2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
34 #include "intel_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
);
45 static void intel_update_watermarks(struct drm_device
*dev
);
46 static void intel_increase_pllclock(struct drm_crtc
*crtc
);
47 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
, bool on
);
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t
;
73 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
75 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
76 int, int, intel_clock_t
*);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
90 #define I8XX_M2_MAX 16
92 #define I8XX_P_MAX 128
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
332 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
333 int target
, int refclk
, intel_clock_t
*best_clock
);
335 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
336 int target
, int refclk
, intel_clock_t
*best_clock
);
339 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
340 int target
, int refclk
, intel_clock_t
*best_clock
);
342 intel_find_pll_ironlake_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
343 int target
, int refclk
, intel_clock_t
*best_clock
);
345 static inline u32
/* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device
*dev
)
349 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
350 return (I915_READ(FDI_PLL_BIOS_0
) & FDI_PLL_FB_CLOCK_MASK
) + 2;
355 static const intel_limit_t intel_limits_i8xx_dvo
= {
356 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
357 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
358 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
359 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
360 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
361 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
362 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
363 .p1
= { .min
= I8XX_P1_MIN
, .max
= I8XX_P1_MAX
},
364 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
365 .p2_slow
= I8XX_P2_SLOW
, .p2_fast
= I8XX_P2_FAST
},
366 .find_pll
= intel_find_best_PLL
,
369 static const intel_limit_t intel_limits_i8xx_lvds
= {
370 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
371 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
372 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
373 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
374 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
375 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
376 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
377 .p1
= { .min
= I8XX_P1_LVDS_MIN
, .max
= I8XX_P1_LVDS_MAX
},
378 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
379 .p2_slow
= I8XX_P2_LVDS_SLOW
, .p2_fast
= I8XX_P2_LVDS_FAST
},
380 .find_pll
= intel_find_best_PLL
,
383 static const intel_limit_t intel_limits_i9xx_sdvo
= {
384 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
385 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
386 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
387 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
388 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
389 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
390 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
391 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
392 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
393 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
394 .find_pll
= intel_find_best_PLL
,
397 static const intel_limit_t intel_limits_i9xx_lvds
= {
398 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
399 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
400 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
