[ALSA] Fix a typo in echoaudio/midi.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / futex.c
blob6c91f938005db0719bac62a643fff9b411b7f594
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #include <linux/slab.h>
41 #include <linux/poll.h>
42 #include <linux/fs.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <asm/futex.h>
53 #include "rtmutex_common.h"
55 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
65 union futex_key {
66 struct {
67 unsigned long pgoff;
68 struct inode *inode;
69 int offset;
70 } shared;
71 struct {
72 unsigned long address;
73 struct mm_struct *mm;
74 int offset;
75 } private;
76 struct {
77 unsigned long word;
78 void *ptr;
79 int offset;
80 } both;
84 * Priority Inheritance state:
86 struct futex_pi_state {
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
91 struct list_head list;
94 * The PI object:
96 struct rt_mutex pi_mutex;
98 struct task_struct *owner;
99 atomic_t refcount;
101 union futex_key key;
105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
113 struct futex_q {
114 struct list_head list;
115 wait_queue_head_t waiters;
117 /* Which hash list lock to use: */
118 spinlock_t *lock_ptr;
120 /* Key which the futex is hashed on: */
121 union futex_key key;
123 /* For fd, sigio sent using these: */
124 int fd;
125 struct file *filp;
127 /* Optional priority inheritance state: */
128 struct futex_pi_state *pi_state;
129 struct task_struct *task;
133 * Split the global futex_lock into every hash list lock.
135 struct futex_hash_bucket {
136 spinlock_t lock;
137 struct list_head chain;
140 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
142 /* Futex-fs vfsmount entry: */
143 static struct vfsmount *futex_mnt;
146 * We hash on the keys returned from get_futex_key (see below).
148 static struct futex_hash_bucket *hash_futex(union futex_key *key)
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
157 * Return 1 if two futex_keys are equal, 0 otherwise.
159 static inline int match_futex(union futex_key *key1, union futex_key *key2)
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
167 * Get parameters which are the keys for a futex.
169 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
176 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
178 static int get_futex_key(u32 __user *uaddr, union futex_key *key)
180 unsigned long address = (unsigned long)uaddr;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *vma;
183 struct page *page;
184 int err;
187 * The futex address must be "naturally" aligned.
189 key->both.offset = address % PAGE_SIZE;
190 if (unlikely((key->both.offset % sizeof(u32)) != 0))
191 return -EINVAL;
192 address -= key->both.offset;
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
198 vma = find_extend_vma(mm, address);
199 if (unlikely(!vma))
200 return -EFAULT;
203 * Permissions.
205 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
206 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
209 * Private mappings are handled in a simple way.
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
217 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
218 key->private.mm = mm;
219 key->private.address = address;
220 return 0;
224 * Linear file mappings are also simple.
226 key->shared.inode = vma->vm_file->f_dentry->d_inode;
227 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
229 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
230 + vma->vm_pgoff);
231 return 0;
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
240 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
241 if (err >= 0) {
242 key->shared.pgoff =
243 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244 put_page(page);
245 return 0;
247 return err;
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
257 static inline void get_key_refs(union futex_key *key)
259 if (key->both.ptr != 0) {
260 if (key->both.offset & 1)
261 atomic_inc(&key->shared.inode->i_count);
262 else
263 atomic_inc(&key->private.mm->mm_count);
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
271 static void drop_key_refs(union futex_key *key)
273 if (key->both.ptr != 0) {
274 if (key->both.offset & 1)
275 iput(key->shared.inode);
276 else
277 mmdrop(key->private.mm);
281 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
283 int ret;
285 inc_preempt_count();
286 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
287 dec_preempt_count();
289 return ret ? -EFAULT : 0;
293 * Fault handling. Called with current->mm->mmap_sem held.
295 static int futex_handle_fault(unsigned long address, int attempt)
297 struct vm_area_struct * vma;
298 struct mm_struct *mm = current->mm;
300 if (attempt >= 2 || !(vma = find_vma(mm, address)) ||
301 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
302 return -EFAULT;
304 switch (handle_mm_fault(mm, vma, address, 1)) {
305 case VM_FAULT_MINOR:
306 current->min_flt++;
307 break;
308 case VM_FAULT_MAJOR:
309 current->maj_flt++;
310 break;
311 default:
312 return -EFAULT;
314 return 0;
318 * PI code:
320 static int refill_pi_state_cache(void)
322 struct futex_pi_state *pi_state;
324 if (likely(current->pi_state_cache))
325 return 0;
327 pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);
329 if (!pi_state)
330 return -ENOMEM;
332 memset(pi_state, 0, sizeof(*pi_state));
333 INIT_LIST_HEAD(&pi_state->list);
334 /* pi_mutex gets initialized later */
335 pi_state->owner = NULL;
336 atomic_set(&pi_state->refcount, 1);
338 current->pi_state_cache = pi_state;
340 return 0;
343 static struct futex_pi_state * alloc_pi_state(void)
345 struct futex_pi_state *pi_state = current->pi_state_cache;
347 WARN_ON(!pi_state);
348 current->pi_state_cache = NULL;
350 return pi_state;
353 static void free_pi_state(struct futex_pi_state *pi_state)
355 if (!atomic_dec_and_test(&pi_state->refcount))
356 return;
359 * If pi_state->owner is NULL, the owner is most probably dying
360 * and has cleaned up the pi_state already
362 if (pi_state->owner) {
363 spin_lock_irq(&pi_state->owner->pi_lock);
364 list_del_init(&pi_state->list);
365 spin_unlock_irq(&pi_state->owner->pi_lock);
367 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
370 if (current->pi_state_cache)
371 kfree(pi_state);
372 else {
374 * pi_state->list is already empty.
