2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
41 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode
->i_sb
)->s_journal
,
55 &EXT4_I(inode
)->jinode
,
59 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
62 * Test whether an inode is a fast symlink.
64 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
66 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
67 (inode
->i_sb
->s_blocksize
>> 9) : 0;
69 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
73 * The ext4 forget function must perform a revoke if we are freeing data
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
84 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
85 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
91 BUFFER_TRACE(bh
, "enter");
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 bh
, is_metadata
, inode
->i_mode
,
96 test_opt(inode
->i_sb
, DATA_FLAGS
));
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
103 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
104 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
106 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
107 return ext4_journal_forget(handle
, bh
);
113 * data!=journal && (is_metadata || should_journal_data(inode))
115 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
116 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
118 ext4_abort(inode
->i_sb
, __func__
,
119 "error %d when attempting revoke", err
);
120 BUFFER_TRACE(bh
, "exit");
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
128 static unsigned long blocks_for_truncate(struct inode
*inode
)
132 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
137 * like a regular file for ext4 to try to delete it. Things
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
143 /* But we need to bound the transaction so we don't overflow the
145 if (needed
> EXT4_MAX_TRANS_DATA
)
146 needed
= EXT4_MAX_TRANS_DATA
;
148 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
161 static handle_t
*start_transaction(struct inode
*inode
)
165 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
169 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
174 * Try to extend this transaction for the purposes of truncation.
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
179 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
181 if (!ext4_handle_valid(handle
))
183 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
185 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
195 static int ext4_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
197 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
198 jbd_debug(2, "restarting handle %p\n", handle
);
199 return ext4_journal_restart(handle
, blocks_for_truncate(inode
));
203 * Called at the last iput() if i_nlink is zero.
205 void ext4_delete_inode(struct inode
*inode
)
210 if (ext4_should_order_data(inode
))
211 ext4_begin_ordered_truncate(inode
, 0);
212 truncate_inode_pages(&inode
->i_data
, 0);
214 if (is_bad_inode(inode
))
217 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
218 if (IS_ERR(handle
)) {
219 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
221 * If we're going to skip the normal cleanup, we still need to
222 * make sure that the in-core orphan linked list is properly
225 ext4_orphan_del(NULL
, inode
);
230 ext4_handle_sync(handle
);
232 err
= ext4_mark_inode_dirty(handle
, inode
);
234 ext4_warning(inode
->i_sb
, __func__
,
235 "couldn't mark inode dirty (err %d)", err
);
239 ext4_truncate(inode
);
242 * ext4_ext_truncate() doesn't reserve any slop when it
243 * restarts journal transactions; therefore there may not be
244 * enough credits left in the handle to remove the inode from
245 * the orphan list and set the dtime field.
247 if (!ext4_handle_has_enough_credits(handle
, 3)) {
248 err
= ext4_journal_extend(handle
, 3);
250 err
= ext4_journal_restart(handle
, 3);
252 ext4_warning(inode
->i_sb
, __func__
,
253 "couldn't extend journal (err %d)", err
);
255 ext4_journal_stop(handle
);
261 * Kill off the orphan record which ext4_truncate created.
262 * AKPM: I think this can be inside the above `if'.
263 * Note that ext4_orphan_del() has to be able to cope with the
264 * deletion of a non-existent orphan - this is because we don't
265 * know if ext4_truncate() actually created an orphan record.
266 * (Well, we could do this if we need to, but heck - it works)
268 ext4_orphan_del(handle
, inode
);
269 EXT4_I(inode
)->i_dtime
= get_seconds();
272 * One subtle ordering requirement: if anything has gone wrong
273 * (transaction abort, IO errors, whatever), then we can still
274 * do these next steps (the fs will already have been marked as
275 * having errors), but we can't free the inode if the mark_dirty
278 if (ext4_mark_inode_dirty(handle
, inode
))
279 /* If that failed, just do the required in-core inode clear. */
282 ext4_free_inode(handle
, inode
);
283 ext4_journal_stop(handle
);
286 clear_inode(inode
); /* We must guarantee clearing of inode... */
292 struct buffer_head
*bh
;
295 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
297 p
->key
= *(p
->p
= v
);
302 * ext4_block_to_path - parse the block number into array of offsets
303 * @inode: inode in question (we are only interested in its superblock)
304 * @i_block: block number to be parsed
305 * @offsets: array to store the offsets in
306 * @boundary: set this non-zero if the referred-to block is likely to be
307 * followed (on disk) by an indirect block.
309 * To store the locations of file's data ext4 uses a data structure common
310 * for UNIX filesystems - tree of pointers anchored in the inode, with
311 * data blocks at leaves and indirect blocks in intermediate nodes.
312 * This function translates the block number into path in that tree -
313 * return value is the path length and @offsets[n] is the offset of
314 * pointer to (n+1)th node in the nth one. If @block is out of range
315 * (negative or too large) warning is printed and zero returned.
317 * Note: function doesn't find node addresses, so no IO is needed. All
318 * we need to know is the capacity of indirect blocks (taken from the
323 * Portability note: the last comparison (check that we fit into triple
324 * indirect block) is spelled differently, because otherwise on an
325 * architecture with 32-bit longs and 8Kb pages we might get into trouble
326 * if our filesystem had 8Kb blocks. We might use long long, but that would
327 * kill us on x86. Oh, well, at least the sign propagation does not matter -
328 * i_block would have to be negative in the very beginning, so we would not
332 static int ext4_block_to_path(struct inode
*inode
,
334 ext4_lblk_t offsets
[4], int *boundary
)
336 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
337 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
338 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
339 indirect_blocks
= ptrs
,
340 double_blocks
= (1 << (ptrs_bits
* 2));
345 ext4_warning(inode
->i_sb
, "ext4_block_to_path", "block < 0");
346 } else if (i_block
< direct_blocks
) {
347 offsets
[n
++] = i_block
;
348 final
= direct_blocks
;
349 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
350 offsets
[n
++] = EXT4_IND_BLOCK
;
351 offsets
[n
++] = i_block
;
353 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
354 offsets
[n
++] = EXT4_DIND_BLOCK
;
355 offsets
[n
++] = i_block
>> ptrs_bits
;
356 offsets
[n
++] = i_block
& (ptrs
- 1);
358 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
359 offsets
[n
++] = EXT4_TIND_BLOCK
;
360 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
361 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
362 offsets
[n
++] = i_block
& (ptrs
- 1);
365 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
366 "block %lu > max in inode %lu",
367 i_block
+ direct_blocks
+
368 indirect_blocks
+ double_blocks
, inode
->i_ino
);
371 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
375 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
376 __le32
*p
, unsigned int max
)
381 while (bref
< p
+max
) {
382 blk
= le32_to_cpu(*bref
++);
384 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
386 ext4_error(inode
->i_sb
, function
,
387 "invalid block reference %u "
388 "in inode #%lu", blk
, inode
->i_ino
);
396 #define ext4_check_indirect_blockref(inode, bh) \
397 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
398 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
400 #define ext4_check_inode_blockref(inode) \
401 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
405 * ext4_get_branch - read the chain of indirect blocks leading to data
406 * @inode: inode in question
407 * @depth: depth of the chain (1 - direct pointer, etc.)
408 * @offsets: offsets of pointers in inode/indirect blocks
409 * @chain: place to store the result
410 * @err: here we store the error value
412 * Function fills the array of triples <key, p, bh> and returns %NULL
413 * if everything went OK or the pointer to the last filled triple
414 * (incomplete one) otherwise. Upon the return chain[i].key contains
415 * the number of (i+1)-th block in the chain (as it is stored in memory,
416 * i.e. little-endian 32-bit), chain[i].p contains the address of that
417 * number (it points into struct inode for i==0 and into the bh->b_data
418 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
419 * block for i>0 and NULL for i==0. In other words, it holds the block
420 * numbers of the chain, addresses they were taken from (and where we can
421 * verify that chain did not change) and buffer_heads hosting these
424 * Function stops when it stumbles upon zero pointer (absent block)
425 * (pointer to last triple returned, *@err == 0)
426 * or when it gets an IO error reading an indirect block
427 * (ditto, *@err == -EIO)
428 * or when it reads all @depth-1 indirect blocks successfully and finds
429 * the whole chain, all way to the data (returns %NULL, *err == 0).
431 * Need to be called with
432 * down_read(&EXT4_I(inode)->i_data_sem)
434 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
435 ext4_lblk_t
*offsets
,
436 Indirect chain
[4], int *err
)
438 struct super_block
*sb
= inode
->i_sb
;
440 struct buffer_head
*bh
;
443 /* i_data is not going away, no lock needed */
444 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
448 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
452 if (!bh_uptodate_or_lock(bh
)) {
453 if (bh_submit_read(bh
) < 0) {
457 /* validate block references */
458 if (ext4_check_indirect_blockref(inode
, bh
)) {
464 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
478 * ext4_find_near - find a place for allocation with sufficient locality
480 * @ind: descriptor of indirect block.
482 * This function returns the preferred place for block allocation.
483 * It is used when heuristic for sequential allocation fails.
485 * + if there is a block to the left of our position - allocate near it.
486 * + if pointer will live in indirect block - allocate near that block.
487 * + if pointer will live in inode - allocate in the same
490 * In the latter case we colour the starting block by the callers PID to
491 * prevent it from clashing with concurrent allocations for a different inode
492 * in the same block group. The PID is used here so that functionally related
493 * files will be close-by on-disk.
495 * Caller must make sure that @ind is valid and will stay that way.
497 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
499 struct ext4_inode_info
*ei
= EXT4_I(inode
);
500 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
502 ext4_fsblk_t bg_start
;
503 ext4_fsblk_t last_block
;
504 ext4_grpblk_t colour
;
505 ext4_group_t block_group
;
506 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
508 /* Try to find previous block */
509 for (p
= ind
->p
- 1; p
>= start
; p
--) {
511 return le32_to_cpu(*p
);
514 /* No such thing, so let's try location of indirect block */
516 return ind
->bh
->b_blocknr
;
519 * It is going to be referred to from the inode itself? OK, just put it
520 * into the same cylinder group then.
522 block_group
= ei
->i_block_group
;
523 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
524 block_group
&= ~(flex_size
-1);
525 if (S_ISREG(inode
->i_mode
))
528 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
529 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
532 * If we are doing delayed allocation, we don't need take
533 * colour into account.
535 if (test_opt(inode
->i_sb
, DELALLOC
))
538 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
539 colour
= (current
->pid
% 16) *
540 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
542 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
543 return bg_start
+ colour
;
547 * ext4_find_goal - find a preferred place for allocation.
549 * @block: block we want
550 * @partial: pointer to the last triple within a chain
552 * Normally this function find the preferred place for block allocation,
555 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
559 * XXX need to get goal block from mballoc's data structures
562 return ext4_find_near(inode
, partial
);
566 * ext4_blks_to_allocate: Look up the block map and count the number
567 * of direct blocks need to be allocated for the given branch.
569 * @branch: chain of indirect blocks
570 * @k: number of blocks need for indirect blocks
571 * @blks: number of data blocks to be mapped.
572 * @blocks_to_boundary: the offset in the indirect block
574 * return the total number of blocks to be allocate, including the
575 * direct and indirect blocks.
577 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
578 int blocks_to_boundary
)
580 unsigned int count
= 0;
583 * Simple case, [t,d]Indirect block(s) has not allocated yet
584 * then it's clear blocks on that path have not allocated
587 /* right now we don't handle cross boundary allocation */
588 if (blks
< blocks_to_boundary
+ 1)
591 count
+= blocks_to_boundary
+ 1;
596 while (count
< blks
&& count
<= blocks_to_boundary
&&
597 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
604 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
605 * @indirect_blks: the number of blocks need to allocate for indirect
608 * @new_blocks: on return it will store the new block numbers for
609 * the indirect blocks(if needed) and the first direct block,
610 * @blks: on return it will store the total number of allocated
613 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
614 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
615 int indirect_blks
, int blks
,
616 ext4_fsblk_t new_blocks
[4], int *err
)
618 struct ext4_allocation_request ar
;
620 unsigned long count
= 0, blk_allocated
= 0;
622 ext4_fsblk_t current_block
= 0;
626 * Here we try to allocate the requested multiple blocks at once,
627 * on a best-effort basis.
628 * To build a branch, we should allocate blocks for
629 * the indirect blocks(if not allocated yet), and at least
630 * the first direct block of this branch. That's the
631 * minimum number of blocks need to allocate(required)
633 /* first we try to allocate the indirect blocks */
634 target
= indirect_blks
;
637 /* allocating blocks for indirect blocks and direct blocks */
638 current_block
= ext4_new_meta_blocks(handle
, inode
,
644 /* allocate blocks for indirect blocks */
645 while (index
< indirect_blks
&& count
) {
646 new_blocks
[index
++] = current_block
++;
651 * save the new block number
652 * for the first direct block
654 new_blocks
[index
] = current_block
;
655 printk(KERN_INFO
"%s returned more blocks than "
656 "requested\n", __func__
);
662 target
= blks
- count
;
663 blk_allocated
= count
;
666 /* Now allocate data blocks */
667 memset(&ar
, 0, sizeof(ar
));
672 if (S_ISREG(inode
->i_mode
))
673 /* enable in-core preallocation only for regular files */
674 ar
.flags
= EXT4_MB_HINT_DATA
;
676 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
678 if (*err
&& (target
== blks
)) {
680 * if the allocation failed and we didn't allocate
686 if (target
== blks
) {
688 * save the new block number
689 * for the first direct block
691 new_blocks
[index
] = current_block
;
693 blk_allocated
+= ar
.len
;
696 /* total number of blocks allocated for direct blocks */
701 for (i
= 0; i
< index
; i
++)
702 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
707 * ext4_alloc_branch - allocate and set up a chain of blocks.
709 * @indirect_blks: number of allocated indirect blocks
710 * @blks: number of allocated direct blocks
711 * @offsets: offsets (in the blocks) to store the pointers to next.
712 * @branch: place to store the chain in.
714 * This function allocates blocks, zeroes out all but the last one,
715 * links them into chain and (if we are synchronous) writes them to disk.
716 * In other words, it prepares a branch that can be spliced onto the
717 * inode. It stores the information about that chain in the branch[], in
718 * the same format as ext4_get_branch() would do. We are calling it after
719 * we had read the existing part of chain and partial points to the last
720 * triple of that (one with zero ->key). Upon the exit we have the same
721 * picture as after the successful ext4_get_block(), except that in one
722 * place chain is disconnected - *branch->p is still zero (we did not
723 * set the last link), but branch->key contains the number that should
724 * be placed into *branch->p to fill that gap.
726 * If allocation fails we free all blocks we've allocated (and forget
727 * their buffer_heads) and return the error value the from failed
728 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
729 * as described above and return 0.
731 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
732 ext4_lblk_t iblock
, int indirect_blks
,
733 int *blks
, ext4_fsblk_t goal
,
734 ext4_lblk_t
*offsets
, Indirect
*branch
)
736 int blocksize
= inode
->i_sb
->s_blocksize
;
739 struct buffer_head
*bh
;
741 ext4_fsblk_t new_blocks
[4];
742 ext4_fsblk_t current_block
;
744 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
745 *blks
, new_blocks
, &err
);
749 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
751 * metadata blocks and data blocks are allocated.
753 for (n
= 1; n
<= indirect_blks
; n
++) {
755 * Get buffer_head for parent block, zero it out
756 * and set the pointer to new one, then send
759 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
762 BUFFER_TRACE(bh
, "call get_create_access");
763 err
= ext4_journal_get_create_access(handle
, bh
);
770 memset(bh
->b_data
, 0, blocksize
);
771 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
772 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
773 *branch
[n
].p
= branch
[n
].key
;
774 if (n
== indirect_blks
) {
775 current_block
= new_blocks
[n
];
777 * End of chain, update the last new metablock of
778 * the chain to point to the new allocated
779 * data blocks numbers
781 for (i
= 1; i
< num
; i
++)
782 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
784 BUFFER_TRACE(bh
, "marking uptodate");
785 set_buffer_uptodate(bh
);
788 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
789 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
796 /* Allocation failed, free what we already allocated */
797 for (i
= 1; i
<= n
; i
++) {
798 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
799 ext4_journal_forget(handle
, branch
[i
].bh
);
801 for (i
= 0; i
< indirect_blks
; i
++)
802 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
804 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
810 * ext4_splice_branch - splice the allocated branch onto inode.
