Merge branch 'drm-intel-fixes' into drm-intel-next
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blob33c178c8d6dd04da2f41da8ecb2f9034defe978a
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
61 typedef struct {
62 int min, max;
63 } intel_range_t;
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
348 if (IS_GEN5(dev)) {
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351 } else
352 return 27;
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
357 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
358 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
359 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
360 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
361 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
362 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
363 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
364 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
366 .find_pll = intel_find_best_PLL,
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
371 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
372 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
373 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
374 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
375 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
376 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
377 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
378 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
380 .find_pll = intel_find_best_PLL,
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
385 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
386 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
387 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
388 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
389 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
390 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
391 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
392 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394 .find_pll = intel_find_best_PLL,
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
399 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
400 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
401 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
402 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
403 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
404 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
405 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
406 /* The single-channel range is 25-112Mhz, and dual-channel
407 * is 80-224Mhz. Prefer single channel as much as possible.
409 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
411 .find_pll = intel_find_best_PLL,
414 /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
417 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
418 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
419 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
420 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
421 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
422 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
423 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
424 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
425 .p2_slow = G4X_P2_SDVO_SLOW,
426 .p2_fast = G4X_P2_SDVO_FAST
428 .find_pll = intel_g4x_find_best_PLL,
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
433 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
434 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
435 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
436 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
437 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
438 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
439 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
440 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442 .p2_fast = G4X_P2_HDMI_DAC_FAST
444 .find_pll = intel_g4x_find_best_PLL,
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450 .vco = { .min = G4X_VCO_MIN,
451 .max = G4X_VCO_MAX },
452 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
468 .find_pll = intel_g4x_find_best_PLL,
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474 .vco = { .min = G4X_VCO_MIN,
475 .max = G4X_VCO_MAX },
476 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
492 .find_pll = intel_g4x_find_best_PLL,
495 static const intel_limit_t intel_limits_g4x_display_port = {
496 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497 .max = G4X_DOT_DISPLAY_PORT_MAX },
498 .vco = { .min = G4X_VCO_MIN,
499 .max = G4X_VCO_MAX},
500 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
501 .max = G4X_N_DISPLAY_PORT_MAX },
502 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
503 .max = G4X_M_DISPLAY_PORT_MAX },
504 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
505 .max = G4X_M1_DISPLAY_PORT_MAX },
506 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
507 .max = G4X_M2_DISPLAY_PORT_MAX },
508 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
509 .max = G4X_P_DISPLAY_PORT_MAX },
510 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
511 .max = G4X_P1_DISPLAY_PORT_MAX},
512 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515 .find_pll = intel_find_pll_g4x_dp,
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
520 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
521 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
522 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
523 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
524 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
525 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
526 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
527 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529 .find_pll = intel_find_best_PLL,
532 static const intel_limit_t intel_limits_pineview_lvds = {
533 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
534 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
535 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
536 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
537 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
538 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
539 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
540 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
541 /* Pineview only supports single-channel mode. */
542 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
544 .find_pll = intel_find_best_PLL,
547 static const intel_limit_t intel_limits_ironlake_dac = {
548 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
549 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
550 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
551 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
552 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
553 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
554 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
555 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
556 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557 .p2_slow = IRONLAKE_DAC_P2_SLOW,
558 .p2_fast = IRONLAKE_DAC_P2_FAST },
559 .find_pll = intel_g4x_find_best_PLL,
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
564 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
565 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
566 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
567 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
568 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
569 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
570 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
571 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574 .find_pll = intel_g4x_find_best_PLL,
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
579 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
580 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
581 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
582 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
583 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
584 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
585 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
586 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589 .find_pll = intel_g4x_find_best_PLL,
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
594 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
595 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
598 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
599 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604 .find_pll = intel_g4x_find_best_PLL,
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
609 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
610 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
613 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
614 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619 .find_pll = intel_g4x_find_best_PLL,
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623 .dot = { .min = IRONLAKE_DOT_MIN,
624 .max = IRONLAKE_DOT_MAX },
625 .vco = { .min = IRONLAKE_VCO_MIN,
626 .max = IRONLAKE_VCO_MAX},
627 .n = { .min = IRONLAKE_DP_N_MIN,
628 .max = IRONLAKE_DP_N_MAX },
629 .m = { .min = IRONLAKE_DP_M_MIN,
630 .max = IRONLAKE_DP_M_MAX },
631 .m1 = { .min = IRONLAKE_M1_MIN,
632 .max = IRONLAKE_M1_MAX },
633 .m2 = { .min = IRONLAKE_M2_MIN,
634 .max = IRONLAKE_M2_MAX },
635 .p = { .min = IRONLAKE_DP_P_MIN,
636 .max = IRONLAKE_DP_P_MAX },
637 .p1 = { .min = IRONLAKE_DP_P1_MIN,
638 .max = IRONLAKE_DP_P1_MAX},
639 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640 .p2_slow = IRONLAKE_DP_P2_SLOW,
641 .p2_fast = IRONLAKE_DP_P2_FAST },
642 .find_pll = intel_find_pll_ironlake_dp,
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
647 struct drm_device *dev = crtc->dev;
648 struct drm_i915_private *dev_priv = dev->dev_private;
649 const intel_limit_t *limit;
650 int refclk = 120;
652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
654 refclk = 100;
656 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
657 LVDS_CLKB_POWER_UP) {
658 /* LVDS dual channel */
659 if (refclk == 100)
660 limit = &intel_limits_ironlake_dual_lvds_100m;
661 else
662 limit = &intel_limits_ironlake_dual_lvds;
663 } else {
664 if (refclk == 100)
665 limit = &intel_limits_ironlake_single_lvds_100m;
666 else
667 limit = &intel_limits_ironlake_single_lvds;
669 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
670 HAS_eDP)
671 limit = &intel_limits_ironlake_display_port;
672 else
673 limit = &intel_limits_ironlake_dac;
675 return limit;
678 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 const intel_limit_t *limit;
684 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
685 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
686 LVDS_CLKB_POWER_UP)
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_dual_channel_lvds;
689 else
690 /* LVDS with dual channel */
691 limit = &intel_limits_g4x_single_channel_lvds;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
693 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
694 limit = &intel_limits_g4x_hdmi;
695 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
696 limit = &intel_limits_g4x_sdvo;
697 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
698 limit = &intel_limits_g4x_display_port;
699 } else /* The option is for other outputs */
700 limit = &intel_limits_i9xx_sdvo;
702 return limit;
705 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
707 struct drm_device *dev = crtc->dev;
708 const intel_limit_t *limit;
710 if (HAS_PCH_SPLIT(dev))
711 limit = intel_ironlake_limit(crtc);
712 else if (IS_G4X(dev)) {
713 limit = intel_g4x_limit(crtc);
714 } else if (IS_PINEVIEW(dev)) {
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716 limit = &intel_limits_pineview_lvds;
717 else
718 limit = &intel_limits_pineview_sdvo;
719 } else if (!IS_GEN2(dev)) {
720 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
721 limit = &intel_limits_i9xx_lvds;
722 else
723 limit = &intel_limits_i9xx_sdvo;
724 } else {
725 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
726 limit = &intel_limits_i8xx_lvds;
727 else
728 limit = &intel_limits_i8xx_dvo;
730 return limit;
733 /* m1 is reserved as 0 in Pineview, n is a ring counter */
734 static void pineview_clock(int refclk, intel_clock_t *clock)
736 clock->m = clock->m2 + 2;
737 clock->p = clock->p1 * clock->p2;
738 clock->vco = refclk * clock->m / clock->n;
739 clock->dot = clock->vco / clock->p;
742 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
744 if (IS_PINEVIEW(dev)) {
745 pineview_clock(refclk, clock);
746 return;
748 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
749 clock->p = clock->p1 * clock->p2;
750 clock->vco = refclk * clock->m / (clock->n + 2);
751 clock->dot = clock->vco / clock->p;
755 * Returns whether any output on the specified pipe is of the specified type
757 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
759 struct drm_device *dev = crtc->dev;
760 struct drm_mode_config *mode_config = &dev->mode_config;
761 struct intel_encoder *encoder;
763 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
764 if (encoder->base.crtc == crtc && encoder->type == type)
765 return true;
767 return false;
770 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
772 * Returns whether the given set of divisors are valid for a given refclk with
773 * the given connectors.
776 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
778 const intel_limit_t *limit = intel_limit (crtc);
779 struct drm_device *dev = crtc->dev;
781 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
782 INTELPllInvalid ("p1 out of range\n");
783 if (clock->p < limit->p.min || limit->p.max < clock->p)
784 INTELPllInvalid ("p out of range\n");
785 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
786 INTELPllInvalid ("m2 out of range\n");
787 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
788 INTELPllInvalid ("m1 out of range\n");
789 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
790 INTELPllInvalid ("m1 <= m2\n");
791 if (clock->m < limit->m.min || limit->m.max < clock->m)
792 INTELPllInvalid ("m out of range\n");
793 if (clock->n < limit->n.min || limit->n.max < clock->n)
794 INTELPllInvalid ("n out of range\n");
795 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
796 INTELPllInvalid ("vco out of range\n");
797 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
798 * connector, etc., rather than just a single range.
800 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
801 INTELPllInvalid ("dot out of range\n");
803 return true;
806 static bool
807 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
808 int target, int refclk, intel_clock_t *best_clock)
811 struct drm_device *dev = crtc->dev;
812 struct drm_i915_private *dev_priv = dev->dev_private;
813 intel_clock_t clock;
814 int err = target;
816 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
817 (I915_READ(LVDS)) != 0) {
819 * For LVDS, if the panel is on, just rely on its current
820 * settings for dual-channel. We haven't figured out how to
821 * reliably set up different single/dual channel state, if we
822 * even can.
824 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
825 LVDS_CLKB_POWER_UP)
826 clock.p2 = limit->p2.p2_fast;
827 else
828 clock.p2 = limit->p2.p2_slow;
829 } else {
830 if (target < limit->p2.dot_limit)
831 clock.p2 = limit->p2.p2_slow;
832 else
833 clock.p2 = limit->p2.p2_fast;
836 memset (best_clock, 0, sizeof (*best_clock));
838 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
839 clock.m1++) {
840 for (clock.m2 = limit->m2.min;
841 clock.m2 <= limit->m2.max; clock.m2++) {
842 /* m1 is always 0 in Pineview */
843 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
844 break;
845 for (clock.n = limit->n.min;
846 clock.n <= limit->n.max; clock.n++) {
847 for (clock.p1 = limit->p1.min;
848 clock.p1 <= limit->p1.max; clock.p1++) {
849 int this_err;
851 intel_clock(dev, refclk, &clock);
853 if (!intel_PLL_is_valid(crtc, &clock))
854 continue;
856 this_err = abs(clock.dot - target);
857 if (this_err < err) {
858 *best_clock = clock;
859 err = this_err;
866 return (err != target);
869 static bool
870 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
871 int target, int refclk, intel_clock_t *best_clock)
873 struct drm_device *dev = crtc->dev;
874 struct drm_i915_private *dev_priv = dev->dev_private;
875 intel_clock_t clock;
876 int max_n;
877 bool found;
878 /* approximately equals target * 0.00585 */
879 int err_most = (target >> 8) + (target >> 9);
880 found = false;
882 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
883 int lvds_reg;
885 if (HAS_PCH_SPLIT(dev))
886 lvds_reg = PCH_LVDS;
887 else
888 lvds_reg = LVDS;
889 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
890 LVDS_CLKB_POWER_UP)
891 clock.p2 = limit->p2.p2_fast;
892 else
893 clock.p2 = limit->p2.p2_slow;
894 } else {
895 if (target < limit->p2.dot_limit)
896 clock.p2 = limit->p2.p2_slow;
897 else
898 clock.p2 = limit->p2.p2_fast;
901 memset(best_clock, 0, sizeof(*best_clock));
902 max_n = limit->n.max;
903 /* based on hardware requirement, prefer smaller n to precision */
904 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
905 /* based on hardware requirement, prefere larger m1,m2 */
906 for (clock.m1 = limit->m1.max;
907 clock.m1 >= limit->m1.min; clock.m1--) {
908 for (clock.m2 = limit->m2.max;
909 clock.m2 >= limit->m2.min; clock.m2--) {
910 for (clock.p1 = limit->p1.max;
911 clock.p1 >= limit->p1.min; clock.p1--) {
912 int this_err;
914 intel_clock(dev, refclk, &clock);
915 if (!intel_PLL_is_valid(crtc, &clock))
916 continue;
917 this_err = abs(clock.dot - target) ;
918 if (this_err < err_most) {
919 *best_clock = clock;
920 err_most = this_err;
921 max_n = clock.n;
922 found = true;
928 return found;
931 static bool
932 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
933 int target, int refclk, intel_clock_t *best_clock)
935 struct drm_device *dev = crtc->dev;
936 intel_clock_t clock;
938 if (target < 200000) {
939 clock.n = 1;
940 clock.p1 = 2;
941 clock.p2 = 10;
942 clock.m1 = 12;
943 clock.m2 = 9;
944 } else {
945 clock.n = 2;
946 clock.p1 = 1;
947 clock.p2 = 10;
948 clock.m1 = 14;
949 clock.m2 = 8;
951 intel_clock(dev, refclk, &clock);
952 memcpy(best_clock, &clock, sizeof(intel_clock_t));
953 return true;
956 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
957 static bool
958 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
959 int target, int refclk, intel_clock_t *best_clock)
961 intel_clock_t clock;
962 if (target < 200000) {
963 clock.p1 = 2;
964 clock.p2 = 10;
965 clock.n = 2;
966 clock.m1 = 23;
967 clock.m2 = 8;
968 } else {
969 clock.p1 = 1;
970 clock.p2 = 10;
971 clock.n = 1;
972 clock.m1 = 14;
973 clock.m2 = 2;
975 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
976 clock.p = (clock.p1 * clock.p2);
977 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
978 clock.vco = 0;
979 memcpy(best_clock, &clock, sizeof(intel_clock_t));
980 return true;
984 * intel_wait_for_vblank - wait for vblank on a given pipe
985 * @dev: drm device
986 * @pipe: pipe to wait for
988 * Wait for vblank to occur on a given pipe. Needed for various bits of
989 * mode setting code.
991 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
993 struct drm_i915_private *dev_priv = dev->dev_private;
994 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
996 /* Clear existing vblank status. Note this will clear any other
997 * sticky status fields as well.
999 * This races with i915_driver_irq_handler() with the result
1000 * that either function could miss a vblank event. Here it is not
1001 * fatal, as we will either wait upon the next vblank interrupt or
1002 * timeout. Generally speaking intel_wait_for_vblank() is only
1003 * called during modeset at which time the GPU should be idle and
1004 * should *not* be performing page flips and thus not waiting on
1005 * vblanks...
1006 * Currently, the result of us stealing a vblank from the irq
1007 * handler is that a single frame will be skipped during swapbuffers.
1009 I915_WRITE(pipestat_reg,
1010 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1012 /* Wait for vblank interrupt bit to set */
1013 if (wait_for(I915_READ(pipestat_reg) &
1014 PIPE_VBLANK_INTERRUPT_STATUS,
1015 50))
1016 DRM_DEBUG_KMS("vblank wait timed out\n");
1020 * intel_wait_for_pipe_off - wait for pipe to turn off
1021 * @dev: drm device
1022 * @pipe: pipe to wait for
1024 * After disabling a pipe, we can't wait for vblank in the usual way,
1025 * spinning on the vblank interrupt status bit, since we won't actually
1026 * see an interrupt when the pipe is disabled.
1028 * On Gen4 and above:
1029 * wait for the pipe register state bit to turn off
1031 * Otherwise:
1032 * wait for the display line value to settle (it usually
1033 * ends up stopping at the start of the next frame).
1036 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1040 if (INTEL_INFO(dev)->gen >= 4) {
1041 int reg = PIPECONF(pipe);
1043 /* Wait for the Pipe State to go off */
1044 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1045 100))
1046 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1047 } else {
1048 u32 last_line;
1049 int reg = PIPEDSL(pipe);
1050 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1052 /* Wait for the display line to settle */
1053 do {
1054 last_line = I915_READ(reg) & DSL_LINEMASK;
1055 mdelay(5);
1056 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1057 time_after(timeout, jiffies));
1058 if (time_after(jiffies, timeout))
1059 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1063 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1065 struct drm_device *dev = crtc->dev;
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067 struct drm_framebuffer *fb = crtc->fb;
1068 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1069 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1071 int plane, i;
1072 u32 fbc_ctl, fbc_ctl2;
1074 if (fb->pitch == dev_priv->cfb_pitch &&
1075 obj_priv->fence_reg == dev_priv->cfb_fence &&
1076 intel_crtc->plane == dev_priv->cfb_plane &&
1077 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1078 return;
1080 i8xx_disable_fbc(dev);
1082 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1084 if (fb->pitch < dev_priv->cfb_pitch)
1085 dev_priv->cfb_pitch = fb->pitch;
1087 /* FBC_CTL wants 64B units */
1088 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089 dev_priv->cfb_fence = obj_priv->fence_reg;
1090 dev_priv->cfb_plane = intel_crtc->plane;
1091 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1093 /* Clear old tags */
1094 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1095 I915_WRITE(FBC_TAG + (i * 4), 0);
1097 /* Set it up... */
1098 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1099 if (obj_priv->tiling_mode != I915_TILING_NONE)
1100 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1101 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1102 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1104 /* enable it... */
1105 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1106 if (IS_I945GM(dev))
1107 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1108 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1109 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1110 if (obj_priv->tiling_mode != I915_TILING_NONE)
1111 fbc_ctl |= dev_priv->cfb_fence;
1112 I915_WRITE(FBC_CONTROL, fbc_ctl);
1114 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1115 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1118 void i8xx_disable_fbc(struct drm_device *dev)
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 u32 fbc_ctl;
1123 /* Disable compression */
1124 fbc_ctl = I915_READ(FBC_CONTROL);
1125 if ((fbc_ctl & FBC_CTL_EN) == 0)
1126 return;
1128 fbc_ctl &= ~FBC_CTL_EN;
1129 I915_WRITE(FBC_CONTROL, fbc_ctl);
1131 /* Wait for compressing bit to clear */
1132 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1133 DRM_DEBUG_KMS("FBC idle timed out\n");
1134 return;
1137 DRM_DEBUG_KMS("disabled FBC\n");
1140 static bool i8xx_fbc_enabled(struct drm_device *dev)
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1144 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1147 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1149 struct drm_device *dev = crtc->dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151 struct drm_framebuffer *fb = crtc->fb;
1152 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1153 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1155 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1156 unsigned long stall_watermark = 200;
1157 u32 dpfc_ctl;
1159 dpfc_ctl = I915_READ(DPFC_CONTROL);
1160 if (dpfc_ctl & DPFC_CTL_EN) {
1161 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1162 dev_priv->cfb_fence == obj_priv->fence_reg &&
1163 dev_priv->cfb_plane == intel_crtc->plane &&
1164 dev_priv->cfb_y == crtc->y)
1165 return;
1167 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1168 POSTING_READ(DPFC_CONTROL);
1169 intel_wait_for_vblank(dev, intel_crtc->pipe);
1172 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1173 dev_priv->cfb_fence = obj_priv->fence_reg;
1174 dev_priv->cfb_plane = intel_crtc->plane;
1175 dev_priv->cfb_y = crtc->y;
1177 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1178 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1179 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1180 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1181 } else {
1182 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1185 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1186 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1187 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1188 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1190 /* enable it... */
1191 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1193 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1196 void g4x_disable_fbc(struct drm_device *dev)
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199 u32 dpfc_ctl;
1201 /* Disable compression */
1202 dpfc_ctl = I915_READ(DPFC_CONTROL);
1203 if (dpfc_ctl & DPFC_CTL_EN) {
1204 dpfc_ctl &= ~DPFC_CTL_EN;
1205 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1207 DRM_DEBUG_KMS("disabled FBC\n");
1211 static bool g4x_fbc_enabled(struct drm_device *dev)
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1215 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1218 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1220 struct drm_device *dev = crtc->dev;
1221 struct drm_i915_private *dev_priv = dev->dev_private;
1222 struct drm_framebuffer *fb = crtc->fb;
1223 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1224 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1226 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1227 unsigned long stall_watermark = 200;
1228 u32 dpfc_ctl;
1230 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1231 if (dpfc_ctl & DPFC_CTL_EN) {
1232 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1233 dev_priv->cfb_fence == obj_priv->fence_reg &&
1234 dev_priv->cfb_plane == intel_crtc->plane &&
1235 dev_priv->cfb_offset == obj_priv->gtt_offset &&
1236 dev_priv->cfb_y == crtc->y)
1237 return;
1239 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1240 POSTING_READ(ILK_DPFC_CONTROL);
1241 intel_wait_for_vblank(dev, intel_crtc->pipe);
1244 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1245 dev_priv->cfb_fence = obj_priv->fence_reg;
1246 dev_priv->cfb_plane = intel_crtc->plane;
1247 dev_priv->cfb_offset = obj_priv->gtt_offset;
1248 dev_priv->cfb_y = crtc->y;
1250 dpfc_ctl &= DPFC_RESERVED;
1251 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1252 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1253 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1254 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1255 } else {
1256 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1259 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1260 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1261 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1262 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1263 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1264 /* enable it... */
1265 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1267 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1270 void ironlake_disable_fbc(struct drm_device *dev)
1272 struct drm_i915_private *dev_priv = dev->dev_private;
1273 u32 dpfc_ctl;
1275 /* Disable compression */
1276 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1277 if (dpfc_ctl & DPFC_CTL_EN) {
1278 dpfc_ctl &= ~DPFC_CTL_EN;
1279 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1281 DRM_DEBUG_KMS("disabled FBC\n");
1285 static bool ironlake_fbc_enabled(struct drm_device *dev)
1287 struct drm_i915_private *dev_priv = dev->dev_private;
1289 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1292 bool intel_fbc_enabled(struct drm_device *dev)
1294 struct drm_i915_private *dev_priv = dev->dev_private;
1296 if (!dev_priv->display.fbc_enabled)
1297 return false;
1299 return dev_priv->display.fbc_enabled(dev);
1302 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1304 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1306 if (!dev_priv->display.enable_fbc)
1307 return;
1309 dev_priv->display.enable_fbc(crtc, interval);
1312 void intel_disable_fbc(struct drm_device *dev)
1314 struct drm_i915_private *dev_priv = dev->dev_private;
1316 if (!dev_priv->display.disable_fbc)
1317 return;
1319 dev_priv->display.disable_fbc(dev);
1323 * intel_update_fbc - enable/disable FBC as needed
1324 * @dev: the drm_device
1326 * Set up the framebuffer compression hardware at mode set time. We
1327 * enable it if possible:
1328 * - plane A only (on pre-965)
1329 * - no pixel mulitply/line duplication
1330 * - no alpha buffer discard
1331 * - no dual wide
1332 * - framebuffer <= 2048 in width, 1536 in height
1334 * We can't assume that any compression will take place (worst case),
1335 * so the compressed buffer has to be the same size as the uncompressed
1336 * one. It also must reside (along with the line length buffer) in
1337 * stolen memory.