375 * clear pi_state->owner.
376 * refcount is at 0 - put it back to 1.
378 pi_state->owner = NULL;
379 atomic_set(&pi_state->refcount, 1);
380 current->pi_state_cache = pi_state;
385 * Look up the task based on what TID userspace gave us.
386 * We dont trust it.
388 static struct task_struct * futex_find_get_task(pid_t pid)
390 struct task_struct *p;
392 read_lock(&tasklist_lock);
393 p = find_task_by_pid(pid);
394 if (!p)
395 goto out_unlock;
396 if ((current->euid != p->euid) && (current->euid != p->uid)) {
397 p = NULL;
398 goto out_unlock;
400 if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) {
401 p = NULL;
402 goto out_unlock;
404 get_task_struct(p);
405 out_unlock:
406 read_unlock(&tasklist_lock);
408 return p;
412 * This task is holding PI mutexes at exit time => bad.
413 * Kernel cleans up PI-state, but userspace is likely hosed.
414 * (Robust-futex cleanup is separate and might save the day for userspace.)
416 void exit_pi_state_list(struct task_struct *curr)
418 struct futex_hash_bucket *hb;
419 struct list_head *next, *head = &curr->pi_state_list;
420 struct futex_pi_state *pi_state;
421 union futex_key key;
424 * We are a ZOMBIE and nobody can enqueue itself on
425 * pi_state_list anymore, but we have to be careful
426 * versus waiters unqueueing themselfs
428 spin_lock_irq(&curr->pi_lock);
429 while (!list_empty(head)) {
431 next = head->next;
432 pi_state = list_entry(next, struct futex_pi_state, list);
433 key = pi_state->key;
434 spin_unlock_irq(&curr->pi_lock);
436 hb = hash_futex(&key);
437 spin_lock(&hb->lock);
439 spin_lock_irq(&curr->pi_lock);
440 if (head->next != next) {
441 spin_unlock(&hb->lock);
442 continue;
445 list_del_init(&pi_state->list);
447 WARN_ON(pi_state->owner != curr);
449 pi_state->owner = NULL;
450 spin_unlock_irq(&curr->pi_lock);
452 rt_mutex_unlock(&pi_state->pi_mutex);
454 spin_unlock(&hb->lock);
456 spin_lock_irq(&curr->pi_lock);
458 spin_unlock_irq(&curr->pi_lock);
461 static int
462 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
464 struct futex_pi_state *pi_state = NULL;
465 struct futex_q *this, *next;
466 struct list_head *head;
467 struct task_struct *p;
468 pid_t pid;
470 head = &hb->chain;
472 list_for_each_entry_safe(this, next, head, list) {
473 if (match_futex (&this->key, &me->key)) {
475 * Another waiter already exists - bump up
476 * the refcount and return its pi_state:
478 pi_state = this->pi_state;
479 atomic_inc(&pi_state->refcount);
480 me->pi_state = pi_state;
482 return 0;
487 * We are the first waiter - try to look up the real owner and
488 * attach the new pi_state to it:
490 pid = uval & FUTEX_TID_MASK;
491 p = futex_find_get_task(pid);
492 if (!p)
493 return -ESRCH;
495 pi_state = alloc_pi_state();
498 * Initialize the pi_mutex in locked state and make 'p'
499 * the owner of it:
501 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
503 /* Store the key for possible exit cleanups: */
504 pi_state->key = me->key;
506 spin_lock_irq(&p->pi_lock);
507 list_add(&pi_state->list, &p->pi_state_list);
508 pi_state->owner = p;
509 spin_unlock_irq(&p->pi_lock);
511 put_task_struct(p);
513 me->pi_state = pi_state;
515 return 0;
519 * The hash bucket lock must be held when this is called.
520 * Afterwards, the futex_q must not be accessed.
522 static void wake_futex(struct futex_q *q)
524 list_del_init(&q->list);
525 if (q->filp)
526 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
528 * The lock in wake_up_all() is a crucial memory barrier after the
529 * list_del_init() and also before assigning to q->lock_ptr.
531 wake_up_all(&q->waiters);
533 * The waiting task can free the futex_q as soon as this is written,
534 * without taking any locks. This must come last.
536 * A memory barrier is required here to prevent the following store
537 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
538 * at the end of wake_up_all() does not prevent this store from
539 * moving.
541 wmb();
542 q->lock_ptr = NULL;
545 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
547 struct task_struct *new_owner;
548 struct futex_pi_state *pi_state = this->pi_state;
549 u32 curval, newval;
551 if (!pi_state)
552 return -EINVAL;
554 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
557 * This happens when we have stolen the lock and the original
558 * pending owner did not enqueue itself back on the rt_mutex.
559 * Thats not a tragedy. We know that way, that a lock waiter
560 * is on the fly. We make the futex_q waiter the pending owner.
562 if (!new_owner)
563 new_owner = this->task;
566 * We pass it to the next owner. (The WAITERS bit is always
567 * kept enabled while there is PI state around. We must also
568 * preserve the owner died bit.)