401 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
402 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
403 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
404 .p
= { .min
= I9XX_P_LVDS_MIN
, .max
= I9XX_P_LVDS_MAX
},
405 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
406 /* The single-channel range is 25-112Mhz, and dual-channel
407 * is 80-224Mhz. Prefer single channel as much as possible.
409 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
410 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_FAST
},
411 .find_pll
= intel_find_best_PLL
,
414 /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo
= {
416 .dot
= { .min
= G4X_DOT_SDVO_MIN
, .max
= G4X_DOT_SDVO_MAX
},
417 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
418 .n
= { .min
= G4X_N_SDVO_MIN
, .max
= G4X_N_SDVO_MAX
},
419 .m
= { .min
= G4X_M_SDVO_MIN
, .max
= G4X_M_SDVO_MAX
},
420 .m1
= { .min
= G4X_M1_SDVO_MIN
, .max
= G4X_M1_SDVO_MAX
},
421 .m2
= { .min
= G4X_M2_SDVO_MIN
, .max
= G4X_M2_SDVO_MAX
},
422 .p
= { .min
= G4X_P_SDVO_MIN
, .max
= G4X_P_SDVO_MAX
},
423 .p1
= { .min
= G4X_P1_SDVO_MIN
, .max
= G4X_P1_SDVO_MAX
},
424 .p2
= { .dot_limit
= G4X_P2_SDVO_LIMIT
,
425 .p2_slow
= G4X_P2_SDVO_SLOW
,
426 .p2_fast
= G4X_P2_SDVO_FAST
428 .find_pll
= intel_g4x_find_best_PLL
,
431 static const intel_limit_t intel_limits_g4x_hdmi
= {
432 .dot
= { .min
= G4X_DOT_HDMI_DAC_MIN
, .max
= G4X_DOT_HDMI_DAC_MAX
},
433 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
434 .n
= { .min
= G4X_N_HDMI_DAC_MIN
, .max
= G4X_N_HDMI_DAC_MAX
},
435 .m
= { .min
= G4X_M_HDMI_DAC_MIN
, .max
= G4X_M_HDMI_DAC_MAX
},
436 .m1
= { .min
= G4X_M1_HDMI_DAC_MIN
, .max
= G4X_M1_HDMI_DAC_MAX
},
437 .m2
= { .min
= G4X_M2_HDMI_DAC_MIN
, .max
= G4X_M2_HDMI_DAC_MAX
},
438 .p
= { .min
= G4X_P_HDMI_DAC_MIN
, .max
= G4X_P_HDMI_DAC_MAX
},
439 .p1
= { .min
= G4X_P1_HDMI_DAC_MIN
, .max
= G4X_P1_HDMI_DAC_MAX
},
440 .p2
= { .dot_limit
= G4X_P2_HDMI_DAC_LIMIT
,
441 .p2_slow
= G4X_P2_HDMI_DAC_SLOW
,
442 .p2_fast
= G4X_P2_HDMI_DAC_FAST
444 .find_pll
= intel_g4x_find_best_PLL
,
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
448 .dot
= { .min
= G4X_DOT_SINGLE_CHANNEL_LVDS_MIN
,
449 .max
= G4X_DOT_SINGLE_CHANNEL_LVDS_MAX
},
450 .vco
= { .min
= G4X_VCO_MIN
,
451 .max
= G4X_VCO_MAX
},
452 .n
= { .min
= G4X_N_SINGLE_CHANNEL_LVDS_MIN
,
453 .max
= G4X_N_SINGLE_CHANNEL_LVDS_MAX
},
454 .m
= { .min
= G4X_M_SINGLE_CHANNEL_LVDS_MIN
,
455 .max
= G4X_M_SINGLE_CHANNEL_LVDS_MAX
},
456 .m1
= { .min
= G4X_M1_SINGLE_CHANNEL_LVDS_MIN
,
457 .max
= G4X_M1_SINGLE_CHANNEL_LVDS_MAX
},
458 .m2
= { .min
= G4X_M2_SINGLE_CHANNEL_LVDS_MIN
,
459 .max
= G4X_M2_SINGLE_CHANNEL_LVDS_MAX
},
460 .p
= { .min
= G4X_P_SINGLE_CHANNEL_LVDS_MIN
,
461 .max
= G4X_P_SINGLE_CHANNEL_LVDS_MAX
},
462 .p1
= { .min
= G4X_P1_SINGLE_CHANNEL_LVDS_MIN
,
463 .max
= G4X_P1_SINGLE_CHANNEL_LVDS_MAX
},
464 .p2
= { .dot_limit
= G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT
,
465 .p2_slow
= G4X_P2_SINGLE_CHANNEL_LVDS_SLOW
,
466 .p2_fast
= G4X_P2_SINGLE_CHANNEL_LVDS_FAST
468 .find_pll
= intel_g4x_find_best_PLL
,
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
472 .dot
= { .min
= G4X_DOT_DUAL_CHANNEL_LVDS_MIN
,
473 .max
= G4X_DOT_DUAL_CHANNEL_LVDS_MAX
},
474 .vco
= { .min
= G4X_VCO_MIN
,
475 .max
= G4X_VCO_MAX
},
476 .n
= { .min
= G4X_N_DUAL_CHANNEL_LVDS_MIN
,
477 .max
= G4X_N_DUAL_CHANNEL_LVDS_MAX
},
478 .m
= { .min
= G4X_M_DUAL_CHANNEL_LVDS_MIN
,
479 .max
= G4X_M_DUAL_CHANNEL_LVDS_MAX
},
480 .m1
= { .min
= G4X_M1_DUAL_CHANNEL_LVDS_MIN
,
481 .max
= G4X_M1_DUAL_CHANNEL_LVDS_MAX
},
482 .m2
= { .min
= G4X_M2_DUAL_CHANNEL_LVDS_MIN
,
483 .max
= G4X_M2_DUAL_CHANNEL_LVDS_MAX
},
484 .p
= { .min
= G4X_P_DUAL_CHANNEL_LVDS_MIN