1339 * We need to enable/disable FBC on a global basis.
1341 static void intel_update_fbc(struct drm_device *dev)
1343 struct drm_i915_private *dev_priv = dev->dev_private;
1344 struct drm_crtc *crtc = NULL, *tmp_crtc;
1345 struct intel_crtc *intel_crtc;
1346 struct drm_framebuffer *fb;
1347 struct intel_framebuffer *intel_fb;
1348 struct drm_i915_gem_object *obj_priv;
1350 DRM_DEBUG_KMS("\n");
1352 if (!i915_powersave)
1353 return;
1355 if (!I915_HAS_FBC(dev))
1356 return;
1359 * If FBC is already on, we just have to verify that we can
1360 * keep it that way...
1361 * Need to disable if:
1362 * - more than one pipe is active
1363 * - changing FBC params (stride, fence, mode)
1364 * - new fb is too large to fit in compressed buffer
1365 * - going to an unsupported config (interlace, pixel multiply, etc.)
1367 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1368 if (tmp_crtc->enabled) {
1369 if (crtc) {
1370 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1371 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1372 goto out_disable;
1374 crtc = tmp_crtc;
1378 if (!crtc || crtc->fb == NULL) {
1379 DRM_DEBUG_KMS("no output, disabling\n");
1380 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1381 goto out_disable;
1384 intel_crtc = to_intel_crtc(crtc);
1385 fb = crtc->fb;
1386 intel_fb = to_intel_framebuffer(fb);
1387 obj_priv = to_intel_bo(intel_fb->obj);
1389 if (intel_fb->obj->size > dev_priv->cfb_size) {
1390 DRM_DEBUG_KMS("framebuffer too large, disabling "
1391 "compression\n");
1392 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1393 goto out_disable;
1395 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1396 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1397 DRM_DEBUG_KMS("mode incompatible with compression, "
1398 "disabling\n");
1399 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1400 goto out_disable;
1402 if ((crtc->mode.hdisplay > 2048) ||
1403 (crtc->mode.vdisplay > 1536)) {
1404 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1405 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1406 goto out_disable;
1408 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1409 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1410 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1411 goto out_disable;
1413 if (obj_priv->tiling_mode != I915_TILING_X) {
1414 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1415 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1416 goto out_disable;
1419 /* If the kernel debugger is active, always disable compression */
1420 if (in_dbg_master())
1421 goto out_disable;
1423 intel_enable_fbc(crtc, 500);
1424 return;
1426 out_disable:
1427 /* Multiple disables should be harmless */
1428 if (intel_fbc_enabled(dev)) {
1429 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1430 intel_disable_fbc(dev);
1435 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1436 struct drm_gem_object *obj,
1437 bool pipelined)
1439 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1440 u32 alignment;
1441 int ret;
1443 switch (obj_priv->tiling_mode) {
1444 case I915_TILING_NONE:
1445 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1446 alignment = 128 * 1024;
1447 else if (INTEL_INFO(dev)->gen >= 4)
1448 alignment = 4 * 1024;
1449 else
1450 alignment = 64 * 1024;
1451 break;
1452 case I915_TILING_X:
1453 /* pin() will align the object as required by fence */
1454 alignment = 0;
1455 break;
1456 case I915_TILING_Y:
1457 /* FIXME: Is this true? */
1458 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1459 return -EINVAL;
1460 default:
1461 BUG();
1464 ret = i915_gem_object_pin(obj, alignment,
1465 !pipelined, obj_priv->tiling_mode);
1466 if (ret)
1467 return ret;
1469 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1470 if (ret)
1471 goto err_unpin;
1473 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1474 * fence, whereas 965+ only requires a fence if using
1475 * framebuffer compression. For simplicity, we always install
1476 * a fence as the cost is not that onerous.
1478 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1479 obj_priv->tiling_mode != I915_TILING_NONE) {
1480 ret = i915_gem_object_get_fence_reg(obj, false);
1481 if (ret)
1482 goto err_unpin;
1485 return 0;
1487 err_unpin:
1488 i915_gem_object_unpin(obj);
1489 return ret;
1492 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1493 static int
1494 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1495 int x, int y, enum mode_set_atomic state)
1497 struct drm_device *dev = crtc->dev;
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1500 struct intel_framebuffer *intel_fb;
1501 struct drm_i915_gem_object *obj_priv;
1502 struct drm_gem_object *obj;
1503 int plane = intel_crtc->plane;
1504 unsigned long Start, Offset;
1505 u32 dspcntr;
1506 u32 reg;
1508 switch (plane) {
1509 case 0:
1510 case 1:
1511 break;
1512 default:
1513 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1514 return -EINVAL;
1517 intel_fb = to_intel_framebuffer(fb);
1518 obj = intel_fb->obj;
1519 obj_priv = to_intel_bo(obj);
1521 reg = DSPCNTR(plane);
1522 dspcntr = I915_READ(reg);
1523 /* Mask out pixel format bits in case we change it */
1524 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1525 switch (fb->bits_per_pixel) {
1526 case 8:
1527 dspcntr |= DISPPLANE_8BPP;
1528 break;
1529 case 16:
1530 if (fb->depth == 15)
1531 dspcntr |= DISPPLANE_15_16BPP;
1532 else
1533 dspcntr |= DISPPLANE_16BPP;
1534 break;
1535 case 24:
1536 case 32:
1537 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1538 break;
1539 default:
1540 DRM_ERROR("Unknown color depth\n");
1541 return -EINVAL;
1543 if (INTEL_INFO(dev)->gen >= 4) {
1544 if (obj_priv->tiling_mode != I915_TILING_NONE)
1545 dspcntr |= DISPPLANE_TILED;
1546 else
1547 dspcntr &= ~DISPPLANE_TILED;
1550 if (HAS_PCH_SPLIT(dev))
1551 /* must disable */
1552 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1554 I915_WRITE(reg, dspcntr);
1556 Start = obj_priv->gtt_offset;
1557 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1559 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1560 Start, Offset, x, y, fb->pitch);
1561 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1562 if (INTEL_INFO(dev)->gen >= 4) {
1563 I915_WRITE(DSPSURF(plane), Start);
1564 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1565 I915_WRITE(DSPADDR(plane), Offset);
1566 } else
1567 I915_WRITE(DSPADDR(plane), Start + Offset);
1568 POSTING_READ(reg);
1570 intel_update_fbc(dev);
1571 intel_increase_pllclock(crtc);
1573 return 0;
1576 static int
1577 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1578 struct drm_framebuffer *old_fb)
1580 struct drm_device *dev = crtc->dev;
1581 struct drm_i915_master_private *master_priv;
1582 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1583 int ret;
1585 /* no fb bound */
1586 if (!crtc->fb) {
1587 DRM_DEBUG_KMS("No FB bound\n");
1588 return 0;
1591 switch (intel_crtc->plane) {
1592 case 0:
1593 case 1:
1594 break;
1595 default:
1596 return -EINVAL;
1599 mutex_lock(&dev->struct_mutex);
1600 ret = intel_pin_and_fence_fb_obj(dev,
1601 to_intel_framebuffer(crtc->fb)->obj,
1602 false);
1603 if (ret != 0) {
1604 mutex_unlock(&dev->struct_mutex);
1605 return ret;
1608 if (old_fb) {
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1610 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1611 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1613 wait_event(dev_priv->pending_flip_queue,
1614 atomic_read(&obj_priv->pending_flip) == 0);
1617 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1618 LEAVE_ATOMIC_MODE_SET);
1619 if (ret) {
1620 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1621 mutex_unlock(&dev->struct_mutex);
1622 return ret;
1625 if (old_fb)
1626 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1628 mutex_unlock(&dev->struct_mutex);
1630 if (!dev->primary->master)
1631 return 0;
1633 master_priv = dev->primary->master->driver_priv;
1634 if (!master_priv->sarea_priv)
1635 return 0;
1637 if (intel_crtc->pipe) {
1638 master_priv->sarea_priv->pipeB_x = x;
1639 master_priv->sarea_priv->pipeB_y = y;
1640 } else {
1641 master_priv->sarea_priv->pipeA_x = x;
1642 master_priv->sarea_priv->pipeA_y = y;
1645 return 0;
1648 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1650 struct drm_device *dev = crtc->dev;
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 u32 dpa_ctl;
1654 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1655 dpa_ctl = I915_READ(DP_A);
1656 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1658 if (clock < 200000) {
1659 u32 temp;
1660 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1661 /* workaround for 160Mhz:
1662 1) program 0x4600c bits 15:0 = 0x8124
1663 2) program 0x46010 bit 0 = 1
1664 3) program 0x46034 bit 24 = 1
1665 4) program 0x64000 bit 14 = 1
1667 temp = I915_READ(0x4600c);
1668 temp &= 0xffff0000;
1669 I915_WRITE(0x4600c, temp | 0x8124);
1671 temp = I915_READ(0x46010);
1672 I915_WRITE(0x46010, temp | 1);
1674 temp = I915_READ(0x46034);
1675 I915_WRITE(0x46034, temp | (1 << 24));
1676 } else {
1677 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1679 I915_WRITE(DP_A, dpa_ctl);
1681 POSTING_READ(DP_A);
1682 udelay(500);
1685 /* The FDI link training functions for ILK/Ibexpeak. */
1686 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1688 struct drm_device *dev = crtc->dev;
1689 struct drm_i915_private *dev_priv = dev->dev_private;
1690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1691 int pipe = intel_crtc->pipe;
1692 u32 reg, temp, tries;
1694 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1695 for train result */
1696 reg = FDI_RX_IMR(pipe);
1697 temp = I915_READ(reg);
1698 temp &= ~FDI_RX_SYMBOL_LOCK;
1699 temp &= ~FDI_RX_BIT_LOCK;
1700 I915_WRITE(reg, temp);
1701 I915_READ(reg);
1702 udelay(150);
1704 /* enable CPU FDI TX and PCH FDI RX */
1705 reg = FDI_TX_CTL(pipe);
1706 temp = I915_READ(reg);
1707 temp &= ~(7 << 19);
1708 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1709 temp &= ~FDI_LINK_TRAIN_NONE;
1710 temp |= FDI_LINK_TRAIN_PATTERN_1;
1711 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1713 reg = FDI_RX_CTL(pipe);
1714 temp = I915_READ(reg);
1715 temp &= ~FDI_LINK_TRAIN_NONE;
1716 temp |= FDI_LINK_TRAIN_PATTERN_1;
1717 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1719 POSTING_READ(reg);
1720 udelay(150);
1722 /* Ironlake workaround, enable clock pointer after FDI enable*/
1723 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1725 reg = FDI_RX_IIR(pipe);
1726 for (tries = 0; tries < 5; tries++) {
1727 temp = I915_READ(reg);
1728 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1730 if ((temp & FDI_RX_BIT_LOCK)) {
1731 DRM_DEBUG_KMS("FDI train 1 done.\n");
1732 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1733 break;
1736 if (tries == 5)
1737 DRM_ERROR("FDI train 1 fail!\n");
1739 /* Train 2 */
1740 reg = FDI_TX_CTL(pipe);
1741 temp = I915_READ(reg);
1742 temp &= ~FDI_LINK_TRAIN_NONE;
1743 temp |= FDI_LINK_TRAIN_PATTERN_2;
1744 I915_WRITE(reg, temp);
1746 reg = FDI_RX_CTL(pipe);
1747 temp = I915_READ(reg);
1748 temp &= ~FDI_LINK_TRAIN_NONE;
1749 temp |= FDI_LINK_TRAIN_PATTERN_2;
1750 I915_WRITE(reg, temp);
1752 POSTING_READ(reg);
1753 udelay(150);
1755 reg = FDI_RX_IIR(pipe);
1756 for (tries = 0; tries < 5; tries++) {
1757 temp = I915_READ(reg);
1758 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1760 if (temp & FDI_RX_SYMBOL_LOCK) {
1761 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1762 DRM_DEBUG_KMS("FDI train 2 done.\n");
1763 break;
1766 if (tries == 5)
1767 DRM_ERROR("FDI train 2 fail!\n");
1769 DRM_DEBUG_KMS("FDI train done\n");
1771 /* enable normal train */
1772 reg = FDI_TX_CTL(pipe);
1773 temp = I915_READ(reg);
1774 temp &= ~FDI_LINK_TRAIN_NONE;
1775 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1776 I915_WRITE(reg, temp);
1778 reg = FDI_RX_CTL(pipe);
1779 temp = I915_READ(reg);
1780 if (HAS_PCH_CPT(dev)) {
1781 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1782 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1783 } else {
1784 temp &= ~FDI_LINK_TRAIN_NONE;
1785 temp |= FDI_LINK_TRAIN_NONE;
1787 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1789 /* wait one idle pattern time */
1790 POSTING_READ(reg);
1791 udelay(1000);
1794 static const int const snb_b_fdi_train_param [] = {
1795 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1796 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1797 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1798 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1801 /* The FDI link training functions for SNB/Cougarpoint. */
1802 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1804 struct drm_device *dev = crtc->dev;
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1807 int pipe = intel_crtc->pipe;
1808 u32 reg, temp, i;
1810 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1811 for train result */
1812 reg = FDI_RX_IMR(pipe);
1813 temp = I915_READ(reg);
1814 temp &= ~FDI_RX_SYMBOL_LOCK;
1815 temp &= ~FDI_RX_BIT_LOCK;
1816 I915_WRITE(reg, temp);
1818 POSTING_READ(reg);
1819 udelay(150);
1821 /* enable CPU FDI TX and PCH FDI RX */
1822 reg = FDI_TX_CTL(pipe);
1823 temp = I915_READ(reg);
1824 temp &= ~(7 << 19);
1825 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1826 temp &= ~FDI_LINK_TRAIN_NONE;
1827 temp |= FDI_LINK_TRAIN_PATTERN_1;
1828 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1829 /* SNB-B */
1830 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1831 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1833 reg = FDI_RX_CTL(pipe);
1834 temp = I915_READ(reg);
1835 if (HAS_PCH_CPT(dev)) {
1836 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1837 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1838 } else {
1839 temp &= ~FDI_LINK_TRAIN_NONE;
1840 temp |= FDI_LINK_TRAIN_PATTERN_1;
1842 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1844 POSTING_READ(reg);
1845 udelay(150);
1847 for (i = 0; i < 4; i++ ) {
1848 reg = FDI_TX_CTL(pipe);
1849 temp = I915_READ(reg);
1850 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1851 temp |= snb_b_fdi_train_param[i];
1852 I915_WRITE(reg, temp);
1854 POSTING_READ(reg);
1855 udelay(500);
1857 reg = FDI_RX_IIR(pipe);
1858 temp = I915_READ(reg);
1859 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1861 if (temp & FDI_RX_BIT_LOCK) {
1862 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1863 DRM_DEBUG_KMS("FDI train 1 done.\n");
1864 break;
1867 if (i == 4)
1868 DRM_ERROR("FDI train 1 fail!\n");
1870 /* Train 2 */
1871 reg = FDI_TX_CTL(pipe);
1872 temp = I915_READ(reg);
1873 temp &= ~FDI_LINK_TRAIN_NONE;
1874 temp |= FDI_LINK_TRAIN_PATTERN_2;
1875 if (IS_GEN6(dev)) {
1876 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1877 /* SNB-B */
1878 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1880 I915_WRITE(reg, temp);
1882 reg = FDI_RX_CTL(pipe);
1883 temp = I915_READ(reg);
1884 if (HAS_PCH_CPT(dev)) {
1885 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1886 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1887 } else {
1888 temp &= ~FDI_LINK_TRAIN_NONE;
1889 temp |= FDI_LINK_TRAIN_PATTERN_2;
1891 I915_WRITE(reg, temp);
1893 POSTING_READ(reg);
1894 udelay(150);
1896 for (i = 0; i < 4; i++ ) {
1897 reg = FDI_TX_CTL(pipe);
1898 temp = I915_READ(reg);
1899 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1900 temp |= snb_b_fdi_train_param[i];
1901 I915_WRITE(reg, temp);
1903 POSTING_READ(reg);
1904 udelay(500);
1906 reg = FDI_RX_IIR(pipe);
1907 temp = I915_READ(reg);
1908 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1910 if (temp & FDI_RX_SYMBOL_LOCK) {
1911 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1912 DRM_DEBUG_KMS("FDI train 2 done.\n");
1913 break;
1916 if (i == 4)
1917 DRM_ERROR("FDI train 2 fail!\n");
1919 DRM_DEBUG_KMS("FDI train done.\n");
1922 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1924 struct drm_device *dev = crtc->dev;
1925 struct drm_i915_private *dev_priv = dev->dev_private;
1926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1927 int pipe = intel_crtc->pipe;
1928 u32 reg, temp;
1930 /* Write the TU size bits so error detection works */
1931 I915_WRITE(FDI_RX_TUSIZE1(pipe),
1932 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1934 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1935 reg = FDI_RX_CTL(pipe);
1936 temp = I915_READ(reg);
1937 temp &= ~((0x7 << 19) | (0x7 << 16));
1938 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1939 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1940 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1942 POSTING_READ(reg);
1943 udelay(200);
1945 /* Switch from Rawclk to PCDclk */
1946 temp = I915_READ(reg);
1947 I915_WRITE(reg, temp | FDI_PCDCLK);
1949 POSTING_READ(reg);
1950 udelay(200);
1952 /* Enable CPU FDI TX PLL, always on for Ironlake */
1953 reg = FDI_TX_CTL(pipe);
1954 temp = I915_READ(reg);
1955 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1956 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1958 POSTING_READ(reg);
1959 udelay(100);
1963 static void intel_flush_display_plane(struct drm_device *dev,
1964 int plane)
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 u32 reg = DSPADDR(plane);
1968 I915_WRITE(reg, I915_READ(reg));
1972 * When we disable a pipe, we need to clear any pending scanline wait events
1973 * to avoid hanging the ring, which we assume we are waiting on.