812 * @block: (logical) number of block we are adding
813 * @chain: chain of indirect blocks (with a missing link - see
815 * @where: location of missing link
816 * @num: number of indirect blocks we are adding
817 * @blks: number of direct blocks we are adding
819 * This function fills the missing link and does all housekeeping needed in
820 * inode (->i_blocks, etc.). In case of success we end up with the full
821 * chain to new block and return 0.
823 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
824 ext4_lblk_t block
, Indirect
*where
, int num
,
829 ext4_fsblk_t current_block
;
832 * If we're splicing into a [td]indirect block (as opposed to the
833 * inode) then we need to get write access to the [td]indirect block
837 BUFFER_TRACE(where
->bh
, "get_write_access");
838 err
= ext4_journal_get_write_access(handle
, where
->bh
);
844 *where
->p
= where
->key
;
847 * Update the host buffer_head or inode to point to more just allocated
848 * direct blocks blocks
850 if (num
== 0 && blks
> 1) {
851 current_block
= le32_to_cpu(where
->key
) + 1;
852 for (i
= 1; i
< blks
; i
++)
853 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
856 /* We are done with atomic stuff, now do the rest of housekeeping */
857 /* had we spliced it onto indirect block? */
860 * If we spliced it onto an indirect block, we haven't
861 * altered the inode. Note however that if it is being spliced
862 * onto an indirect block at the very end of the file (the
863 * file is growing) then we *will* alter the inode to reflect
864 * the new i_size. But that is not done here - it is done in
865 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 jbd_debug(5, "splicing indirect only\n");
868 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
869 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
874 * OK, we spliced it into the inode itself on a direct block.
876 ext4_mark_inode_dirty(handle
, inode
);
877 jbd_debug(5, "splicing direct\n");
882 for (i
= 1; i
<= num
; i
++) {
883 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
884 ext4_journal_forget(handle
, where
[i
].bh
);
885 ext4_free_blocks(handle
, inode
,
886 le32_to_cpu(where
[i
-1].key
), 1, 0);
888 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
894 * The ext4_ind_get_blocks() function handles non-extents inodes
895 * (i.e., using the traditional indirect/double-indirect i_blocks
896 * scheme) for ext4_get_blocks().
898 * Allocation strategy is simple: if we have to allocate something, we will
899 * have to go the whole way to leaf. So let's do it before attaching anything
900 * to tree, set linkage between the newborn blocks, write them if sync is
901 * required, recheck the path, free and repeat if check fails, otherwise
902 * set the last missing link (that will protect us from any truncate-generated
903 * removals - all blocks on the path are immune now) and possibly force the
904 * write on the parent block.
905 * That has a nice additional property: no special recovery from the failed
906 * allocations is needed - we simply release blocks and do not touch anything
907 * reachable from inode.
909 * `handle' can be NULL if create == 0.
911 * return > 0, # of blocks mapped or allocated.
912 * return = 0, if plain lookup failed.
913 * return < 0, error case.
915 * The ext4_ind_get_blocks() function should be called with
916 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
917 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
918 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
921 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
922 ext4_lblk_t iblock
, unsigned int maxblocks
,
923 struct buffer_head
*bh_result
,
927 ext4_lblk_t offsets
[4];
932 int blocks_to_boundary
= 0;
935 ext4_fsblk_t first_block
= 0;
937 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
938 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
939 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
940 &blocks_to_boundary
);
945 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
947 /* Simplest case - block found, no allocation needed */
949 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
950 clear_buffer_new(bh_result
);
953 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
956 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
958 if (blk
== first_block
+ count
)
966 /* Next simple case - plain lookup or failed read of indirect block */
967 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
971 * Okay, we need to do block allocation.
973 goal
= ext4_find_goal(inode
, iblock
, partial
);
975 /* the number of blocks need to allocate for [d,t]indirect blocks */
976 indirect_blks
= (chain
+ depth
) - partial
- 1;
979 * Next look up the indirect map to count the totoal number of
980 * direct blocks to allocate for this branch.
982 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
983 maxblocks
, blocks_to_boundary
);
985 * Block out ext4_truncate while we alter the tree
987 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
989 offsets
+ (partial
- chain
), partial
);
992 * The ext4_splice_branch call will free and forget any buffers
993 * on the new chain if there is a failure, but that risks using
994 * up transaction credits, especially for bitmaps where the
995 * credits cannot be returned. Can we handle this somehow? We
996 * may need to return -EAGAIN upwards in the worst case. --sct
999 err
= ext4_splice_branch(handle
, inode
, iblock
,
1000 partial
, indirect_blks
, count
);
1004 set_buffer_new(bh_result
);
1006 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1007 if (count
> blocks_to_boundary
)
1008 set_buffer_boundary(bh_result
);
1010 /* Clean up and exit */
1011 partial
= chain
+ depth
- 1; /* the whole chain */
1013 while (partial
> chain
) {
1014 BUFFER_TRACE(partial
->bh
, "call brelse");
1015 brelse(partial
->bh
);
1018 BUFFER_TRACE(bh_result
, "returned");
1023 qsize_t
ext4_get_reserved_space(struct inode
*inode
)
1025 unsigned long long total
;
1027 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1028 total
= EXT4_I(inode
)->i_reserved_data_blocks
+
1029 EXT4_I(inode
)->i_reserved_meta_blocks
;
1030 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1035 * Calculate the number of metadata blocks need to reserve
1036 * to allocate @blocks for non extent file based file
1038 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
, int blocks
)
1040 int icap
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
1041 int ind_blks
, dind_blks
, tind_blks
;
1043 /* number of new indirect blocks needed */
1044 ind_blks
= (blocks
+ icap
- 1) / icap
;
1046 dind_blks
= (ind_blks
+ icap
- 1) / icap
;
1050 return ind_blks
+ dind_blks
+ tind_blks
;
1054 * Calculate the number of metadata blocks need to reserve
1055 * to allocate given number of blocks
1057 static int ext4_calc_metadata_amount(struct inode
*inode
, int blocks
)
1062 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1063 return ext4_ext_calc_metadata_amount(inode
, blocks
);
1065 return ext4_indirect_calc_metadata_amount(inode
, blocks
);
1068 static void ext4_da_update_reserve_space(struct inode
*inode
, int used
)
1070 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1071 int total
, mdb
, mdb_free
;
1073 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1074 /* recalculate the number of metablocks still need to be reserved */
1075 total
= EXT4_I(inode
)->i_reserved_data_blocks
- used
;
1076 mdb
= ext4_calc_metadata_amount(inode
, total
);
1078 /* figure out how many metablocks to release */
1079 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1080 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1083 /* Account for allocated meta_blocks */
1084 mdb_free
-= EXT4_I(inode
)->i_allocated_meta_blocks
;
1086 /* update fs dirty blocks counter */
1087 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1088 EXT4_I(inode
)->i_allocated_meta_blocks
= 0;
1089 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1092 /* update per-inode reservations */
1093 BUG_ON(used
> EXT4_I(inode
)->i_reserved_data_blocks
);
1094 EXT4_I(inode
)->i_reserved_data_blocks
-= used
;
1095 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1098 * free those over-booking quota for metadata blocks
1101 vfs_dq_release_reservation_block(inode
, mdb_free
);
1104 * If we have done all the pending block allocations and if
1105 * there aren't any writers on the inode, we can discard the
1106 * inode's preallocations.
1108 if (!total
&& (atomic_read(&inode
->i_writecount
) == 0))
1109 ext4_discard_preallocations(inode
);
1112 static int check_block_validity(struct inode
*inode
, sector_t logical
,
1113 sector_t phys
, int len
)
1115 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1116 ext4_error(inode
->i_sb
, "check_block_validity",
1117 "inode #%lu logical block %llu mapped to %llu "
1118 "(size %d)", inode
->i_ino
,
1119 (unsigned long long) logical
,
1120 (unsigned long long) phys
, len
);
1128 * The ext4_get_blocks() function tries to look up the requested blocks,
1129 * and returns if the blocks are already mapped.
1131 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1132 * and store the allocated blocks in the result buffer head and mark it
1135 * If file type is extents based, it will call ext4_ext_get_blocks(),
1136 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1139 * On success, it returns the number of blocks being mapped or allocate.
1140 * if create==0 and the blocks are pre-allocated and uninitialized block,
1141 * the result buffer head is unmapped. If the create ==1, it will make sure
1142 * the buffer head is mapped.
1144 * It returns 0 if plain look up failed (blocks have not been allocated), in
1145 * that casem, buffer head is unmapped
1147 * It returns the error in case of allocation failure.
1149 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1150 unsigned int max_blocks
, struct buffer_head
*bh
,
1155 clear_buffer_mapped(bh
);
1156 clear_buffer_unwritten(bh
);
1159 * Try to see if we can get the block without requesting a new
1160 * file system block.
1162 down_read((&EXT4_I(inode
)->i_data_sem
));
1163 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1164 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1167 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1170 up_read((&EXT4_I(inode
)->i_data_sem
));
1172 if (retval
> 0 && buffer_mapped(bh
)) {
1173 int ret
= check_block_validity(inode
, block
,
1174 bh
->b_blocknr
, retval
);
1179 /* If it is only a block(s) look up */
1180 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1184 * Returns if the blocks have already allocated
1186 * Note that if blocks have been preallocated
1187 * ext4_ext_get_block() returns th create = 0
1188 * with buffer head unmapped.
1190 if (retval
> 0 && buffer_mapped(bh
))
1194 * When we call get_blocks without the create flag, the
1195 * BH_Unwritten flag could have gotten set if the blocks
1196 * requested were part of a uninitialized extent. We need to
1197 * clear this flag now that we are committed to convert all or
1198 * part of the uninitialized extent to be an initialized
1199 * extent. This is because we need to avoid the combination
1200 * of BH_Unwritten and BH_Mapped flags being simultaneously
1201 * set on the buffer_head.
1203 clear_buffer_unwritten(bh
);
1206 * New blocks allocate and/or writing to uninitialized extent
1207 * will possibly result in updating i_data, so we take
1208 * the write lock of i_data_sem, and call get_blocks()
1209 * with create == 1 flag.
1211 down_write((&EXT4_I(inode
)->i_data_sem
));
1214 * if the caller is from delayed allocation writeout path
1215 * we have already reserved fs blocks for allocation
1216 * let the underlying get_block() function know to
1217 * avoid double accounting
1219 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1220 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1222 * We need to check for EXT4 here because migrate
1223 * could have changed the inode type in between
1225 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1226 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1229 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1230 max_blocks
, bh
, flags
);
1232 if (retval
> 0 && buffer_new(bh
)) {
1234 * We allocated new blocks which will result in
1235 * i_data's format changing. Force the migrate
1236 * to fail by clearing migrate flags
1238 EXT4_I(inode
)->i_flags
= EXT4_I(inode
)->i_flags
&
1243 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1244 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1247 * Update reserved blocks/metadata blocks after successful
1248 * block allocation which had been deferred till now.
1250 if ((retval
> 0) && (flags
& EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
))
1251 ext4_da_update_reserve_space(inode
, retval
);
1253 up_write((&EXT4_I(inode
)->i_data_sem
));
1254 if (retval
> 0 && buffer_mapped(bh
)) {
1255 int ret
= check_block_validity(inode
, block
,
1256 bh
->b_blocknr
, retval
);
1263 /* Maximum number of blocks we map for direct IO at once. */
1264 #define DIO_MAX_BLOCKS 4096
1266 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1267 struct buffer_head
*bh_result
, int create
)
1269 handle_t
*handle
= ext4_journal_current_handle();
1270 int ret
= 0, started
= 0;
1271 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1274 if (create
&& !handle
) {
1275 /* Direct IO write... */
1276 if (max_blocks
> DIO_MAX_BLOCKS
)
1277 max_blocks
= DIO_MAX_BLOCKS
;
1278 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1279 handle
= ext4_journal_start(inode
, dio_credits
);
1280 if (IS_ERR(handle
)) {
1281 ret
= PTR_ERR(handle
);
1287 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1288 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1290 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1294 ext4_journal_stop(handle
);
1300 * `handle' can be NULL if create is zero
1302 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1303 ext4_lblk_t block
, int create
, int *errp
)
1305 struct buffer_head dummy
;
1309 J_ASSERT(handle
!= NULL
|| create
== 0);
1312 dummy
.b_blocknr
= -1000;
1313 buffer_trace_init(&dummy
.b_history
);
1315 flags
|= EXT4_GET_BLOCKS_CREATE
;
1316 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1318 * ext4_get_blocks() returns number of blocks mapped. 0 in
1327 if (!err
&& buffer_mapped(&dummy
)) {
1328 struct buffer_head
*bh
;
1329 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1334 if (buffer_new(&dummy
)) {
1335 J_ASSERT(create
!= 0);
1336 J_ASSERT(handle
!= NULL
);
1339 * Now that we do not always journal data, we should
1340 * keep in mind whether this should always journal the
1341 * new buffer as metadata. For now, regular file
1342 * writes use ext4_get_block instead, so it's not a
1346 BUFFER_TRACE(bh
, "call get_create_access");
1347 fatal
= ext4_journal_get_create_access(handle
, bh
);
1348 if (!fatal
&& !buffer_uptodate(bh
)) {
1349 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1350 set_buffer_uptodate(bh
);
1353 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1354 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1358 BUFFER_TRACE(bh
, "not a new buffer");
1371 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1372 ext4_lblk_t block
, int create
, int *err
)
1374 struct buffer_head
*bh
;
1376 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1379 if (buffer_uptodate(bh
))
1381 ll_rw_block(READ_META
, 1, &bh
);
1383 if (buffer_uptodate(bh
))
1390 static int walk_page_buffers(handle_t
*handle
,
1391 struct buffer_head
*head
,
1395 int (*fn
)(handle_t
*handle
,
1396 struct buffer_head
*bh
))
1398 struct buffer_head
*bh
;
1399 unsigned block_start
, block_end
;
1400 unsigned blocksize
= head
->b_size
;
1402 struct buffer_head
*next
;
1404 for (bh
= head
, block_start
= 0;
1405 ret
== 0 && (bh
!= head
|| !block_start
);
1406 block_start
= block_end
, bh
= next
) {
1407 next
= bh
->b_this_page
;
1408 block_end
= block_start
+ blocksize
;
1409 if (block_end
<= from
|| block_start
>= to
) {
1410 if (partial
&& !buffer_uptodate(bh
))
1414 err
= (*fn
)(handle
, bh
);
1422 * To preserve ordering, it is essential that the hole instantiation and
1423 * the data write be encapsulated in a single transaction. We cannot
1424 * close off a transaction and start a new one between the ext4_get_block()
1425 * and the commit_write(). So doing the jbd2_journal_start at the start of
1426 * prepare_write() is the right place.