,
485 .max
= G4X_P_DUAL_CHANNEL_LVDS_MAX
},
486 .p1
= { .min
= G4X_P1_DUAL_CHANNEL_LVDS_MIN
,
487 .max
= G4X_P1_DUAL_CHANNEL_LVDS_MAX
},
488 .p2
= { .dot_limit
= G4X_P2_DUAL_CHANNEL_LVDS_LIMIT
,
489 .p2_slow
= G4X_P2_DUAL_CHANNEL_LVDS_SLOW
,
490 .p2_fast
= G4X_P2_DUAL_CHANNEL_LVDS_FAST
492 .find_pll
= intel_g4x_find_best_PLL
,
495 static const intel_limit_t intel_limits_g4x_display_port
= {
496 .dot
= { .min
= G4X_DOT_DISPLAY_PORT_MIN
,
497 .max
= G4X_DOT_DISPLAY_PORT_MAX
},
498 .vco
= { .min
= G4X_VCO_MIN
,
500 .n
= { .min
= G4X_N_DISPLAY_PORT_MIN
,
501 .max
= G4X_N_DISPLAY_PORT_MAX
},
502 .m
= { .min
= G4X_M_DISPLAY_PORT_MIN
,
503 .max
= G4X_M_DISPLAY_PORT_MAX
},
504 .m1
= { .min
= G4X_M1_DISPLAY_PORT_MIN
,
505 .max
= G4X_M1_DISPLAY_PORT_MAX
},
506 .m2
= { .min
= G4X_M2_DISPLAY_PORT_MIN
,
507 .max
= G4X_M2_DISPLAY_PORT_MAX
},
508 .p
= { .min
= G4X_P_DISPLAY_PORT_MIN
,
509 .max
= G4X_P_DISPLAY_PORT_MAX
},
510 .p1
= { .min
= G4X_P1_DISPLAY_PORT_MIN
,
511 .max
= G4X_P1_DISPLAY_PORT_MAX
},
512 .p2
= { .dot_limit
= G4X_P2_DISPLAY_PORT_LIMIT
,
513 .p2_slow
= G4X_P2_DISPLAY_PORT_SLOW
,
514 .p2_fast
= G4X_P2_DISPLAY_PORT_FAST
},
515 .find_pll
= intel_find_pll_g4x_dp
,
518 static const intel_limit_t intel_limits_pineview_sdvo
= {
519 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
520 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
521 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
522 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
523 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
524 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
525 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
526 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
527 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
528 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
529 .find_pll
= intel_find_best_PLL
,
532 static const intel_limit_t intel_limits_pineview_lvds
= {
533 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
534 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
535 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
536 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
537 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
538 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
539 .p
= { .min
= PINEVIEW_P_LVDS_MIN
, .max
= PINEVIEW_P_LVDS_MAX
},
540 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
541 /* Pineview only supports single-channel mode. */
542 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
543 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_SLOW
},
544 .find_pll
= intel_find_best_PLL
,
547 static const intel_limit_t intel_limits_ironlake_dac
= {
548 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
549 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
550 .n
= { .min
= IRONLAKE_DAC_N_MIN
, .max
= IRONLAKE_DAC_N_MAX
},
551 .m
= { .min
= IRONLAKE_DAC_M_MIN
, .max
= IRONLAKE_DAC_M_MAX
},
552 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
553 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
554 .p
= { .min
= IRONLAKE_DAC_P_MIN
, .max
= IRONLAKE_DAC_P_MAX
},
555 .p1
= { .min
= IRONLAKE_DAC_P1_MIN
, .max
= IRONLAKE_DAC_P1_MAX
},
556 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
557 .p2_slow
= IRONLAKE_DAC_P2_SLOW
,
558 .p2_fast
= IRONLAKE_DAC_P2_FAST
},
559 .find_pll
= intel_g4x_find_best_PLL
,
562 static const intel_limit_t intel_limits_ironlake_single_lvds
= {
563 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
564 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
565 .n
= { .min
= IRONLAKE_LVDS_S_N_MIN
, .max
= IRONLAKE_LVDS_S_N_MAX
},
566 .m
= { .min
= IRONLAKE_LVDS_S_M_MIN
, .max
= IRONLAKE_LVDS_S_M_MAX