1975 static void intel_clear_scanline_wait(struct drm_device *dev)
1977 struct drm_i915_private *dev_priv = dev->dev_private;
1978 u32 tmp;
1980 if (IS_GEN2(dev))
1981 /* Can't break the hang on i8xx */
1982 return;
1984 tmp = I915_READ(PRB0_CTL);
1985 if (tmp & RING_WAIT) {
1986 I915_WRITE(PRB0_CTL, tmp);
1987 POSTING_READ(PRB0_CTL);
1991 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
1993 struct drm_i915_gem_object *obj_priv;
1994 struct drm_i915_private *dev_priv;
1996 if (crtc->fb == NULL)
1997 return;
1999 obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
2000 dev_priv = crtc->dev->dev_private;
2001 wait_event(dev_priv->pending_flip_queue,
2002 atomic_read(&obj_priv->pending_flip) == 0);
2005 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2007 struct drm_device *dev = crtc->dev;
2008 struct drm_i915_private *dev_priv = dev->dev_private;
2009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2010 int pipe = intel_crtc->pipe;
2011 int plane = intel_crtc->plane;
2012 u32 reg, temp;
2014 if (intel_crtc->active)
2015 return;
2017 intel_crtc->active = true;
2018 intel_update_watermarks(dev);
2020 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2021 temp = I915_READ(PCH_LVDS);
2022 if ((temp & LVDS_PORT_EN) == 0)
2023 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2026 ironlake_fdi_enable(crtc);
2028 /* Enable panel fitting for LVDS */
2029 if (dev_priv->pch_pf_size &&
2030 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2031 /* Force use of hard-coded filter coefficients
2032 * as some pre-programmed values are broken,
2033 * e.g. x201.
2035 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2036 PF_ENABLE | PF_FILTER_MED_3x3);
2037 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2038 dev_priv->pch_pf_pos);
2039 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2040 dev_priv->pch_pf_size);
2043 /* Enable CPU pipe */
2044 reg = PIPECONF(pipe);
2045 temp = I915_READ(reg);
2046 if ((temp & PIPECONF_ENABLE) == 0) {
2047 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2048 POSTING_READ(reg);
2049 intel_wait_for_vblank(dev, intel_crtc->pipe);
2052 /* configure and enable CPU plane */
2053 reg = DSPCNTR(plane);
2054 temp = I915_READ(reg);
2055 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2056 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2057 intel_flush_display_plane(dev, plane);
2060 /* For PCH output, training FDI link */
2061 if (IS_GEN6(dev))
2062 gen6_fdi_link_train(crtc);
2063 else
2064 ironlake_fdi_link_train(crtc);
2066 /* enable PCH DPLL */
2067 reg = PCH_DPLL(pipe);
2068 temp = I915_READ(reg);
2069 if ((temp & DPLL_VCO_ENABLE) == 0) {
2070 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2071 POSTING_READ(reg);
2072 udelay(200);
2075 if (HAS_PCH_CPT(dev)) {
2076 /* Be sure PCH DPLL SEL is set */
2077 temp = I915_READ(PCH_DPLL_SEL);
2078 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2079 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2080 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2081 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2082 I915_WRITE(PCH_DPLL_SEL, temp);
2085 /* set transcoder timing */
2086 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2087 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2088 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2090 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2091 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2092 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2094 /* For PCH DP, enable TRANS_DP_CTL */
2095 if (HAS_PCH_CPT(dev) &&
2096 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2097 reg = TRANS_DP_CTL(pipe);
2098 temp = I915_READ(reg);
2099 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2100 TRANS_DP_SYNC_MASK);
2101 temp |= (TRANS_DP_OUTPUT_ENABLE |
2102 TRANS_DP_ENH_FRAMING);
2104 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2105 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2106 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2107 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2109 switch (intel_trans_dp_port_sel(crtc)) {
2110 case PCH_DP_B:
2111 temp |= TRANS_DP_PORT_SEL_B;
2112 break;
2113 case PCH_DP_C:
2114 temp |= TRANS_DP_PORT_SEL_C;
2115 break;
2116 case PCH_DP_D:
2117 temp |= TRANS_DP_PORT_SEL_D;
2118 break;
2119 default:
2120 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2121 temp |= TRANS_DP_PORT_SEL_B;
2122 break;
2125 I915_WRITE(reg, temp);
2128 /* enable PCH transcoder */
2129 reg = TRANSCONF(pipe);
2130 temp = I915_READ(reg);
2132 * make the BPC in transcoder be consistent with
2133 * that in pipeconf reg.
2135 temp &= ~PIPE_BPC_MASK;
2136 temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2137 I915_WRITE(reg, temp | TRANS_ENABLE);
2138 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2139 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2141 intel_crtc_load_lut(crtc);
2142 intel_update_fbc(dev);
2143 intel_crtc_update_cursor(crtc, true);
2146 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2148 struct drm_device *dev = crtc->dev;
2149 struct drm_i915_private *dev_priv = dev->dev_private;
2150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2151 int pipe = intel_crtc->pipe;
2152 int plane = intel_crtc->plane;
2153 u32 reg, temp;
2155 if (!intel_crtc->active)
2156 return;
2158 intel_crtc_wait_for_pending_flips(crtc);
2159 drm_vblank_off(dev, pipe);
2160 intel_crtc_update_cursor(crtc, false);
2162 /* Disable display plane */
2163 reg = DSPCNTR(plane);
2164 temp = I915_READ(reg);
2165 if (temp & DISPLAY_PLANE_ENABLE) {
2166 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2167 intel_flush_display_plane(dev, plane);
2170 if (dev_priv->cfb_plane == plane &&
2171 dev_priv->display.disable_fbc)
2172 dev_priv->display.disable_fbc(dev);
2174 /* disable cpu pipe, disable after all planes disabled */
2175 reg = PIPECONF(pipe);
2176 temp = I915_READ(reg);
2177 if (temp & PIPECONF_ENABLE) {
2178 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2179 POSTING_READ(reg);
2180 /* wait for cpu pipe off, pipe state */
2181 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2184 /* Disable PF */
2185 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2186 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2188 /* disable CPU FDI tx and PCH FDI rx */
2189 reg = FDI_TX_CTL(pipe);
2190 temp = I915_READ(reg);
2191 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2192 POSTING_READ(reg);
2194 reg = FDI_RX_CTL(pipe);
2195 temp = I915_READ(reg);
2196 temp &= ~(0x7 << 16);
2197 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2198 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2200 POSTING_READ(reg);
2201 udelay(100);
2203 /* Ironlake workaround, disable clock pointer after downing FDI */
2204 I915_WRITE(FDI_RX_CHICKEN(pipe),
2205 I915_READ(FDI_RX_CHICKEN(pipe) &
2206 ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2208 /* still set train pattern 1 */
2209 reg = FDI_TX_CTL(pipe);
2210 temp = I915_READ(reg);
2211 temp &= ~FDI_LINK_TRAIN_NONE;
2212 temp |= FDI_LINK_TRAIN_PATTERN_1;
2213 I915_WRITE(reg, temp);
2215 reg = FDI_RX_CTL(pipe);
2216 temp = I915_READ(reg);
2217 if (HAS_PCH_CPT(dev)) {
2218 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2219 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2220 } else {
2221 temp &= ~FDI_LINK_TRAIN_NONE;
2222 temp |= FDI_LINK_TRAIN_PATTERN_1;
2224 /* BPC in FDI rx is consistent with that in PIPECONF */
2225 temp &= ~(0x07 << 16);
2226 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2227 I915_WRITE(reg, temp);
2229 POSTING_READ(reg);
2230 udelay(100);
2232 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2233 temp = I915_READ(PCH_LVDS);
2234 if (temp & LVDS_PORT_EN) {
2235 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2236 POSTING_READ(PCH_LVDS);
2237 udelay(100);
2241 /* disable PCH transcoder */
2242 reg = TRANSCONF(plane);
2243 temp = I915_READ(reg);
2244 if (temp & TRANS_ENABLE) {
2245 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2246 /* wait for PCH transcoder off, transcoder state */
2247 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2248 DRM_ERROR("failed to disable transcoder\n");
2251 if (HAS_PCH_CPT(dev)) {
2252 /* disable TRANS_DP_CTL */
2253 reg = TRANS_DP_CTL(pipe);
2254 temp = I915_READ(reg);
2255 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2256 I915_WRITE(reg, temp);
2258 /* disable DPLL_SEL */
2259 temp = I915_READ(PCH_DPLL_SEL);
2260 if (pipe == 0)
2261 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2262 else
2263 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2264 I915_WRITE(PCH_DPLL_SEL, temp);
2267 /* disable PCH DPLL */
2268 reg = PCH_DPLL(pipe);
2269 temp = I915_READ(reg);
2270 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2272 /* Switch from PCDclk to Rawclk */
2273 reg = FDI_RX_CTL(pipe);
2274 temp = I915_READ(reg);
2275 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2277 /* Disable CPU FDI TX PLL */
2278 reg = FDI_TX_CTL(pipe);
2279 temp = I915_READ(reg);
2280 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2282 POSTING_READ(reg);
2283 udelay(100);
2285 reg = FDI_RX_CTL(pipe);
2286 temp = I915_READ(reg);
2287 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2289 /* Wait for the clocks to turn off. */
2290 POSTING_READ(reg);
2291 udelay(100);
2293 intel_crtc->active = false;
2294 intel_update_watermarks(dev);
2295 intel_update_fbc(dev);
2296 intel_clear_scanline_wait(dev);
2299 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2301 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2302 int pipe = intel_crtc->pipe;
2303 int plane = intel_crtc->plane;
2305 /* XXX: When our outputs are all unaware of DPMS modes other than off
2306 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2308 switch (mode) {
2309 case DRM_MODE_DPMS_ON:
2310 case DRM_MODE_DPMS_STANDBY:
2311 case DRM_MODE_DPMS_SUSPEND:
2312 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2313 ironlake_crtc_enable(crtc);
2314 break;
2316 case DRM_MODE_DPMS_OFF:
2317 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2318 ironlake_crtc_disable(crtc);
2319 break;
2323 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2325 if (!enable && intel_crtc->overlay) {
2326 struct drm_device *dev = intel_crtc->base.dev;
2328 mutex_lock(&dev->struct_mutex);
2329 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2330 mutex_unlock(&dev->struct_mutex);
2333 /* Let userspace switch the overlay on again. In most cases userspace
2334 * has to recompute where to put it anyway.
2338 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2340 struct drm_device *dev = crtc->dev;
2341 struct drm_i915_private *dev_priv = dev->dev_private;
2342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2343 int pipe = intel_crtc->pipe;
2344 int plane = intel_crtc->plane;
2345 u32 reg, temp;
2347 if (intel_crtc->active)
2348 return;
2350 intel_crtc->active = true;
2351 intel_update_watermarks(dev);
2353 /* Enable the DPLL */
2354 reg = DPLL(pipe);
2355 temp = I915_READ(reg);
2356 if ((temp & DPLL_VCO_ENABLE) == 0) {
2357 I915_WRITE(reg, temp);
2359 /* Wait for the clocks to stabilize. */
2360 POSTING_READ(reg);
2361 udelay(150);
2363 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2365 /* Wait for the clocks to stabilize. */
2366 POSTING_READ(reg);
2367 udelay(150);
2369 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2371 /* Wait for the clocks to stabilize. */
2372 POSTING_READ(reg);
2373 udelay(150);
2376 /* Enable the pipe */
2377 reg = PIPECONF(pipe);
2378 temp = I915_READ(reg);
2379 if ((temp & PIPECONF_ENABLE) == 0)
2380 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2382 /* Enable the plane */
2383 reg = DSPCNTR(plane);
2384 temp = I915_READ(reg);
2385 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2386 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2387 intel_flush_display_plane(dev, plane);
2390 intel_crtc_load_lut(crtc);
2391 intel_update_fbc(dev);
2393 /* Give the overlay scaler a chance to enable if it's on this pipe */
2394 intel_crtc_dpms_overlay(intel_crtc, true);
2395 intel_crtc_update_cursor(crtc, true);
2398 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2400 struct drm_device *dev = crtc->dev;
2401 struct drm_i915_private *dev_priv = dev->dev_private;
2402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2403 int pipe = intel_crtc->pipe;
2404 int plane = intel_crtc->plane;
2405 u32 reg, temp;
2407 if (!intel_crtc->active)
2408 return;
2410 /* Give the overlay scaler a chance to disable if it's on this pipe */
2411 intel_crtc_wait_for_pending_flips(crtc);
2412 drm_vblank_off(dev, pipe);
2413 intel_crtc_dpms_overlay(intel_crtc, false);
2414 intel_crtc_update_cursor(crtc, false);
2416 if (dev_priv->cfb_plane == plane &&
2417 dev_priv->display.disable_fbc)
2418 dev_priv->display.disable_fbc(dev);
2420 /* Disable display plane */
2421 reg = DSPCNTR(plane);
2422 temp = I915_READ(reg);
2423 if (temp & DISPLAY_PLANE_ENABLE) {
2424 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2425 /* Flush the plane changes */
2426 intel_flush_display_plane(dev, plane);
2428 /* Wait for vblank for the disable to take effect */
2429 if (IS_GEN2(dev))
2430 intel_wait_for_vblank(dev, pipe);
2433 /* Don't disable pipe A or pipe A PLLs if needed */
2434 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2435 goto done;
2437 /* Next, disable display pipes */
2438 reg = PIPECONF(pipe);
2439 temp = I915_READ(reg);
2440 if (temp & PIPECONF_ENABLE) {
2441 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2443 /* Wait for the pipe to turn off */
2444 POSTING_READ(reg);
2445 intel_wait_for_pipe_off(dev, pipe);
2448 reg = DPLL(pipe);
2449 temp = I915_READ(reg);
2450 if (temp & DPLL_VCO_ENABLE) {
2451 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2453 /* Wait for the clocks to turn off. */
2454 POSTING_READ(reg);
2455 udelay(150);
2458 done:
2459 intel_crtc->active = false;
2460 intel_update_fbc(dev);
2461 intel_update_watermarks(dev);
2462 intel_clear_scanline_wait(dev);
2465 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2467 /* XXX: When our outputs are all unaware of DPMS modes other than off
2468 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2470 switch (mode) {
2471 case DRM_MODE_DPMS_ON:
2472 case DRM_MODE_DPMS_STANDBY:
2473 case DRM_MODE_DPMS_SUSPEND:
2474 i9xx_crtc_enable(crtc);
2475 break;
2476 case DRM_MODE_DPMS_OFF:
2477 i9xx_crtc_disable(crtc);
2478 break;
2483 * Sets the power management mode of the pipe and plane.
2485 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2487 struct drm_device *dev = crtc->dev;
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 struct drm_i915_master_private *master_priv;
2490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2491 int pipe = intel_crtc->pipe;
2492 bool enabled;
2494 if (intel_crtc->dpms_mode == mode)
2495 return;
2497 intel_crtc->dpms_mode = mode;
2499 dev_priv->display.dpms(crtc, mode);
2501 if (!dev->primary->master)
2502 return;
2504 master_priv = dev->primary->master->driver_priv;
2505 if (!master_priv->sarea_priv)
2506 return;
2508 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2510 switch (pipe) {
2511 case 0:
2512 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2513 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2514 break;
2515 case 1:
2516 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2517 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2518 break;
2519 default:
2520 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2521 break;
2525 static void intel_crtc_disable(struct drm_crtc *crtc)
2527 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2528 struct drm_device *dev = crtc->dev;
2530 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2532 if (crtc->fb) {
2533 mutex_lock(&dev->struct_mutex);
2534 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2535 mutex_unlock(&dev->struct_mutex);
2539 /* Prepare for a mode set.
2541 * Note we could be a lot smarter here. We need to figure out which outputs
2542 * will be enabled, which disabled (in short, how the config will changes)
2543 * and perform the minimum necessary steps to accomplish that, e.g. updating
2544 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2545 * panel fitting is in the proper state, etc.
2547 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2549 i9xx_crtc_disable(crtc);
2552 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2554 i9xx_crtc_enable(crtc);
2557 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2559 ironlake_crtc_disable(crtc);
2562 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2564 ironlake_crtc_enable(crtc);
2567 void intel_encoder_prepare (struct drm_encoder *encoder)
2569 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2570 /* lvds has its own version of prepare see intel_lvds_prepare */
2571 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2574 void intel_encoder_commit (struct drm_encoder *encoder)
2576 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2577 /* lvds has its own version of commit see intel_lvds_commit */
2578 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2581 void intel_encoder_destroy(struct drm_encoder *encoder)
2583 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2585 drm_encoder_cleanup(encoder);
2586 kfree(intel_encoder);
2589 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2590 struct drm_display_mode *mode,
2591 struct drm_display_mode *adjusted_mode)
2593 struct drm_device *dev = crtc->dev;
2595 if (HAS_PCH_SPLIT(dev)) {
2596 /* FDI link clock is fixed at 2.7G */
2597 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2598 return false;
2601 /* XXX some encoders set the crtcinfo, others don't.
2602 * Obviously we need some form of conflict resolution here...
2604 if (adjusted_mode->crtc_htotal == 0)
2605 drm_mode_set_crtcinfo(adjusted_mode, 0);
2607 return true;
2610 static int i945_get_display_clock_speed(struct drm_device *dev)
2612 return 400000;
2615 static int i915_get_display_clock_speed(struct drm_device *dev)
2617 return 333000;
2620 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2622 return 200000;
2625 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2627 u16 gcfgc = 0;
2629 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2631 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2632 return 133000;
2633 else {
2634 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2635 case GC_DISPLAY_CLOCK_333_MHZ:
2636 return 333000;
2637 default:
2638 case GC_DISPLAY_CLOCK_190_200_MHZ:
2639 return 190000;
2644 static int i865_get_display_clock_speed(struct drm_device *dev)
2646 return 266000;
2649 static int i855_get_display_clock_speed(struct drm_device *dev)
2651 u16 hpllcc = 0;
2652 /* Assume that the hardware is in the high speed state. This
2653 * should be the default.