1428 * Also, this function can nest inside ext4_writepage() ->
1429 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1430 * has generated enough buffer credits to do the whole page. So we won't
1431 * block on the journal in that case, which is good, because the caller may
1434 * By accident, ext4 can be reentered when a transaction is open via
1435 * quota file writes. If we were to commit the transaction while thus
1436 * reentered, there can be a deadlock - we would be holding a quota
1437 * lock, and the commit would never complete if another thread had a
1438 * transaction open and was blocking on the quota lock - a ranking
1441 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1442 * will _not_ run commit under these circumstances because handle->h_ref
1443 * is elevated. We'll still have enough credits for the tiny quotafile
1446 static int do_journal_get_write_access(handle_t
*handle
,
1447 struct buffer_head
*bh
)
1449 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1451 return ext4_journal_get_write_access(handle
, bh
);
1454 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1455 loff_t pos
, unsigned len
, unsigned flags
,
1456 struct page
**pagep
, void **fsdata
)
1458 struct inode
*inode
= mapping
->host
;
1459 int ret
, needed_blocks
;
1466 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1468 * Reserve one block more for addition to orphan list in case
1469 * we allocate blocks but write fails for some reason
1471 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1472 index
= pos
>> PAGE_CACHE_SHIFT
;
1473 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1477 handle
= ext4_journal_start(inode
, needed_blocks
);
1478 if (IS_ERR(handle
)) {
1479 ret
= PTR_ERR(handle
);
1483 /* We cannot recurse into the filesystem as the transaction is already
1485 flags
|= AOP_FLAG_NOFS
;
1487 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1489 ext4_journal_stop(handle
);
1495 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1498 if (!ret
&& ext4_should_journal_data(inode
)) {
1499 ret
= walk_page_buffers(handle
, page_buffers(page
),
1500 from
, to
, NULL
, do_journal_get_write_access
);
1505 page_cache_release(page
);
1507 * block_write_begin may have instantiated a few blocks
1508 * outside i_size. Trim these off again. Don't need
1509 * i_size_read because we hold i_mutex.
1511 * Add inode to orphan list in case we crash before
1514 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1515 ext4_orphan_add(handle
, inode
);
1517 ext4_journal_stop(handle
);
1518 if (pos
+ len
> inode
->i_size
) {
1519 ext4_truncate(inode
);
1521 * If truncate failed early the inode might
1522 * still be on the orphan list; we need to
1523 * make sure the inode is removed from the
1524 * orphan list in that case.
1527 ext4_orphan_del(NULL
, inode
);
1531 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1537 /* For write_end() in data=journal mode */
1538 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1540 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1542 set_buffer_uptodate(bh
);
1543 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1546 static int ext4_generic_write_end(struct file
*file
,
1547 struct address_space
*mapping
,
1548 loff_t pos
, unsigned len
, unsigned copied
,
1549 struct page
*page
, void *fsdata
)
1551 int i_size_changed
= 0;
1552 struct inode
*inode
= mapping
->host
;
1553 handle_t
*handle
= ext4_journal_current_handle();
1555 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1558 * No need to use i_size_read() here, the i_size
1559 * cannot change under us because we hold i_mutex.
1561 * But it's important to update i_size while still holding page lock:
1562 * page writeout could otherwise come in and zero beyond i_size.
1564 if (pos
+ copied
> inode
->i_size
) {
1565 i_size_write(inode
, pos
+ copied
);
1569 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1570 /* We need to mark inode dirty even if
1571 * new_i_size is less that inode->i_size
1572 * bu greater than i_disksize.(hint delalloc)
1574 ext4_update_i_disksize(inode
, (pos
+ copied
));
1578 page_cache_release(page
);
1581 * Don't mark the inode dirty under page lock. First, it unnecessarily
1582 * makes the holding time of page lock longer. Second, it forces lock
1583 * ordering of page lock and transaction start for journaling
1587 ext4_mark_inode_dirty(handle
, inode
);
1593 * We need to pick up the new inode size which generic_commit_write gave us
1594 * `file' can be NULL - eg, when called from page_symlink().
1596 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1597 * buffers are managed internally.
1599 static int ext4_ordered_write_end(struct file
*file
,
1600 struct address_space
*mapping
,
1601 loff_t pos
, unsigned len
, unsigned copied
,
1602 struct page
*page
, void *fsdata
)
1604 handle_t
*handle
= ext4_journal_current_handle();
1605 struct inode
*inode
= mapping
->host
;
1608 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1609 ret
= ext4_jbd2_file_inode(handle
, inode
);
1612 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1615 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1616 /* if we have allocated more blocks and copied
1617 * less. We will have blocks allocated outside
1618 * inode->i_size. So truncate them
1620 ext4_orphan_add(handle
, inode
);
1624 ret2
= ext4_journal_stop(handle
);
1628 if (pos
+ len
> inode
->i_size
) {
1629 ext4_truncate(inode
);
1631 * If truncate failed early the inode might still be
1632 * on the orphan list; we need to make sure the inode
1633 * is removed from the orphan list in that case.
1636 ext4_orphan_del(NULL
, inode
);
1640 return ret
? ret
: copied
;
1643 static int ext4_writeback_write_end(struct file
*file
,
1644 struct address_space
*mapping
,
1645 loff_t pos
, unsigned len
, unsigned copied
,
1646 struct page
*page
, void *fsdata
)
1648 handle_t
*handle
= ext4_journal_current_handle();
1649 struct inode
*inode
= mapping
->host
;
1652 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1653 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1656 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1657 /* if we have allocated more blocks and copied
1658 * less. We will have blocks allocated outside
1659 * inode->i_size. So truncate them
1661 ext4_orphan_add(handle
, inode
);
1666 ret2
= ext4_journal_stop(handle
);
1670 if (pos
+ len
> inode
->i_size
) {
1671 ext4_truncate(inode
);
1673 * If truncate failed early the inode might still be
1674 * on the orphan list; we need to make sure the inode
1675 * is removed from the orphan list in that case.
1678 ext4_orphan_del(NULL
, inode
);
1681 return ret
? ret
: copied
;
1684 static int ext4_journalled_write_end(struct file
*file
,
1685 struct address_space
*mapping
,
1686 loff_t pos
, unsigned len
, unsigned copied
,
1687 struct page
*page
, void *fsdata
)
1689 handle_t
*handle
= ext4_journal_current_handle();
1690 struct inode
*inode
= mapping
->host
;
1696 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1697 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1701 if (!PageUptodate(page
))
1703 page_zero_new_buffers(page
, from
+copied
, to
);
1706 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1707 to
, &partial
, write_end_fn
);
1709 SetPageUptodate(page
);
1710 new_i_size
= pos
+ copied
;
1711 if (new_i_size
> inode
->i_size
)
1712 i_size_write(inode
, pos
+copied
);
1713 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1714 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1715 ext4_update_i_disksize(inode
, new_i_size
);
1716 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1722 page_cache_release(page
);
1723 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1724 /* if we have allocated more blocks and copied
1725 * less. We will have blocks allocated outside
1726 * inode->i_size. So truncate them
1728 ext4_orphan_add(handle
, inode
);
1730 ret2
= ext4_journal_stop(handle
);
1733 if (pos
+ len
> inode
->i_size
) {
1734 ext4_truncate(inode
);
1736 * If truncate failed early the inode might still be
1737 * on the orphan list; we need to make sure the inode
1738 * is removed from the orphan list in that case.
1741 ext4_orphan_del(NULL
, inode
);
1744 return ret
? ret
: copied
;
1747 static int ext4_da_reserve_space(struct inode
*inode
, int nrblocks
)
1750 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1751 unsigned long md_needed
, mdblocks
, total
= 0;
1754 * recalculate the amount of metadata blocks to reserve
1755 * in order to allocate nrblocks
1756 * worse case is one extent per block
1759 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1760 total
= EXT4_I(inode
)->i_reserved_data_blocks
+ nrblocks
;
1761 mdblocks
= ext4_calc_metadata_amount(inode
, total
);
1762 BUG_ON(mdblocks
< EXT4_I(inode
)->i_reserved_meta_blocks
);
1764 md_needed
= mdblocks
- EXT4_I(inode
)->i_reserved_meta_blocks
;
1765 total
= md_needed
+ nrblocks
;
1768 * Make quota reservation here to prevent quota overflow
1769 * later. Real quota accounting is done at pages writeout
1772 if (vfs_dq_reserve_block(inode
, total
)) {
1773 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1777 if (ext4_claim_free_blocks(sbi
, total
)) {
1778 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1779 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1783 vfs_dq_release_reservation_block(inode
, total
);
1786 EXT4_I(inode
)->i_reserved_data_blocks
+= nrblocks
;
1787 EXT4_I(inode
)->i_reserved_meta_blocks
= mdblocks
;
1789 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1790 return 0; /* success */
1793 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1795 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1796 int total
, mdb
, mdb_free
, release
;
1799 return; /* Nothing to release, exit */
1801 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1803 if (!EXT4_I(inode
)->i_reserved_data_blocks
) {
1805 * if there is no reserved blocks, but we try to free some
1806 * then the counter is messed up somewhere.
1807 * but since this function is called from invalidate
1808 * page, it's harmless to return without any action
1810 printk(KERN_INFO
"ext4 delalloc try to release %d reserved "
1811 "blocks for inode %lu, but there is no reserved "
1812 "data blocks\n", to_free
, inode
->i_ino
);
1813 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1817 /* recalculate the number of metablocks still need to be reserved */
1818 total
= EXT4_I(inode
)->i_reserved_data_blocks
- to_free
;
1819 mdb
= ext4_calc_metadata_amount(inode
, total
);
1821 /* figure out how many metablocks to release */
1822 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1823 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1825 release
= to_free
+ mdb_free
;
1827 /* update fs dirty blocks counter for truncate case */
1828 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, release
);
1830 /* update per-inode reservations */
1831 BUG_ON(to_free
> EXT4_I(inode
)->i_reserved_data_blocks
);
1832 EXT4_I(inode
)->i_reserved_data_blocks
-= to_free
;
1834 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1835 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1836 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1838 vfs_dq_release_reservation_block(inode
, release
);
1841 static void ext4_da_page_release_reservation(struct page
*page
,
1842 unsigned long offset
)
1845 struct buffer_head
*head
, *bh
;
1846 unsigned int curr_off
= 0;
1848 head
= page_buffers(page
);
1851 unsigned int next_off
= curr_off
+ bh
->b_size
;
1853 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1855 clear_buffer_delay(bh
);
1857 curr_off
= next_off
;
1858 } while ((bh
= bh
->b_this_page
) != head
);
1859 ext4_da_release_space(page
->mapping
->host
, to_release
);
1863 * Delayed allocation stuff
1866 struct mpage_da_data
{
1867 struct inode
*inode
;
1868 sector_t b_blocknr
; /* start block number of extent */
1869 size_t b_size
; /* size of extent */
1870 unsigned long b_state
; /* state of the extent */
1871 unsigned long first_page
, next_page
; /* extent of pages */
1872 struct writeback_control
*wbc
;
1879 * mpage_da_submit_io - walks through extent of pages and try to write
1880 * them with writepage() call back
1882 * @mpd->inode: inode
1883 * @mpd->first_page: first page of the extent
1884 * @mpd->next_page: page after the last page of the extent
1886 * By the time mpage_da_submit_io() is called we expect all blocks
1887 * to be allocated. this may be wrong if allocation failed.
1889 * As pages are already locked by write_cache_pages(), we can't use it
1891 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1894 struct pagevec pvec
;
1895 unsigned long index
, end
;
1896 int ret
= 0, err
, nr_pages
, i
;
1897 struct inode
*inode
= mpd
->inode
;
1898 struct address_space
*mapping
= inode
->i_mapping
;
1900 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1902 * We need to start from the first_page to the next_page - 1
1903 * to make sure we also write the mapped dirty buffer_heads.
1904 * If we look at mpd->b_blocknr we would only be looking
1905 * at the currently mapped buffer_heads.
1907 index
= mpd
->first_page
;
1908 end
= mpd
->next_page
- 1;
1910 pagevec_init(&pvec
, 0);
1911 while (index
<= end
) {
1912 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1915 for (i
= 0; i
< nr_pages
; i
++) {
1916 struct page
*page
= pvec
.pages
[i
];
1918 index
= page
->index
;
1923 BUG_ON(!PageLocked(page
));
1924 BUG_ON(PageWriteback(page
));
1926 pages_skipped
= mpd
->wbc
->pages_skipped
;
1927 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
1928 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
1930 * have successfully written the page
1931 * without skipping the same
1933 mpd
->pages_written
++;
1935 * In error case, we have to continue because
1936 * remaining pages are still locked
1937 * XXX: unlock and re-dirty them?
1942 pagevec_release(&pvec
);
1948 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1950 * @mpd->inode - inode to walk through
1951 * @exbh->b_blocknr - first block on a disk
1952 * @exbh->b_size - amount of space in bytes
1953 * @logical - first logical block to start assignment with
1955 * the function goes through all passed space and put actual disk
1956 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1958 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
1959 struct buffer_head
*exbh
)
1961 struct inode
*inode
= mpd
->inode
;
1962 struct address_space
*mapping
= inode
->i_mapping
;
1963 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
1964 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
1965 struct buffer_head
*head
, *bh
;
1967 struct pagevec pvec
;
1970 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1971 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1972 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1974 pagevec_init(&pvec
, 0);
1976 while (index
<= end
) {
1977 /* XXX: optimize tail */
1978 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1981 for (i
= 0; i
< nr_pages
; i
++) {
1982 struct page
*page
= pvec
.pages
[i
];
1984 index
= page
->index
;
1989 BUG_ON(!PageLocked(page
));
1990 BUG_ON(PageWriteback(page
));
1991 BUG_ON(!page_has_buffers(page
));
1993 bh
= page_buffers(page
);
1996 /* skip blocks out of the range */
1998 if (cur_logical
>= logical
)
2001 } while ((bh
= bh
->b_this_page
) != head
);
2004 if (cur_logical
>= logical
+ blocks
)
2007 if (buffer_delay(bh
) ||
2008 buffer_unwritten(bh
)) {
2010 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2012 if (buffer_delay(bh
)) {
2013 clear_buffer_delay(bh
);
2014 bh
->b_blocknr
= pblock
;
2017 * unwritten already should have
2018 * blocknr assigned. Verify that
2020 clear_buffer_unwritten(bh
);
2021 BUG_ON(bh
->b_blocknr
!= pblock
);
2024 } else if (buffer_mapped(bh
))
2025 BUG_ON(bh
->b_blocknr
!= pblock
);
2029 } while ((bh
= bh
->b_this_page
) != head
);
2031 pagevec_release(&pvec
);
2037 * __unmap_underlying_blocks - just a helper function to unmap
2038 * set of blocks described by @bh
2040 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2041 struct buffer_head
*bh
)
2043 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2046 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2047 for (i
= 0; i
< blocks
; i
++)
2048 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2051 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2052 sector_t logical
, long blk_cnt
)
2056 struct pagevec pvec
;
2057 struct inode
*inode
= mpd
->inode
;
2058 struct address_space
*mapping
= inode
->i_mapping
;
2060 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2061 end
= (logical
+ blk_cnt
- 1) >>
2062 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2063 while (index
<= end
) {
2064 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2067 for (i
= 0; i
< nr_pages
; i
++) {
2068 struct page
*page
= pvec
.pages
[i
];
2069 index
= page
->index
;
2074 BUG_ON(!PageLocked(page
));
2075 BUG_ON(PageWriteback(page
));
2076 block_invalidatepage(page
, 0);
2077 ClearPageUptodate(page
);
2084 static void ext4_print_free_blocks(struct inode
*inode
)
2086 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2087 printk(KERN_EMERG
"Total free blocks count %lld\n",
2088 ext4_count_free_blocks(inode
->i_sb
));
2089 printk(KERN_EMERG
"Free/Dirty block details\n");
2090 printk(KERN_EMERG
"free_blocks=%lld\n",
2091 (long long)percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2092 printk(KERN_EMERG
"dirty_blocks=%lld\n",
2093 (long long)percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2094 printk(KERN_EMERG
"Block reservation details\n");
2095 printk(KERN_EMERG
"i_reserved_data_blocks=%u\n",
2096 EXT4_I(inode
)->i_reserved_data_blocks
);
2097 printk(KERN_EMERG
"i_reserved_meta_blocks=%u\n",
2098 EXT4_I(inode
)->i_reserved_meta_blocks
);
2103 * mpage_da_map_blocks - go through given space
2105 * @mpd - bh describing space
2107 * The function skips space we know is already mapped to disk blocks.