},
567 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
568 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
569 .p
= { .min
= IRONLAKE_LVDS_S_P_MIN
, .max
= IRONLAKE_LVDS_S_P_MAX
},
570 .p1
= { .min
= IRONLAKE_LVDS_S_P1_MIN
, .max
= IRONLAKE_LVDS_S_P1_MAX
},
571 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
572 .p2_slow
= IRONLAKE_LVDS_S_P2_SLOW
,
573 .p2_fast
= IRONLAKE_LVDS_S_P2_FAST
},
574 .find_pll
= intel_g4x_find_best_PLL
,
577 static const intel_limit_t intel_limits_ironlake_dual_lvds
= {
578 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
579 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
580 .n
= { .min
= IRONLAKE_LVDS_D_N_MIN
, .max
= IRONLAKE_LVDS_D_N_MAX
},
581 .m
= { .min
= IRONLAKE_LVDS_D_M_MIN
, .max
= IRONLAKE_LVDS_D_M_MAX
},
582 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
583 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
584 .p
= { .min
= IRONLAKE_LVDS_D_P_MIN
, .max
= IRONLAKE_LVDS_D_P_MAX
},
585 .p1
= { .min
= IRONLAKE_LVDS_D_P1_MIN
, .max
= IRONLAKE_LVDS_D_P1_MAX
},
586 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
587 .p2_slow
= IRONLAKE_LVDS_D_P2_SLOW
,
588 .p2_fast
= IRONLAKE_LVDS_D_P2_FAST
},
589 .find_pll
= intel_g4x_find_best_PLL
,
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m
= {
593 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
594 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
595 .n
= { .min
= IRONLAKE_LVDS_S_SSC_N_MIN
, .max
= IRONLAKE_LVDS_S_SSC_N_MAX
},
596 .m
= { .min
= IRONLAKE_LVDS_S_SSC_M_MIN
, .max
= IRONLAKE_LVDS_S_SSC_M_MAX
},
597 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
598 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
599 .p
= { .min
= IRONLAKE_LVDS_S_SSC_P_MIN
, .max
= IRONLAKE_LVDS_S_SSC_P_MAX
},
600 .p1
= { .min
= IRONLAKE_LVDS_S_SSC_P1_MIN
,.max
= IRONLAKE_LVDS_S_SSC_P1_MAX
},
601 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
602 .p2_slow
= IRONLAKE_LVDS_S_SSC_P2_SLOW
,
603 .p2_fast
= IRONLAKE_LVDS_S_SSC_P2_FAST
},
604 .find_pll
= intel_g4x_find_best_PLL
,
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m
= {
608 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
609 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
610 .n
= { .min
= IRONLAKE_LVDS_D_SSC_N_MIN
, .max
= IRONLAKE_LVDS_D_SSC_N_MAX
},
611 .m
= { .min
= IRONLAKE_LVDS_D_SSC_M_MIN
, .max
= IRONLAKE_LVDS_D_SSC_M_MAX
},
612 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
613 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
614 .p
= { .min
= IRONLAKE_LVDS_D_SSC_P_MIN
, .max
= IRONLAKE_LVDS_D_SSC_P_MAX
},
615 .p1
= { .min
= IRONLAKE_LVDS_D_SSC_P1_MIN
,.max
= IRONLAKE_LVDS_D_SSC_P1_MAX
},
616 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
617 .p2_slow
= IRONLAKE_LVDS_D_SSC_P2_SLOW
,
618 .p2_fast
= IRONLAKE_LVDS_D_SSC_P2_FAST
},
619 .find_pll
= intel_g4x_find_best_PLL
,
622 static const intel_limit_t intel_limits_ironlake_display_port
= {
623 .dot
= { .min
= IRONLAKE_DOT_MIN
,
624 .max
= IRONLAKE_DOT_MAX
},
625 .vco
= { .min
= IRONLAKE_VCO_MIN
,
626 .max
= IRONLAKE_VCO_MAX
},
627 .n
= { .min
= IRONLAKE_DP_N_MIN
,
628 .max
= IRONLAKE_DP_N_MAX
},
629 .m
= { .min
= IRONLAKE_DP_M_MIN
,
630 .max
= IRONLAKE_DP_M_MAX
},
631 .m1
= { .min
= IRONLAKE_M1_MIN
,
632 .max
= IRONLAKE_M1_MAX
},
633 .m2
= { .min
= IRONLAKE_M2_MIN
,
634 .max
= IRONLAKE_M2_MAX
},
635 .p
= { .min
= IRONLAKE_DP_P_MIN
,
636 .max
= IRONLAKE_DP_P_MAX
},
637 .p1
= { .min
= IRONLAKE_DP_P1_MIN
,
638 .max
= IRONLAKE_DP_P1_MAX
},
639 .p2
= { .dot_limit
= IRONLAKE_DP_P2_LIMIT
,
640 .p2_slow
= IRONLAKE_DP_P2_SLOW
,
641 .p2_fast
= IRONLAKE_DP_P2_FAST
},
642 .find_pll
= intel_find_pll_ironlake_dp
,
645 static const intel_limit_t