570 newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid;
572 inc_preempt_count();
573 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
574 dec_preempt_count();
576 if (curval == -EFAULT)
577 return -EFAULT;
578 if (curval != uval)
579 return -EINVAL;
581 list_del_init(&pi_state->owner->pi_state_list);
582 list_add(&pi_state->list, &new_owner->pi_state_list);
583 pi_state->owner = new_owner;
584 rt_mutex_unlock(&pi_state->pi_mutex);
586 return 0;
589 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
591 u32 oldval;
594 * There is no waiter, so we unlock the futex. The owner died
595 * bit has not to be preserved here. We are the owner:
597 inc_preempt_count();
598 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
599 dec_preempt_count();
601 if (oldval == -EFAULT)
602 return oldval;
603 if (oldval != uval)
604 return -EAGAIN;
606 return 0;
610 * Wake up all waiters hashed on the physical page that is mapped
611 * to this virtual address:
613 static int futex_wake(u32 __user *uaddr, int nr_wake)
615 struct futex_hash_bucket *hb;
616 struct futex_q *this, *next;
617 struct list_head *head;
618 union futex_key key;
619 int ret;
621 down_read(&current->mm->mmap_sem);
623 ret = get_futex_key(uaddr, &key);
624 if (unlikely(ret != 0))
625 goto out;
627 hb = hash_futex(&key);
628 spin_lock(&hb->lock);
629 head = &hb->chain;
631 list_for_each_entry_safe(this, next, head, list) {
632 if (match_futex (&this->key, &key)) {
633 if (this->pi_state)
634 return -EINVAL;
635 wake_futex(this);
636 if (++ret >= nr_wake)
637 break;
641 spin_unlock(&hb->lock);
642 out:
643 up_read(&current->mm->mmap_sem);
644 return ret;
648 * Wake up all waiters hashed on the physical page that is mapped
649 * to this virtual address:
651 static int
652 futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
653 int nr_wake, int nr_wake2, int op)
655 union futex_key key1, key2;
656 struct futex_hash_bucket *hb1, *hb2;
657 struct list_head *head;
658 struct futex_q *this, *next;
659 int ret, op_ret, attempt = 0;
661 retryfull:
662 down_read(&current->mm->mmap_sem);
664 ret = get_futex_key(uaddr1, &key1);
665 if (unlikely(ret != 0))
666 goto out;
667 ret = get_futex_key(uaddr2, &key2);
668 if (unlikely(ret != 0))
669 goto out;
671 hb1 = hash_futex(&key1);
672 hb2 = hash_futex(&key2);
674 retry:
675 if (hb1 < hb2)
676 spin_lock(&hb1->lock);
677 spin_lock(&hb2->lock);
678 if (hb1 > hb2)
679 spin_lock(&hb1->lock);
681 op_ret = futex_atomic_op_inuser(op, uaddr2);
682 if (unlikely(op_ret < 0)) {
683 u32 dummy;
685 spin_unlock(&hb1->lock);
686 if (hb1 != hb2)
687 spin_unlock(&hb2->lock);
689 #ifndef CONFIG_MMU
691 * we don't get EFAULT from MMU faults if we don't have an MMU,
692 * but we might get them from range checking
694 ret = op_ret;
695 goto out;
696 #endif
698 if (unlikely(op_ret != -EFAULT)) {
699 ret = op_ret;
700 goto out;
704 * futex_atomic_op_inuser needs to both read and write
705 * *(int __user *)uaddr2, but we can't modify it
706 * non-atomically. Therefore, if get_user below is not
707 * enough, we need to handle the fault ourselves, while
708 * still holding the mmap_sem.
710 if (attempt++) {
711 if (futex_handle_fault((unsigned long)uaddr2,
712 attempt))
713 goto out;
714 goto retry;
718 * If we would have faulted, release mmap_sem,
719 * fault it in and start all over again.
721 up_read(&current->mm->mmap_sem);
723 ret = get_user(dummy, uaddr2);
724 if (ret)
725 return ret;
727 goto retryfull;
730 head = &hb1->chain;
732 list_for_each_entry_safe(this, next, head, list) {
733 if (match_futex (&this->key, &key1)) {
734 wake_futex(this);
735 if (++ret >= nr_wake)
736 break;
740 if (op_ret > 0) {
741 head = &hb2->chain;
743 op_ret = 0;
744 list_for_each_entry_safe(this, next, head, list) {
745 if (match_futex (&this->key, &key2)) {
746 wake_futex(this);
747 if (++op_ret >= nr_wake2)
748 break;
751 ret += op_ret;
754 spin_unlock(&hb1->lock);
755 if (hb1 != hb2)
756 spin_unlock(&hb2->lock);
757 out:
758 up_read(&current->mm->mmap_sem);
759 return ret;
763 * Requeue all waiters hashed on one physical page to another
764 * physical page.
766 static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
767 int nr_wake, int nr_requeue, u32 *cmpval)
769 union futex_key key1, key2;
770 struct futex_hash_bucket *hb1, *hb2;
771 struct list_head *head1;
772 struct futex_q *this, *next;
773 int ret, drop_count = 0;
775 retry:
776 down_read(&current->mm->mmap_sem);
778 ret = get_futex_key(uaddr1, &key1);
779 if (unlikely(ret != 0))
780 goto out;
781 ret = get_futex_key(uaddr2, &key2);
782 if (unlikely(ret != 0))
783 goto out;
785 hb1 = hash_futex(&key1);
786 hb2 = hash_futex(&key2);
788 if (hb1 < hb2)
789 spin_lock(&hb1->lock);
790 spin_lock(&hb2->lock);
791 if (hb1 > hb2)
792 spin_lock(&hb1->lock);
794 if (likely(cmpval != NULL)) {
795 u32 curval;
797 ret = get_futex_value_locked(&curval, uaddr1);
799 if (unlikely(ret)) {
800 spin_unlock(&hb1->lock);
801 if (hb1 != hb2)
802 spin_unlock(&hb2->lock);
805 * If we would have faulted, release mmap_sem, fault
806 * it in and start all over again.