2655 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2656 case GC_CLOCK_133_200:
2657 case GC_CLOCK_100_200:
2658 return 200000;
2659 case GC_CLOCK_166_250:
2660 return 250000;
2661 case GC_CLOCK_100_133:
2662 return 133000;
2665 /* Shouldn't happen */
2666 return 0;
2669 static int i830_get_display_clock_speed(struct drm_device *dev)
2671 return 133000;
2674 struct fdi_m_n {
2675 u32 tu;
2676 u32 gmch_m;
2677 u32 gmch_n;
2678 u32 link_m;
2679 u32 link_n;
2682 static void
2683 fdi_reduce_ratio(u32 *num, u32 *den)
2685 while (*num > 0xffffff || *den > 0xffffff) {
2686 *num >>= 1;
2687 *den >>= 1;
2691 #define DATA_N 0x800000
2692 #define LINK_N 0x80000
2694 static void
2695 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2696 int link_clock, struct fdi_m_n *m_n)
2698 u64 temp;
2700 m_n->tu = 64; /* default size */
2702 temp = (u64) DATA_N * pixel_clock;
2703 temp = div_u64(temp, link_clock);
2704 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2705 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2706 m_n->gmch_n = DATA_N;
2707 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2709 temp = (u64) LINK_N * pixel_clock;
2710 m_n->link_m = div_u64(temp, link_clock);
2711 m_n->link_n = LINK_N;
2712 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2716 struct intel_watermark_params {
2717 unsigned long fifo_size;
2718 unsigned long max_wm;
2719 unsigned long default_wm;
2720 unsigned long guard_size;
2721 unsigned long cacheline_size;
2724 /* Pineview has different values for various configs */
2725 static struct intel_watermark_params pineview_display_wm = {
2726 PINEVIEW_DISPLAY_FIFO,
2727 PINEVIEW_MAX_WM,
2728 PINEVIEW_DFT_WM,
2729 PINEVIEW_GUARD_WM,
2730 PINEVIEW_FIFO_LINE_SIZE
2732 static struct intel_watermark_params pineview_display_hplloff_wm = {
2733 PINEVIEW_DISPLAY_FIFO,
2734 PINEVIEW_MAX_WM,
2735 PINEVIEW_DFT_HPLLOFF_WM,
2736 PINEVIEW_GUARD_WM,
2737 PINEVIEW_FIFO_LINE_SIZE
2739 static struct intel_watermark_params pineview_cursor_wm = {
2740 PINEVIEW_CURSOR_FIFO,
2741 PINEVIEW_CURSOR_MAX_WM,
2742 PINEVIEW_CURSOR_DFT_WM,
2743 PINEVIEW_CURSOR_GUARD_WM,
2744 PINEVIEW_FIFO_LINE_SIZE,
2746 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2747 PINEVIEW_CURSOR_FIFO,
2748 PINEVIEW_CURSOR_MAX_WM,
2749 PINEVIEW_CURSOR_DFT_WM,
2750 PINEVIEW_CURSOR_GUARD_WM,
2751 PINEVIEW_FIFO_LINE_SIZE
2753 static struct intel_watermark_params g4x_wm_info = {
2754 G4X_FIFO_SIZE,
2755 G4X_MAX_WM,
2756 G4X_MAX_WM,
2758 G4X_FIFO_LINE_SIZE,
2760 static struct intel_watermark_params g4x_cursor_wm_info = {
2761 I965_CURSOR_FIFO,
2762 I965_CURSOR_MAX_WM,
2763 I965_CURSOR_DFT_WM,
2765 G4X_FIFO_LINE_SIZE,
2767 static struct intel_watermark_params i965_cursor_wm_info = {
2768 I965_CURSOR_FIFO,
2769 I965_CURSOR_MAX_WM,
2770 I965_CURSOR_DFT_WM,
2772 I915_FIFO_LINE_SIZE,
2774 static struct intel_watermark_params i945_wm_info = {
2775 I945_FIFO_SIZE,
2776 I915_MAX_WM,
2779 I915_FIFO_LINE_SIZE
2781 static struct intel_watermark_params i915_wm_info = {
2782 I915_FIFO_SIZE,
2783 I915_MAX_WM,
2786 I915_FIFO_LINE_SIZE
2788 static struct intel_watermark_params i855_wm_info = {
2789 I855GM_FIFO_SIZE,
2790 I915_MAX_WM,
2793 I830_FIFO_LINE_SIZE
2795 static struct intel_watermark_params i830_wm_info = {
2796 I830_FIFO_SIZE,
2797 I915_MAX_WM,
2800 I830_FIFO_LINE_SIZE
2803 static struct intel_watermark_params ironlake_display_wm_info = {
2804 ILK_DISPLAY_FIFO,
2805 ILK_DISPLAY_MAXWM,
2806 ILK_DISPLAY_DFTWM,
2808 ILK_FIFO_LINE_SIZE
2811 static struct intel_watermark_params ironlake_cursor_wm_info = {
2812 ILK_CURSOR_FIFO,
2813 ILK_CURSOR_MAXWM,
2814 ILK_CURSOR_DFTWM,
2816 ILK_FIFO_LINE_SIZE
2819 static struct intel_watermark_params ironlake_display_srwm_info = {
2820 ILK_DISPLAY_SR_FIFO,
2821 ILK_DISPLAY_MAX_SRWM,
2822 ILK_DISPLAY_DFT_SRWM,
2824 ILK_FIFO_LINE_SIZE
2827 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2828 ILK_CURSOR_SR_FIFO,
2829 ILK_CURSOR_MAX_SRWM,
2830 ILK_CURSOR_DFT_SRWM,
2832 ILK_FIFO_LINE_SIZE
2836 * intel_calculate_wm - calculate watermark level
2837 * @clock_in_khz: pixel clock
2838 * @wm: chip FIFO params
2839 * @pixel_size: display pixel size
2840 * @latency_ns: memory latency for the platform
2842 * Calculate the watermark level (the level at which the display plane will
2843 * start fetching from memory again). Each chip has a different display
2844 * FIFO size and allocation, so the caller needs to figure that out and pass
2845 * in the correct intel_watermark_params structure.
2847 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2848 * on the pixel size. When it reaches the watermark level, it'll start
2849 * fetching FIFO line sized based chunks from memory until the FIFO fills
2850 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2851 * will occur, and a display engine hang could result.
2853 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2854 struct intel_watermark_params *wm,
2855 int pixel_size,
2856 unsigned long latency_ns)
2858 long entries_required, wm_size;
2861 * Note: we need to make sure we don't overflow for various clock &
2862 * latency values.
2863 * clocks go from a few thousand to several hundred thousand.
2864 * latency is usually a few thousand
2866 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2867 1000;
2868 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2870 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2872 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2874 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2876 /* Don't promote wm_size to unsigned... */
2877 if (wm_size > (long)wm->max_wm)
2878 wm_size = wm->max_wm;
2879 if (wm_size <= 0)
2880 wm_size = wm->default_wm;
2881 return wm_size;
2884 struct cxsr_latency {
2885 int is_desktop;
2886 int is_ddr3;
2887 unsigned long fsb_freq;
2888 unsigned long mem_freq;
2889 unsigned long display_sr;
2890 unsigned long display_hpll_disable;
2891 unsigned long cursor_sr;
2892 unsigned long cursor_hpll_disable;
2895 static const struct cxsr_latency cxsr_latency_table[] = {
2896 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2897 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2898 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2899 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2900 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2902 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2903 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2904 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2905 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2906 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2908 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2909 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2910 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2911 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2912 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2914 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2915 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2916 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2917 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2918 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2920 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2921 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2922 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2923 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2924 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2926 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2927 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2928 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2929 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2930 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2933 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2934 int is_ddr3,
2935 int fsb,
2936 int mem)
2938 const struct cxsr_latency *latency;
2939 int i;
2941 if (fsb == 0 || mem == 0)
2942 return NULL;
2944 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2945 latency = &cxsr_latency_table[i];
2946 if (is_desktop == latency->is_desktop &&
2947 is_ddr3 == latency->is_ddr3 &&
2948 fsb == latency->fsb_freq && mem == latency->mem_freq)
2949 return latency;
2952 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2954 return NULL;
2957 static void pineview_disable_cxsr(struct drm_device *dev)
2959 struct drm_i915_private *dev_priv = dev->dev_private;
2961 /* deactivate cxsr */
2962 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2966 * Latency for FIFO fetches is dependent on several factors:
2967 * - memory configuration (speed, channels)
2968 * - chipset
2969 * - current MCH state
2970 * It can be fairly high in some situations, so here we assume a fairly
2971 * pessimal value. It's a tradeoff between extra memory fetches (if we
2972 * set this value too high, the FIFO will fetch frequently to stay full)
2973 * and power consumption (set it too low to save power and we might see
2974 * FIFO underruns and display "flicker").
2976 * A value of 5us seems to be a good balance; safe for very low end
2977 * platforms but not overly aggressive on lower latency configs.
2979 static const int latency_ns = 5000;
2981 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2983 struct drm_i915_private *dev_priv = dev->dev_private;
2984 uint32_t dsparb = I915_READ(DSPARB);
2985 int size;
2987 size = dsparb & 0x7f;
2988 if (plane)
2989 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2991 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2992 plane ? "B" : "A", size);
2994 return size;
2997 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2999 struct drm_i915_private *dev_priv = dev->dev_private;
3000 uint32_t dsparb = I915_READ(DSPARB);
3001 int size;
3003 size = dsparb & 0x1ff;
3004 if (plane)
3005 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3006 size >>= 1; /* Convert to cachelines */
3008 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3009 plane ? "B" : "A", size);
3011 return size;
3014 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3016 struct drm_i915_private *dev_priv = dev->dev_private;
3017 uint32_t dsparb = I915_READ(DSPARB);
3018 int size;
3020 size = dsparb & 0x7f;
3021 size >>= 2; /* Convert to cachelines */
3023 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3024 plane ? "B" : "A",
3025 size);
3027 return size;
3030 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3032 struct drm_i915_private *dev_priv = dev->dev_private;
3033 uint32_t dsparb = I915_READ(DSPARB);
3034 int size;
3036 size = dsparb & 0x7f;
3037 size >>= 1; /* Convert to cachelines */
3039 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3040 plane ? "B" : "A", size);
3042 return size;
3045 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3046 int planeb_clock, int sr_hdisplay, int unused,
3047 int pixel_size)
3049 struct drm_i915_private *dev_priv = dev->dev_private;
3050 const struct cxsr_latency *latency;
3051 u32 reg;
3052 unsigned long wm;
3053 int sr_clock;
3055 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3056 dev_priv->fsb_freq, dev_priv->mem_freq);
3057 if (!latency) {
3058 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3059 pineview_disable_cxsr(dev);
3060 return;
3063 if (!planea_clock || !planeb_clock) {
3064 sr_clock = planea_clock ? planea_clock : planeb_clock;
3066 /* Display SR */
3067 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3068 pixel_size, latency->display_sr);
3069 reg = I915_READ(DSPFW1);
3070 reg &= ~DSPFW_SR_MASK;
3071 reg |= wm << DSPFW_SR_SHIFT;
3072 I915_WRITE(DSPFW1, reg);
3073 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3075 /* cursor SR */
3076 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3077 pixel_size, latency->cursor_sr);
3078 reg = I915_READ(DSPFW3);
3079 reg &= ~DSPFW_CURSOR_SR_MASK;
3080 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3081 I915_WRITE(DSPFW3, reg);
3083 /* Display HPLL off SR */
3084 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3085 pixel_size, latency->display_hpll_disable);
3086 reg = I915_READ(DSPFW3);
3087 reg &= ~DSPFW_HPLL_SR_MASK;
3088 reg |= wm & DSPFW_HPLL_SR_MASK;
3089 I915_WRITE(DSPFW3, reg);
3091 /* cursor HPLL off SR */
3092 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3093 pixel_size, latency->cursor_hpll_disable);
3094 reg = I915_READ(DSPFW3);
3095 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3096 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3097 I915_WRITE(DSPFW3, reg);
3098 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3100 /* activate cxsr */
3101 I915_WRITE(DSPFW3,
3102 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3103 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3104 } else {
3105 pineview_disable_cxsr(dev);
3106 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3110 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3111 int planeb_clock, int sr_hdisplay, int sr_htotal,
3112 int pixel_size)
3114 struct drm_i915_private *dev_priv = dev->dev_private;
3115 int total_size, cacheline_size;
3116 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3117 struct intel_watermark_params planea_params, planeb_params;
3118 unsigned long line_time_us;
3119 int sr_clock, sr_entries = 0, entries_required;
3121 /* Create copies of the base settings for each pipe */
3122 planea_params = planeb_params = g4x_wm_info;
3124 /* Grab a couple of global values before we overwrite them */
3125 total_size = planea_params.fifo_size;
3126 cacheline_size = planea_params.cacheline_size;
3129 * Note: we need to make sure we don't overflow for various clock &
3130 * latency values.
3131 * clocks go from a few thousand to several hundred thousand.
3132 * latency is usually a few thousand
3134 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3135 1000;
3136 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3137 planea_wm = entries_required + planea_params.guard_size;
3139 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3140 1000;
3141 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3142 planeb_wm = entries_required + planeb_params.guard_size;
3144 cursora_wm = cursorb_wm = 16;
3145 cursor_sr = 32;
3147 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3149 /* Calc sr entries for one plane configs */
3150 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3151 /* self-refresh has much higher latency */
3152 static const int sr_latency_ns = 12000;
3154 sr_clock = planea_clock ? planea_clock : planeb_clock;
3155 line_time_us = ((sr_htotal * 1000) / sr_clock);
3157 /* Use ns/us then divide to preserve precision */
3158 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3159 pixel_size * sr_hdisplay;
3160 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3162 entries_required = (((sr_latency_ns / line_time_us) +
3163 1000) / 1000) * pixel_size * 64;
3164 entries_required = DIV_ROUND_UP(entries_required,
3165 g4x_cursor_wm_info.cacheline_size);
3166 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3168 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3169 cursor_sr = g4x_cursor_wm_info.max_wm;
3170 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3171 "cursor %d\n", sr_entries, cursor_sr);
3173 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3174 } else {
3175 /* Turn off self refresh if both pipes are enabled */
3176 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3177 & ~FW_BLC_SELF_EN);
3180 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3181 planea_wm, planeb_wm, sr_entries);
3183 planea_wm &= 0x3f;
3184 planeb_wm &= 0x3f;
3186 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3187 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3188 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3189 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3190 (cursora_wm << DSPFW_CURSORA_SHIFT));
3191 /* HPLL off in SR has some issues on G4x... disable it */
3192 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3193 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3196 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3197 int planeb_clock, int sr_hdisplay, int sr_htotal,
3198 int pixel_size)
3200 struct drm_i915_private *dev_priv = dev->dev_private;
3201 unsigned long line_time_us;
3202 int sr_clock, sr_entries, srwm = 1;
3203 int cursor_sr = 16;
3205 /* Calc sr entries for one plane configs */
3206 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3207 /* self-refresh has much higher latency */
3208 static const int sr_latency_ns = 12000;
3210 sr_clock = planea_clock ? planea_clock : planeb_clock;
3211 line_time_us = ((sr_htotal * 1000) / sr_clock);
3213 /* Use ns/us then divide to preserve precision */
3214 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3215 pixel_size * sr_hdisplay;
3216 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3217 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3218 srwm = I965_FIFO_SIZE - sr_entries;
3219 if (srwm < 0)
3220 srwm = 1;
3221 srwm &= 0x1ff;
3223 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3224 pixel_size * 64;
3225 sr_entries = DIV_ROUND_UP(sr_entries,
3226 i965_cursor_wm_info.cacheline_size);
3227 cursor_sr = i965_cursor_wm_info.fifo_size -
3228 (sr_entries + i965_cursor_wm_info.guard_size);
3230 if (cursor_sr > i965_cursor_wm_info.max_wm)
3231 cursor_sr = i965_cursor_wm_info.max_wm;
3233 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3234 "cursor %d\n", srwm, cursor_sr);
3236 if (IS_CRESTLINE(dev))
3237 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3238 } else {
3239 /* Turn off self refresh if both pipes are enabled */
3240 if (IS_CRESTLINE(dev))
3241 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3242 & ~FW_BLC_SELF_EN);
3245 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3246 srwm);
3248 /* 965 has limitations... */
3249 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3250 (8 << 0));
3251 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3252 /* update cursor SR watermark */
3253 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3256 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3257 int planeb_clock, int sr_hdisplay, int sr_htotal,
3258 int pixel_size)
3260 struct drm_i915_private *dev_priv = dev->dev_private;
3261 uint32_t fwater_lo;
3262 uint32_t fwater_hi;
3263 int total_size, cacheline_size, cwm, srwm = 1;
3264 int planea_wm, planeb_wm;
3265 struct intel_watermark_params planea_params, planeb_params;
3266 unsigned long line_time_us;
3267 int sr_clock, sr_entries = 0;
3269 /* Create copies of the base settings for each pipe */
3270 if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3271 planea_params = planeb_params = i945_wm_info;
3272 else if (!IS_GEN2(dev))
3273 planea_params = planeb_params = i915_wm_info;
3274 else
3275 planea_params = planeb_params = i855_wm_info;
3277 /* Grab a couple of global values before we overwrite them */
3278 total_size = planea_params.fifo_size;
3279 cacheline_size = planea_params.cacheline_size;
3281 /* Update per-plane FIFO sizes */
3282 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3283 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3285 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3286 pixel_size, latency_ns);
3287 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3288 pixel_size, latency_ns);
3289 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3292 * Overlay gets an aggressive default since video jitter is bad.
3294 cwm = 2;
3296 /* Calc sr entries for one plane configs */
3297 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3298 (!planea_clock || !planeb_clock)) {
3299 /* self-refresh has much higher latency */
3300 static const int sr_latency_ns = 6000;
3302 sr_clock = planea_clock ? planea_clock : planeb_clock;
3303 line_time_us = ((sr_htotal * 1000) / sr_clock);
3305 /* Use ns/us then divide to preserve precision */
3306 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3307 pixel_size * sr_hdisplay;
3308 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3309 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3310 srwm = total_size - sr_entries;
3311 if (srwm < 0)
3312 srwm = 1;
3314 if (IS_I945G(dev) || IS_I945GM(dev))
3315 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3316 else if (IS_I915GM(dev)) {
3317 /* 915M has a smaller SRWM field */
3318 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3319 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3321 } else {
3322 /* Turn off self refresh if both pipes are enabled */
3323 if (IS_I945G(dev) || IS_I945GM(dev)) {
3324 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3325 & ~FW_BLC_SELF_EN);
3326 } else if (IS_I915GM(dev)) {
3327 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3331 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3332 planea_wm, planeb_wm, cwm, srwm);
3334 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3335 fwater_hi = (cwm & 0x1f);
3337 /* Set request length to 8 cachelines per fetch */
3338 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3339 fwater_hi = fwater_hi | (1 << 8);
3341 I915_WRITE(FW_BLC, fwater_lo);
3342 I915_WRITE(FW_BLC2, fwater_hi);
3345 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3346 int unused2, int unused3, int pixel_size)
3348 struct drm_i915_private *dev_priv = dev->dev_private;
3349 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3350 int planea_wm;
3352 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3354 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3355 pixel_size, latency_ns);
3356 fwater_lo |= (3<<8) | planea_wm;
3358 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3360 I915_WRITE(FW_BLC, fwater_lo);
3363 #define ILK_LP0_PLANE_LATENCY 700
3364 #define ILK_LP0_CURSOR_LATENCY 1300
3366 static bool ironlake_compute_wm0(struct drm_device *dev,
3367 int pipe,
3368 int *plane_wm,
3369 int *cursor_wm)
3371 struct drm_crtc *crtc;
3372 int htotal, hdisplay, clock, pixel_size = 0;
3373 int line_time_us, line_count, entries;
3375 crtc = intel_get_crtc_for_pipe(dev, pipe);
3376 if (crtc->fb == NULL || !crtc->enabled)
3377 return false;
3379 htotal = crtc->mode.htotal;
3380 hdisplay = crtc->mode.hdisplay;
3381 clock = crtc->mode.clock;
3382 pixel_size = crtc->fb->bits_per_pixel / 8;
3384 /* Use the small buffer method to calculate plane watermark */
3385 entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3386 entries = DIV_ROUND_UP(entries,
3387 ironlake_display_wm_info.cacheline_size);
3388 *plane_wm = entries + ironlake_display_wm_info.guard_size;
3389 if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3390 *plane_wm = ironlake_display_wm_info.max_wm;
3392 /* Use the large buffer method to calculate cursor watermark */
3393 line_time_us = ((htotal * 1000) / clock);
3394 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3395 entries = line_count * 64 * pixel_size;
3396 entries = DIV_ROUND_UP(entries,
3397 ironlake_cursor_wm_info.cacheline_size);
3398 *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3399 if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3400 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3402 return true;
3405 static void ironlake_update_wm(struct drm_device *dev,
3406 int planea_clock, int planeb_clock,
3407 int sr_hdisplay, int sr_htotal,
3408 int pixel_size)
3410 struct drm_i915_private *dev_priv = dev->dev_private;
3411 int plane_wm, cursor_wm, enabled;
3412 int tmp;
3414 enabled = 0;
3415 if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3416 I915_WRITE(WM0_PIPEA_ILK,
3417 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3418 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3419 " plane %d, " "cursor: %d\n",
3420 plane_wm, cursor_wm);
3421 enabled++;
3424 if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3425 I915_WRITE(WM0_PIPEB_ILK,
3426 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3427 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3428 " plane %d, cursor: %d\n",
3429 plane_wm, cursor_wm);
3430 enabled++;
3434 * Calculate and update the self-refresh watermark only when one
3435 * display plane is used.