*intel_ironlake_limit(struct drm_crtc
*crtc
)
647 struct drm_device
*dev
= crtc
->dev
;
648 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
649 const intel_limit_t
*limit
;
652 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
653 if (dev_priv
->lvds_use_ssc
&& dev_priv
->lvds_ssc_freq
== 100)
656 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
657 LVDS_CLKB_POWER_UP
) {
658 /* LVDS dual channel */
660 limit
= &intel_limits_ironlake_dual_lvds_100m
;
662 limit
= &intel_limits_ironlake_dual_lvds
;
665 limit
= &intel_limits_ironlake_single_lvds_100m
;
667 limit
= &intel_limits_ironlake_single_lvds
;
669 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
671 limit
= &intel_limits_ironlake_display_port
;
673 limit
= &intel_limits_ironlake_dac
;
678 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
680 struct drm_device
*dev
= crtc
->dev
;
681 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
682 const intel_limit_t
*limit
;
684 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
685 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
687 /* LVDS with dual channel */
688 limit
= &intel_limits_g4x_dual_channel_lvds
;
690 /* LVDS with dual channel */
691 limit
= &intel_limits_g4x_single_channel_lvds
;
692 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
693 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
694 limit
= &intel_limits_g4x_hdmi
;
695 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
696 limit
= &intel_limits_g4x_sdvo
;
697 } else if (intel_pipe_has_type (crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
698 limit
= &intel_limits_g4x_display_port
;
699 } else /* The option is for other outputs */
700 limit
= &intel_limits_i9xx_sdvo
;
705 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
)
707 struct drm_device
*dev
= crtc
->dev
;
708 const intel_limit_t
*limit
;
710 if (HAS_PCH_SPLIT(dev
))
711 limit
= intel_ironlake_limit(crtc
);
712 else if (IS_G4X(dev
)) {
713 limit
= intel_g4x_limit(crtc
);
714 } else if (IS_PINEVIEW(dev
)) {
715 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
716 limit
= &intel_limits_pineview_lvds
;
718 limit
= &intel_limits_pineview_sdvo
;
719 } else if (!IS_GEN2(dev
)) {
720 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
721 limit
= &intel_limits_i9xx_lvds
;
723 limit
= &intel_limits_i9xx_sdvo
;
725 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
726 limit
= &intel_limits_i8xx_lvds
;
728 limit
= &intel_limits_i8xx_dvo
;
733 /* m1 is reserved as 0 in Pineview, n is a ring counter */
734 static void pineview_clock(int refclk
, intel_clock_t
*clock
)
736 clock
->m
= clock
->m2
+ 2;
737 clock
->p
= clock
->p1
* clock
->p2
;
738 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
739 clock
->dot
= clock
->vco
/ clock
->p
;
742 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
744 if (IS_PINEVIEW(dev
)) {
745 pineview_clock(refclk
, clock
);
748 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
749 clock
->p
= clock
->p1
* clock
->p2
;
750 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
751 clock
->dot
= clock
->vco
/ clock
->p
;
755 * Returns whether any output on the specified pipe is of the specified type
757 bool intel_pipe_has_type(struct drm_crtc
*crtc
, int type
)
759 struct drm_device
*dev
= crtc
->dev
;
760 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
761 struct intel_encoder
*encoder
;
763 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
)
764 if (encoder
->base
.crtc
== crtc
&& encoder
->type
== type
)
770 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
772 * Returns whether the given set of divisors are valid for a given refclk with
773 * the given connectors.