2110 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2112 int err
, blks
, get_blocks_flags
;
2113 struct buffer_head
new;
2114 sector_t next
= mpd
->b_blocknr
;
2115 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2116 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2117 handle_t
*handle
= NULL
;
2120 * We consider only non-mapped and non-allocated blocks
2122 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2123 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2124 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2128 * If we didn't accumulate anything to write simply return
2133 handle
= ext4_journal_current_handle();
2137 * Call ext4_get_blocks() to allocate any delayed allocation
2138 * blocks, or to convert an uninitialized extent to be
2139 * initialized (in the case where we have written into
2140 * one or more preallocated blocks).
2142 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2143 * indicate that we are on the delayed allocation path. This
2144 * affects functions in many different parts of the allocation
2145 * call path. This flag exists primarily because we don't
2146 * want to change *many* call functions, so ext4_get_blocks()
2147 * will set the magic i_delalloc_reserved_flag once the
2148 * inode's allocation semaphore is taken.
2150 * If the blocks in questions were delalloc blocks, set
2151 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2152 * variables are updated after the blocks have been allocated.
2155 get_blocks_flags
= (EXT4_GET_BLOCKS_CREATE
|
2156 EXT4_GET_BLOCKS_DELALLOC_RESERVE
);
2157 if (mpd
->b_state
& (1 << BH_Delay
))
2158 get_blocks_flags
|= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
;
2159 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2160 &new, get_blocks_flags
);
2164 * If get block returns with error we simply
2165 * return. Later writepage will redirty the page and
2166 * writepages will find the dirty page again
2171 if (err
== -ENOSPC
&&
2172 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2178 * get block failure will cause us to loop in
2179 * writepages, because a_ops->writepage won't be able
2180 * to make progress. The page will be redirtied by
2181 * writepage and writepages will again try to write
2184 printk(KERN_EMERG
"%s block allocation failed for inode %lu "
2185 "at logical offset %llu with max blocks "
2186 "%zd with error %d\n",
2187 __func__
, mpd
->inode
->i_ino
,
2188 (unsigned long long)next
,
2189 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2190 printk(KERN_EMERG
"This should not happen.!! "
2191 "Data will be lost\n");
2192 if (err
== -ENOSPC
) {
2193 ext4_print_free_blocks(mpd
->inode
);
2195 /* invalidate all the pages */
2196 ext4_da_block_invalidatepages(mpd
, next
,
2197 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2202 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2204 if (buffer_new(&new))
2205 __unmap_underlying_blocks(mpd
->inode
, &new);
2208 * If blocks are delayed marked, we need to
2209 * put actual blocknr and drop delayed bit
2211 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2212 (mpd
->b_state
& (1 << BH_Unwritten
)))
2213 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2215 if (ext4_should_order_data(mpd
->inode
)) {
2216 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2222 * Update on-disk size along with block allocation.
2224 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2225 if (disksize
> i_size_read(mpd
->inode
))
2226 disksize
= i_size_read(mpd
->inode
);
2227 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2228 ext4_update_i_disksize(mpd
->inode
, disksize
);
2229 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2235 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2236 (1 << BH_Delay) | (1 << BH_Unwritten))
2239 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2241 * @mpd->lbh - extent of blocks
2242 * @logical - logical number of the block in the file
2243 * @bh - bh of the block (used to access block's state)
2245 * the function is used to collect contig. blocks in same state
2247 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2248 sector_t logical
, size_t b_size
,
2249 unsigned long b_state
)
2252 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2254 /* check if thereserved journal credits might overflow */
2255 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2256 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2258 * With non-extent format we are limited by the journal
2259 * credit available. Total credit needed to insert
2260 * nrblocks contiguous blocks is dependent on the
2261 * nrblocks. So limit nrblocks.
2264 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2265 EXT4_MAX_TRANS_DATA
) {
2267 * Adding the new buffer_head would make it cross the
2268 * allowed limit for which we have journal credit
2269 * reserved. So limit the new bh->b_size
2271 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2272 mpd
->inode
->i_blkbits
;
2273 /* we will do mpage_da_submit_io in the next loop */
2277 * First block in the extent
2279 if (mpd
->b_size
== 0) {
2280 mpd
->b_blocknr
= logical
;
2281 mpd
->b_size
= b_size
;
2282 mpd
->b_state
= b_state
& BH_FLAGS
;
2286 next
= mpd
->b_blocknr
+ nrblocks
;
2288 * Can we merge the block to our big extent?
2290 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2291 mpd
->b_size
+= b_size
;
2297 * We couldn't merge the block to our extent, so we
2298 * need to flush current extent and start new one
2300 if (mpage_da_map_blocks(mpd
) == 0)
2301 mpage_da_submit_io(mpd
);
2306 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2308 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2312 * __mpage_da_writepage - finds extent of pages and blocks
2314 * @page: page to consider
2315 * @wbc: not used, we just follow rules
2318 * The function finds extents of pages and scan them for all blocks.
2320 static int __mpage_da_writepage(struct page
*page
,
2321 struct writeback_control
*wbc
, void *data
)
2323 struct mpage_da_data
*mpd
= data
;
2324 struct inode
*inode
= mpd
->inode
;
2325 struct buffer_head
*bh
, *head
;
2330 * Rest of the page in the page_vec
2331 * redirty then and skip then. We will
2332 * try to to write them again after
2333 * starting a new transaction
2335 redirty_page_for_writepage(wbc
, page
);
2337 return MPAGE_DA_EXTENT_TAIL
;
2340 * Can we merge this page to current extent?
2342 if (mpd
->next_page
!= page
->index
) {
2344 * Nope, we can't. So, we map non-allocated blocks
2345 * and start IO on them using writepage()
2347 if (mpd
->next_page
!= mpd
->first_page
) {
2348 if (mpage_da_map_blocks(mpd
) == 0)
2349 mpage_da_submit_io(mpd
);
2351 * skip rest of the page in the page_vec
2354 redirty_page_for_writepage(wbc
, page
);
2356 return MPAGE_DA_EXTENT_TAIL
;
2360 * Start next extent of pages ...
2362 mpd
->first_page
= page
->index
;
2372 mpd
->next_page
= page
->index
+ 1;
2373 logical
= (sector_t
) page
->index
<<
2374 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2376 if (!page_has_buffers(page
)) {
2377 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2378 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2380 return MPAGE_DA_EXTENT_TAIL
;
2383 * Page with regular buffer heads, just add all dirty ones
2385 head
= page_buffers(page
);
2388 BUG_ON(buffer_locked(bh
));
2390 * We need to try to allocate
2391 * unmapped blocks in the same page.
2392 * Otherwise we won't make progress
2393 * with the page in ext4_writepage
2395 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2396 mpage_add_bh_to_extent(mpd
, logical
,
2400 return MPAGE_DA_EXTENT_TAIL
;
2401 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2403 * mapped dirty buffer. We need to update
2404 * the b_state because we look at
2405 * b_state in mpage_da_map_blocks. We don't
2406 * update b_size because if we find an
2407 * unmapped buffer_head later we need to
2408 * use the b_state flag of that buffer_head.
2410 if (mpd
->b_size
== 0)
2411 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2414 } while ((bh
= bh
->b_this_page
) != head
);
2421 * This is a special get_blocks_t callback which is used by
2422 * ext4_da_write_begin(). It will either return mapped block or
2423 * reserve space for a single block.
2425 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2426 * We also have b_blocknr = -1 and b_bdev initialized properly
2428 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2429 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2430 * initialized properly.
2432 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2433 struct buffer_head
*bh_result
, int create
)
2436 sector_t invalid_block
= ~((sector_t
) 0xffff);
2438 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2441 BUG_ON(create
== 0);
2442 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2445 * first, we need to know whether the block is allocated already
2446 * preallocated blocks are unmapped but should treated
2447 * the same as allocated blocks.
2449 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2450 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2451 /* the block isn't (pre)allocated yet, let's reserve space */
2453 * XXX: __block_prepare_write() unmaps passed block,
2456 ret
= ext4_da_reserve_space(inode
, 1);
2458 /* not enough space to reserve */
2461 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2462 set_buffer_new(bh_result
);
2463 set_buffer_delay(bh_result
);
2464 } else if (ret
> 0) {
2465 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2466 if (buffer_unwritten(bh_result
)) {
2467 /* A delayed write to unwritten bh should
2468 * be marked new and mapped. Mapped ensures
2469 * that we don't do get_block multiple times
2470 * when we write to the same offset and new
2471 * ensures that we do proper zero out for
2474 set_buffer_new(bh_result
);
2475 set_buffer_mapped(bh_result
);
2484 * This function is used as a standard get_block_t calback function
2485 * when there is no desire to allocate any blocks. It is used as a
2486 * callback function for block_prepare_write(), nobh_writepage(), and
2487 * block_write_full_page(). These functions should only try to map a
2488 * single block at a time.
2490 * Since this function doesn't do block allocations even if the caller
2491 * requests it by passing in create=1, it is critically important that
2492 * any caller checks to make sure that any buffer heads are returned
2493 * by this function are either all already mapped or marked for
2494 * delayed allocation before calling nobh_writepage() or
2495 * block_write_full_page(). Otherwise, b_blocknr could be left
2496 * unitialized, and the page write functions will be taken by
2499 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2500 struct buffer_head
*bh_result
, int create
)
2503 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2505 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2508 * we don't want to do block allocation in writepage
2509 * so call get_block_wrap with create = 0
2511 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2513 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2519 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2525 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2531 static int __ext4_journalled_writepage(struct page
*page
,
2532 struct writeback_control
*wbc
,
2535 struct address_space
*mapping
= page
->mapping
;
2536 struct inode
*inode
= mapping
->host
;
2537 struct buffer_head
*page_bufs
;
2538 handle_t
*handle
= NULL
;
2542 page_bufs
= page_buffers(page
);
2544 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2545 /* As soon as we unlock the page, it can go away, but we have
2546 * references to buffers so we are safe */
2549 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2550 if (IS_ERR(handle
)) {
2551 ret
= PTR_ERR(handle
);
2555 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2556 do_journal_get_write_access
);
2558 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2562 err
= ext4_journal_stop(handle
);
2566 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2567 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
2573 * Note that we don't need to start a transaction unless we're journaling data
2574 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2575 * need to file the inode to the transaction's list in ordered mode because if
2576 * we are writing back data added by write(), the inode is already there and if
2577 * we are writing back data modified via mmap(), noone guarantees in which
2578 * transaction the data will hit the disk. In case we are journaling data, we
2579 * cannot start transaction directly because transaction start ranks above page
2580 * lock so we have to do some magic.
2582 * This function can get called via...
2583 * - ext4_da_writepages after taking page lock (have journal handle)
2584 * - journal_submit_inode_data_buffers (no journal handle)
2585 * - shrink_page_list via pdflush (no journal handle)
2586 * - grab_page_cache when doing write_begin (have journal handle)
2588 * We don't do any block allocation in this function. If we have page with
2589 * multiple blocks we need to write those buffer_heads that are mapped. This
2590 * is important for mmaped based write. So if we do with blocksize 1K
2591 * truncate(f, 1024);
2592 * a = mmap(f, 0, 4096);
2594 * truncate(f, 4096);
2595 * we have in the page first buffer_head mapped via page_mkwrite call back
2596 * but other bufer_heads would be unmapped but dirty(dirty done via the
2597 * do_wp_page). So writepage should write the first block. If we modify
2598 * the mmap area beyond 1024 we will again get a page_fault and the
2599 * page_mkwrite callback will do the block allocation and mark the
2600 * buffer_heads mapped.
2602 * We redirty the page if we have any buffer_heads that is either delay or
2603 * unwritten in the page.
2605 * We can get recursively called as show below.
2607 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2610 * But since we don't do any block allocation we should not deadlock.
2611 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2613 static int ext4_writepage(struct page
*page
,
2614 struct writeback_control
*wbc
)
2619 struct buffer_head
*page_bufs
;
2620 struct inode
*inode
= page
->mapping
->host
;
2622 trace_ext4_writepage(inode
, page
);
2623 size
= i_size_read(inode
);
2624 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2625 len
= size
& ~PAGE_CACHE_MASK
;
2627 len
= PAGE_CACHE_SIZE
;
2629 if (page_has_buffers(page
)) {
2630 page_bufs
= page_buffers(page
);
2631 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2632 ext4_bh_delay_or_unwritten
)) {
2634 * We don't want to do block allocation
2635 * So redirty the page and return
2636 * We may reach here when we do a journal commit
2637 * via journal_submit_inode_data_buffers.
2638 * If we don't have mapping block we just ignore
2639 * them. We can also reach here via shrink_page_list
2641 redirty_page_for_writepage(wbc
, page
);
2647 * The test for page_has_buffers() is subtle:
2648 * We know the page is dirty but it lost buffers. That means
2649 * that at some moment in time after write_begin()/write_end()
2650 * has been called all buffers have been clean and thus they
2651 * must have been written at least once. So they are all
2652 * mapped and we can happily proceed with mapping them
2653 * and writing the page.
2655 * Try to initialize the buffer_heads and check whether
2656 * all are mapped and non delay. We don't want to
2657 * do block allocation here.
2659 ret
= block_prepare_write(page
, 0, len
,
2660 noalloc_get_block_write
);
2662 page_bufs
= page_buffers(page
);
2663 /* check whether all are mapped and non delay */
2664 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2665 ext4_bh_delay_or_unwritten
)) {
2666 redirty_page_for_writepage(wbc
, page
);
2672 * We can't do block allocation here
2673 * so just redity the page and unlock
2676 redirty_page_for_writepage(wbc
, page
);
2680 /* now mark the buffer_heads as dirty and uptodate */
2681 block_commit_write(page
, 0, len
);
2684 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2686 * It's mmapped pagecache. Add buffers and journal it. There
2687 * doesn't seem much point in redirtying the page here.
2689 ClearPageChecked(page
);
2690 return __ext4_journalled_writepage(page
, wbc
, len
);
2693 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2694 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2696 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2703 * This is called via ext4_da_writepages() to
2704 * calulate the total number of credits to reserve to fit
2705 * a single extent allocation into a single transaction,
2706 * ext4_da_writpeages() will loop calling this before
2707 * the block allocation.
2710 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2712 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2715 * With non-extent format the journal credit needed to
2716 * insert nrblocks contiguous block is dependent on
2717 * number of contiguous block. So we will limit
2718 * number of contiguous block to a sane value
2720 if (!(inode
->i_flags
& EXT4_EXTENTS_FL
) &&
2721 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2722 max_blocks
= EXT4_MAX_TRANS_DATA
;
2724 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2727 static int ext4_da_writepages(struct address_space
*mapping
,
2728 struct writeback_control
*wbc
)
2731 int range_whole
= 0;
2732 handle_t
*handle
= NULL
;
2733 struct mpage_da_data mpd
;
2734 struct inode
*inode
= mapping
->host
;
2735 int no_nrwrite_index_update
;
2736 int pages_written
= 0;
2738 int range_cyclic
, cycled
= 1, io_done
= 0;
2739 int needed_blocks
, ret
= 0, nr_to_writebump
= 0;
2740 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2742 trace_ext4_da_writepages(inode
, wbc
);
2745 * No pages to write? This is mainly a kludge to avoid starting
2746 * a transaction for special inodes like journal inode on last iput()
2747 * because that could violate lock ordering on umount
2749 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2753 * If the filesystem has aborted, it is read-only, so return
2754 * right away instead of dumping stack traces later on that
2755 * will obscure the real source of the problem. We test
2756 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2757 * the latter could be true if the filesystem is mounted
2758 * read-only, and in that case, ext4_da_writepages should
2759 * *never* be called, so if that ever happens, we would want
2762 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2766 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2767 * This make sure small files blocks are allocated in
2768 * single attempt. This ensure that small files
2769 * get less fragmented.