3437 tmp = 0;
3438 if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3439 unsigned long line_time_us;
3440 int small, large, plane_fbc;
3441 int sr_clock, entries;
3442 int line_count, line_size;
3443 /* Read the self-refresh latency. The unit is 0.5us */
3444 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3446 sr_clock = planea_clock ? planea_clock : planeb_clock;
3447 line_time_us = (sr_htotal * 1000) / sr_clock;
3449 /* Use ns/us then divide to preserve precision */
3450 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3451 / 1000;
3452 line_size = sr_hdisplay * pixel_size;
3454 /* Use the minimum of the small and large buffer method for primary */
3455 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3456 large = line_count * line_size;
3458 entries = DIV_ROUND_UP(min(small, large),
3459 ironlake_display_srwm_info.cacheline_size);
3461 plane_fbc = entries * 64;
3462 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3464 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3465 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3466 plane_wm = ironlake_display_srwm_info.max_wm;
3468 /* calculate the self-refresh watermark for display cursor */
3469 entries = line_count * pixel_size * 64;
3470 entries = DIV_ROUND_UP(entries,
3471 ironlake_cursor_srwm_info.cacheline_size);
3473 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3474 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3475 cursor_wm = ironlake_cursor_srwm_info.max_wm;
3477 /* configure watermark and enable self-refresh */
3478 tmp = (WM1_LP_SR_EN |
3479 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3480 (plane_fbc << WM1_LP_FBC_SHIFT) |
3481 (plane_wm << WM1_LP_SR_SHIFT) |
3482 cursor_wm);
3483 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3484 " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3486 I915_WRITE(WM1_LP_ILK, tmp);
3487 /* XXX setup WM2 and WM3 */
3491 * intel_update_watermarks - update FIFO watermark values based on current modes
3493 * Calculate watermark values for the various WM regs based on current mode
3494 * and plane configuration.
3496 * There are several cases to deal with here:
3497 * - normal (i.e. non-self-refresh)
3498 * - self-refresh (SR) mode
3499 * - lines are large relative to FIFO size (buffer can hold up to 2)
3500 * - lines are small relative to FIFO size (buffer can hold more than 2
3501 * lines), so need to account for TLB latency
3503 * The normal calculation is:
3504 * watermark = dotclock * bytes per pixel * latency
3505 * where latency is platform & configuration dependent (we assume pessimal
3506 * values here).
3508 * The SR calculation is:
3509 * watermark = (trunc(latency/line time)+1) * surface width *
3510 * bytes per pixel
3511 * where
3512 * line time = htotal / dotclock
3513 * surface width = hdisplay for normal plane and 64 for cursor
3514 * and latency is assumed to be high, as above.
3516 * The final value programmed to the register should always be rounded up,
3517 * and include an extra 2 entries to account for clock crossings.
3519 * We don't use the sprite, so we can ignore that. And on Crestline we have
3520 * to set the non-SR watermarks to 8.
3522 static void intel_update_watermarks(struct drm_device *dev)
3524 struct drm_i915_private *dev_priv = dev->dev_private;
3525 struct drm_crtc *crtc;
3526 int sr_hdisplay = 0;
3527 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3528 int enabled = 0, pixel_size = 0;
3529 int sr_htotal = 0;
3531 if (!dev_priv->display.update_wm)
3532 return;
3534 /* Get the clock config from both planes */
3535 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3537 if (intel_crtc->active) {
3538 enabled++;
3539 if (intel_crtc->plane == 0) {
3540 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3541 intel_crtc->pipe, crtc->mode.clock);
3542 planea_clock = crtc->mode.clock;
3543 } else {
3544 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3545 intel_crtc->pipe, crtc->mode.clock);
3546 planeb_clock = crtc->mode.clock;
3548 sr_hdisplay = crtc->mode.hdisplay;
3549 sr_clock = crtc->mode.clock;
3550 sr_htotal = crtc->mode.htotal;
3551 if (crtc->fb)
3552 pixel_size = crtc->fb->bits_per_pixel / 8;
3553 else
3554 pixel_size = 4; /* by default */
3558 if (enabled <= 0)
3559 return;
3561 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3562 sr_hdisplay, sr_htotal, pixel_size);
3565 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3566 struct drm_display_mode *mode,
3567 struct drm_display_mode *adjusted_mode,
3568 int x, int y,
3569 struct drm_framebuffer *old_fb)
3571 struct drm_device *dev = crtc->dev;
3572 struct drm_i915_private *dev_priv = dev->dev_private;
3573 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3574 int pipe = intel_crtc->pipe;
3575 int plane = intel_crtc->plane;
3576 u32 fp_reg, dpll_reg;
3577 int refclk, num_connectors = 0;
3578 intel_clock_t clock, reduced_clock;
3579 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3580 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3581 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3582 struct intel_encoder *has_edp_encoder = NULL;
3583 struct drm_mode_config *mode_config = &dev->mode_config;
3584 struct intel_encoder *encoder;
3585 const intel_limit_t *limit;
3586 int ret;
3587 struct fdi_m_n m_n = {0};
3588 u32 reg, temp;
3589 int target_clock;
3591 drm_vblank_pre_modeset(dev, pipe);
3593 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3594 if (encoder->base.crtc != crtc)
3595 continue;
3597 switch (encoder->type) {
3598 case INTEL_OUTPUT_LVDS:
3599 is_lvds = true;
3600 break;
3601 case INTEL_OUTPUT_SDVO:
3602 case INTEL_OUTPUT_HDMI:
3603 is_sdvo = true;
3604 if (encoder->needs_tv_clock)
3605 is_tv = true;
3606 break;
3607 case INTEL_OUTPUT_DVO:
3608 is_dvo = true;
3609 break;
3610 case INTEL_OUTPUT_TVOUT:
3611 is_tv = true;
3612 break;
3613 case INTEL_OUTPUT_ANALOG:
3614 is_crt = true;
3615 break;
3616 case INTEL_OUTPUT_DISPLAYPORT:
3617 is_dp = true;
3618 break;
3619 case INTEL_OUTPUT_EDP:
3620 has_edp_encoder = encoder;
3621 break;
3624 num_connectors++;
3627 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3628 refclk = dev_priv->lvds_ssc_freq * 1000;
3629 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3630 refclk / 1000);
3631 } else if (!IS_GEN2(dev)) {
3632 refclk = 96000;
3633 if (HAS_PCH_SPLIT(dev) &&
3634 (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3635 refclk = 120000; /* 120Mhz refclk */
3636 } else {
3637 refclk = 48000;
3641 * Returns a set of divisors for the desired target clock with the given
3642 * refclk, or FALSE. The returned values represent the clock equation:
3643 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3645 limit = intel_limit(crtc);
3646 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3647 if (!ok) {
3648 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3649 drm_vblank_post_modeset(dev, pipe);
3650 return -EINVAL;
3653 /* Ensure that the cursor is valid for the new mode before changing... */
3654 intel_crtc_update_cursor(crtc, true);
3656 if (is_lvds && dev_priv->lvds_downclock_avail) {
3657 has_reduced_clock = limit->find_pll(limit, crtc,
3658 dev_priv->lvds_downclock,
3659 refclk,
3660 &reduced_clock);
3661 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3663 * If the different P is found, it means that we can't
3664 * switch the display clock by using the FP0/FP1.
3665 * In such case we will disable the LVDS downclock
3666 * feature.
3668 DRM_DEBUG_KMS("Different P is found for "
3669 "LVDS clock/downclock\n");
3670 has_reduced_clock = 0;
3673 /* SDVO TV has fixed PLL values depend on its clock range,
3674 this mirrors vbios setting. */
3675 if (is_sdvo && is_tv) {
3676 if (adjusted_mode->clock >= 100000
3677 && adjusted_mode->clock < 140500) {
3678 clock.p1 = 2;
3679 clock.p2 = 10;
3680 clock.n = 3;
3681 clock.m1 = 16;
3682 clock.m2 = 8;
3683 } else if (adjusted_mode->clock >= 140500
3684 && adjusted_mode->clock <= 200000) {
3685 clock.p1 = 1;
3686 clock.p2 = 10;
3687 clock.n = 6;
3688 clock.m1 = 12;
3689 clock.m2 = 8;
3693 /* FDI link */
3694 if (HAS_PCH_SPLIT(dev)) {
3695 int lane = 0, link_bw, bpp;
3696 /* CPU eDP doesn't require FDI link, so just set DP M/N
3697 according to current link config */
3698 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3699 target_clock = mode->clock;
3700 intel_edp_link_config(has_edp_encoder,
3701 &lane, &link_bw);
3702 } else {
3703 /* [e]DP over FDI requires target mode clock
3704 instead of link clock */
3705 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3706 target_clock = mode->clock;
3707 else
3708 target_clock = adjusted_mode->clock;
3710 /* FDI is a binary signal running at ~2.7GHz, encoding
3711 * each output octet as 10 bits. The actual frequency
3712 * is stored as a divider into a 100MHz clock, and the
3713 * mode pixel clock is stored in units of 1KHz.
3714 * Hence the bw of each lane in terms of the mode signal
3715 * is:
3717 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3720 /* determine panel color depth */
3721 temp = I915_READ(PIPECONF(pipe));
3722 temp &= ~PIPE_BPC_MASK;
3723 if (is_lvds) {
3724 /* the BPC will be 6 if it is 18-bit LVDS panel */
3725 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3726 temp |= PIPE_8BPC;
3727 else
3728 temp |= PIPE_6BPC;
3729 } else if (has_edp_encoder) {
3730 switch (dev_priv->edp.bpp/3) {
3731 case 8:
3732 temp |= PIPE_8BPC;
3733 break;
3734 case 10:
3735 temp |= PIPE_10BPC;
3736 break;
3737 case 6:
3738 temp |= PIPE_6BPC;
3739 break;
3740 case 12:
3741 temp |= PIPE_12BPC;
3742 break;
3744 } else
3745 temp |= PIPE_8BPC;
3746 I915_WRITE(PIPECONF(pipe), temp);
3748 switch (temp & PIPE_BPC_MASK) {
3749 case PIPE_8BPC:
3750 bpp = 24;
3751 break;
3752 case PIPE_10BPC:
3753 bpp = 30;
3754 break;
3755 case PIPE_6BPC:
3756 bpp = 18;
3757 break;
3758 case PIPE_12BPC:
3759 bpp = 36;
3760 break;
3761 default:
3762 DRM_ERROR("unknown pipe bpc value\n");
3763 bpp = 24;
3766 if (!lane) {
3768 * Account for spread spectrum to avoid
3769 * oversubscribing the link. Max center spread
3770 * is 2.5%; use 5% for safety's sake.
3772 u32 bps = target_clock * bpp * 21 / 20;
3773 lane = bps / (link_bw * 8) + 1;
3776 intel_crtc->fdi_lanes = lane;
3778 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3781 /* Ironlake: try to setup display ref clock before DPLL
3782 * enabling. This is only under driver's control after
3783 * PCH B stepping, previous chipset stepping should be
3784 * ignoring this setting.
3786 if (HAS_PCH_SPLIT(dev)) {
3787 temp = I915_READ(PCH_DREF_CONTROL);
3788 /* Always enable nonspread source */
3789 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3790 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3791 temp &= ~DREF_SSC_SOURCE_MASK;
3792 temp |= DREF_SSC_SOURCE_ENABLE;
3793 I915_WRITE(PCH_DREF_CONTROL, temp);
3795 POSTING_READ(PCH_DREF_CONTROL);
3796 udelay(200);
3798 if (has_edp_encoder) {
3799 if (dev_priv->lvds_use_ssc) {
3800 temp |= DREF_SSC1_ENABLE;
3801 I915_WRITE(PCH_DREF_CONTROL, temp);
3803 POSTING_READ(PCH_DREF_CONTROL);
3804 udelay(200);
3806 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3808 /* Enable CPU source on CPU attached eDP */
3809 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3810 if (dev_priv->lvds_use_ssc)
3811 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3812 else
3813 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3814 } else {
3815 /* Enable SSC on PCH eDP if needed */
3816 if (dev_priv->lvds_use_ssc) {
3817 DRM_ERROR("enabling SSC on PCH\n");
3818 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
3821 I915_WRITE(PCH_DREF_CONTROL, temp);
3822 POSTING_READ(PCH_DREF_CONTROL);
3823 udelay(200);
3827 if (IS_PINEVIEW(dev)) {
3828 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3829 if (has_reduced_clock)
3830 fp2 = (1 << reduced_clock.n) << 16 |
3831 reduced_clock.m1 << 8 | reduced_clock.m2;
3832 } else {
3833 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3834 if (has_reduced_clock)
3835 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3836 reduced_clock.m2;
3839 dpll = 0;
3840 if (!HAS_PCH_SPLIT(dev))
3841 dpll = DPLL_VGA_MODE_DIS;
3843 if (!IS_GEN2(dev)) {
3844 if (is_lvds)
3845 dpll |= DPLLB_MODE_LVDS;
3846 else
3847 dpll |= DPLLB_MODE_DAC_SERIAL;
3848 if (is_sdvo) {
3849 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3850 if (pixel_multiplier > 1) {
3851 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3852 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3853 else if (HAS_PCH_SPLIT(dev))
3854 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3856 dpll |= DPLL_DVO_HIGH_SPEED;
3858 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3859 dpll |= DPLL_DVO_HIGH_SPEED;
3861 /* compute bitmask from p1 value */
3862 if (IS_PINEVIEW(dev))
3863 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3864 else {
3865 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3866 /* also FPA1 */
3867 if (HAS_PCH_SPLIT(dev))
3868 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3869 if (IS_G4X(dev) && has_reduced_clock)
3870 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3872 switch (clock.p2) {
3873 case 5:
3874 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3875 break;
3876 case 7:
3877 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3878 break;
3879 case 10:
3880 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3881 break;
3882 case 14:
3883 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3884 break;
3886 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3887 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3888 } else {
3889 if (is_lvds) {
3890 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3891 } else {
3892 if (clock.p1 == 2)
3893 dpll |= PLL_P1_DIVIDE_BY_TWO;
3894 else
3895 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3896 if (clock.p2 == 4)
3897 dpll |= PLL_P2_DIVIDE_BY_4;
3901 if (is_sdvo && is_tv)
3902 dpll |= PLL_REF_INPUT_TVCLKINBC;
3903 else if (is_tv)
3904 /* XXX: just matching BIOS for now */
3905 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3906 dpll |= 3;
3907 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3908 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3909 else
3910 dpll |= PLL_REF_INPUT_DREFCLK;
3912 /* setup pipeconf */
3913 pipeconf = I915_READ(PIPECONF(pipe));
3915 /* Set up the display plane register */
3916 dspcntr = DISPPLANE_GAMMA_ENABLE;
3918 /* Ironlake's plane is forced to pipe, bit 24 is to
3919 enable color space conversion */
3920 if (!HAS_PCH_SPLIT(dev)) {
3921 if (pipe == 0)
3922 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3923 else
3924 dspcntr |= DISPPLANE_SEL_PIPE_B;
3927 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3928 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3929 * core speed.
3931 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3932 * pipe == 0 check?
3934 if (mode->clock >
3935 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3936 pipeconf |= PIPECONF_DOUBLE_WIDE;
3937 else
3938 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3941 dspcntr |= DISPLAY_PLANE_ENABLE;
3942 pipeconf |= PIPECONF_ENABLE;
3943 dpll |= DPLL_VCO_ENABLE;
3945 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3946 drm_mode_debug_printmodeline(mode);
3948 /* assign to Ironlake registers */
3949 if (HAS_PCH_SPLIT(dev)) {
3950 fp_reg = PCH_FP0(pipe);
3951 dpll_reg = PCH_DPLL(pipe);
3952 } else {
3953 fp_reg = FP0(pipe);
3954 dpll_reg = DPLL(pipe);
3957 /* PCH eDP needs FDI, but CPU eDP does not */
3958 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3959 I915_WRITE(fp_reg, fp);
3960 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3962 POSTING_READ(dpll_reg);
3963 udelay(150);
3966 /* enable transcoder DPLL */
3967 if (HAS_PCH_CPT(dev)) {
3968 temp = I915_READ(PCH_DPLL_SEL);
3969 if (pipe == 0)
3970 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3971 else
3972 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3973 I915_WRITE(PCH_DPLL_SEL, temp);
3975 POSTING_READ(PCH_DPLL_SEL);
3976 udelay(150);
3979 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3980 * This is an exception to the general rule that mode_set doesn't turn
3981 * things on.
3983 if (is_lvds) {
3984 reg = LVDS;
3985 if (HAS_PCH_SPLIT(dev))
3986 reg = PCH_LVDS;
3988 temp = I915_READ(reg);
3989 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3990 if (pipe == 1) {
3991 if (HAS_PCH_CPT(dev))
3992 temp |= PORT_TRANS_B_SEL_CPT;
3993 else
3994 temp |= LVDS_PIPEB_SELECT;
3995 } else {
3996 if (HAS_PCH_CPT(dev))
3997 temp &= ~PORT_TRANS_SEL_MASK;
3998 else
3999 temp &= ~LVDS_PIPEB_SELECT;
4001 /* set the corresponsding LVDS_BORDER bit */
4002 temp |= dev_priv->lvds_border_bits;
4003 /* Set the B0-B3 data pairs corresponding to whether we're going to
4004 * set the DPLLs for dual-channel mode or not.
4006 if (clock.p2 == 7)
4007 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4008 else
4009 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4011 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4012 * appropriately here, but we need to look more thoroughly into how
4013 * panels behave in the two modes.
4015 /* set the dithering flag on non-PCH LVDS as needed */
4016 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4017 if (dev_priv->lvds_dither)
4018 temp |= LVDS_ENABLE_DITHER;
4019 else
4020 temp &= ~LVDS_ENABLE_DITHER;
4022 I915_WRITE(reg, temp);
4025 /* set the dithering flag and clear for anything other than a panel. */
4026 if (HAS_PCH_SPLIT(dev)) {
4027 pipeconf &= ~PIPECONF_DITHER_EN;
4028 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4029 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4030 pipeconf |= PIPECONF_DITHER_EN;
4031 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4035 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4036 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4037 } else if (HAS_PCH_SPLIT(dev)) {
4038 /* For non-DP output, clear any trans DP clock recovery setting.*/
4039 if (pipe == 0) {
4040 I915_WRITE(TRANSA_DATA_M1, 0);
4041 I915_WRITE(TRANSA_DATA_N1, 0);
4042 I915_WRITE(TRANSA_DP_LINK_M1, 0);
4043 I915_WRITE(TRANSA_DP_LINK_N1, 0);
4044 } else {
4045 I915_WRITE(TRANSB_DATA_M1, 0);
4046 I915_WRITE(TRANSB_DATA_N1, 0);
4047 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4048 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4052 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4053 I915_WRITE(fp_reg, fp);
4054 I915_WRITE(dpll_reg, dpll);
4056 /* Wait for the clocks to stabilize. */
4057 POSTING_READ(dpll_reg);
4058 udelay(150);
4060 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4061 temp = 0;
4062 if (is_sdvo) {
4063 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4064 if (temp > 1)
4065 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4066 else
4067 temp = 0;
4069 I915_WRITE(DPLL_MD(pipe), temp);
4070 } else {
4071 /* write it again -- the BIOS does, after all */
4072 I915_WRITE(dpll_reg, dpll);
4075 /* Wait for the clocks to stabilize. */
4076 POSTING_READ(dpll_reg);
4077 udelay(150);
4080 intel_crtc->lowfreq_avail = false;
4081 if (is_lvds && has_reduced_clock && i915_powersave) {
4082 I915_WRITE(fp_reg + 4, fp2);
4083 intel_crtc->lowfreq_avail = true;
4084 if (HAS_PIPE_CXSR(dev)) {
4085 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4086 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4088 } else {
4089 I915_WRITE(fp_reg + 4, fp);
4090 if (HAS_PIPE_CXSR(dev)) {
4091 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4092 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4096 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4097 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4098 /* the chip adds 2 halflines automatically */
4099 adjusted_mode->crtc_vdisplay -= 1;
4100 adjusted_mode->crtc_vtotal -= 1;
4101 adjusted_mode->crtc_vblank_start -= 1;
4102 adjusted_mode->crtc_vblank_end -= 1;
4103 adjusted_mode->crtc_vsync_end -= 1;
4104 adjusted_mode->crtc_vsync_start -= 1;
4105 } else
4106 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4108 I915_WRITE(HTOTAL(pipe),
4109 (adjusted_mode->crtc_hdisplay - 1) |
4110 ((adjusted_mode->crtc_htotal - 1) << 16));
4111 I915_WRITE(HBLANK(pipe),
4112 (adjusted_mode->crtc_hblank_start - 1) |
4113 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4114 I915_WRITE(HSYNC(pipe),
4115 (adjusted_mode->crtc_hsync_start - 1) |
4116 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4118 I915_WRITE(VTOTAL(pipe),
4119 (adjusted_mode->crtc_vdisplay - 1) |
4120 ((adjusted_mode->crtc_vtotal - 1) << 16));
4121 I915_WRITE(VBLANK(pipe),
4122 (adjusted_mode->crtc_vblank_start - 1) |
4123 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4124 I915_WRITE(VSYNC(pipe),
4125 (adjusted_mode->crtc_vsync_start - 1) |
4126 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4128 /* pipesrc and dspsize control the size that is scaled from,
4129 * which should always be the user's requested size.