808 up_read(&current->mm->mmap_sem);
810 ret = get_user(curval, uaddr1);
812 if (!ret)
813 goto retry;
815 return ret;
817 if (curval != *cmpval) {
818 ret = -EAGAIN;
819 goto out_unlock;
823 head1 = &hb1->chain;
824 list_for_each_entry_safe(this, next, head1, list) {
825 if (!match_futex (&this->key, &key1))
826 continue;
827 if (++ret <= nr_wake) {
828 wake_futex(this);
829 } else {
831 * If key1 and key2 hash to the same bucket, no need to
832 * requeue.
834 if (likely(head1 != &hb2->chain)) {
835 list_move_tail(&this->list, &hb2->chain);
836 this->lock_ptr = &hb2->lock;
838 this->key = key2;
839 get_key_refs(&key2);
840 drop_count++;
842 if (ret - nr_wake >= nr_requeue)
843 break;
847 out_unlock:
848 spin_unlock(&hb1->lock);
849 if (hb1 != hb2)
850 spin_unlock(&hb2->lock);
852 /* drop_key_refs() must be called outside the spinlocks. */
853 while (--drop_count >= 0)
854 drop_key_refs(&key1);
856 out:
857 up_read(&current->mm->mmap_sem);
858 return ret;
861 /* The key must be already stored in q->key. */
862 static inline struct futex_hash_bucket *
863 queue_lock(struct futex_q *q, int fd, struct file *filp)
865 struct futex_hash_bucket *hb;
867 q->fd = fd;
868 q->filp = filp;
870 init_waitqueue_head(&q->waiters);
872 get_key_refs(&q->key);
873 hb = hash_futex(&q->key);
874 q->lock_ptr = &hb->lock;
876 spin_lock(&hb->lock);
877 return hb;
880 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
882 list_add_tail(&q->list, &hb->chain);
883 q->task = current;
884 spin_unlock(&hb->lock);
887 static inline void
888 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
890 spin_unlock(&hb->lock);
891 drop_key_refs(&q->key);
895 * queue_me and unqueue_me must be called as a pair, each
896 * exactly once. They are called with the hashed spinlock held.
899 /* The key must be already stored in q->key. */
900 static void queue_me(struct futex_q *q, int fd, struct file *filp)
902 struct futex_hash_bucket *hb;
904 hb = queue_lock(q, fd, filp);
905 __queue_me(q, hb);
908 /* Return 1 if we were still queued (ie. 0 means we were woken) */
909 static int unqueue_me(struct futex_q *q)
911 spinlock_t *lock_ptr;
912 int ret = 0;
914 /* In the common case we don't take the spinlock, which is nice. */
915 retry:
916 lock_ptr = q->lock_ptr;
917 if (lock_ptr != 0) {
918 spin_lock(lock_ptr);
920 * q->lock_ptr can change between reading it and
921 * spin_lock(), causing us to take the wrong lock. This
922 * corrects the race condition.
924 * Reasoning goes like this: if we have the wrong lock,
925 * q->lock_ptr must have changed (maybe several times)
926 * between reading it and the spin_lock(). It can
927 * change again after the spin_lock() but only if it was
928 * already changed before the spin_lock(). It cannot,
929 * however, change back to the original value. Therefore
930 * we can detect whether we acquired the correct lock.
932 if (unlikely(lock_ptr != q->lock_ptr)) {
933 spin_unlock(lock_ptr);
934 goto retry;
936 WARN_ON(list_empty(&q->list));
937 list_del(&q->list);
939 BUG_ON(q->pi_state);
941 spin_unlock(lock_ptr);
942 ret = 1;
945 drop_key_refs(&q->key);
946 return ret;
950 * PI futexes can not be requeued and must remove themself from the
951 * hash bucket. The hash bucket lock is held on entry and dropped here.
953 static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
955 WARN_ON(list_empty(&q->list));
956 list_del(&q->list);
958 BUG_ON(!q->pi_state);
959 free_pi_state(q->pi_state);
960 q->pi_state = NULL;
962 spin_unlock(&hb->lock);
964 drop_key_refs(&q->key);
967 static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
969 struct task_struct *curr = current;
970 DECLARE_WAITQUEUE(wait, curr);
971 struct futex_hash_bucket *hb;
972 struct futex_q q;
973 u32 uval;
974 int ret;
976 q.pi_state = NULL;
977 retry:
978 down_read(&curr->mm->mmap_sem);
980 ret = get_futex_key(uaddr, &q.key);
981 if (unlikely(ret != 0))
982 goto out_release_sem;
984 hb = queue_lock(&q, -1, NULL);
987 * Access the page AFTER the futex is queued.
988 * Order is important:
990 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
991 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
993 * The basic logical guarantee of a futex is that it blocks ONLY
994 * if cond(var) is known to be true at the time of blocking, for
995 * any cond. If we queued after testing *uaddr, that would open
996 * a race condition where we could block indefinitely with
997 * cond(var) false, which would violate the guarantee.
999 * A consequence is that futex_wait() can return zero and absorb
1000 * a wakeup when *uaddr != val on entry to the syscall. This is
1001 * rare, but normal.
1003 * We hold the mmap semaphore, so the mapping cannot have changed
1004 * since we looked it up in get_futex_key.
1006 ret = get_futex_value_locked(&uval, uaddr);
1008 if (unlikely(ret)) {
1009 queue_unlock(&q, hb);
1012 * If we would have faulted, release mmap_sem, fault it in and
1013 * start all over again.