2771 if (wbc
->nr_to_write
< sbi
->s_mb_stream_request
) {
2772 nr_to_writebump
= sbi
->s_mb_stream_request
- wbc
->nr_to_write
;
2773 wbc
->nr_to_write
= sbi
->s_mb_stream_request
;
2775 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2778 range_cyclic
= wbc
->range_cyclic
;
2779 if (wbc
->range_cyclic
) {
2780 index
= mapping
->writeback_index
;
2783 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2784 wbc
->range_end
= LLONG_MAX
;
2785 wbc
->range_cyclic
= 0;
2787 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2790 mpd
.inode
= mapping
->host
;
2793 * we don't want write_cache_pages to update
2794 * nr_to_write and writeback_index
2796 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2797 wbc
->no_nrwrite_index_update
= 1;
2798 pages_skipped
= wbc
->pages_skipped
;
2801 while (!ret
&& wbc
->nr_to_write
> 0) {
2804 * we insert one extent at a time. So we need
2805 * credit needed for single extent allocation.
2806 * journalled mode is currently not supported
2809 BUG_ON(ext4_should_journal_data(inode
));
2810 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2812 /* start a new transaction*/
2813 handle
= ext4_journal_start(inode
, needed_blocks
);
2814 if (IS_ERR(handle
)) {
2815 ret
= PTR_ERR(handle
);
2816 printk(KERN_CRIT
"%s: jbd2_start: "
2817 "%ld pages, ino %lu; err %d\n", __func__
,
2818 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2820 goto out_writepages
;
2824 * Now call __mpage_da_writepage to find the next
2825 * contiguous region of logical blocks that need
2826 * blocks to be allocated by ext4. We don't actually
2827 * submit the blocks for I/O here, even though
2828 * write_cache_pages thinks it will, and will set the
2829 * pages as clean for write before calling
2830 * __mpage_da_writepage().
2838 mpd
.pages_written
= 0;
2840 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2843 * If we have a contigous extent of pages and we
2844 * haven't done the I/O yet, map the blocks and submit
2847 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2848 if (mpage_da_map_blocks(&mpd
) == 0)
2849 mpage_da_submit_io(&mpd
);
2851 ret
= MPAGE_DA_EXTENT_TAIL
;
2853 wbc
->nr_to_write
-= mpd
.pages_written
;
2855 ext4_journal_stop(handle
);
2857 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2858 /* commit the transaction which would
2859 * free blocks released in the transaction
2862 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2863 wbc
->pages_skipped
= pages_skipped
;
2865 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2867 * got one extent now try with
2870 pages_written
+= mpd
.pages_written
;
2871 wbc
->pages_skipped
= pages_skipped
;
2874 } else if (wbc
->nr_to_write
)
2876 * There is no more writeout needed
2877 * or we requested for a noblocking writeout
2878 * and we found the device congested
2882 if (!io_done
&& !cycled
) {
2885 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2886 wbc
->range_end
= mapping
->writeback_index
- 1;
2889 if (pages_skipped
!= wbc
->pages_skipped
)
2890 printk(KERN_EMERG
"This should not happen leaving %s "
2891 "with nr_to_write = %ld ret = %d\n",
2892 __func__
, wbc
->nr_to_write
, ret
);
2895 index
+= pages_written
;
2896 wbc
->range_cyclic
= range_cyclic
;
2897 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2899 * set the writeback_index so that range_cyclic
2900 * mode will write it back later
2902 mapping
->writeback_index
= index
;
2905 if (!no_nrwrite_index_update
)
2906 wbc
->no_nrwrite_index_update
= 0;
2907 wbc
->nr_to_write
-= nr_to_writebump
;
2908 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2912 #define FALL_BACK_TO_NONDELALLOC 1
2913 static int ext4_nonda_switch(struct super_block
*sb
)
2915 s64 free_blocks
, dirty_blocks
;
2916 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2919 * switch to non delalloc mode if we are running low
2920 * on free block. The free block accounting via percpu
2921 * counters can get slightly wrong with percpu_counter_batch getting
2922 * accumulated on each CPU without updating global counters
2923 * Delalloc need an accurate free block accounting. So switch
2924 * to non delalloc when we are near to error range.
2926 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
2927 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
2928 if (2 * free_blocks
< 3 * dirty_blocks
||
2929 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
2931 * free block count is less that 150% of dirty blocks
2932 * or free blocks is less that watermark
2939 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2940 loff_t pos
, unsigned len
, unsigned flags
,
2941 struct page
**pagep
, void **fsdata
)
2943 int ret
, retries
= 0;
2947 struct inode
*inode
= mapping
->host
;
2950 index
= pos
>> PAGE_CACHE_SHIFT
;
2951 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2954 if (ext4_nonda_switch(inode
->i_sb
)) {
2955 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2956 return ext4_write_begin(file
, mapping
, pos
,
2957 len
, flags
, pagep
, fsdata
);
2959 *fsdata
= (void *)0;
2960 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2963 * With delayed allocation, we don't log the i_disksize update
2964 * if there is delayed block allocation. But we still need
2965 * to journalling the i_disksize update if writes to the end
2966 * of file which has an already mapped buffer.
2968 handle
= ext4_journal_start(inode
, 1);
2969 if (IS_ERR(handle
)) {
2970 ret
= PTR_ERR(handle
);
2973 /* We cannot recurse into the filesystem as the transaction is already
2975 flags
|= AOP_FLAG_NOFS
;
2977 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2979 ext4_journal_stop(handle
);
2985 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
2986 ext4_da_get_block_prep
);
2989 ext4_journal_stop(handle
);
2990 page_cache_release(page
);
2992 * block_write_begin may have instantiated a few blocks
2993 * outside i_size. Trim these off again. Don't need
2994 * i_size_read because we hold i_mutex.
2996 if (pos
+ len
> inode
->i_size
)
2997 ext4_truncate(inode
);
3000 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3007 * Check if we should update i_disksize
3008 * when write to the end of file but not require block allocation
3010 static int ext4_da_should_update_i_disksize(struct page
*page
,
3011 unsigned long offset
)
3013 struct buffer_head
*bh
;
3014 struct inode
*inode
= page
->mapping
->host
;
3018 bh
= page_buffers(page
);
3019 idx
= offset
>> inode
->i_blkbits
;
3021 for (i
= 0; i
< idx
; i
++)
3022 bh
= bh
->b_this_page
;
3024 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3029 static int ext4_da_write_end(struct file
*file
,
3030 struct address_space
*mapping
,
3031 loff_t pos
, unsigned len
, unsigned copied
,
3032 struct page
*page
, void *fsdata
)
3034 struct inode
*inode
= mapping
->host
;
3036 handle_t
*handle
= ext4_journal_current_handle();
3038 unsigned long start
, end
;
3039 int write_mode
= (int)(unsigned long)fsdata
;
3041 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3042 if (ext4_should_order_data(inode
)) {
3043 return ext4_ordered_write_end(file
, mapping
, pos
,
3044 len
, copied
, page
, fsdata
);
3045 } else if (ext4_should_writeback_data(inode
)) {
3046 return ext4_writeback_write_end(file
, mapping
, pos
,
3047 len
, copied
, page
, fsdata
);
3053 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3054 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3055 end
= start
+ copied
- 1;
3058 * generic_write_end() will run mark_inode_dirty() if i_size
3059 * changes. So let's piggyback the i_disksize mark_inode_dirty
3063 new_i_size
= pos
+ copied
;
3064 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3065 if (ext4_da_should_update_i_disksize(page
, end
)) {
3066 down_write(&EXT4_I(inode
)->i_data_sem
);
3067 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3069 * Updating i_disksize when extending file
3070 * without needing block allocation
3072 if (ext4_should_order_data(inode
))
3073 ret
= ext4_jbd2_file_inode(handle
,
3076 EXT4_I(inode
)->i_disksize
= new_i_size
;
3078 up_write(&EXT4_I(inode
)->i_data_sem
);
3079 /* We need to mark inode dirty even if
3080 * new_i_size is less that inode->i_size
3081 * bu greater than i_disksize.(hint delalloc)
3083 ext4_mark_inode_dirty(handle
, inode
);
3086 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3091 ret2
= ext4_journal_stop(handle
);
3095 return ret
? ret
: copied
;
3098 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3101 * Drop reserved blocks
3103 BUG_ON(!PageLocked(page
));
3104 if (!page_has_buffers(page
))
3107 ext4_da_page_release_reservation(page
, offset
);
3110 ext4_invalidatepage(page
, offset
);
3116 * Force all delayed allocation blocks to be allocated for a given inode.
3118 int ext4_alloc_da_blocks(struct inode
*inode
)
3120 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3121 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3125 * We do something simple for now. The filemap_flush() will
3126 * also start triggering a write of the data blocks, which is
3127 * not strictly speaking necessary (and for users of
3128 * laptop_mode, not even desirable). However, to do otherwise
3129 * would require replicating code paths in:
3131 * ext4_da_writepages() ->
3132 * write_cache_pages() ---> (via passed in callback function)
3133 * __mpage_da_writepage() -->
3134 * mpage_add_bh_to_extent()
3135 * mpage_da_map_blocks()
3137 * The problem is that write_cache_pages(), located in
3138 * mm/page-writeback.c, marks pages clean in preparation for
3139 * doing I/O, which is not desirable if we're not planning on
3142 * We could call write_cache_pages(), and then redirty all of
3143 * the pages by calling redirty_page_for_writeback() but that
3144 * would be ugly in the extreme. So instead we would need to
3145 * replicate parts of the code in the above functions,
3146 * simplifying them becuase we wouldn't actually intend to
3147 * write out the pages, but rather only collect contiguous
3148 * logical block extents, call the multi-block allocator, and
3149 * then update the buffer heads with the block allocations.
3151 * For now, though, we'll cheat by calling filemap_flush(),
3152 * which will map the blocks, and start the I/O, but not
3153 * actually wait for the I/O to complete.
3155 return filemap_flush(inode
->i_mapping
);
3159 * bmap() is special. It gets used by applications such as lilo and by
3160 * the swapper to find the on-disk block of a specific piece of data.
3162 * Naturally, this is dangerous if the block concerned is still in the
3163 * journal. If somebody makes a swapfile on an ext4 data-journaling
3164 * filesystem and enables swap, then they may get a nasty shock when the
3165 * data getting swapped to that swapfile suddenly gets overwritten by
3166 * the original zero's written out previously to the journal and
3167 * awaiting writeback in the kernel's buffer cache.
3169 * So, if we see any bmap calls here on a modified, data-journaled file,
3170 * take extra steps to flush any blocks which might be in the cache.
3172 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3174 struct inode
*inode
= mapping
->host
;
3178 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3179 test_opt(inode
->i_sb
, DELALLOC
)) {
3181 * With delalloc we want to sync the file
3182 * so that we can make sure we allocate
3185 filemap_write_and_wait(mapping
);
3188 if (EXT4_JOURNAL(inode
) && EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
3190 * This is a REALLY heavyweight approach, but the use of
3191 * bmap on dirty files is expected to be extremely rare:
3192 * only if we run lilo or swapon on a freshly made file
3193 * do we expect this to happen.
3195 * (bmap requires CAP_SYS_RAWIO so this does not
3196 * represent an unprivileged user DOS attack --- we'd be
3197 * in trouble if mortal users could trigger this path at
3200 * NB. EXT4_STATE_JDATA is not set on files other than
3201 * regular files. If somebody wants to bmap a directory
3202 * or symlink and gets confused because the buffer
3203 * hasn't yet been flushed to disk, they deserve
3204 * everything they get.
3207 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
3208 journal
= EXT4_JOURNAL(inode
);
3209 jbd2_journal_lock_updates(journal
);
3210 err
= jbd2_journal_flush(journal
);
3211 jbd2_journal_unlock_updates(journal
);
3217 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3220 static int ext4_readpage(struct file
*file
, struct page
*page
)
3222 return mpage_readpage(page
, ext4_get_block
);
3226 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3227 struct list_head
*pages
, unsigned nr_pages
)
3229 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3232 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3234 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3237 * If it's a full truncate we just forget about the pending dirtying
3240 ClearPageChecked(page
);
3243 jbd2_journal_invalidatepage(journal
, page
, offset
);
3245 block_invalidatepage(page
, offset
);
3248 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3250 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3252 WARN_ON(PageChecked(page
));
3253 if (!page_has_buffers(page
))
3256 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3258 return try_to_free_buffers(page
);
3262 * If the O_DIRECT write will extend the file then add this inode to the
3263 * orphan list. So recovery will truncate it back to the original size
3264 * if the machine crashes during the write.
3266 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3267 * crashes then stale disk data _may_ be exposed inside the file. But current
3268 * VFS code falls back into buffered path in that case so we are safe.
3270 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3271 const struct iovec
*iov
, loff_t offset
,
3272 unsigned long nr_segs
)
3274 struct file
*file
= iocb
->ki_filp
;
3275 struct inode
*inode
= file
->f_mapping
->host
;
3276 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3280 size_t count
= iov_length(iov
, nr_segs
);
3283 loff_t final_size
= offset
+ count
;
3285 if (final_size
> inode
->i_size
) {
3286 /* Credits for sb + inode write */
3287 handle
= ext4_journal_start(inode
, 2);
3288 if (IS_ERR(handle
)) {
3289 ret
= PTR_ERR(handle
);
3292 ret
= ext4_orphan_add(handle
, inode
);
3294 ext4_journal_stop(handle
);
3298 ei
->i_disksize
= inode
->i_size
;
3299 ext4_journal_stop(handle
);
3303 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
3305 ext4_get_block
, NULL
);
3310 /* Credits for sb + inode write */
3311 handle
= ext4_journal_start(inode
, 2);
3312 if (IS_ERR(handle
)) {
3313 /* This is really bad luck. We've written the data
3314 * but cannot extend i_size. Bail out and pretend
3315 * the write failed... */
3316 ret
= PTR_ERR(handle
);
3320 ext4_orphan_del(handle
, inode
);
3322 loff_t end
= offset
+ ret
;
3323 if (end
> inode
->i_size
) {
3324 ei
->i_disksize
= end
;
3325 i_size_write(inode
, end
);
3327 * We're going to return a positive `ret'
3328 * here due to non-zero-length I/O, so there's
3329 * no way of reporting error returns from
3330 * ext4_mark_inode_dirty() to userspace. So
3333 ext4_mark_inode_dirty(handle
, inode
);
3336 err
= ext4_journal_stop(handle
);
3345 * Pages can be marked dirty completely asynchronously from ext4's journalling
3346 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3347 * much here because ->set_page_dirty is called under VFS locks. The page is
3348 * not necessarily locked.
3350 * We cannot just dirty the page and leave attached buffers clean, because the
3351 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3352 * or jbddirty because all the journalling code will explode.
3354 * So what we do is to mark the page "pending dirty" and next time writepage
3355 * is called, propagate that into the buffers appropriately.