4131 if (!HAS_PCH_SPLIT(dev)) {
4132 I915_WRITE(DSPSIZE(plane),
4133 ((mode->vdisplay - 1) << 16) |
4134 (mode->hdisplay - 1));
4135 I915_WRITE(DSPPOS(plane), 0);
4137 I915_WRITE(PIPESRC(pipe),
4138 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4140 if (HAS_PCH_SPLIT(dev)) {
4141 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4142 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4143 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4144 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4146 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4147 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4151 I915_WRITE(PIPECONF(pipe), pipeconf);
4152 POSTING_READ(PIPECONF(pipe));
4154 intel_wait_for_vblank(dev, pipe);
4156 if (IS_GEN5(dev)) {
4157 /* enable address swizzle for tiling buffer */
4158 temp = I915_READ(DISP_ARB_CTL);
4159 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4162 I915_WRITE(DSPCNTR(plane), dspcntr);
4164 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4166 intel_update_watermarks(dev);
4168 drm_vblank_post_modeset(dev, pipe);
4170 return ret;
4173 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4174 void intel_crtc_load_lut(struct drm_crtc *crtc)
4176 struct drm_device *dev = crtc->dev;
4177 struct drm_i915_private *dev_priv = dev->dev_private;
4178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4179 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4180 int i;
4182 /* The clocks have to be on to load the palette. */
4183 if (!crtc->enabled)
4184 return;
4186 /* use legacy palette for Ironlake */
4187 if (HAS_PCH_SPLIT(dev))
4188 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4189 LGC_PALETTE_B;
4191 for (i = 0; i < 256; i++) {
4192 I915_WRITE(palreg + 4 * i,
4193 (intel_crtc->lut_r[i] << 16) |
4194 (intel_crtc->lut_g[i] << 8) |
4195 intel_crtc->lut_b[i]);
4199 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4201 struct drm_device *dev = crtc->dev;
4202 struct drm_i915_private *dev_priv = dev->dev_private;
4203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4204 bool visible = base != 0;
4205 u32 cntl;
4207 if (intel_crtc->cursor_visible == visible)
4208 return;
4210 cntl = I915_READ(CURACNTR);
4211 if (visible) {
4212 /* On these chipsets we can only modify the base whilst
4213 * the cursor is disabled.
4215 I915_WRITE(CURABASE, base);
4217 cntl &= ~(CURSOR_FORMAT_MASK);
4218 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4219 cntl |= CURSOR_ENABLE |
4220 CURSOR_GAMMA_ENABLE |
4221 CURSOR_FORMAT_ARGB;
4222 } else
4223 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4224 I915_WRITE(CURACNTR, cntl);
4226 intel_crtc->cursor_visible = visible;
4229 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4231 struct drm_device *dev = crtc->dev;
4232 struct drm_i915_private *dev_priv = dev->dev_private;
4233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4234 int pipe = intel_crtc->pipe;
4235 bool visible = base != 0;
4237 if (intel_crtc->cursor_visible != visible) {
4238 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4239 if (base) {
4240 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4241 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4242 cntl |= pipe << 28; /* Connect to correct pipe */
4243 } else {
4244 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4245 cntl |= CURSOR_MODE_DISABLE;
4247 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4249 intel_crtc->cursor_visible = visible;
4251 /* and commit changes on next vblank */
4252 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4255 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4256 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4257 bool on)
4259 struct drm_device *dev = crtc->dev;
4260 struct drm_i915_private *dev_priv = dev->dev_private;
4261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4262 int pipe = intel_crtc->pipe;
4263 int x = intel_crtc->cursor_x;
4264 int y = intel_crtc->cursor_y;
4265 u32 base, pos;
4266 bool visible;
4268 pos = 0;
4270 if (on && crtc->enabled && crtc->fb) {
4271 base = intel_crtc->cursor_addr;
4272 if (x > (int) crtc->fb->width)
4273 base = 0;
4275 if (y > (int) crtc->fb->height)
4276 base = 0;
4277 } else
4278 base = 0;
4280 if (x < 0) {
4281 if (x + intel_crtc->cursor_width < 0)
4282 base = 0;
4284 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4285 x = -x;
4287 pos |= x << CURSOR_X_SHIFT;
4289 if (y < 0) {
4290 if (y + intel_crtc->cursor_height < 0)
4291 base = 0;
4293 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4294 y = -y;
4296 pos |= y << CURSOR_Y_SHIFT;
4298 visible = base != 0;
4299 if (!visible && !intel_crtc->cursor_visible)
4300 return;
4302 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4303 if (IS_845G(dev) || IS_I865G(dev))
4304 i845_update_cursor(crtc, base);
4305 else
4306 i9xx_update_cursor(crtc, base);
4308 if (visible)
4309 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4312 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4313 struct drm_file *file_priv,
4314 uint32_t handle,
4315 uint32_t width, uint32_t height)
4317 struct drm_device *dev = crtc->dev;
4318 struct drm_i915_private *dev_priv = dev->dev_private;
4319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4320 struct drm_gem_object *bo;
4321 struct drm_i915_gem_object *obj_priv;
4322 uint32_t addr;
4323 int ret;
4325 DRM_DEBUG_KMS("\n");
4327 /* if we want to turn off the cursor ignore width and height */
4328 if (!handle) {
4329 DRM_DEBUG_KMS("cursor off\n");
4330 addr = 0;
4331 bo = NULL;
4332 mutex_lock(&dev->struct_mutex);
4333 goto finish;
4336 /* Currently we only support 64x64 cursors */
4337 if (width != 64 || height != 64) {
4338 DRM_ERROR("we currently only support 64x64 cursors\n");
4339 return -EINVAL;
4342 bo = drm_gem_object_lookup(dev, file_priv, handle);
4343 if (!bo)
4344 return -ENOENT;
4346 obj_priv = to_intel_bo(bo);
4348 if (bo->size < width * height * 4) {
4349 DRM_ERROR("buffer is to small\n");
4350 ret = -ENOMEM;
4351 goto fail;
4354 /* we only need to pin inside GTT if cursor is non-phy */
4355 mutex_lock(&dev->struct_mutex);
4356 if (!dev_priv->info->cursor_needs_physical) {
4357 ret = i915_gem_object_pin(bo, PAGE_SIZE, true, false);
4358 if (ret) {
4359 DRM_ERROR("failed to pin cursor bo\n");
4360 goto fail_locked;
4363 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4364 if (ret) {
4365 DRM_ERROR("failed to move cursor bo into the GTT\n");
4366 goto fail_unpin;
4369 addr = obj_priv->gtt_offset;
4370 } else {
4371 int align = IS_I830(dev) ? 16 * 1024 : 256;
4372 ret = i915_gem_attach_phys_object(dev, bo,
4373 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4374 align);
4375 if (ret) {
4376 DRM_ERROR("failed to attach phys object\n");
4377 goto fail_locked;
4379 addr = obj_priv->phys_obj->handle->busaddr;
4382 if (IS_GEN2(dev))
4383 I915_WRITE(CURSIZE, (height << 12) | width);
4385 finish:
4386 if (intel_crtc->cursor_bo) {
4387 if (dev_priv->info->cursor_needs_physical) {
4388 if (intel_crtc->cursor_bo != bo)
4389 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4390 } else
4391 i915_gem_object_unpin(intel_crtc->cursor_bo);
4392 drm_gem_object_unreference(intel_crtc->cursor_bo);
4395 mutex_unlock(&dev->struct_mutex);
4397 intel_crtc->cursor_addr = addr;
4398 intel_crtc->cursor_bo = bo;
4399 intel_crtc->cursor_width = width;
4400 intel_crtc->cursor_height = height;
4402 intel_crtc_update_cursor(crtc, true);
4404 return 0;
4405 fail_unpin:
4406 i915_gem_object_unpin(bo);
4407 fail_locked:
4408 mutex_unlock(&dev->struct_mutex);
4409 fail:
4410 drm_gem_object_unreference_unlocked(bo);
4411 return ret;
4414 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4418 intel_crtc->cursor_x = x;
4419 intel_crtc->cursor_y = y;
4421 intel_crtc_update_cursor(crtc, true);
4423 return 0;
4426 /** Sets the color ramps on behalf of RandR */
4427 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4428 u16 blue, int regno)
4430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4432 intel_crtc->lut_r[regno] = red >> 8;
4433 intel_crtc->lut_g[regno] = green >> 8;
4434 intel_crtc->lut_b[regno] = blue >> 8;
4437 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4438 u16 *blue, int regno)
4440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4442 *red = intel_crtc->lut_r[regno] << 8;
4443 *green = intel_crtc->lut_g[regno] << 8;
4444 *blue = intel_crtc->lut_b[regno] << 8;
4447 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4448 u16 *blue, uint32_t start, uint32_t size)
4450 int end = (start + size > 256) ? 256 : start + size, i;
4451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4453 for (i = start; i < end; i++) {
4454 intel_crtc->lut_r[i] = red[i] >> 8;
4455 intel_crtc->lut_g[i] = green[i] >> 8;
4456 intel_crtc->lut_b[i] = blue[i] >> 8;
4459 intel_crtc_load_lut(crtc);
4463 * Get a pipe with a simple mode set on it for doing load-based monitor
4464 * detection.
4466 * It will be up to the load-detect code to adjust the pipe as appropriate for
4467 * its requirements. The pipe will be connected to no other encoders.
4469 * Currently this code will only succeed if there is a pipe with no encoders
4470 * configured for it. In the future, it could choose to temporarily disable
4471 * some outputs to free up a pipe for its use.
4473 * \return crtc, or NULL if no pipes are available.
4476 /* VESA 640x480x72Hz mode to set on the pipe */
4477 static struct drm_display_mode load_detect_mode = {
4478 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4479 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4482 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4483 struct drm_connector *connector,
4484 struct drm_display_mode *mode,
4485 int *dpms_mode)
4487 struct intel_crtc *intel_crtc;
4488 struct drm_crtc *possible_crtc;
4489 struct drm_crtc *supported_crtc =NULL;
4490 struct drm_encoder *encoder = &intel_encoder->base;
4491 struct drm_crtc *crtc = NULL;
4492 struct drm_device *dev = encoder->dev;
4493 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4494 struct drm_crtc_helper_funcs *crtc_funcs;
4495 int i = -1;
4498 * Algorithm gets a little messy:
4499 * - if the connector already has an assigned crtc, use it (but make
4500 * sure it's on first)
4501 * - try to find the first unused crtc that can drive this connector,
4502 * and use that if we find one
4503 * - if there are no unused crtcs available, try to use the first
4504 * one we found that supports the connector
4507 /* See if we already have a CRTC for this connector */
4508 if (encoder->crtc) {
4509 crtc = encoder->crtc;
4510 /* Make sure the crtc and connector are running */
4511 intel_crtc = to_intel_crtc(crtc);
4512 *dpms_mode = intel_crtc->dpms_mode;
4513 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4514 crtc_funcs = crtc->helper_private;
4515 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4516 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4518 return crtc;
4521 /* Find an unused one (if possible) */
4522 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4523 i++;
4524 if (!(encoder->possible_crtcs & (1 << i)))
4525 continue;
4526 if (!possible_crtc->enabled) {
4527 crtc = possible_crtc;
4528 break;
4530 if (!supported_crtc)
4531 supported_crtc = possible_crtc;
4535 * If we didn't find an unused CRTC, don't use any.
4537 if (!crtc) {
4538 return NULL;
4541 encoder->crtc = crtc;
4542 connector->encoder = encoder;
4543 intel_encoder->load_detect_temp = true;
4545 intel_crtc = to_intel_crtc(crtc);
4546 *dpms_mode = intel_crtc->dpms_mode;
4548 if (!crtc->enabled) {
4549 if (!mode)
4550 mode = &load_detect_mode;
4551 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4552 } else {
4553 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4554 crtc_funcs = crtc->helper_private;
4555 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4558 /* Add this connector to the crtc */
4559 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4560 encoder_funcs->commit(encoder);
4562 /* let the connector get through one full cycle before testing */
4563 intel_wait_for_vblank(dev, intel_crtc->pipe);
4565 return crtc;
4568 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4569 struct drm_connector *connector, int dpms_mode)
4571 struct drm_encoder *encoder = &intel_encoder->base;
4572 struct drm_device *dev = encoder->dev;
4573 struct drm_crtc *crtc = encoder->crtc;
4574 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4575 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4577 if (intel_encoder->load_detect_temp) {
4578 encoder->crtc = NULL;
4579 connector->encoder = NULL;
4580 intel_encoder->load_detect_temp = false;
4581 crtc->enabled = drm_helper_crtc_in_use(crtc);
4582 drm_helper_disable_unused_functions(dev);
4585 /* Switch crtc and encoder back off if necessary */
4586 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4587 if (encoder->crtc == crtc)
4588 encoder_funcs->dpms(encoder, dpms_mode);
4589 crtc_funcs->dpms(crtc, dpms_mode);
4593 /* Returns the clock of the currently programmed mode of the given pipe. */
4594 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4596 struct drm_i915_private *dev_priv = dev->dev_private;
4597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4598 int pipe = intel_crtc->pipe;
4599 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4600 u32 fp;
4601 intel_clock_t clock;
4603 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4604 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4605 else
4606 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4608 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4609 if (IS_PINEVIEW(dev)) {
4610 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4611 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4612 } else {
4613 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4614 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4617 if (!IS_GEN2(dev)) {
4618 if (IS_PINEVIEW(dev))
4619 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4620 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4621 else
4622 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4623 DPLL_FPA01_P1_POST_DIV_SHIFT);
4625 switch (dpll & DPLL_MODE_MASK) {
4626 case DPLLB_MODE_DAC_SERIAL:
4627 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4628 5 : 10;
4629 break;
4630 case DPLLB_MODE_LVDS:
4631 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4632 7 : 14;
4633 break;
4634 default:
4635 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4636 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4637 return 0;
4640 /* XXX: Handle the 100Mhz refclk */
4641 intel_clock(dev, 96000, &clock);
4642 } else {
4643 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4645 if (is_lvds) {
4646 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4647 DPLL_FPA01_P1_POST_DIV_SHIFT);
4648 clock.p2 = 14;
4650 if ((dpll & PLL_REF_INPUT_MASK) ==
4651 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4652 /* XXX: might not be 66MHz */
4653 intel_clock(dev, 66000, &clock);
4654 } else
4655 intel_clock(dev, 48000, &clock);
4656 } else {
4657 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4658 clock.p1 = 2;
4659 else {
4660 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4661 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4663 if (dpll & PLL_P2_DIVIDE_BY_4)
4664 clock.p2 = 4;
4665 else
4666 clock.p2 = 2;
4668 intel_clock(dev, 48000, &clock);
4672 /* XXX: It would be nice to validate the clocks, but we can't reuse
4673 * i830PllIsValid() because it relies on the xf86_config connector
4674 * configuration being accurate, which it isn't necessarily.
4677 return clock.dot;
4680 /** Returns the currently programmed mode of the given pipe. */
4681 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4682 struct drm_crtc *crtc)
4684 struct drm_i915_private *dev_priv = dev->dev_private;
4685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4686 int pipe = intel_crtc->pipe;
4687 struct drm_display_mode *mode;
4688 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4689 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4690 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4691 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4693 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4694 if (!mode)
4695 return NULL;
4697 mode->clock = intel_crtc_clock_get(dev, crtc);
4698 mode->hdisplay = (htot & 0xffff) + 1;
4699 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4700 mode->hsync_start = (hsync & 0xffff) + 1;
4701 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4702 mode->vdisplay = (vtot & 0xffff) + 1;
4703 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4704 mode->vsync_start = (vsync & 0xffff) + 1;
4705 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4707 drm_mode_set_name(mode);
4708 drm_mode_set_crtcinfo(mode, 0);
4710 return mode;
4713 #define GPU_IDLE_TIMEOUT 500 /* ms */
4715 /* When this timer fires, we've been idle for awhile */
4716 static void intel_gpu_idle_timer(unsigned long arg)
4718 struct drm_device *dev = (struct drm_device *)arg;
4719 drm_i915_private_t *dev_priv = dev->dev_private;
4721 dev_priv->busy = false;
4723 queue_work(dev_priv->wq, &dev_priv->idle_work);
4726 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4728 static void intel_crtc_idle_timer(unsigned long arg)
4730 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4731 struct drm_crtc *crtc = &intel_crtc->base;
4732 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4734 intel_crtc->busy = false;
4736 queue_work(dev_priv->wq, &dev_priv->idle_work);
4739 static void intel_increase_pllclock(struct drm_crtc *crtc)
4741 struct drm_device *dev = crtc->dev;
4742 drm_i915_private_t *dev_priv = dev->dev_private;
4743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4744 int pipe = intel_crtc->pipe;
4745 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4746 int dpll = I915_READ(dpll_reg);
4748 if (HAS_PCH_SPLIT(dev))
4749 return;
4751 if (!dev_priv->lvds_downclock_avail)
4752 return;
4754 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4755 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4757 /* Unlock panel regs */
4758 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4759 PANEL_UNLOCK_REGS);
4761 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4762 I915_WRITE(dpll_reg, dpll);
4763 dpll = I915_READ(dpll_reg);
4764 intel_wait_for_vblank(dev, pipe);
4765 dpll = I915_READ(dpll_reg);
4766 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4767 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4769 /* ...and lock them again */
4770 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4773 /* Schedule downclock */
4774 mod_timer(&intel_crtc->idle_timer, jiffies +
4775 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4778 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4780 struct drm_device *dev = crtc->dev;
4781 drm_i915_private_t *dev_priv = dev->dev_private;
4782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4783 int pipe = intel_crtc->pipe;
4784 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4785 int dpll = I915_READ(dpll_reg);
4787 if (HAS_PCH_SPLIT(dev))
4788 return;
4790 if (!dev_priv->lvds_downclock_avail)
4791 return;
4794 * Since this is called by a timer, we should never get here in
4795 * the manual case.
4797 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4798 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4800 /* Unlock panel regs */
4801 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4802 PANEL_UNLOCK_REGS);
4804 dpll |= DISPLAY_RATE_SELECT_FPA1;
4805 I915_WRITE(dpll_reg, dpll);
4806 dpll = I915_READ(dpll_reg);
4807 intel_wait_for_vblank(dev, pipe);
4808 dpll = I915_READ(dpll_reg);
4809 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4810 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4812 /* ...and lock them again */
4813 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4819 * intel_idle_update - adjust clocks for idleness
4820 * @work: work struct
4822 * Either the GPU or display (or both) went idle. Check the busy status
4823 * here and adjust the CRTC and GPU clocks as necessary.
4825 static void intel_idle_update(struct work_struct *work)
4827 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4828 idle_work);
4829 struct drm_device *dev = dev_priv->dev;
4830 struct drm_crtc *crtc;
4831 struct intel_crtc *intel_crtc;
4832 int enabled = 0;
4834 if (!i915_powersave)
4835 return;
4837 mutex_lock(&dev->struct_mutex);
4839 i915_update_gfx_val(dev_priv);
4841 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4842 /* Skip inactive CRTCs */
4843 if (!crtc->fb)
4844 continue;
4846 enabled++;
4847 intel_crtc = to_intel_crtc(crtc);
4848 if (!intel_crtc->busy)
4849 intel_decrease_pllclock(crtc);
4852 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4853 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4854 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4857 mutex_unlock(&dev->struct_mutex);
4861 * intel_mark_busy - mark the GPU and possibly the display busy
4862 * @dev: drm device
4863 * @obj: object we're operating on
4865 * Callers can use this function to indicate that the GPU is busy processing
4866 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4867 * buffer), we'll also mark the display as busy, so we know to increase its
4868 * clock frequency.