1015 up_read(&curr->mm->mmap_sem);
1017 ret = get_user(uval, uaddr);
1019 if (!ret)
1020 goto retry;
1021 return ret;
1023 ret = -EWOULDBLOCK;
1024 if (uval != val)
1025 goto out_unlock_release_sem;
1027 /* Only actually queue if *uaddr contained val. */
1028 __queue_me(&q, hb);
1031 * Now the futex is queued and we have checked the data, we
1032 * don't want to hold mmap_sem while we sleep.
1034 up_read(&curr->mm->mmap_sem);
1037 * There might have been scheduling since the queue_me(), as we
1038 * cannot hold a spinlock across the get_user() in case it
1039 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1040 * queueing ourselves into the futex hash. This code thus has to
1041 * rely on the futex_wake() code removing us from hash when it
1042 * wakes us up.
1045 /* add_wait_queue is the barrier after __set_current_state. */
1046 __set_current_state(TASK_INTERRUPTIBLE);
1047 add_wait_queue(&q.waiters, &wait);
1049 * !list_empty() is safe here without any lock.
1050 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1052 if (likely(!list_empty(&q.list)))
1053 time = schedule_timeout(time);
1054 __set_current_state(TASK_RUNNING);
1057 * NOTE: we don't remove ourselves from the waitqueue because
1058 * we are the only user of it.
1061 /* If we were woken (and unqueued), we succeeded, whatever. */
1062 if (!unqueue_me(&q))
1063 return 0;
1064 if (time == 0)
1065 return -ETIMEDOUT;
1067 * We expect signal_pending(current), but another thread may
1068 * have handled it for us already.
1070 return -EINTR;
1072 out_unlock_release_sem:
1073 queue_unlock(&q, hb);
1075 out_release_sem:
1076 up_read(&curr->mm->mmap_sem);
1077 return ret;
1081 * Userspace tried a 0 -> TID atomic transition of the futex value
1082 * and failed. The kernel side here does the whole locking operation:
1083 * if there are waiters then it will block, it does PI, etc. (Due to
1084 * races the kernel might see a 0 value of the futex too.)
1086 static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock,
1087 struct hrtimer_sleeper *to)
1089 struct task_struct *curr = current;
1090 struct futex_hash_bucket *hb;
1091 u32 uval, newval, curval;
1092 struct futex_q q;
1093 int ret, attempt = 0;
1095 if (refill_pi_state_cache())
1096 return -ENOMEM;
1098 q.pi_state = NULL;
1099 retry:
1100 down_read(&curr->mm->mmap_sem);
1102 ret = get_futex_key(uaddr, &q.key);
1103 if (unlikely(ret != 0))
1104 goto out_release_sem;
1106 hb = queue_lock(&q, -1, NULL);
1108 retry_locked:
1110 * To avoid races, we attempt to take the lock here again
1111 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1112 * the locks. It will most likely not succeed.
1114 newval = current->pid;
1116 inc_preempt_count();
1117 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1118 dec_preempt_count();
1120 if (unlikely(curval == -EFAULT))
1121 goto uaddr_faulted;
1123 /* We own the lock already */
1124 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1125 if (!detect && 0)
1126 force_sig(SIGKILL, current);
1127 ret = -EDEADLK;
1128 goto out_unlock_release_sem;
1132 * Surprise - we got the lock. Just return
1133 * to userspace:
1135 if (unlikely(!curval))
1136 goto out_unlock_release_sem;
1138 uval = curval;
1139 newval = uval | FUTEX_WAITERS;
1141 inc_preempt_count();
1142 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1143 dec_preempt_count();
1145 if (unlikely(curval == -EFAULT))
1146 goto uaddr_faulted;
1147 if (unlikely(curval != uval))
1148 goto retry_locked;
1151 * We dont have the lock. Look up the PI state (or create it if
1152 * we are the first waiter):
1154 ret = lookup_pi_state(uval, hb, &q);
1156 if (unlikely(ret)) {
1158 * There were no waiters and the owner task lookup
1159 * failed. When the OWNER_DIED bit is set, then we
1160 * know that this is a robust futex and we actually
1161 * take the lock. This is safe as we are protected by
1162 * the hash bucket lock. We also set the waiters bit
1163 * unconditionally here, to simplify glibc handling of
1164 * multiple tasks racing to acquire the lock and
1165 * cleanup the problems which were left by the dead
1166 * owner.
1168 if (curval & FUTEX_OWNER_DIED) {
1169 uval = newval;
1170 newval = current->pid |
1171 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1173 inc_preempt_count();
1174 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1175 uval, newval);
1176 dec_preempt_count();
1178 if (unlikely(curval == -EFAULT))
1179 goto uaddr_faulted;
1180 if (unlikely(curval != uval))
1181 goto retry_locked;
1182 ret = 0;
1184 goto out_unlock_release_sem;
1188 * Only actually queue now that the atomic ops are done:
1190 __queue_me(&q, hb);
1193 * Now the futex is queued and we have checked the data, we
1194 * don't want to hold mmap_sem while we sleep.
1196 up_read(&curr->mm->mmap_sem);
1198 WARN_ON(!q.pi_state);
1200 * Block on the PI mutex:
1202 if (!trylock)
1203 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1204 else {
1205 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1206 /* Fixup the trylock return value: */
1207 ret = ret ? 0 : -EWOULDBLOCK;
1210 down_read(&curr->mm->mmap_sem);
1211 hb = queue_lock(&q, -1, NULL);
1214 * Got the lock. We might not be the anticipated owner if we
1215 * did a lock-steal - fix up the PI-state in that case.
