p);
860 tmp = sabre_read(base + SABRE_PCICTRL);
861 tmp |= SABRE_PCICTRL_ERREN;
862 sabre_write(base + SABRE_PCICTRL, tmp);
865 static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
867 struct pci_dev *pdev;
869 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
870 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
871 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
872 u16 word16;
874 pci_read_config_word(pdev, PCI_COMMAND, &word16);
875 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
876 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
877 PCI_COMMAND_IO;
878 pci_write_config_word(pdev, PCI_COMMAND, word16);
880 /* Status register bits are "write 1 to clear". */
881 pci_write_config_word(pdev, PCI_STATUS, 0xffff);
882 pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
884 /* Use a primary/seconday latency timer value
885 * of 64.
887 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
888 pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
890 /* Enable reporting/forwarding of master aborts,
891 * parity, and SERR.
893 pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
894 (PCI_BRIDGE_CTL_PARITY |
895 PCI_BRIDGE_CTL_SERR |
896 PCI_BRIDGE_CTL_MASTER_ABORT));
901 static void sabre_scan_bus(struct pci_controller_info *p)
903 static int once;
904 struct pci_bus *pbus;
906 /* The APB bridge speaks to the Sabre host PCI bridge
907 * at 66Mhz, but the front side of APB runs at 33Mhz
908 * for both segments.
910 p->pbm_A.is_66mhz_capable = 0;
912 /* This driver has not been verified to handle
913 * multiple SABREs yet, so trap this.
915 * Also note that the SABRE host bridge is hardwired
916 * to live at bus 0.
918 if (once != 0) {
919 prom_printf("SABRE: Multiple controllers unsupported.\n");
920 prom_halt();
922 once++;
924 pbus = pci_scan_one_pbm(&p->pbm_A);
925 if (!pbus)
926 return;
928 sabre_root_bus = pbus;
930 apb_init(p, pbus);
932 sabre_register_error_handlers(p);
935 static void sabre_iommu_init(struct pci_controller_info *p,
936 int tsbsize, unsigned long dvma_offset,
937 u32 dma_mask)
939 struct pci_iommu *iommu = p->pbm_A.iommu;
940 unsigned long i;
941 u64 control;
943 /* Register addresses. */
944 iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
945 iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
946 iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
947 iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
948 /* Sabre's IOMMU lacks ctx flushing. */
949 iommu->iommu_ctxflush = 0;
951 /* Invalidate TLB Entries. */
952 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
953 control |= SABRE_IOMMUCTRL_DENAB;
954 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
956 for(i = 0; i < 16; i++) {
957 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
958 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
961 /* Leave diag mode enabled for full-flushing done
962 * in pci_iommu.c
964 pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
966 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
967 __pa(iommu->page_table));
969 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
970 control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
971 control |= SABRE_IOMMUCTRL_ENAB;
972 switch(tsbsize) {
973 case 64:
974 control |= SABRE_IOMMU_TSBSZ_64K;
975 break;
976 case 128:
977 control |= SABRE_IOMMU_TSBSZ_128K;
978 break;
979 default:
980 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
981 prom_halt();
982 break;
984 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
987 static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp)
989 struct pci_pbm_info *pbm;
991 pbm = &p->pbm_A;
992 pbm->name = dp->full_name;
993 printk("%s: SABRE PCI Bus Module\n", pbm->name);
995 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
996 pbm->parent = p;
997 pbm->prom_node = dp;
998 pbm->pci_first_slot = 1;
999 pbm->pci_first_busno = p->pci_first_busno;
1000 pbm->pci_last_busno = p->pci_last_busno;
1002 pci_determine_mem_io_space(pbm);
1005 void sabre_init(struct device_node *dp, char *model_name)
1007 struct linux_prom64_registers *pr_regs;
1008 struct pci_controller_info *p;
1009 struct pci_iommu *iommu;
1010 int tsbsize;
1011 u32 *busrange;
1012 u32 *vdma;
1013 u32 upa_portid, dma_mask;
1014 u64 clear_irq;
1016 hummingbird_p = 0;
1017 if (!strcmp(model_name, "pci108e,a001"))
1018 hummingbird_p = 1;
1019 else if (!strcmp(model_name, "SUNW,sabre")) {
1020 const char *compat = of_get_property(dp, "compatible", NULL);
1021 if (compat && !strcmp(compat, "pci108e,a001"))
1022 hummingbird_p = 1;
1023 if (!hummingbird_p) {
1024 struct device_node *dp;
1026 /* Of course, Sun has to encode things a thousand
1027 * different ways, inconsistently.
1029 cpu_find_by_instance(0, &dp, NULL);
1030 if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
1031 hummingbird_p = 1;
1035 p = kzalloc(sizeof(*p), GFP_ATOMIC);
1036 if (!p) {
1037 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1038 prom_halt();
1041 iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
1042 if (!iommu) {
1043 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1044 prom_halt();
1046 p->pbm_A.iommu = iommu;
1048 upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
1050 p->next = pci_controller_root;
1051 pci_controller_root = p;
1053 p->pbm_A.portid = upa_portid;
1054 p->index = pci_num_controllers++;
1055 p->pbms_same_domain = 1;
1056 p->scan_bus = sabre_scan_bus;
1057 p->pci_ops = &sabre_ops;
1060 * Map in SABRE register set and report the presence of this SABRE.
1063 pr_regs = of_get_property(dp, "reg", NULL);
1066 * First REG in property is base of entire SABRE register space.
1068 p->pbm_A.controller_regs = pr_regs[0].phys_addr;
1070 /* Clear interrupts */
1072 /* PCI first */
1073 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1074 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1076 /* Then OBIO */
1077 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1078 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1080 /* Error interrupts are enabled later after the bus scan. */
1081 sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1082 (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
1083 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1085 /* Now map in PCI config space for entire SABRE. */
1086 p->pbm_A.config_space =
1087 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
1089 vdma = of_get_property(dp, "virtual-dma", NULL);
1091 dma_mask = vdma[0];
1092 switch(vdma[1]) {
1093 case 0x20000000:
1094 dma_mask |= 0x1fffffff;
1095 tsbsize = 64;
1096 break;
1097 case 0x40000000:
1098 dma_mask |= 0x3fffffff;
1099 tsbsize = 128;
1100 break;
1102 case 0x80000000:
1103 dma_mask |= 0x7fffffff;
1104 tsbsize = 128;
1105 break;
1106 default:
1107 prom_printf("SABRE: strange virtual-dma size.\n");
1108 prom_halt();
1111 sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1113 busrange = of_get_property(dp, "bus-range", NULL);
1114 p->pci_first_busno = busrange[0];
1115 p->pci_last_busno = busrange[1];
1118 * Look for APB underneath.
1120 sabre_pbm_init(p, dp);