4870 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4872 drm_i915_private_t *dev_priv = dev->dev_private;
4873 struct drm_crtc *crtc = NULL;
4874 struct intel_framebuffer *intel_fb;
4875 struct intel_crtc *intel_crtc;
4877 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4878 return;
4880 if (!dev_priv->busy) {
4881 if (IS_I945G(dev) || IS_I945GM(dev)) {
4882 u32 fw_blc_self;
4884 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4885 fw_blc_self = I915_READ(FW_BLC_SELF);
4886 fw_blc_self &= ~FW_BLC_SELF_EN;
4887 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4889 dev_priv->busy = true;
4890 } else
4891 mod_timer(&dev_priv->idle_timer, jiffies +
4892 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4894 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4895 if (!crtc->fb)
4896 continue;
4898 intel_crtc = to_intel_crtc(crtc);
4899 intel_fb = to_intel_framebuffer(crtc->fb);
4900 if (intel_fb->obj == obj) {
4901 if (!intel_crtc->busy) {
4902 if (IS_I945G(dev) || IS_I945GM(dev)) {
4903 u32 fw_blc_self;
4905 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4906 fw_blc_self = I915_READ(FW_BLC_SELF);
4907 fw_blc_self &= ~FW_BLC_SELF_EN;
4908 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4910 /* Non-busy -> busy, upclock */
4911 intel_increase_pllclock(crtc);
4912 intel_crtc->busy = true;
4913 } else {
4914 /* Busy -> busy, put off timer */
4915 mod_timer(&intel_crtc->idle_timer, jiffies +
4916 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4922 static void intel_crtc_destroy(struct drm_crtc *crtc)
4924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4925 struct drm_device *dev = crtc->dev;
4926 struct intel_unpin_work *work;
4927 unsigned long flags;
4929 spin_lock_irqsave(&dev->event_lock, flags);
4930 work = intel_crtc->unpin_work;
4931 intel_crtc->unpin_work = NULL;
4932 spin_unlock_irqrestore(&dev->event_lock, flags);
4934 if (work) {
4935 cancel_work_sync(&work->work);
4936 kfree(work);
4939 drm_crtc_cleanup(crtc);
4941 kfree(intel_crtc);
4944 static void intel_unpin_work_fn(struct work_struct *__work)
4946 struct intel_unpin_work *work =
4947 container_of(__work, struct intel_unpin_work, work);
4949 mutex_lock(&work->dev->struct_mutex);
4950 i915_gem_object_unpin(work->old_fb_obj);
4951 drm_gem_object_unreference(work->pending_flip_obj);
4952 drm_gem_object_unreference(work->old_fb_obj);
4953 mutex_unlock(&work->dev->struct_mutex);
4954 kfree(work);
4957 static void do_intel_finish_page_flip(struct drm_device *dev,
4958 struct drm_crtc *crtc)
4960 drm_i915_private_t *dev_priv = dev->dev_private;
4961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4962 struct intel_unpin_work *work;
4963 struct drm_i915_gem_object *obj_priv;
4964 struct drm_pending_vblank_event *e;
4965 struct timeval now;
4966 unsigned long flags;
4968 /* Ignore early vblank irqs */
4969 if (intel_crtc == NULL)
4970 return;
4972 spin_lock_irqsave(&dev->event_lock, flags);
4973 work = intel_crtc->unpin_work;
4974 if (work == NULL || !work->pending) {
4975 spin_unlock_irqrestore(&dev->event_lock, flags);
4976 return;
4979 intel_crtc->unpin_work = NULL;
4980 drm_vblank_put(dev, intel_crtc->pipe);
4982 if (work->event) {
4983 e = work->event;
4984 do_gettimeofday(&now);
4985 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4986 e->event.tv_sec = now.tv_sec;
4987 e->event.tv_usec = now.tv_usec;
4988 list_add_tail(&e->base.link,
4989 &e->base.file_priv->event_list);
4990 wake_up_interruptible(&e->base.file_priv->event_wait);
4993 spin_unlock_irqrestore(&dev->event_lock, flags);
4995 obj_priv = to_intel_bo(work->old_fb_obj);
4996 atomic_clear_mask(1 << intel_crtc->plane,
4997 &obj_priv->pending_flip.counter);
4998 if (atomic_read(&obj_priv->pending_flip) == 0)
4999 wake_up(&dev_priv->pending_flip_queue);
5000 schedule_work(&work->work);
5002 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5005 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5007 drm_i915_private_t *dev_priv = dev->dev_private;
5008 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5010 do_intel_finish_page_flip(dev, crtc);
5013 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5015 drm_i915_private_t *dev_priv = dev->dev_private;
5016 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5018 do_intel_finish_page_flip(dev, crtc);
5021 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5023 drm_i915_private_t *dev_priv = dev->dev_private;
5024 struct intel_crtc *intel_crtc =
5025 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5026 unsigned long flags;
5028 spin_lock_irqsave(&dev->event_lock, flags);
5029 if (intel_crtc->unpin_work) {
5030 if ((++intel_crtc->unpin_work->pending) > 1)
5031 DRM_ERROR("Prepared flip multiple times\n");
5032 } else {
5033 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5035 spin_unlock_irqrestore(&dev->event_lock, flags);
5038 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5039 struct drm_framebuffer *fb,
5040 struct drm_pending_vblank_event *event)
5042 struct drm_device *dev = crtc->dev;
5043 struct drm_i915_private *dev_priv = dev->dev_private;
5044 struct intel_framebuffer *intel_fb;
5045 struct drm_i915_gem_object *obj_priv;
5046 struct drm_gem_object *obj;
5047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5048 struct intel_unpin_work *work;
5049 unsigned long flags, offset;
5050 int pipe = intel_crtc->pipe;
5051 u32 pf, pipesrc;
5052 int ret;
5054 work = kzalloc(sizeof *work, GFP_KERNEL);
5055 if (work == NULL)
5056 return -ENOMEM;
5058 work->event = event;
5059 work->dev = crtc->dev;
5060 intel_fb = to_intel_framebuffer(crtc->fb);
5061 work->old_fb_obj = intel_fb->obj;
5062 INIT_WORK(&work->work, intel_unpin_work_fn);
5064 /* We borrow the event spin lock for protecting unpin_work */
5065 spin_lock_irqsave(&dev->event_lock, flags);
5066 if (intel_crtc->unpin_work) {
5067 spin_unlock_irqrestore(&dev->event_lock, flags);
5068 kfree(work);
5070 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5071 return -EBUSY;
5073 intel_crtc->unpin_work = work;
5074 spin_unlock_irqrestore(&dev->event_lock, flags);
5076 intel_fb = to_intel_framebuffer(fb);
5077 obj = intel_fb->obj;
5079 mutex_lock(&dev->struct_mutex);
5080 ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5081 if (ret)
5082 goto cleanup_work;
5084 /* Reference the objects for the scheduled work. */
5085 drm_gem_object_reference(work->old_fb_obj);
5086 drm_gem_object_reference(obj);
5088 crtc->fb = fb;
5090 ret = drm_vblank_get(dev, intel_crtc->pipe);
5091 if (ret)
5092 goto cleanup_objs;
5094 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5095 u32 flip_mask;
5097 /* Can't queue multiple flips, so wait for the previous
5098 * one to finish before executing the next.
5100 ret = BEGIN_LP_RING(2);
5101 if (ret)
5102 goto cleanup_objs;
5104 if (intel_crtc->plane)
5105 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5106 else
5107 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5108 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5109 OUT_RING(MI_NOOP);
5110 ADVANCE_LP_RING();
5113 work->pending_flip_obj = obj;
5114 obj_priv = to_intel_bo(obj);
5116 work->enable_stall_check = true;
5118 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5119 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5121 ret = BEGIN_LP_RING(4);
5122 if (ret)
5123 goto cleanup_objs;
5125 /* Block clients from rendering to the new back buffer until
5126 * the flip occurs and the object is no longer visible.
5128 atomic_add(1 << intel_crtc->plane,
5129 &to_intel_bo(work->old_fb_obj)->pending_flip);
5131 switch (INTEL_INFO(dev)->gen) {
5132 case 2:
5133 OUT_RING(MI_DISPLAY_FLIP |
5134 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5135 OUT_RING(fb->pitch);
5136 OUT_RING(obj_priv->gtt_offset + offset);
5137 OUT_RING(MI_NOOP);
5138 break;
5140 case 3:
5141 OUT_RING(MI_DISPLAY_FLIP_I915 |
5142 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5143 OUT_RING(fb->pitch);
5144 OUT_RING(obj_priv->gtt_offset + offset);
5145 OUT_RING(MI_NOOP);
5146 break;
5148 case 4:
5149 case 5:
5150 /* i965+ uses the linear or tiled offsets from the
5151 * Display Registers (which do not change across a page-flip)
5152 * so we need only reprogram the base address.
5154 OUT_RING(MI_DISPLAY_FLIP |
5155 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5156 OUT_RING(fb->pitch);
5157 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5159 /* XXX Enabling the panel-fitter across page-flip is so far
5160 * untested on non-native modes, so ignore it for now.
5161 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5163 pf = 0;
5164 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5165 OUT_RING(pf | pipesrc);
5166 break;
5168 case 6:
5169 OUT_RING(MI_DISPLAY_FLIP |
5170 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5171 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5172 OUT_RING(obj_priv->gtt_offset);
5174 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5175 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5176 OUT_RING(pf | pipesrc);
5177 break;
5179 ADVANCE_LP_RING();
5181 mutex_unlock(&dev->struct_mutex);
5183 trace_i915_flip_request(intel_crtc->plane, obj);
5185 return 0;
5187 cleanup_objs:
5188 drm_gem_object_unreference(work->old_fb_obj);
5189 drm_gem_object_unreference(obj);
5190 cleanup_work:
5191 mutex_unlock(&dev->struct_mutex);
5193 spin_lock_irqsave(&dev->event_lock, flags);
5194 intel_crtc->unpin_work = NULL;
5195 spin_unlock_irqrestore(&dev->event_lock, flags);
5197 kfree(work);
5199 return ret;
5202 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5203 .dpms = intel_crtc_dpms,
5204 .mode_fixup = intel_crtc_mode_fixup,
5205 .mode_set = intel_crtc_mode_set,
5206 .mode_set_base = intel_pipe_set_base,
5207 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5208 .load_lut = intel_crtc_load_lut,
5209 .disable = intel_crtc_disable,
5212 static const struct drm_crtc_funcs intel_crtc_funcs = {
5213 .cursor_set = intel_crtc_cursor_set,
5214 .cursor_move = intel_crtc_cursor_move,
5215 .gamma_set = intel_crtc_gamma_set,
5216 .set_config = drm_crtc_helper_set_config,
5217 .destroy = intel_crtc_destroy,
5218 .page_flip = intel_crtc_page_flip,
5222 static void intel_crtc_init(struct drm_device *dev, int pipe)
5224 drm_i915_private_t *dev_priv = dev->dev_private;
5225 struct intel_crtc *intel_crtc;
5226 int i;
5228 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5229 if (intel_crtc == NULL)
5230 return;
5232 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5234 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5235 for (i = 0; i < 256; i++) {
5236 intel_crtc->lut_r[i] = i;
5237 intel_crtc->lut_g[i] = i;
5238 intel_crtc->lut_b[i] = i;
5241 /* Swap pipes & planes for FBC on pre-965 */
5242 intel_crtc->pipe = pipe;
5243 intel_crtc->plane = pipe;
5244 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5245 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5246 intel_crtc->plane = !pipe;
5249 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5250 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5251 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5252 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5254 intel_crtc->cursor_addr = 0;
5255 intel_crtc->dpms_mode = -1;
5256 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5258 if (HAS_PCH_SPLIT(dev)) {
5259 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5260 intel_helper_funcs.commit = ironlake_crtc_commit;
5261 } else {
5262 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5263 intel_helper_funcs.commit = i9xx_crtc_commit;
5266 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5268 intel_crtc->busy = false;
5270 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5271 (unsigned long)intel_crtc);
5274 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5275 struct drm_file *file_priv)
5277 drm_i915_private_t *dev_priv = dev->dev_private;
5278 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5279 struct drm_mode_object *drmmode_obj;
5280 struct intel_crtc *crtc;
5282 if (!dev_priv) {
5283 DRM_ERROR("called with no initialization\n");
5284 return -EINVAL;
5287 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5288 DRM_MODE_OBJECT_CRTC);
5290 if (!drmmode_obj) {
5291 DRM_ERROR("no such CRTC id\n");
5292 return -EINVAL;
5295 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5296 pipe_from_crtc_id->pipe = crtc->pipe;
5298 return 0;
5301 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5303 struct intel_encoder *encoder;
5304 int index_mask = 0;
5305 int entry = 0;
5307 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5308 if (type_mask & encoder->clone_mask)
5309 index_mask |= (1 << entry);
5310 entry++;
5313 return index_mask;
5316 static void intel_setup_outputs(struct drm_device *dev)
5318 struct drm_i915_private *dev_priv = dev->dev_private;
5319 struct intel_encoder *encoder;
5320 bool dpd_is_edp = false;
5322 if (IS_MOBILE(dev) && !IS_I830(dev))
5323 intel_lvds_init(dev);
5325 if (HAS_PCH_SPLIT(dev)) {
5326 dpd_is_edp = intel_dpd_is_edp(dev);
5328 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5329 intel_dp_init(dev, DP_A);
5331 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5332 intel_dp_init(dev, PCH_DP_D);
5335 intel_crt_init(dev);
5337 if (HAS_PCH_SPLIT(dev)) {
5338 int found;
5340 if (I915_READ(HDMIB) & PORT_DETECTED) {
5341 /* PCH SDVOB multiplex with HDMIB */
5342 found = intel_sdvo_init(dev, PCH_SDVOB);
5343 if (!found)
5344 intel_hdmi_init(dev, HDMIB);
5345 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5346 intel_dp_init(dev, PCH_DP_B);
5349 if (I915_READ(HDMIC) & PORT_DETECTED)
5350 intel_hdmi_init(dev, HDMIC);
5352 if (I915_READ(HDMID) & PORT_DETECTED)
5353 intel_hdmi_init(dev, HDMID);
5355 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5356 intel_dp_init(dev, PCH_DP_C);
5358 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5359 intel_dp_init(dev, PCH_DP_D);
5361 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5362 bool found = false;
5364 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5365 DRM_DEBUG_KMS("probing SDVOB\n");
5366 found = intel_sdvo_init(dev, SDVOB);
5367 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5368 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5369 intel_hdmi_init(dev, SDVOB);
5372 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5373 DRM_DEBUG_KMS("probing DP_B\n");
5374 intel_dp_init(dev, DP_B);
5378 /* Before G4X SDVOC doesn't have its own detect register */
5380 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5381 DRM_DEBUG_KMS("probing SDVOC\n");
5382 found = intel_sdvo_init(dev, SDVOC);
5385 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5387 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5388 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5389 intel_hdmi_init(dev, SDVOC);
5391 if (SUPPORTS_INTEGRATED_DP(dev)) {
5392 DRM_DEBUG_KMS("probing DP_C\n");
5393 intel_dp_init(dev, DP_C);
5397 if (SUPPORTS_INTEGRATED_DP(dev) &&
5398 (I915_READ(DP_D) & DP_DETECTED)) {
5399 DRM_DEBUG_KMS("probing DP_D\n");
5400 intel_dp_init(dev, DP_D);
5402 } else if (IS_GEN2(dev))
5403 intel_dvo_init(dev);
5405 if (SUPPORTS_TV(dev))
5406 intel_tv_init(dev);
5408 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5409 encoder->base.possible_crtcs = encoder->crtc_mask;
5410 encoder->base.possible_clones =
5411 intel_encoder_clones(dev, encoder->clone_mask);
5415 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5417 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5419 drm_framebuffer_cleanup(fb);
5420 drm_gem_object_unreference_unlocked(intel_fb->obj);
5422 kfree(intel_fb);
5425 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5426 struct drm_file *file_priv,
5427 unsigned int *handle)
5429 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5430 struct drm_gem_object *object = intel_fb->obj;
5432 return drm_gem_handle_create(file_priv, object, handle);
5435 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5436 .destroy = intel_user_framebuffer_destroy,
5437 .create_handle = intel_user_framebuffer_create_handle,
5440 int intel_framebuffer_init(struct drm_device *dev,
5441 struct intel_framebuffer *intel_fb,
5442 struct drm_mode_fb_cmd *mode_cmd,
5443 struct drm_gem_object *obj)
5445 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5446 int ret;
5448 if (obj_priv->tiling_mode == I915_TILING_Y)
5449 return -EINVAL;
5451 if (mode_cmd->pitch & 63)
5452 return -EINVAL;
5454 switch (mode_cmd->bpp) {
5455 case 8:
5456 case 16:
5457 case 24:
5458 case 32:
5459 break;
5460 default:
5461 return -EINVAL;
5464 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5465 if (ret) {
5466 DRM_ERROR("framebuffer init failed %d\n", ret);
5467 return ret;
5470 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5471 intel_fb->obj = obj;
5472 return 0;
5475 static struct drm_framebuffer *
5476 intel_user_framebuffer_create(struct drm_device *dev,
5477 struct drm_file *filp,
5478 struct drm_mode_fb_cmd *mode_cmd)
5480 struct drm_gem_object *obj;
5481 struct intel_framebuffer *intel_fb;
5482 int ret;
5484 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5485 if (!obj)
5486 return ERR_PTR(-ENOENT);
5488 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5489 if (!intel_fb)
5490 return ERR_PTR(-ENOMEM);
5492 ret = intel_framebuffer_init(dev, intel_fb,
5493 mode_cmd, obj);
5494 if (ret) {
5495 drm_gem_object_unreference_unlocked(obj);
5496 kfree(intel_fb);
5497 return ERR_PTR(ret);
5500 return &intel_fb->base;
5503 static const struct drm_mode_config_funcs intel_mode_funcs = {
5504 .fb_create = intel_user_framebuffer_create,
5505 .output_poll_changed = intel_fb_output_poll_changed,
5508 static struct drm_gem_object *
5509 intel_alloc_context_page(struct drm_device *dev)
5511 struct drm_gem_object *ctx;
5512 int ret;
5514 ctx = i915_gem_alloc_object(dev, 4096);
5515 if (!ctx) {
5516 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5517 return NULL;
5520 mutex_lock(&dev->struct_mutex);
5521 ret = i915_gem_object_pin(ctx, 4096, false, false);
5522 if (ret) {
5523 DRM_ERROR("failed to pin power context: %d\n", ret);
5524 goto err_unref;
5527 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5528 if (ret) {
5529 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5530 goto err_unpin;
5532 mutex_unlock(&dev->struct_mutex);
5534 return ctx;
5536 err_unpin:
5537 i915_gem_object_unpin(ctx);
5538 err_unref:
5539 drm_gem_object_unreference(ctx);
5540 mutex_unlock(&dev->struct_mutex);
5541 return NULL;
5544 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5546 struct drm_i915_private *dev_priv = dev->dev_private;
5547 u16 rgvswctl;
5549 rgvswctl = I915_READ16(MEMSWCTL);
5550 if (rgvswctl & MEMCTL_CMD_STS) {
5551 DRM_DEBUG("gpu busy, RCS change rejected\n");
5552 return false; /* still busy with another command */
5555 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5556 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5557 I915_WRITE16(MEMSWCTL, rgvswctl);
5558 POSTING_READ16(MEMSWCTL);
5560 rgvswctl |= MEMCTL_CMD_STS;
5561 I915_WRITE16(MEMSWCTL, rgvswctl);
5563 return true;
5566 void ironlake_enable_drps(struct drm_device *dev)
5568 struct drm_i915_private *dev_priv = dev->dev_private;
5569 u32 rgvmodectl = I915_READ(MEMMODECTL);
5570 u8 fmax, fmin, fstart, vstart;
5572 /* Enable temp reporting */
5573 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5574 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5576 /* 100ms RC evaluation intervals */
5577 I915_WRITE(RCUPEI, 100000);
5578 I915_WRITE(RCDNEI, 100000);
5580 /* Set max/min thresholds to 90ms and 80ms respectively */
5581 I915_WRITE(RCBMAXAVG, 90000);
5582 I915_WRITE(RCBMINAVG, 80000);
5584 I915_WRITE(MEMIHYST, 1);
5586 /* Set up min, max, and cur for interrupt handling */
5587 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5588 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5589 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5590 MEMMODE_FSTART_SHIFT;
5592 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5593 PXVFREQ_PX_SHIFT;
5595 dev_priv->fmax = fmax; /* IPS callback will increase this */
5596 dev_priv->fstart = fstart;
5598 dev_priv->max_delay = fstart;
5599 dev_priv->min_delay = fmin;
5600 dev_priv->cur_delay = fstart;
5602 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5603 fmax, fmin, fstart);
5605 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5608 * Interrupts will be enabled in ironlake_irq_postinstall
5611 I915_WRITE(VIDSTART, vstart);
5612 POSTING_READ(VIDSTART);
5614 rgvmodectl |= MEMMODE_SWMODE_EN;
5615 I915_WRITE(MEMMODECTL, rgvmodectl);
5617 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5618 DRM_ERROR("stuck trying to change perf mode\n");
5619 msleep(1);
5621 ironlake_set_drps(dev, fstart);
5623 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5624 I915_READ(0x112e0);
5625 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5626 dev_priv->last_count2 = I915_READ(0x112f4);
5627 getrawmonotonic(&dev_priv->last_time2);
5630 void ironlake_disable_drps(struct drm_device *dev)
5632 struct drm_i915_private *dev_priv = dev->dev_private;
5633 u16 rgvswctl = I915_READ16(MEMSWCTL);
5635 /* Ack interrupts, disable EFC interrupt */
5636 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5637 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5638 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5639 I915_WRITE(DEIIR, DE_PCU_EVENT);
5640 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5642 /* Go back to the starting frequency */
5643 ironlake_set_drps(dev, dev_priv->fstart);
5644 msleep(1);
5645 rgvswctl |= MEMCTL_CMD_STS;
5646 I915_WRITE(MEMSWCTL, rgvswctl);
5647 msleep(1);
5651 static unsigned long intel_pxfreq(u32 vidfreq)
5653 unsigned long freq;
5654 int div = (vidfreq & 0x3f0000) >> 16;
5655 int post = (vidfreq & 0x3000) >> 12;
5656 int pre = (vidfreq & 0x7);
5658 if (!pre)
5659 return 0;
5661 freq = ((div * 133333) / ((1<<post) * pre));
5663 return freq;
5666 void intel_init_emon(struct drm_device *dev)
5668 struct drm_i915_private *dev_priv = dev->dev_private;
5669 u32 lcfuse;
5670 u8 pxw[16];
5671 int i;
5673 /* Disable to program */
5674 I915_WRITE(ECR, 0);
5675 POSTING_READ(ECR);
5677 /* Program energy weights for various events */
5678 I915_WRITE(SDEW, 0x15040d00);
5679 I915_WRITE(CSIEW0, 0x007f0000);
5680 I915_WRITE(CSIEW1, 0x1e220004);
5681 I915_WRITE(CSIEW2, 0x04000004);
5683 for (i = 0; i < 5; i++)
5684 I915_WRITE(PEW + (i * 4), 0);
5685 for (i = 0; i < 3; i++)
5686 I915_WRITE(DEW + (i * 4), 0);
5688 /* Program P-state weights to account for frequency power adjustment */
5689 for (i = 0; i < 16; i++) {
5690 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5691 unsigned long freq = intel_pxfreq(pxvidfreq);
5692 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5693 PXVFREQ_PX_SHIFT;
5694 unsigned long val;
5696 val = vid * vid;
5697 val *= (freq / 1000);
5698 val *= 255;
5699 val /= (127*127*900);
5700 if (val > 0xff)
5701 DRM_ERROR("bad pxval: %ld\n", val);
5702 pxw[i] = val;
5704 /* Render standby states get 0 weight */
5705 pxw[14] = 0;
5706 pxw[15] = 0;
5708 for (i = 0; i < 4; i++) {
5709 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5710 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5711 I915_WRITE(PXW + (i * 4), val);
5714 /* Adjust magic regs to magic values (more experimental results) */
5715 I915_WRITE(OGW0, 0);
5716 I915_WRITE(OGW1, 0);
5717 I915_WRITE(EG0, 0x00007f00);
5718 I915_WRITE(EG1, 0x0000000e);
5719 I915_WRITE(EG2, 0x000e0000);
5720 I915_WRITE(EG3, 0x68000300);
5721 I915_WRITE(EG4, 0x42000000);
5722 I915_WRITE(EG5, 0x00140031);
5723 I915_WRITE(EG6, 0);
5724 I915_WRITE(EG7, 0);
5726 for (i = 0; i < 8; i++)
5727 I915_WRITE(PXWL + (i * 4), 0);
5729 /* Enable PMON + select events */
5730 I915_WRITE(ECR, 0x80000019);
5732 lcfuse = I915_READ(LCFUSE02);
5734 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5737 void intel_init_clock_gating(struct drm_device *dev)
5739 struct drm_i915_private *dev_priv = dev->dev_private;
5742 * Disable clock gating reported to work incorrectly according to the
5743 * specs, but enable as much else as we can.