1217 if (!ret && q.pi_state->owner != curr) {
1218 u32 newtid = current->pid | FUTEX_WAITERS;
1220 /* Owner died? */
1221 if (q.pi_state->owner != NULL) {
1222 spin_lock_irq(&q.pi_state->owner->pi_lock);
1223 list_del_init(&q.pi_state->list);
1224 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1225 } else
1226 newtid |= FUTEX_OWNER_DIED;
1228 q.pi_state->owner = current;
1230 spin_lock_irq(&current->pi_lock);
1231 list_add(&q.pi_state->list, &current->pi_state_list);
1232 spin_unlock_irq(&current->pi_lock);
1234 /* Unqueue and drop the lock */
1235 unqueue_me_pi(&q, hb);
1236 up_read(&curr->mm->mmap_sem);
1238 * We own it, so we have to replace the pending owner
1239 * TID. This must be atomic as we have preserve the
1240 * owner died bit here.
1242 ret = get_user(uval, uaddr);
1243 while (!ret) {
1244 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1245 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1246 uval, newval);
1247 if (curval == -EFAULT)
1248 ret = -EFAULT;
1249 if (curval == uval)
1250 break;
1251 uval = curval;
1253 } else {
1255 * Catch the rare case, where the lock was released
1256 * when we were on the way back before we locked
1257 * the hash bucket.
1259 if (ret && q.pi_state->owner == curr) {
1260 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1261 ret = 0;
1263 /* Unqueue and drop the lock */
1264 unqueue_me_pi(&q, hb);
1265 up_read(&curr->mm->mmap_sem);
1268 if (!detect && ret == -EDEADLK && 0)
1269 force_sig(SIGKILL, current);
1271 return ret;
1273 out_unlock_release_sem:
1274 queue_unlock(&q, hb);
1276 out_release_sem:
1277 up_read(&curr->mm->mmap_sem);
1278 return ret;
1280 uaddr_faulted:
1282 * We have to r/w *(int __user *)uaddr, but we can't modify it
1283 * non-atomically. Therefore, if get_user below is not
1284 * enough, we need to handle the fault ourselves, while
1285 * still holding the mmap_sem.
1287 if (attempt++) {
1288 if (futex_handle_fault((unsigned long)uaddr, attempt))
1289 goto out_unlock_release_sem;
1291 goto retry_locked;
1294 queue_unlock(&q, hb);
1295 up_read(&curr->mm->mmap_sem);
1297 ret = get_user(uval, uaddr);
1298 if (!ret && (uval != -EFAULT))
1299 goto retry;
1301 return ret;
1305 * Restart handler
1307 static long futex_lock_pi_restart(struct restart_block *restart)
1309 struct hrtimer_sleeper timeout, *to = NULL;
1310 int ret;
1312 restart->fn = do_no_restart_syscall;
1314 if (restart->arg2 || restart->arg3) {
1315 to = &timeout;
1316 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1317 hrtimer_init_sleeper(to, current);
1318 to->timer.expires.tv64 = ((u64)restart->arg1 << 32) |
1319 (u64) restart->arg0;
1322 pr_debug("lock_pi restart: %p, %d (%d)\n",
1323 (u32 __user *)restart->arg0, current->pid);
1325 ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1,
1326 0, to);
1328 if (ret != -EINTR)
1329 return ret;
1331 restart->fn = futex_lock_pi_restart;
1333 /* The other values are filled in */
1334 return -ERESTART_RESTARTBLOCK;
1338 * Called from the syscall entry below.
1340 static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1341 long nsec, int trylock)
1343 struct hrtimer_sleeper timeout, *to = NULL;
1344 struct restart_block *restart;
1345 int ret;
1347 if (sec != MAX_SCHEDULE_TIMEOUT) {
1348 to = &timeout;
1349 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1350 hrtimer_init_sleeper(to, current);
1351 to->timer.expires = ktime_set(sec, nsec);
1354 ret = do_futex_lock_pi(uaddr, detect, trylock, to);
1356 if (ret != -EINTR)
1357 return ret;
1359 pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid);
1361 restart = &current_thread_info()->restart_block;
1362 restart->fn = futex_lock_pi_restart;
1363 restart->arg0 = (unsigned long) uaddr;
1364 restart->arg1 = detect;
1365 if (to) {
1366 restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF;
1367 restart->arg3 = to->timer.expires.tv64 >> 32;
1368 } else
1369 restart->arg2 = restart->arg3 = 0;
1371 return -ERESTART_RESTARTBLOCK;
1375 * Userspace attempted a TID -> 0 atomic transition, and failed.
1376 * This is the in-kernel slowpath: we look up the PI state (if any),
1377 * and do the rt-mutex unlock.