3357 static int ext4_journalled_set_page_dirty(struct page
*page
)
3359 SetPageChecked(page
);
3360 return __set_page_dirty_nobuffers(page
);
3363 static const struct address_space_operations ext4_ordered_aops
= {
3364 .readpage
= ext4_readpage
,
3365 .readpages
= ext4_readpages
,
3366 .writepage
= ext4_writepage
,
3367 .sync_page
= block_sync_page
,
3368 .write_begin
= ext4_write_begin
,
3369 .write_end
= ext4_ordered_write_end
,
3371 .invalidatepage
= ext4_invalidatepage
,
3372 .releasepage
= ext4_releasepage
,
3373 .direct_IO
= ext4_direct_IO
,
3374 .migratepage
= buffer_migrate_page
,
3375 .is_partially_uptodate
= block_is_partially_uptodate
,
3378 static const struct address_space_operations ext4_writeback_aops
= {
3379 .readpage
= ext4_readpage
,
3380 .readpages
= ext4_readpages
,
3381 .writepage
= ext4_writepage
,
3382 .sync_page
= block_sync_page
,
3383 .write_begin
= ext4_write_begin
,
3384 .write_end
= ext4_writeback_write_end
,
3386 .invalidatepage
= ext4_invalidatepage
,
3387 .releasepage
= ext4_releasepage
,
3388 .direct_IO
= ext4_direct_IO
,
3389 .migratepage
= buffer_migrate_page
,
3390 .is_partially_uptodate
= block_is_partially_uptodate
,
3393 static const struct address_space_operations ext4_journalled_aops
= {
3394 .readpage
= ext4_readpage
,
3395 .readpages
= ext4_readpages
,
3396 .writepage
= ext4_writepage
,
3397 .sync_page
= block_sync_page
,
3398 .write_begin
= ext4_write_begin
,
3399 .write_end
= ext4_journalled_write_end
,
3400 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3402 .invalidatepage
= ext4_invalidatepage
,
3403 .releasepage
= ext4_releasepage
,
3404 .is_partially_uptodate
= block_is_partially_uptodate
,
3407 static const struct address_space_operations ext4_da_aops
= {
3408 .readpage
= ext4_readpage
,
3409 .readpages
= ext4_readpages
,
3410 .writepage
= ext4_writepage
,
3411 .writepages
= ext4_da_writepages
,
3412 .sync_page
= block_sync_page
,
3413 .write_begin
= ext4_da_write_begin
,
3414 .write_end
= ext4_da_write_end
,
3416 .invalidatepage
= ext4_da_invalidatepage
,
3417 .releasepage
= ext4_releasepage
,
3418 .direct_IO
= ext4_direct_IO
,
3419 .migratepage
= buffer_migrate_page
,
3420 .is_partially_uptodate
= block_is_partially_uptodate
,
3423 void ext4_set_aops(struct inode
*inode
)
3425 if (ext4_should_order_data(inode
) &&
3426 test_opt(inode
->i_sb
, DELALLOC
))
3427 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3428 else if (ext4_should_order_data(inode
))
3429 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3430 else if (ext4_should_writeback_data(inode
) &&
3431 test_opt(inode
->i_sb
, DELALLOC
))
3432 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3433 else if (ext4_should_writeback_data(inode
))
3434 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3436 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3440 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3441 * up to the end of the block which corresponds to `from'.
3442 * This required during truncate. We need to physically zero the tail end
3443 * of that block so it doesn't yield old data if the file is later grown.
3445 int ext4_block_truncate_page(handle_t
*handle
,
3446 struct address_space
*mapping
, loff_t from
)
3448 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3449 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3450 unsigned blocksize
, length
, pos
;
3452 struct inode
*inode
= mapping
->host
;
3453 struct buffer_head
*bh
;
3457 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3458 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3462 blocksize
= inode
->i_sb
->s_blocksize
;
3463 length
= blocksize
- (offset
& (blocksize
- 1));
3464 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3467 * For "nobh" option, we can only work if we don't need to
3468 * read-in the page - otherwise we create buffers to do the IO.
3470 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
3471 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
3472 zero_user(page
, offset
, length
);
3473 set_page_dirty(page
);
3477 if (!page_has_buffers(page
))
3478 create_empty_buffers(page
, blocksize
, 0);
3480 /* Find the buffer that contains "offset" */
3481 bh
= page_buffers(page
);
3483 while (offset
>= pos
) {
3484 bh
= bh
->b_this_page
;
3490 if (buffer_freed(bh
)) {
3491 BUFFER_TRACE(bh
, "freed: skip");
3495 if (!buffer_mapped(bh
)) {
3496 BUFFER_TRACE(bh
, "unmapped");
3497 ext4_get_block(inode
, iblock
, bh
, 0);
3498 /* unmapped? It's a hole - nothing to do */
3499 if (!buffer_mapped(bh
)) {
3500 BUFFER_TRACE(bh
, "still unmapped");
3505 /* Ok, it's mapped. Make sure it's up-to-date */
3506 if (PageUptodate(page
))
3507 set_buffer_uptodate(bh
);
3509 if (!buffer_uptodate(bh
)) {
3511 ll_rw_block(READ
, 1, &bh
);
3513 /* Uhhuh. Read error. Complain and punt. */
3514 if (!buffer_uptodate(bh
))
3518 if (ext4_should_journal_data(inode
)) {
3519 BUFFER_TRACE(bh
, "get write access");
3520 err
= ext4_journal_get_write_access(handle
, bh
);
3525 zero_user(page
, offset
, length
);
3527 BUFFER_TRACE(bh
, "zeroed end of block");
3530 if (ext4_should_journal_data(inode
)) {
3531 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3533 if (ext4_should_order_data(inode
))
3534 err
= ext4_jbd2_file_inode(handle
, inode
);
3535 mark_buffer_dirty(bh
);
3540 page_cache_release(page
);
3545 * Probably it should be a library function... search for first non-zero word
3546 * or memcmp with zero_page, whatever is better for particular architecture.
3549 static inline int all_zeroes(__le32
*p
, __le32
*q
)
3558 * ext4_find_shared - find the indirect blocks for partial truncation.
3559 * @inode: inode in question
3560 * @depth: depth of the affected branch
3561 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3562 * @chain: place to store the pointers to partial indirect blocks
3563 * @top: place to the (detached) top of branch
3565 * This is a helper function used by ext4_truncate().
3567 * When we do truncate() we may have to clean the ends of several
3568 * indirect blocks but leave the blocks themselves alive. Block is
3569 * partially truncated if some data below the new i_size is refered
3570 * from it (and it is on the path to the first completely truncated
3571 * data block, indeed). We have to free the top of that path along
3572 * with everything to the right of the path. Since no allocation
3573 * past the truncation point is possible until ext4_truncate()
3574 * finishes, we may safely do the latter, but top of branch may
3575 * require special attention - pageout below the truncation point
3576 * might try to populate it.
3578 * We atomically detach the top of branch from the tree, store the
3579 * block number of its root in *@top, pointers to buffer_heads of
3580 * partially truncated blocks - in @chain[].bh and pointers to
3581 * their last elements that should not be removed - in
3582 * @chain[].p. Return value is the pointer to last filled element
3585 * The work left to caller to do the actual freeing of subtrees:
3586 * a) free the subtree starting from *@top
3587 * b) free the subtrees whose roots are stored in
3588 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3589 * c) free the subtrees growing from the inode past the @chain[0].
3590 * (no partially truncated stuff there). */
3592 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
3593 ext4_lblk_t offsets
[4], Indirect chain
[4],
3596 Indirect
*partial
, *p
;
3600 /* Make k index the deepest non-null offest + 1 */
3601 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
3603 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
3604 /* Writer: pointers */
3606 partial
= chain
+ k
-1;
3608 * If the branch acquired continuation since we've looked at it -
3609 * fine, it should all survive and (new) top doesn't belong to us.
3611 if (!partial
->key
&& *partial
->p
)
3614 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
3617 * OK, we've found the last block that must survive. The rest of our
3618 * branch should be detached before unlocking. However, if that rest
3619 * of branch is all ours and does not grow immediately from the inode
3620 * it's easier to cheat and just decrement partial->p.
3622 if (p
== chain
+ k
- 1 && p
> chain
) {
3626 /* Nope, don't do this in ext4. Must leave the tree intact */
3633 while (partial
> p
) {
3634 brelse(partial
->bh
);
3642 * Zero a number of block pointers in either an inode or an indirect block.
3643 * If we restart the transaction we must again get write access to the
3644 * indirect block for further modification.
3646 * We release `count' blocks on disk, but (last - first) may be greater
3647 * than `count' because there can be holes in there.
3649 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
3650 struct buffer_head
*bh
,
3651 ext4_fsblk_t block_to_free
,
3652 unsigned long count
, __le32
*first
,
3656 if (try_to_extend_transaction(handle
, inode
)) {
3658 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
3659 ext4_handle_dirty_metadata(handle
, inode
, bh
);
3661 ext4_mark_inode_dirty(handle
, inode
);
3662 ext4_journal_test_restart(handle
, inode
);
3664 BUFFER_TRACE(bh
, "retaking write access");
3665 ext4_journal_get_write_access(handle
, bh
);
3670 * Any buffers which are on the journal will be in memory. We
3671 * find them on the hash table so jbd2_journal_revoke() will
3672 * run jbd2_journal_forget() on them. We've already detached
3673 * each block from the file, so bforget() in
3674 * jbd2_journal_forget() should be safe.
3676 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3678 for (p
= first
; p
< last
; p
++) {
3679 u32 nr
= le32_to_cpu(*p
);
3681 struct buffer_head
*tbh
;
3684 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
3685 ext4_forget(handle
, 0, inode
, tbh
, nr
);
3689 ext4_free_blocks(handle
, inode
, block_to_free
, count
, 0);
3693 * ext4_free_data - free a list of data blocks
3694 * @handle: handle for this transaction
3695 * @inode: inode we are dealing with
3696 * @this_bh: indirect buffer_head which contains *@first and *@last
3697 * @first: array of block numbers
3698 * @last: points immediately past the end of array
3700 * We are freeing all blocks refered from that array (numbers are stored as
3701 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3703 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3704 * blocks are contiguous then releasing them at one time will only affect one
3705 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3706 * actually use a lot of journal space.
3708 * @this_bh will be %NULL if @first and @last point into the inode's direct
3711 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
3712 struct buffer_head
*this_bh
,
3713 __le32
*first
, __le32
*last
)
3715 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
3716 unsigned long count
= 0; /* Number of blocks in the run */
3717 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
3720 ext4_fsblk_t nr
; /* Current block # */
3721 __le32
*p
; /* Pointer into inode/ind
3722 for current block */
3725 if (this_bh
) { /* For indirect block */
3726 BUFFER_TRACE(this_bh
, "get_write_access");
3727 err
= ext4_journal_get_write_access(handle
, this_bh
);
3728 /* Important: if we can't update the indirect pointers
3729 * to the blocks, we can't free them. */
3734 for (p
= first
; p
< last
; p
++) {
3735 nr
= le32_to_cpu(*p
);
3737 /* accumulate blocks to free if they're contiguous */
3740 block_to_free_p
= p
;
3742 } else if (nr
== block_to_free
+ count
) {
3745 ext4_clear_blocks(handle
, inode
, this_bh
,
3747 count
, block_to_free_p
, p
);
3749 block_to_free_p
= p
;
3756 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
3757 count
, block_to_free_p
, p
);
3760 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
3763 * The buffer head should have an attached journal head at this
3764 * point. However, if the data is corrupted and an indirect
3765 * block pointed to itself, it would have been detached when
3766 * the block was cleared. Check for this instead of OOPSing.
3768 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
3769 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
3771 ext4_error(inode
->i_sb
, __func__
,
3772 "circular indirect block detected, "
3773 "inode=%lu, block=%llu",
3775 (unsigned long long) this_bh
->b_blocknr
);
3780 * ext4_free_branches - free an array of branches
3781 * @handle: JBD handle for this transaction
3782 * @inode: inode we are dealing with
3783 * @parent_bh: the buffer_head which contains *@first and *@last
3784 * @first: array of block numbers
3785 * @last: pointer immediately past the end of array
3786 * @depth: depth of the branches to free
3788 * We are freeing all blocks refered from these branches (numbers are
3789 * stored as little-endian 32-bit) and updating @inode->i_blocks
3792 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
3793 struct buffer_head
*parent_bh
,
3794 __le32
*first
, __le32
*last
, int depth
)
3799 if (ext4_handle_is_aborted(handle
))
3803 struct buffer_head
*bh
;
3804 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3806 while (--p
>= first
) {
3807 nr
= le32_to_cpu(*p
);
3809 continue; /* A hole */
3811 /* Go read the buffer for the next level down */
3812 bh
= sb_bread(inode
->i_sb
, nr
);
3815 * A read failure? Report error and clear slot
3819 ext4_error(inode
->i_sb
, "ext4_free_branches",
3820 "Read failure, inode=%lu, block=%llu",
3825 /* This zaps the entire block. Bottom up. */
3826 BUFFER_TRACE(bh
, "free child branches");
3827 ext4_free_branches(handle
, inode
, bh
,
3828 (__le32
*) bh
->b_data
,
3829 (__le32
*) bh
->b_data
+ addr_per_block
,
3833 * We've probably journalled the indirect block several
3834 * times during the truncate. But it's no longer
3835 * needed and we now drop it from the transaction via
3836 * jbd2_journal_revoke().
3838 * That's easy if it's exclusively part of this
3839 * transaction. But if it's part of the committing
3840 * transaction then jbd2_journal_forget() will simply
3841 * brelse() it. That means that if the underlying
3842 * block is reallocated in ext4_get_block(),
3843 * unmap_underlying_metadata() will find this block
3844 * and will try to get rid of it. damn, damn.
3846 * If this block has already been committed to the
3847 * journal, a revoke record will be written. And
3848 * revoke records must be emitted *before* clearing
3849 * this block's bit in the bitmaps.
3851 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
3854 * Everything below this this pointer has been
3855 * released. Now let this top-of-subtree go.
3857 * We want the freeing of this indirect block to be
3858 * atomic in the journal with the updating of the
3859 * bitmap block which owns it. So make some room in
3862 * We zero the parent pointer *after* freeing its
3863 * pointee in the bitmaps, so if extend_transaction()
3864 * for some reason fails to put the bitmap changes and
3865 * the release into the same transaction, recovery
3866 * will merely complain about releasing a free block,
3867 * rather than leaking blocks.
3869 if (ext4_handle_is_aborted(handle
))
3871 if (try_to_extend_transaction(handle
, inode
)) {
3872 ext4_mark_inode_dirty(handle
, inode
);
3873 ext4_journal_test_restart(handle
, inode
);
3876 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
3880 * The block which we have just freed is
3881 * pointed to by an indirect block: journal it
3883 BUFFER_TRACE(parent_bh
, "get_write_access");
3884 if (!ext4_journal_get_write_access(handle
,
3887 BUFFER_TRACE(parent_bh
,
3888 "call ext4_handle_dirty_metadata");
3889 ext4_handle_dirty_metadata(handle
,
3896 /* We have reached the bottom of the tree. */
3897 BUFFER_TRACE(parent_bh
, "free data blocks");
3898 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
3902 int ext4_can_truncate(struct inode
*inode
)
3904 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
3906 if (S_ISREG(inode
->i_mode
))
3908 if (S_ISDIR(inode
->i_mode
))
3910 if (S_ISLNK(inode
->i_mode
))
3911 return !ext4_inode_is_fast_symlink(inode
);
3918 * We block out ext4_get_block() block instantiations across the entire
3919 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3920 * simultaneously on behalf of the same inode.
3922 * As we work through the truncate and commmit bits of it to the journal there
3923 * is one core, guiding principle: the file's tree must always be consistent on
3924 * disk. We must be able to restart the truncate after a crash.
3926 * The file's tree may be transiently inconsistent in memory (although it
3927 * probably isn't), but whenever we close off and commit a journal transaction,
3928 * the contents of (the filesystem + the journal) must be consistent and
3929 * restartable. It's pretty simple, really: bottom up, right to left (although
3930 * left-to-right works OK too).
3932 * Note that at recovery time, journal replay occurs *before* the restart of
3933 * truncate against the orphan inode list.
3935 * The committed inode has the new, desired i_size (which is the same as
3936 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3937 * that this inode's truncate did not complete and it will again call
3938 * ext4_truncate() to have another go. So there will be instantiated blocks
3939 * to the right of the truncation point in a crashed ext4 filesystem. But
3940 * that's fine - as long as they are linked from the inode, the post-crash
3941 * ext4_truncate() run will find them and release them.
3943 void ext4_truncate(struct inode
*inode
)
3946 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3947 __le32
*i_data
= ei
->i_data
;
3948 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
3949 struct address_space
*mapping
= inode
->i_mapping
;
3950 ext4_lblk_t offsets
[4];
3955 ext4_lblk_t last_block
;
3956 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3958 if (!ext4_can_truncate(inode
))
3961 if (ei
->i_disksize
&& inode
->i_size
== 0 &&
3962 !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3963 ei
->i_state
|= EXT4_STATE_DA_ALLOC_CLOSE
;
3965 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
3966 ext4_ext_truncate(inode
);
3970 handle
= start_transaction(inode
);
3972 return; /* AKPM: return what? */
3974 last_block
= (inode
->i_size
+ blocksize
-1)
3975 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
3977 if (inode
->i_size
& (blocksize
- 1))
3978 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
3981 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
3983 goto out_stop
; /* error */
3986 * OK. This truncate is going to happen. We add the inode to the
3987 * orphan list, so that if this truncate spans multiple transactions,
3988 * and we crash, we will resume the truncate when the filesystem
3989 * recovers. It also marks the inode dirty, to catch the new size.