776 static bool intel_PLL_is_valid(struct drm_crtc
*crtc
, intel_clock_t
*clock
)
778 const intel_limit_t
*limit
= intel_limit (crtc
);
779 struct drm_device
*dev
= crtc
->dev
;
781 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
782 INTELPllInvalid ("p1 out of range\n");
783 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
784 INTELPllInvalid ("p out of range\n");
785 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
786 INTELPllInvalid ("m2 out of range\n");
787 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
788 INTELPllInvalid ("m1 out of range\n");
789 if (clock
->m1
<= clock
->m2
&& !IS_PINEVIEW(dev
))
790 INTELPllInvalid ("m1 <= m2\n");
791 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
792 INTELPllInvalid ("m out of range\n");
793 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
794 INTELPllInvalid ("n out of range\n");
795 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
796 INTELPllInvalid ("vco out of range\n");
797 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
798 * connector, etc., rather than just a single range.
800 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
801 INTELPllInvalid ("dot out of range\n");
807 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
808 int target
, int refclk
, intel_clock_t
*best_clock
)
811 struct drm_device
*dev
= crtc
->dev
;
812 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
816 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
817 (I915_READ(LVDS
)) != 0) {
819 * For LVDS, if the panel is on, just rely on its current
820 * settings for dual-channel. We haven't figured out how to
821 * reliably set up different single/dual channel state, if we
824 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
826 clock
.p2
= limit
->p2
.p2_fast
;
828 clock
.p2
= limit
->p2
.p2_slow
;
830 if (target
< limit
->p2
.dot_limit
)
831 clock
.p2
= limit
->p2
.p2_slow
;
833 clock
.p2
= limit
->p2
.p2_fast
;
836 memset (best_clock
, 0, sizeof (*best_clock
));
838 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
840 for (clock
.m2
= limit
->m2
.min
;
841 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
842 /* m1 is always 0 in Pineview */
843 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
845 for (clock
.n
= limit
->n
.min
;
846 clock
.n
<= limit
->n
.max
; clock
.n
++) {
847 for (clock
.p1
= limit
->p1
.min
;
848 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
851 intel_clock(dev
, refclk
, &clock
);
853 if (!intel_PLL_is_valid(crtc
, &clock
))
856 this_err
= abs(clock
.dot
- target
);
857 if (this_err
< err
) {
866 return (err
!= target
);
870 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
871 int target
, int refclk
, intel_clock_t
*best_clock
)
873 struct drm_device
*dev
= crtc
->dev
;
874 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
878 /* approximately equals target * 0.00585 */
879 int err_most
= (target
>> 8) + (target
>> 9);
882 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
885 if (HAS_PCH_SPLIT(dev
))
889 if ((I915_READ(lvds_reg
) & LVDS_CLKB_POWER_MASK
) ==
891 clock
.p2
= limit
->p2
.p2_fast
;
893 clock
.p2
= limit
->p2
.p2_slow
;
895 if (target
< limit
->p2
.dot_limit
)
896 clock
.p2
= limit
->p2
.p2_slow
;
898 clock
.p2