1379 static int futex_unlock_pi(u32 __user *uaddr)
1381 struct futex_hash_bucket *hb;
1382 struct futex_q *this, *next;
1383 u32 uval;
1384 struct list_head *head;
1385 union futex_key key;
1386 int ret, attempt = 0;
1388 retry:
1389 if (get_user(uval, uaddr))
1390 return -EFAULT;
1392 * We release only a lock we actually own:
1394 if ((uval & FUTEX_TID_MASK) != current->pid)
1395 return -EPERM;
1397 * First take all the futex related locks:
1399 down_read(&current->mm->mmap_sem);
1401 ret = get_futex_key(uaddr, &key);
1402 if (unlikely(ret != 0))
1403 goto out;
1405 hb = hash_futex(&key);
1406 spin_lock(&hb->lock);
1408 retry_locked:
1410 * To avoid races, try to do the TID -> 0 atomic transition
1411 * again. If it succeeds then we can return without waking
1412 * anyone else up:
1414 inc_preempt_count();
1415 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1416 dec_preempt_count();
1418 if (unlikely(uval == -EFAULT))
1419 goto pi_faulted;
1421 * Rare case: we managed to release the lock atomically,
1422 * no need to wake anyone else up:
1424 if (unlikely(uval == current->pid))
1425 goto out_unlock;
1428 * Ok, other tasks may need to be woken up - check waiters
1429 * and do the wakeup if necessary:
1431 head = &hb->chain;
1433 list_for_each_entry_safe(this, next, head, list) {
1434 if (!match_futex (&this->key, &key))
1435 continue;
1436 ret = wake_futex_pi(uaddr, uval, this);
1438 * The atomic access to the futex value
1439 * generated a pagefault, so retry the
1440 * user-access and the wakeup:
1442 if (ret == -EFAULT)
1443 goto pi_faulted;
1444 goto out_unlock;
1447 * No waiters - kernel unlocks the futex:
1449 ret = unlock_futex_pi(uaddr, uval);
1450 if (ret == -EFAULT)
1451 goto pi_faulted;
1453 out_unlock:
1454 spin_unlock(&hb->lock);
1455 out:
1456 up_read(&current->mm->mmap_sem);
1458 return ret;
1460 pi_faulted:
1462 * We have to r/w *(int __user *)uaddr, but we can't modify it
1463 * non-atomically. Therefore, if get_user below is not
1464 * enough, we need to handle the fault ourselves, while
1465 * still holding the mmap_sem.
1467 if (attempt++) {
1468 if (futex_handle_fault((unsigned long)uaddr, attempt))
1469 goto out_unlock;
1471 goto retry_locked;
1474 spin_unlock(&hb->lock);
1475 up_read(&current->mm->mmap_sem);
1477 ret = get_user(uval, uaddr);
1478 if (!ret && (uval != -EFAULT))
1479 goto retry;
1481 return ret;
1484 static int futex_close(struct inode *inode, struct file *filp)
1486 struct futex_q *q = filp->private_data;
1488 unqueue_me(q);
1489 kfree(q);
1491 return 0;
1494 /* This is one-shot: once it's gone off you need a new fd */
1495 static unsigned int futex_poll(struct file *filp,
1496 struct poll_table_struct *wait)
1498 struct futex_q *q = filp->private_data;
1499 int ret = 0;
1501 poll_wait(filp, &q->waiters, wait);
1504 * list_empty() is safe here without any lock.
1505 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1507 if (list_empty(&q->list))
1508 ret = POLLIN | POLLRDNORM;
1510 return ret;
1513 static struct file_operations futex_fops = {
1514 .release = futex_close,
1515 .poll = futex_poll,
1519 * Signal allows caller to avoid the race which would occur if they
1520 * set the sigio stuff up afterwards.
1522 static int futex_fd(u32 __user *uaddr, int signal)
1524 struct futex_q *q;
1525 struct file *filp;
1526 int ret, err;
1528 ret = -EINVAL;
1529 if (!valid_signal(signal))
1530 goto out;
1532 ret = get_unused_fd();
1533 if (ret < 0)
1534 goto out;
1535 filp = get_empty_filp();
1536 if (!filp) {
1537 put_unused_fd(ret);
1538 ret = -ENFILE;
1539 goto out;
1541 filp->f_op = &futex_fops;
1542 filp->f_vfsmnt = mntget(futex_mnt);
1543 filp->f_dentry = dget(futex_mnt->mnt_root);
1544 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
1546 if (signal) {
1547 err = f_setown(filp, current->pid, 1);
1548 if (err < 0) {
1549 goto error;
1551 filp->f_owner.signum = signal;
1554 q = kmalloc(sizeof(*q), GFP_KERNEL);
1555 if (!q) {
1556 err = -ENOMEM;
1557 goto error;
1559 q->pi_state = NULL;
1561 down_read(&current->mm->mmap_sem);
1562 err = get_futex_key(uaddr, &q->key);
1564 if (unlikely(err != 0)) {
1565 up_read(&current->mm->mmap_sem);
1566 kfree(q);
1567 goto error;
1571 * queue_me() must be called before releasing mmap_sem, because
1572 * key->shared.inode needs to be referenced while holding it.
1574 filp->private_data = q;
1576 queue_me(q, ret, filp);
1577 up_read(&current->mm->mmap_sem);
1579 /* Now we map fd to filp, so userspace can access it */
1580 fd_install(ret, filp);
1581 out:
1582 return ret;
1583 error:
1584 put_unused_fd(ret);
1585 put_filp(filp);
1586 ret = err;
1587 goto out;
1591 * Support for robust futexes: the kernel cleans up held futexes at
1592 * thread exit time.
1594 * Implementation: user-space maintains a per-thread list of locks it
1595 * is holding. Upon do_exit(), the kernel carefully walks this list,
1596 * and marks all locks that are owned by this thread with the
1597 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1598 * always manipulated with the lock held, so the list is private and
1599 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1600 * field, to allow the kernel to clean up if the thread dies after
1601 * acquiring the lock, but just before it could have added itself to
1602 * the list. There can only be one such pending lock.