3991 * Implication: the file must always be in a sane, consistent
3992 * truncatable state while each transaction commits.
3994 if (ext4_orphan_add(handle
, inode
))
3998 * From here we block out all ext4_get_block() callers who want to
3999 * modify the block allocation tree.
4001 down_write(&ei
->i_data_sem
);
4003 ext4_discard_preallocations(inode
);
4006 * The orphan list entry will now protect us from any crash which
4007 * occurs before the truncate completes, so it is now safe to propagate
4008 * the new, shorter inode size (held for now in i_size) into the
4009 * on-disk inode. We do this via i_disksize, which is the value which
4010 * ext4 *really* writes onto the disk inode.
4012 ei
->i_disksize
= inode
->i_size
;
4014 if (n
== 1) { /* direct blocks */
4015 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4016 i_data
+ EXT4_NDIR_BLOCKS
);
4020 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4021 /* Kill the top of shared branch (not detached) */
4023 if (partial
== chain
) {
4024 /* Shared branch grows from the inode */
4025 ext4_free_branches(handle
, inode
, NULL
,
4026 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4029 * We mark the inode dirty prior to restart,
4030 * and prior to stop. No need for it here.
4033 /* Shared branch grows from an indirect block */
4034 BUFFER_TRACE(partial
->bh
, "get_write_access");
4035 ext4_free_branches(handle
, inode
, partial
->bh
,
4037 partial
->p
+1, (chain
+n
-1) - partial
);
4040 /* Clear the ends of indirect blocks on the shared branch */
4041 while (partial
> chain
) {
4042 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4043 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4044 (chain
+n
-1) - partial
);
4045 BUFFER_TRACE(partial
->bh
, "call brelse");
4046 brelse(partial
->bh
);
4050 /* Kill the remaining (whole) subtrees */
4051 switch (offsets
[0]) {
4053 nr
= i_data
[EXT4_IND_BLOCK
];
4055 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4056 i_data
[EXT4_IND_BLOCK
] = 0;
4058 case EXT4_IND_BLOCK
:
4059 nr
= i_data
[EXT4_DIND_BLOCK
];
4061 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4062 i_data
[EXT4_DIND_BLOCK
] = 0;
4064 case EXT4_DIND_BLOCK
:
4065 nr
= i_data
[EXT4_TIND_BLOCK
];
4067 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4068 i_data
[EXT4_TIND_BLOCK
] = 0;
4070 case EXT4_TIND_BLOCK
:
4074 up_write(&ei
->i_data_sem
);
4075 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4076 ext4_mark_inode_dirty(handle
, inode
);
4079 * In a multi-transaction truncate, we only make the final transaction
4083 ext4_handle_sync(handle
);
4086 * If this was a simple ftruncate(), and the file will remain alive
4087 * then we need to clear up the orphan record which we created above.
4088 * However, if this was a real unlink then we were called by
4089 * ext4_delete_inode(), and we allow that function to clean up the
4090 * orphan info for us.
4093 ext4_orphan_del(handle
, inode
);
4095 ext4_journal_stop(handle
);
4099 * ext4_get_inode_loc returns with an extra refcount against the inode's
4100 * underlying buffer_head on success. If 'in_mem' is true, we have all
4101 * data in memory that is needed to recreate the on-disk version of this
4104 static int __ext4_get_inode_loc(struct inode
*inode
,
4105 struct ext4_iloc
*iloc
, int in_mem
)
4107 struct ext4_group_desc
*gdp
;
4108 struct buffer_head
*bh
;
4109 struct super_block
*sb
= inode
->i_sb
;
4111 int inodes_per_block
, inode_offset
;
4114 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4117 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4118 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4123 * Figure out the offset within the block group inode table
4125 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4126 inode_offset
= ((inode
->i_ino
- 1) %
4127 EXT4_INODES_PER_GROUP(sb
));
4128 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4129 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4131 bh
= sb_getblk(sb
, block
);
4133 ext4_error(sb
, "ext4_get_inode_loc", "unable to read "
4134 "inode block - inode=%lu, block=%llu",
4135 inode
->i_ino
, block
);
4138 if (!buffer_uptodate(bh
)) {
4142 * If the buffer has the write error flag, we have failed
4143 * to write out another inode in the same block. In this
4144 * case, we don't have to read the block because we may
4145 * read the old inode data successfully.
4147 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4148 set_buffer_uptodate(bh
);
4150 if (buffer_uptodate(bh
)) {
4151 /* someone brought it uptodate while we waited */
4157 * If we have all information of the inode in memory and this
4158 * is the only valid inode in the block, we need not read the
4162 struct buffer_head
*bitmap_bh
;
4165 start
= inode_offset
& ~(inodes_per_block
- 1);
4167 /* Is the inode bitmap in cache? */
4168 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4173 * If the inode bitmap isn't in cache then the
4174 * optimisation may end up performing two reads instead
4175 * of one, so skip it.
4177 if (!buffer_uptodate(bitmap_bh
)) {
4181 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4182 if (i
== inode_offset
)
4184 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4188 if (i
== start
+ inodes_per_block
) {
4189 /* all other inodes are free, so skip I/O */
4190 memset(bh
->b_data
, 0, bh
->b_size
);
4191 set_buffer_uptodate(bh
);
4199 * If we need to do any I/O, try to pre-readahead extra
4200 * blocks from the inode table.
4202 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4203 ext4_fsblk_t b
, end
, table
;
4206 table
= ext4_inode_table(sb
, gdp
);
4207 /* s_inode_readahead_blks is always a power of 2 */
4208 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4211 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4212 num
= EXT4_INODES_PER_GROUP(sb
);
4213 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4214 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4215 num
-= ext4_itable_unused_count(sb
, gdp
);
4216 table
+= num
/ inodes_per_block
;
4220 sb_breadahead(sb
, b
++);
4224 * There are other valid inodes in the buffer, this inode
4225 * has in-inode xattrs, or we don't have this inode in memory.
4226 * Read the block from disk.
4229 bh
->b_end_io
= end_buffer_read_sync
;
4230 submit_bh(READ_META
, bh
);
4232 if (!buffer_uptodate(bh
)) {
4233 ext4_error(sb
, __func__
,
4234 "unable to read inode block - inode=%lu, "
4235 "block=%llu", inode
->i_ino
, block
);
4245 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4247 /* We have all inode data except xattrs in memory here. */
4248 return __ext4_get_inode_loc(inode
, iloc
,
4249 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
4252 void ext4_set_inode_flags(struct inode
*inode
)
4254 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4256 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4257 if (flags
& EXT4_SYNC_FL
)
4258 inode
->i_flags
|= S_SYNC
;
4259 if (flags
& EXT4_APPEND_FL
)
4260 inode
->i_flags
|= S_APPEND
;
4261 if (flags
& EXT4_IMMUTABLE_FL
)
4262 inode
->i_flags
|= S_IMMUTABLE
;
4263 if (flags
& EXT4_NOATIME_FL
)
4264 inode
->i_flags
|= S_NOATIME
;
4265 if (flags
& EXT4_DIRSYNC_FL
)
4266 inode
->i_flags
|= S_DIRSYNC
;
4269 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4270 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4272 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4274 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4275 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4277 ei
->i_flags
|= EXT4_SYNC_FL
;
4278 if (flags
& S_APPEND
)
4279 ei
->i_flags
|= EXT4_APPEND_FL
;
4280 if (flags
& S_IMMUTABLE
)
4281 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4282 if (flags
& S_NOATIME
)
4283 ei
->i_flags
|= EXT4_NOATIME_FL
;
4284 if (flags
& S_DIRSYNC
)
4285 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4288 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4289 struct ext4_inode_info
*ei
)
4292 struct inode
*inode
= &(ei
->vfs_inode
);
4293 struct super_block
*sb
= inode
->i_sb
;
4295 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4296 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4297 /* we are using combined 48 bit field */
4298 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4299 le32_to_cpu(raw_inode
->i_blocks_lo
);
4300 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4301 /* i_blocks represent file system block size */
4302 return i_blocks
<< (inode
->i_blkbits
- 9);
4307 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4311 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4313 struct ext4_iloc iloc
;
4314 struct ext4_inode
*raw_inode
;
4315 struct ext4_inode_info
*ei
;
4316 struct buffer_head
*bh
;
4317 struct inode
*inode
;
4321 inode
= iget_locked(sb
, ino
);
4323 return ERR_PTR(-ENOMEM
);
4324 if (!(inode
->i_state
& I_NEW
))
4329 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4333 raw_inode
= ext4_raw_inode(&iloc
);
4334 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4335 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4336 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4337 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4338 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4339 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4341 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4344 ei
->i_dir_start_lookup
= 0;
4345 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4346 /* We now have enough fields to check if the inode was active or not.
4347 * This is needed because nfsd might try to access dead inodes
4348 * the test is that same one that e2fsck uses
4349 * NeilBrown 1999oct15
4351 if (inode
->i_nlink
== 0) {
4352 if (inode
->i_mode
== 0 ||
4353 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4354 /* this inode is deleted */
4359 /* The only unlinked inodes we let through here have
4360 * valid i_mode and are being read by the orphan
4361 * recovery code: that's fine, we're about to complete
4362 * the process of deleting those. */
4364 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4365 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4366 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4367 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4369 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4370 inode
->i_size
= ext4_isize(raw_inode
);
4371 ei
->i_disksize
= inode
->i_size
;
4372 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4373 ei
->i_block_group
= iloc
.block_group
;
4374 ei
->i_last_alloc_group
= ~0;
4376 * NOTE! The in-memory inode i_data array is in little-endian order
4377 * even on big-endian machines: we do NOT byteswap the block numbers!
4379 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4380 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4381 INIT_LIST_HEAD(&ei
->i_orphan
);
4383 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4384 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4385 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4386 EXT4_INODE_SIZE(inode
->i_sb
)) {
4391 if (ei
->i_extra_isize
== 0) {
4392 /* The extra space is currently unused. Use it. */
4393 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4394 EXT4_GOOD_OLD_INODE_SIZE
;
4396 __le32
*magic
= (void *)raw_inode
+
4397 EXT4_GOOD_OLD_INODE_SIZE
+
4399 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4400 ei
->i_state
|= EXT4_STATE_XATTR
;
4403 ei
->i_extra_isize
= 0;
4405 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4406 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4407 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4408 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4410 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4411 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4412 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4414 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4418 if (ei
->i_file_acl
&&
4420 (le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
) +
4421 EXT4_SB(sb
)->s_gdb_count
)) ||
4422 (ei
->i_file_acl
>= ext4_blocks_count(EXT4_SB(sb
)->s_es
)))) {
4423 ext4_error(sb
, __func__
,
4424 "bad extended attribute block %llu in inode #%lu",
4425 ei
->i_file_acl
, inode
->i_ino
);
4428 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
4429 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4430 (S_ISLNK(inode
->i_mode
) &&
4431 !ext4_inode_is_fast_symlink(inode
)))
4432 /* Validate extent which is part of inode */
4433 ret
= ext4_ext_check_inode(inode
);
4434 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4435 (S_ISLNK(inode
->i_mode
) &&
4436 !ext4_inode_is_fast_symlink(inode
))) {
4437 /* Validate block references which are part of inode */
4438 ret
= ext4_check_inode_blockref(inode
);
4445 if (S_ISREG(inode
->i_mode
)) {
4446 inode
->i_op
= &ext4_file_inode_operations
;
4447 inode
->i_fop
= &ext4_file_operations
;
4448 ext4_set_aops(inode
);
4449 } else if (S_ISDIR(inode
->i_mode
)) {
4450 inode
->i_op
= &ext4_dir_inode_operations
;
4451 inode
->i_fop
= &ext4_dir_operations
;
4452 } else if (S_ISLNK(inode
->i_mode
)) {
4453 if (ext4_inode_is_fast_symlink(inode
)) {
4454 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4455 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4456 sizeof(ei
->i_data
) - 1);
4458 inode
->i_op
= &ext4_symlink_inode_operations
;
4459 ext4_set_aops(inode
);
4461 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4462 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4463 inode
->i_op
= &ext4_special_inode_operations
;
4464 if (raw_inode
->i_block
[0])
4465 init_special_inode(inode
, inode
->i_mode
,
4466 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4468 init_special_inode(inode
, inode
->i_mode
,
4469 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4473 ext4_error(inode
->i_sb
, __func__
,
4474 "bogus i_mode (%o) for inode=%lu",
4475 inode
->i_mode
, inode
->i_ino
);
4479 ext4_set_inode_flags(inode
);
4480 unlock_new_inode(inode
);
4485 return ERR_PTR(ret
);
4488 static int ext4_inode_blocks_set(handle_t
*handle
,
4489 struct ext4_inode
*raw_inode
,
4490 struct ext4_inode_info
*ei
)
4492 struct inode
*inode
= &(ei
->vfs_inode
);
4493 u64 i_blocks
= inode
->i_blocks
;
4494 struct super_block
*sb
= inode
->i_sb
;
4496 if (i_blocks
<= ~0U) {
4498 * i_blocks can be represnted in a 32 bit variable
4499 * as multiple of 512 bytes
4501 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4502 raw_inode
->i_blocks_high
= 0;
4503 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4506 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4509 if (i_blocks
<= 0xffffffffffffULL
) {
4511 * i_blocks can be represented in a 48 bit variable
4512 * as multiple of 512 bytes
4514 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4515 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4516 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4518 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
4519 /* i_block is stored in file system block size */
4520 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4521 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4522 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4528 * Post the struct inode info into an on-disk inode location in the
4529 * buffer-cache. This gobbles the caller's reference to the
4530 * buffer_head in the inode location struct.
4532 * The caller must have write access to iloc->bh.
4534 static int ext4_do_update_inode(handle_t
*handle
,
4535 struct inode
*inode
,
4536 struct ext4_iloc
*iloc
)
4538 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4539 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4540 struct buffer_head
*bh
= iloc
->bh
;
4541 int err
= 0, rc
, block
;
4543 /* For fields not not tracking in the in-memory inode,
4544 * initialise them to zero for new inodes. */
4545 if (ei
->i_state
& EXT4_STATE_NEW
)
4546 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4548 ext4_get_inode_flags(ei
);
4549 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4550 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4551 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
4552 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
4554 * Fix up interoperability with old kernels. Otherwise, old inodes get
4555 * re-used with the upper 16 bits of the uid/gid intact
4558 raw_inode
->i_uid_high
=
4559 cpu_to_le16(high_16_bits(inode
->i_uid
));
4560 raw_inode
->i_gid_high
=
4561 cpu_to_le16(high_16_bits(inode
->i_gid
));
4563 raw_inode
->i_uid_high
= 0;
4564 raw_inode
->i_gid_high
= 0;
4567 raw_inode
->i_uid_low
=
4568 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
4569 raw_inode
->i_gid_low
=
4570 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
4571 raw_inode
->i_uid_high
= 0;
4572 raw_inode
->i_gid_high
= 0;
4574 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4576 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4577 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4578 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4579 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4581 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4583 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4584 /* clear the migrate flag in the raw_inode */
4585 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& ~EXT4_EXT_MIGRATE
);
4586 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4587 cpu_to_le32(EXT4_OS_HURD
))
4588 raw_inode
->i_file_acl_high
=
4589 cpu_to_le16(ei
->i_file_acl
>> 32);
4590 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4591 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4592 if (ei
->i_disksize
> 0x7fffffffULL
) {
4593 struct super_block
*sb
= inode
->i_sb
;
4594 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4595 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4596 EXT4_SB(sb
)->s_es
->s_rev_level
==
4597 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4598 /* If this is the first large file
4599 * created, add a flag to the superblock.