= limit
->p2
.p2_fast
;
901 memset(best_clock
, 0, sizeof(*best_clock
));
902 max_n
= limit
->n
.max
;
903 /* based on hardware requirement, prefer smaller n to precision */
904 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
905 /* based on hardware requirement, prefere larger m1,m2 */
906 for (clock
.m1
= limit
->m1
.max
;
907 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
908 for (clock
.m2
= limit
->m2
.max
;
909 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
910 for (clock
.p1
= limit
->p1
.max
;
911 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
914 intel_clock(dev
, refclk
, &clock
);
915 if (!intel_PLL_is_valid(crtc
, &clock
))
917 this_err
= abs(clock
.dot
- target
) ;
918 if (this_err
< err_most
) {
932 intel_find_pll_ironlake_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
933 int target
, int refclk
, intel_clock_t
*best_clock
)
935 struct drm_device
*dev
= crtc
->dev
;
938 if (target
< 200000) {
951 intel_clock(dev
, refclk
, &clock
);
952 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
956 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
958 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
959 int target
, int refclk
, intel_clock_t
*best_clock
)
962 if (target
< 200000) {
975 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
976 clock
.p
= (clock
.p1
* clock
.p2
);
977 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
979 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
984 * intel_wait_for_vblank - wait for vblank on a given pipe
986 * @pipe: pipe to wait for
988 * Wait for vblank to occur on a given pipe. Needed for various bits of
991 void intel_wait_for_vblank(struct drm_device
*dev
, int pipe
)
993 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
994 int pipestat_reg
= (pipe
== 0 ? PIPEASTAT
: PIPEBSTAT
);
996 /* Clear existing vblank status. Note this will clear any other
997 * sticky status fields as well.
999 * This races with i915_driver_irq_handler() with the result
1000 * that either function could miss a vblank event. Here it is not
1001 * fatal, as we will either wait upon the next vblank interrupt or
1002 * timeout. Generally speaking intel_wait_for_vblank() is only
1003 * called during modeset at which time the GPU should be idle and
1004 * should *not* be performing page flips and thus not waiting on
1006 * Currently, the result of us stealing a vblank from the irq
1007 * handler is that a single frame will be skipped during swapbuffers.
1009 I915_WRITE(pipestat_reg
,
1010 I915_READ(pipestat_reg
) | PIPE_VBLANK_INTERRUPT_STATUS
);
1012 /* Wait for vblank interrupt bit to set */
1013 if (wait_for(I915_READ(pipestat_reg
) &
1014 PIPE_VBLANK_INTERRUPT_STATUS
,
1016 DRM_DEBUG_KMS("vblank wait timed out\n");
1020 * intel_wait_for_pipe_off - wait for pipe to turn off
1022 * @pipe: pipe to wait for
1024 * After disabling a pipe, we can't wait for vblank in the usual way,
1025 * spinning on the vblank interrupt status bit, since we won't actually
1026 * see an interrupt when the pipe is disabled.
1028 * On Gen4 and above:
1029 * wait for the pipe register state bit to turn off
1032 * wait for the display line value to settle (it usually
1033 * ends up stopping at the start of the next frame).