1606 * sys_set_robust_list - set the robust-futex list head of a task
1607 * @head: pointer to the list-head
1608 * @len: length of the list-head, as userspace expects
1610 asmlinkage long
1611 sys_set_robust_list(struct robust_list_head __user *head,
1612 size_t len)
1615 * The kernel knows only one size for now:
1617 if (unlikely(len != sizeof(*head)))
1618 return -EINVAL;
1620 current->robust_list = head;
1622 return 0;
1626 * sys_get_robust_list - get the robust-futex list head of a task
1627 * @pid: pid of the process [zero for current task]
1628 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1629 * @len_ptr: pointer to a length field, the kernel fills in the header size
1631 asmlinkage long
1632 sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
1633 size_t __user *len_ptr)
1635 struct robust_list_head *head;
1636 unsigned long ret;
1638 if (!pid)
1639 head = current->robust_list;
1640 else {
1641 struct task_struct *p;
1643 ret = -ESRCH;
1644 read_lock(&tasklist_lock);
1645 p = find_task_by_pid(pid);
1646 if (!p)
1647 goto err_unlock;
1648 ret = -EPERM;
1649 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1650 !capable(CAP_SYS_PTRACE))
1651 goto err_unlock;
1652 head = p->robust_list;
1653 read_unlock(&tasklist_lock);
1656 if (put_user(sizeof(*head), len_ptr))
1657 return -EFAULT;
1658 return put_user(head, head_ptr);
1660 err_unlock:
1661 read_unlock(&tasklist_lock);
1663 return ret;
1667 * Process a futex-list entry, check whether it's owned by the
1668 * dying task, and do notification if so:
1670 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
1672 u32 uval, nval;
1674 retry:
1675 if (get_user(uval, uaddr))
1676 return -1;
1678 if ((uval & FUTEX_TID_MASK) == curr->pid) {
1680 * Ok, this dying thread is truly holding a futex
1681 * of interest. Set the OWNER_DIED bit atomically
1682 * via cmpxchg, and if the value had FUTEX_WAITERS
1683 * set, wake up a waiter (if any). (We have to do a
1684 * futex_wake() even if OWNER_DIED is already set -
1685 * to handle the rare but possible case of recursive
1686 * thread-death.) The rest of the cleanup is done in
1687 * userspace.
1689 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval,
1690 uval | FUTEX_OWNER_DIED);
1691 if (nval == -EFAULT)
1692 return -1;
1694 if (nval != uval)
1695 goto retry;
1697 if (uval & FUTEX_WAITERS)
1698 futex_wake(uaddr, 1);
1700 return 0;
1704 * Walk curr->robust_list (very carefully, it's a userspace list!)
1705 * and mark any locks found there dead, and notify any waiters.
1707 * We silently return on any sign of list-walking problem.
1709 void exit_robust_list(struct task_struct *curr)
1711 struct robust_list_head __user *head = curr->robust_list;
1712 struct robust_list __user *entry, *pending;
1713 unsigned int limit = ROBUST_LIST_LIMIT;
1714 unsigned long futex_offset;
1717 * Fetch the list head (which was registered earlier, via
1718 * sys_set_robust_list()):
1720 if (get_user(entry, &head->list.next))
1721 return;
1723 * Fetch the relative futex offset:
1725 if (get_user(futex_offset, &head->futex_offset))
1726 return;
1728 * Fetch any possibly pending lock-add first, and handle it
1729 * if it exists:
1731 if (get_user(pending, &head->list_op_pending))
1732 return;
1733 if (pending)
1734 handle_futex_death((void *)pending + futex_offset, curr);
1736 while (entry != &head->list) {
1738 * A pending lock might already be on the list, so
1739 * don't process it twice:
1741 if (entry != pending)
1742 if (handle_futex_death((void *)entry + futex_offset,
1743 curr))
1744 return;
1746 * Fetch the next entry in the list:
1748 if (get_user(entry, &entry->next))
1749 return;
1751 * Avoid excessively long or circular lists:
1753 if (!--limit)
1754 break;
1756 cond_resched();
1760 long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1761 u32 __user *uaddr2, u32 val2, u32 val3)
1763 int ret;
1765 switch (op) {
1766 case FUTEX_WAIT:
1767 ret = futex_wait(uaddr, val, timeout);
1768 break;
1769 case FUTEX_WAKE:
1770 ret = futex_wake(uaddr, val);
1771 break;
1772 case FUTEX_FD:
1773 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1774 ret = futex_fd(uaddr, val);
1775 break;
1776 case FUTEX_REQUEUE:
1777 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1778 break;
1779 case FUTEX_CMP_REQUEUE:
1780 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1781 break;
1782 case FUTEX_WAKE_OP:
1783 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1784 break;
1785 case FUTEX_LOCK_PI:
1786 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1787 break;
1788 case FUTEX_UNLOCK_PI:
1789 ret = futex_unlock_pi(uaddr);
1790 break;
1791 case FUTEX_TRYLOCK_PI:
1792 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1793 break;
1794 default:
1795 ret = -ENOSYS;
1797 return ret;
1801 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1802 struct timespec __user *utime, u32 __user *uaddr2,
1803 u32 val3)
1805 struct timespec t;
1806 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1807 u32 val2 = 0;
1809 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1810 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1811 return -EFAULT;
1812 if (!timespec_valid(&t))
1813 return -EINVAL;
1814 if (op == FUTEX_WAIT)
1815 timeout = timespec_to_jiffies(&t) + 1;
1816 else {
1817 timeout = t.tv_sec;
1818 val2 = t.tv_nsec;
1822 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1824 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1825 val2 = (u32) (unsigned long) utime;
1827 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1830 static int futexfs_get_sb(struct file_system_type *fs_type,
1831 int flags, const char *dev_name, void *data,
1832 struct vfsmount *mnt)
1834 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1837 static struct file_system_type futex_fs_type = {
1838 .name = "futexfs",
1839 .get_sb = futexfs_get_sb,
1840 .kill_sb = kill_anon_super,
1843 static int __init init(void)
1845 unsigned int i;
1847 register_filesystem(&futex_fs_type);
1848 futex_mnt = kern_mount(&futex_fs_type);
1850 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1851 INIT_LIST_HEAD(&futex_queues[i].chain);
1852 spin_lock_init(&futex_queues[i].lock);
1854 return 0;
1856 __initcall(init);