4601 err
= ext4_journal_get_write_access(handle
,
4602 EXT4_SB(sb
)->s_sbh
);
4605 ext4_update_dynamic_rev(sb
);
4606 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4607 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4609 ext4_handle_sync(handle
);
4610 err
= ext4_handle_dirty_metadata(handle
, inode
,
4611 EXT4_SB(sb
)->s_sbh
);
4614 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4615 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4616 if (old_valid_dev(inode
->i_rdev
)) {
4617 raw_inode
->i_block
[0] =
4618 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4619 raw_inode
->i_block
[1] = 0;
4621 raw_inode
->i_block
[0] = 0;
4622 raw_inode
->i_block
[1] =
4623 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4624 raw_inode
->i_block
[2] = 0;
4627 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4628 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4630 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4631 if (ei
->i_extra_isize
) {
4632 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4633 raw_inode
->i_version_hi
=
4634 cpu_to_le32(inode
->i_version
>> 32);
4635 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4638 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4639 rc
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4642 ei
->i_state
&= ~EXT4_STATE_NEW
;
4646 ext4_std_error(inode
->i_sb
, err
);
4651 * ext4_write_inode()
4653 * We are called from a few places:
4655 * - Within generic_file_write() for O_SYNC files.
4656 * Here, there will be no transaction running. We wait for any running
4657 * trasnaction to commit.
4659 * - Within sys_sync(), kupdate and such.
4660 * We wait on commit, if tol to.
4662 * - Within prune_icache() (PF_MEMALLOC == true)
4663 * Here we simply return. We can't afford to block kswapd on the
4666 * In all cases it is actually safe for us to return without doing anything,
4667 * because the inode has been copied into a raw inode buffer in
4668 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4671 * Note that we are absolutely dependent upon all inode dirtiers doing the
4672 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4673 * which we are interested.
4675 * It would be a bug for them to not do this. The code:
4677 * mark_inode_dirty(inode)
4679 * inode->i_size = expr;
4681 * is in error because a kswapd-driven write_inode() could occur while
4682 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4683 * will no longer be on the superblock's dirty inode list.
4685 int ext4_write_inode(struct inode
*inode
, int wait
)
4687 if (current
->flags
& PF_MEMALLOC
)
4690 if (ext4_journal_current_handle()) {
4691 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4699 return ext4_force_commit(inode
->i_sb
);
4705 * Called from notify_change.
4707 * We want to trap VFS attempts to truncate the file as soon as
4708 * possible. In particular, we want to make sure that when the VFS
4709 * shrinks i_size, we put the inode on the orphan list and modify
4710 * i_disksize immediately, so that during the subsequent flushing of
4711 * dirty pages and freeing of disk blocks, we can guarantee that any
4712 * commit will leave the blocks being flushed in an unused state on
4713 * disk. (On recovery, the inode will get truncated and the blocks will
4714 * be freed, so we have a strong guarantee that no future commit will
4715 * leave these blocks visible to the user.)
4717 * Another thing we have to assure is that if we are in ordered mode
4718 * and inode is still attached to the committing transaction, we must
4719 * we start writeout of all the dirty pages which are being truncated.
4720 * This way we are sure that all the data written in the previous
4721 * transaction are already on disk (truncate waits for pages under
4724 * Called with inode->i_mutex down.
4726 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4728 struct inode
*inode
= dentry
->d_inode
;
4730 const unsigned int ia_valid
= attr
->ia_valid
;
4732 error
= inode_change_ok(inode
, attr
);
4736 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
4737 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
4740 /* (user+group)*(old+new) structure, inode write (sb,
4741 * inode block, ? - but truncate inode update has it) */
4742 handle
= ext4_journal_start(inode
, 2*(EXT4_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
4743 EXT4_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
4744 if (IS_ERR(handle
)) {
4745 error
= PTR_ERR(handle
);
4748 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
4750 ext4_journal_stop(handle
);
4753 /* Update corresponding info in inode so that everything is in
4754 * one transaction */
4755 if (attr
->ia_valid
& ATTR_UID
)
4756 inode
->i_uid
= attr
->ia_uid
;
4757 if (attr
->ia_valid
& ATTR_GID
)
4758 inode
->i_gid
= attr
->ia_gid
;
4759 error
= ext4_mark_inode_dirty(handle
, inode
);
4760 ext4_journal_stop(handle
);
4763 if (attr
->ia_valid
& ATTR_SIZE
) {
4764 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
4765 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4767 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
4774 if (S_ISREG(inode
->i_mode
) &&
4775 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
4778 handle
= ext4_journal_start(inode
, 3);
4779 if (IS_ERR(handle
)) {
4780 error
= PTR_ERR(handle
);
4784 error
= ext4_orphan_add(handle
, inode
);
4785 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4786 rc
= ext4_mark_inode_dirty(handle
, inode
);
4789 ext4_journal_stop(handle
);
4791 if (ext4_should_order_data(inode
)) {
4792 error
= ext4_begin_ordered_truncate(inode
,
4795 /* Do as much error cleanup as possible */
4796 handle
= ext4_journal_start(inode
, 3);
4797 if (IS_ERR(handle
)) {
4798 ext4_orphan_del(NULL
, inode
);
4801 ext4_orphan_del(handle
, inode
);
4802 ext4_journal_stop(handle
);
4808 rc
= inode_setattr(inode
, attr
);
4810 /* If inode_setattr's call to ext4_truncate failed to get a
4811 * transaction handle at all, we need to clean up the in-core
4812 * orphan list manually. */
4814 ext4_orphan_del(NULL
, inode
);
4816 if (!rc
&& (ia_valid
& ATTR_MODE
))
4817 rc
= ext4_acl_chmod(inode
);
4820 ext4_std_error(inode
->i_sb
, error
);
4826 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4829 struct inode
*inode
;
4830 unsigned long delalloc_blocks
;
4832 inode
= dentry
->d_inode
;
4833 generic_fillattr(inode
, stat
);
4836 * We can't update i_blocks if the block allocation is delayed
4837 * otherwise in the case of system crash before the real block
4838 * allocation is done, we will have i_blocks inconsistent with
4839 * on-disk file blocks.
4840 * We always keep i_blocks updated together with real
4841 * allocation. But to not confuse with user, stat
4842 * will return the blocks that include the delayed allocation
4843 * blocks for this file.
4845 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
4846 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
4847 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
4849 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4853 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
4858 /* if nrblocks are contiguous */
4861 * With N contiguous data blocks, it need at most
4862 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4863 * 2 dindirect blocks
4866 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4867 return indirects
+ 3;
4870 * if nrblocks are not contiguous, worse case, each block touch
4871 * a indirect block, and each indirect block touch a double indirect
4872 * block, plus a triple indirect block
4874 indirects
= nrblocks
* 2 + 1;
4878 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4880 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
4881 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
4882 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4886 * Account for index blocks, block groups bitmaps and block group
4887 * descriptor blocks if modify datablocks and index blocks
4888 * worse case, the indexs blocks spread over different block groups
4890 * If datablocks are discontiguous, they are possible to spread over
4891 * different block groups too. If they are contiugous, with flexbg,
4892 * they could still across block group boundary.
4894 * Also account for superblock, inode, quota and xattr blocks
4896 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4898 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4904 * How many index blocks need to touch to modify nrblocks?
4905 * The "Chunk" flag indicating whether the nrblocks is
4906 * physically contiguous on disk
4908 * For Direct IO and fallocate, they calls get_block to allocate
4909 * one single extent at a time, so they could set the "Chunk" flag
4911 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4916 * Now let's see how many group bitmaps and group descriptors need
4926 if (groups
> ngroups
)
4928 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4929 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4931 /* bitmaps and block group descriptor blocks */
4932 ret
+= groups
+ gdpblocks
;
4934 /* Blocks for super block, inode, quota and xattr blocks */
4935 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4941 * Calulate the total number of credits to reserve to fit
4942 * the modification of a single pages into a single transaction,
4943 * which may include multiple chunks of block allocations.
4945 * This could be called via ext4_write_begin()
4947 * We need to consider the worse case, when
4948 * one new block per extent.
4950 int ext4_writepage_trans_blocks(struct inode
*inode
)
4952 int bpp
= ext4_journal_blocks_per_page(inode
);
4955 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4957 /* Account for data blocks for journalled mode */
4958 if (ext4_should_journal_data(inode
))
4964 * Calculate the journal credits for a chunk of data modification.
4966 * This is called from DIO, fallocate or whoever calling
4967 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4969 * journal buffers for data blocks are not included here, as DIO
4970 * and fallocate do no need to journal data buffers.
4972 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4974 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4978 * The caller must have previously called ext4_reserve_inode_write().
4979 * Give this, we know that the caller already has write access to iloc->bh.
4981 int ext4_mark_iloc_dirty(handle_t
*handle
,
4982 struct inode
*inode
, struct ext4_iloc
*iloc
)
4986 if (test_opt(inode
->i_sb
, I_VERSION
))
4987 inode_inc_iversion(inode
);
4989 /* the do_update_inode consumes one bh->b_count */
4992 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4993 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4999 * On success, We end up with an outstanding reference count against
5000 * iloc->bh. This _must_ be cleaned up later.
5004 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5005 struct ext4_iloc
*iloc
)
5009 err
= ext4_get_inode_loc(inode
, iloc
);
5011 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5012 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5018 ext4_std_error(inode
->i_sb
, err
);
5023 * Expand an inode by new_extra_isize bytes.
5024 * Returns 0 on success or negative error number on failure.
5026 static int ext4_expand_extra_isize(struct inode
*inode
,
5027 unsigned int new_extra_isize
,
5028 struct ext4_iloc iloc
,
5031 struct ext4_inode
*raw_inode
;
5032 struct ext4_xattr_ibody_header
*header
;
5033 struct ext4_xattr_entry
*entry
;
5035 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5038 raw_inode
= ext4_raw_inode(&iloc
);
5040 header
= IHDR(inode
, raw_inode
);
5041 entry
= IFIRST(header
);
5043 /* No extended attributes present */
5044 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
5045 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5046 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5048 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5052 /* try to expand with EAs present */
5053 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5058 * What we do here is to mark the in-core inode as clean with respect to inode
5059 * dirtiness (it may still be data-dirty).
5060 * This means that the in-core inode may be reaped by prune_icache
5061 * without having to perform any I/O. This is a very good thing,
5062 * because *any* task may call prune_icache - even ones which
5063 * have a transaction open against a different journal.
5065 * Is this cheating? Not really. Sure, we haven't written the
5066 * inode out, but prune_icache isn't a user-visible syncing function.
5067 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5068 * we start and wait on commits.
5070 * Is this efficient/effective? Well, we're being nice to the system
5071 * by cleaning up our inodes proactively so they can be reaped
5072 * without I/O. But we are potentially leaving up to five seconds'
5073 * worth of inodes floating about which prune_icache wants us to
5074 * write out. One way to fix that would be to get prune_icache()
5075 * to do a write_super() to free up some memory. It has the desired
5078 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5080 struct ext4_iloc iloc
;
5081 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5082 static unsigned int mnt_count
;
5086 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5087 if (ext4_handle_valid(handle
) &&
5088 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5089 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
5091 * We need extra buffer credits since we may write into EA block
5092 * with this same handle. If journal_extend fails, then it will
5093 * only result in a minor loss of functionality for that inode.
5094 * If this is felt to be critical, then e2fsck should be run to
5095 * force a large enough s_min_extra_isize.
5097 if ((jbd2_journal_extend(handle
,
5098 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5099 ret
= ext4_expand_extra_isize(inode
,
5100 sbi
->s_want_extra_isize
,
5103 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
5105 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5106 ext4_warning(inode
->i_sb
, __func__
,
5107 "Unable to expand inode %lu. Delete"
5108 " some EAs or run e2fsck.",
5111 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5117 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5122 * ext4_dirty_inode() is called from __mark_inode_dirty()
5124 * We're really interested in the case where a file is being extended.
5125 * i_size has been changed by generic_commit_write() and we thus need
5126 * to include the updated inode in the current transaction.
5128 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5129 * are allocated to the file.
5131 * If the inode is marked synchronous, we don't honour that here - doing
5132 * so would cause a commit on atime updates, which we don't bother doing.
5133 * We handle synchronous inodes at the highest possible level.
5135 void ext4_dirty_inode(struct inode
*inode
)
5137 handle_t
*current_handle
= ext4_journal_current_handle();
5140 if (!ext4_handle_valid(current_handle
)) {
5141 ext4_mark_inode_dirty(current_handle
, inode
);
5145 handle
= ext4_journal_start(inode
, 2);
5148 if (current_handle
&&
5149 current_handle
->h_transaction
!= handle
->h_transaction
) {
5150 /* This task has a transaction open against a different fs */
5151 printk(KERN_EMERG
"%s: transactions do not match!\n",
5154 jbd_debug(5, "marking dirty. outer handle=%p\n",
5156 ext4_mark_inode_dirty(handle
, inode
);
5158 ext4_journal_stop(handle
);
5165 * Bind an inode's backing buffer_head into this transaction, to prevent
5166 * it from being flushed to disk early. Unlike
5167 * ext4_reserve_inode_write, this leaves behind no bh reference and
5168 * returns no iloc structure, so the caller needs to repeat the iloc
5169 * lookup to mark the inode dirty later.
5171 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5173 struct ext4_iloc iloc
;
5177 err
= ext4_get_inode_loc(inode
, &iloc
);
5179 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5180 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5182 err
= ext4_handle_dirty_metadata(handle
,
5188 ext4_std_error(inode
->i_sb
, err
);
5193 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5200 * We have to be very careful here: changing a data block's
5201 * journaling status dynamically is dangerous. If we write a
5202 * data block to the journal, change the status and then delete
5203 * that block, we risk forgetting to revoke the old log record
5204 * from the journal and so a subsequent replay can corrupt data.
5205 * So, first we make sure that the journal is empty and that
5206 * nobody is changing anything.
5209 journal
= EXT4_JOURNAL(inode
);
5212 if (is_journal_aborted(journal
))
5215 jbd2_journal_lock_updates(journal
);
5216 jbd2_journal_flush(journal
);
5219 * OK, there are no updates running now, and all cached data is
5220 * synced to disk. We are now in a completely consistent state
5221 * which doesn't have anything in the journal, and we know that
5222 * no filesystem updates are running, so it is safe to modify
5223 * the inode's in-core data-journaling state flag now.
5227 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5229 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5230 ext4_set_aops(inode
);
5232 jbd2_journal_unlock_updates(journal
);
5234 /* Finally we can mark the inode as dirty. */
5236 handle
= ext4_journal_start(inode
, 1);
5238 return PTR_ERR(handle
);
5240 err
= ext4_mark_inode_dirty(handle
, inode
);
5241 ext4_handle_sync(handle
);
5242 ext4_journal_stop(handle
);
5243 ext4_std_error(inode
->i_sb
, err
);
5248 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5250 return !buffer_mapped(bh
);
5253 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5255 struct page
*page
= vmf
->page
;
5260 struct file
*file
= vma
->vm_file
;
5261 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5262 struct address_space
*mapping
= inode
->i_mapping
;
5265 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5266 * get i_mutex because we are already holding mmap_sem.
5268 down_read(&inode
->i_alloc_sem
);
5269 size
= i_size_read(inode
);
5270 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5271 || !PageUptodate(page
)) {
5272 /* page got truncated from under us? */
5276 if (PageMappedToDisk(page
))
5279 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5280 len
= size
& ~PAGE_CACHE_MASK
;
5282 len
= PAGE_CACHE_SIZE
;
5284 if (page_has_buffers(page
)) {
5285 /* return if we have all the buffers mapped */
5286 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5291 * OK, we need to fill the hole... Do write_begin write_end
5292 * to do block allocation/reservation.We are not holding
5293 * inode.i__mutex here. That allow * parallel write_begin,
5294 * write_end call. lock_page prevent this from happening
5295 * on the same page though
5297 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5298 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5301 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5302 len
, len
, page
, fsdata
);
5308 ret
= VM_FAULT_SIGBUS
;
5309 up_read(&inode
->i_alloc_sem
);