5745 if (HAS_PCH_SPLIT(dev)) {
5746 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5748 if (IS_GEN5(dev)) {
5749 /* Required for FBC */
5750 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5751 /* Required for CxSR */
5752 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5754 I915_WRITE(PCH_3DCGDIS0,
5755 MARIUNIT_CLOCK_GATE_DISABLE |
5756 SVSMUNIT_CLOCK_GATE_DISABLE);
5759 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5762 * On Ibex Peak and Cougar Point, we need to disable clock
5763 * gating for the panel power sequencer or it will fail to
5764 * start up when no ports are active.
5766 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5769 * According to the spec the following bits should be set in
5770 * order to enable memory self-refresh
5771 * The bit 22/21 of 0x42004
5772 * The bit 5 of 0x42020
5773 * The bit 15 of 0x45000
5775 if (IS_GEN5(dev)) {
5776 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5777 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5778 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5779 I915_WRITE(ILK_DSPCLK_GATE,
5780 (I915_READ(ILK_DSPCLK_GATE) |
5781 ILK_DPARB_CLK_GATE));
5782 I915_WRITE(DISP_ARB_CTL,
5783 (I915_READ(DISP_ARB_CTL) |
5784 DISP_FBC_WM_DIS));
5785 I915_WRITE(WM3_LP_ILK, 0);
5786 I915_WRITE(WM2_LP_ILK, 0);
5787 I915_WRITE(WM1_LP_ILK, 0);
5790 * Based on the document from hardware guys the following bits
5791 * should be set unconditionally in order to enable FBC.
5792 * The bit 22 of 0x42000
5793 * The bit 22 of 0x42004
5794 * The bit 7,8,9 of 0x42020.
5796 if (IS_IRONLAKE_M(dev)) {
5797 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5798 I915_READ(ILK_DISPLAY_CHICKEN1) |
5799 ILK_FBCQ_DIS);
5800 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5801 I915_READ(ILK_DISPLAY_CHICKEN2) |
5802 ILK_DPARB_GATE);
5803 I915_WRITE(ILK_DSPCLK_GATE,
5804 I915_READ(ILK_DSPCLK_GATE) |
5805 ILK_DPFC_DIS1 |
5806 ILK_DPFC_DIS2 |
5807 ILK_CLK_FBC);
5809 return;
5810 } else if (IS_G4X(dev)) {
5811 uint32_t dspclk_gate;
5812 I915_WRITE(RENCLK_GATE_D1, 0);
5813 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5814 GS_UNIT_CLOCK_GATE_DISABLE |
5815 CL_UNIT_CLOCK_GATE_DISABLE);
5816 I915_WRITE(RAMCLK_GATE_D, 0);
5817 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5818 OVRUNIT_CLOCK_GATE_DISABLE |
5819 OVCUNIT_CLOCK_GATE_DISABLE;
5820 if (IS_GM45(dev))
5821 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5822 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5823 } else if (IS_CRESTLINE(dev)) {
5824 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5825 I915_WRITE(RENCLK_GATE_D2, 0);
5826 I915_WRITE(DSPCLK_GATE_D, 0);
5827 I915_WRITE(RAMCLK_GATE_D, 0);
5828 I915_WRITE16(DEUC, 0);
5829 } else if (IS_BROADWATER(dev)) {
5830 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5831 I965_RCC_CLOCK_GATE_DISABLE |
5832 I965_RCPB_CLOCK_GATE_DISABLE |
5833 I965_ISC_CLOCK_GATE_DISABLE |
5834 I965_FBC_CLOCK_GATE_DISABLE);
5835 I915_WRITE(RENCLK_GATE_D2, 0);
5836 } else if (IS_GEN3(dev)) {
5837 u32 dstate = I915_READ(D_STATE);
5839 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5840 DSTATE_DOT_CLOCK_GATING;
5841 I915_WRITE(D_STATE, dstate);
5842 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5843 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5844 } else if (IS_I830(dev)) {
5845 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5849 * GPU can automatically power down the render unit if given a page
5850 * to save state.
5852 if (IS_IRONLAKE_M(dev)) {
5853 if (dev_priv->renderctx == NULL)
5854 dev_priv->renderctx = intel_alloc_context_page(dev);
5855 if (dev_priv->renderctx) {
5856 struct drm_i915_gem_object *obj_priv;
5857 obj_priv = to_intel_bo(dev_priv->renderctx);
5858 if (obj_priv) {
5859 if (BEGIN_LP_RING(4) == 0) {
5860 OUT_RING(MI_SET_CONTEXT);
5861 OUT_RING(obj_priv->gtt_offset |
5862 MI_MM_SPACE_GTT |
5863 MI_SAVE_EXT_STATE_EN |
5864 MI_RESTORE_EXT_STATE_EN |
5865 MI_RESTORE_INHIBIT);
5866 OUT_RING(MI_NOOP);
5867 OUT_RING(MI_FLUSH);
5868 ADVANCE_LP_RING();
5871 } else
5872 DRM_DEBUG_KMS("Failed to allocate render context."
5873 "Disable RC6\n");
5876 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5877 struct drm_i915_gem_object *obj_priv = NULL;
5879 if (dev_priv->pwrctx) {
5880 obj_priv = to_intel_bo(dev_priv->pwrctx);
5881 } else {
5882 struct drm_gem_object *pwrctx;
5884 pwrctx = intel_alloc_context_page(dev);
5885 if (pwrctx) {
5886 dev_priv->pwrctx = pwrctx;
5887 obj_priv = to_intel_bo(pwrctx);
5891 if (obj_priv) {
5892 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5893 I915_WRITE(MCHBAR_RENDER_STANDBY,
5894 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5899 /* Set up chip specific display functions */
5900 static void intel_init_display(struct drm_device *dev)
5902 struct drm_i915_private *dev_priv = dev->dev_private;
5904 /* We always want a DPMS function */
5905 if (HAS_PCH_SPLIT(dev))
5906 dev_priv->display.dpms = ironlake_crtc_dpms;
5907 else
5908 dev_priv->display.dpms = i9xx_crtc_dpms;
5910 if (I915_HAS_FBC(dev)) {
5911 if (IS_IRONLAKE_M(dev)) {
5912 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5913 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5914 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5915 } else if (IS_GM45(dev)) {
5916 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5917 dev_priv->display.enable_fbc = g4x_enable_fbc;
5918 dev_priv->display.disable_fbc = g4x_disable_fbc;
5919 } else if (IS_CRESTLINE(dev)) {
5920 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5921 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5922 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5924 /* 855GM needs testing */
5927 /* Returns the core display clock speed */
5928 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5929 dev_priv->display.get_display_clock_speed =
5930 i945_get_display_clock_speed;
5931 else if (IS_I915G(dev))
5932 dev_priv->display.get_display_clock_speed =
5933 i915_get_display_clock_speed;
5934 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5935 dev_priv->display.get_display_clock_speed =
5936 i9xx_misc_get_display_clock_speed;
5937 else if (IS_I915GM(dev))
5938 dev_priv->display.get_display_clock_speed =
5939 i915gm_get_display_clock_speed;
5940 else if (IS_I865G(dev))
5941 dev_priv->display.get_display_clock_speed =
5942 i865_get_display_clock_speed;
5943 else if (IS_I85X(dev))
5944 dev_priv->display.get_display_clock_speed =
5945 i855_get_display_clock_speed;
5946 else /* 852, 830 */
5947 dev_priv->display.get_display_clock_speed =
5948 i830_get_display_clock_speed;
5950 /* For FIFO watermark updates */
5951 if (HAS_PCH_SPLIT(dev)) {
5952 if (IS_GEN5(dev)) {
5953 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5954 dev_priv->display.update_wm = ironlake_update_wm;
5955 else {
5956 DRM_DEBUG_KMS("Failed to get proper latency. "
5957 "Disable CxSR\n");
5958 dev_priv->display.update_wm = NULL;
5960 } else
5961 dev_priv->display.update_wm = NULL;
5962 } else if (IS_PINEVIEW(dev)) {
5963 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5964 dev_priv->is_ddr3,
5965 dev_priv->fsb_freq,
5966 dev_priv->mem_freq)) {
5967 DRM_INFO("failed to find known CxSR latency "
5968 "(found ddr%s fsb freq %d, mem freq %d), "
5969 "disabling CxSR\n",
5970 (dev_priv->is_ddr3 == 1) ? "3": "2",
5971 dev_priv->fsb_freq, dev_priv->mem_freq);
5972 /* Disable CxSR and never update its watermark again */
5973 pineview_disable_cxsr(dev);
5974 dev_priv->display.update_wm = NULL;
5975 } else
5976 dev_priv->display.update_wm = pineview_update_wm;
5977 } else if (IS_G4X(dev))
5978 dev_priv->display.update_wm = g4x_update_wm;
5979 else if (IS_GEN4(dev))
5980 dev_priv->display.update_wm = i965_update_wm;
5981 else if (IS_GEN3(dev)) {
5982 dev_priv->display.update_wm = i9xx_update_wm;
5983 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5984 } else if (IS_I85X(dev)) {
5985 dev_priv->display.update_wm = i9xx_update_wm;
5986 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5987 } else {
5988 dev_priv->display.update_wm = i830_update_wm;
5989 if (IS_845G(dev))
5990 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5991 else
5992 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5997 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5998 * resume, or other times. This quirk makes sure that's the case for
5999 * affected systems.
6001 static void quirk_pipea_force (struct drm_device *dev)
6003 struct drm_i915_private *dev_priv = dev->dev_private;
6005 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6006 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6009 struct intel_quirk {
6010 int device;
6011 int subsystem_vendor;
6012 int subsystem_device;
6013 void (*hook)(struct drm_device *dev);
6016 struct intel_quirk intel_quirks[] = {
6017 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6018 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6019 /* HP Mini needs pipe A force quirk (LP: #322104) */
6020 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6022 /* Thinkpad R31 needs pipe A force quirk */
6023 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6024 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6025 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6027 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6028 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
6029 /* ThinkPad X40 needs pipe A force quirk */
6031 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6032 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6034 /* 855 & before need to leave pipe A & dpll A up */
6035 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6036 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6039 static void intel_init_quirks(struct drm_device *dev)
6041 struct pci_dev *d = dev->pdev;
6042 int i;
6044 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6045 struct intel_quirk *q = &intel_quirks[i];
6047 if (d->device == q->device &&
6048 (d->subsystem_vendor == q->subsystem_vendor ||
6049 q->subsystem_vendor == PCI_ANY_ID) &&
6050 (d->subsystem_device == q->subsystem_device ||
6051 q->subsystem_device == PCI_ANY_ID))
6052 q->hook(dev);
6056 /* Disable the VGA plane that we never use */
6057 static void i915_disable_vga(struct drm_device *dev)
6059 struct drm_i915_private *dev_priv = dev->dev_private;
6060 u8 sr1;
6061 u32 vga_reg;
6063 if (HAS_PCH_SPLIT(dev))
6064 vga_reg = CPU_VGACNTRL;
6065 else
6066 vga_reg = VGACNTRL;
6068 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6069 outb(1, VGA_SR_INDEX);
6070 sr1 = inb(VGA_SR_DATA);
6071 outb(sr1 | 1<<5, VGA_SR_DATA);
6072 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6073 udelay(300);
6075 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6076 POSTING_READ(vga_reg);
6079 void intel_modeset_init(struct drm_device *dev)
6081 struct drm_i915_private *dev_priv = dev->dev_private;
6082 int i;
6084 drm_mode_config_init(dev);
6086 dev->mode_config.min_width = 0;
6087 dev->mode_config.min_height = 0;
6089 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6091 intel_init_quirks(dev);
6093 intel_init_display(dev);
6095 if (IS_GEN2(dev)) {
6096 dev->mode_config.max_width = 2048;
6097 dev->mode_config.max_height = 2048;
6098 } else if (IS_GEN3(dev)) {
6099 dev->mode_config.max_width = 4096;
6100 dev->mode_config.max_height = 4096;
6101 } else {
6102 dev->mode_config.max_width = 8192;
6103 dev->mode_config.max_height = 8192;
6106 /* set memory base */
6107 if (IS_GEN2(dev))
6108 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6109 else
6110 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6112 if (IS_MOBILE(dev) || !IS_GEN2(dev))
6113 dev_priv->num_pipe = 2;
6114 else
6115 dev_priv->num_pipe = 1;
6116 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6117 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6119 for (i = 0; i < dev_priv->num_pipe; i++) {
6120 intel_crtc_init(dev, i);
6123 intel_setup_outputs(dev);
6125 intel_init_clock_gating(dev);
6127 /* Just disable it once at startup */
6128 i915_disable_vga(dev);
6130 if (IS_IRONLAKE_M(dev)) {
6131 ironlake_enable_drps(dev);
6132 intel_init_emon(dev);
6135 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6136 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6137 (unsigned long)dev);
6139 intel_setup_overlay(dev);
6142 void intel_modeset_cleanup(struct drm_device *dev)
6144 struct drm_i915_private *dev_priv = dev->dev_private;
6145 struct drm_crtc *crtc;
6146 struct intel_crtc *intel_crtc;
6148 drm_kms_helper_poll_fini(dev);
6149 mutex_lock(&dev->struct_mutex);
6151 intel_unregister_dsm_handler();
6154 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6155 /* Skip inactive CRTCs */
6156 if (!crtc->fb)
6157 continue;
6159 intel_crtc = to_intel_crtc(crtc);
6160 intel_increase_pllclock(crtc);
6163 if (dev_priv->display.disable_fbc)
6164 dev_priv->display.disable_fbc(dev);
6166 if (dev_priv->renderctx) {
6167 struct drm_i915_gem_object *obj_priv;
6169 obj_priv = to_intel_bo(dev_priv->renderctx);
6170 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6171 I915_READ(CCID);
6172 i915_gem_object_unpin(dev_priv->renderctx);
6173 drm_gem_object_unreference(dev_priv->renderctx);
6176 if (dev_priv->pwrctx) {
6177 struct drm_i915_gem_object *obj_priv;
6179 obj_priv = to_intel_bo(dev_priv->pwrctx);
6180 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6181 I915_READ(PWRCTXA);
6182 i915_gem_object_unpin(dev_priv->pwrctx);
6183 drm_gem_object_unreference(dev_priv->pwrctx);
6186 if (IS_IRONLAKE_M(dev))
6187 ironlake_disable_drps(dev);
6189 mutex_unlock(&dev->struct_mutex);
6191 /* Disable the irq before mode object teardown, for the irq might
6192 * enqueue unpin/hotplug work. */
6193 drm_irq_uninstall(dev);
6194 cancel_work_sync(&dev_priv->hotplug_work);
6196 /* Shut off idle work before the crtcs get freed. */
6197 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6198 intel_crtc = to_intel_crtc(crtc);
6199 del_timer_sync(&intel_crtc->idle_timer);
6201 del_timer_sync(&dev_priv->idle_timer);
6202 cancel_work_sync(&dev_priv->idle_work);
6204 drm_mode_config_cleanup(dev);
6208 * Return which encoder is currently attached for connector.
6210 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6212 return &intel_attached_encoder(connector)->base;
6215 void intel_connector_attach_encoder(struct intel_connector *connector,
6216 struct intel_encoder *encoder)
6218 connector->encoder = encoder;
6219 drm_mode_connector_attach_encoder(&connector->base,
6220 &encoder->base);
6224 * set vga decode state - true == enable VGA decode
6226 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6228 struct drm_i915_private *dev_priv = dev->dev_private;
6229 u16 gmch_ctrl;
6231 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6232 if (state)
6233 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6234 else
6235 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6236 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6237 return 0;