1036 void intel_wait_for_pipe_off(struct drm_device
*dev
, int pipe
)
1038 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1040 if (INTEL_INFO(dev
)->gen
>= 4) {
1041 int reg
= PIPECONF(pipe
);
1043 /* Wait for the Pipe State to go off */
1044 if (wait_for((I915_READ(reg
) & I965_PIPECONF_ACTIVE
) == 0,
1046 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1049 int reg
= PIPEDSL(pipe
);
1050 unsigned long timeout
= jiffies
+ msecs_to_jiffies(100);
1052 /* Wait for the display line to settle */
1054 last_line
= I915_READ(reg
) & DSL_LINEMASK
;
1056 } while (((I915_READ(reg
) & DSL_LINEMASK
) != last_line
) &&
1057 time_after(timeout
, jiffies
));
1058 if (time_after(jiffies
, timeout
))
1059 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1063 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1065 struct drm_device
*dev
= crtc
->dev
;
1066 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1067 struct drm_framebuffer
*fb
= crtc
->fb
;
1068 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1069 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(intel_fb
->obj
);
1070 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1072 u32 fbc_ctl
, fbc_ctl2
;
1074 if (fb
->pitch
== dev_priv
->cfb_pitch
&&
1075 obj_priv
->fence_reg
== dev_priv
->cfb_fence
&&
1076 intel_crtc
->plane
== dev_priv
->cfb_plane
&&
1077 I915_READ(FBC_CONTROL
) & FBC_CTL_EN
)
1080 i8xx_disable_fbc(dev
);
1082 dev_priv
->cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
1084 if (fb
->pitch
< dev_priv
->cfb_pitch
)
1085 dev_priv
->cfb_pitch
= fb
->pitch
;
1087 /* FBC_CTL wants 64B units */
1088 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1089 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1090 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1091 plane
= dev_priv
->cfb_plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
1093 /* Clear old tags */
1094 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
1095 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
1098 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| plane
;
1099 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1100 fbc_ctl2
|= FBC_CTL_CPU_FENCE
;
1101 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
1102 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
1105 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
1107 fbc_ctl
|= FBC_CTL_C3_IDLE
; /* 945 needs special SR handling */
1108 fbc_ctl
|= (dev_priv
->cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
1109 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
1110 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1111 fbc_ctl
|= dev_priv
->cfb_fence
;
1112 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1114 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1115 dev_priv
->cfb_pitch
, crtc
->y
, dev_priv
->cfb_plane
);
1118 void i8xx_disable_fbc(struct drm_device
*dev
)
1120 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1123 /* Disable compression */
1124 fbc_ctl
= I915_READ(FBC_CONTROL
);
1125 if ((fbc_ctl
& FBC_CTL_EN
) == 0)
1128 fbc_ctl
&= ~FBC_CTL_EN
;
1129 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1131 /* Wait for compressing bit to clear */
1132 if (wait_for((I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
) == 0, 10)) {
1133 DRM_DEBUG_KMS("FBC idle timed out\n");
1137 DRM_DEBUG_KMS("disabled FBC\n");
1140 static bool i8xx_fbc_enabled(struct drm_device
*dev
)
1142 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1144 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1147 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1149 struct drm_device
*dev
= crtc
->dev
;
1150 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1151 struct drm_framebuffer
*fb
= crtc
->fb
;
1152 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1153 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(intel_fb
->obj
);
1154 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1155 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1156 unsigned long stall_watermark
= 200;
1159 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1160 if (dpfc_ctl
& DPFC_CTL_EN
) {
1161 if (dev_priv
->cfb_pitch
== dev_priv
->cfb_pitch
/ 64 - 1 &&
1162 dev_priv
->cfb_fence
== obj_priv
->fence_reg
&&
1163 dev_priv
->cfb_plane
== intel_crtc
->plane
&&
1164 dev_priv
->cfb_y
== crtc
->y
)
1167 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
& ~DPFC_CTL_EN
);
1168 POSTING_READ(DPFC_CONTROL
);
1169 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
1172 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1173 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1174 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1175 dev_priv
->cfb_y
= crtc
->y
;
1177 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1178 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1179 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
;
1180 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1182 I915_WRITE(DPFC_CHICKEN
, ~DPFC_HT_MODIFY
);
1185 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1186 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1187 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1188 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1191 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1193 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1196 void g4x_disable_fbc(struct drm_device
*dev
)
1198 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1201 /* Disable compression */
1202 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1203 if (dpfc_ctl
& DPFC_CTL_EN
) {
1204 dpfc_ctl
&= ~DPFC_CTL_EN
;
1205 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1207 DRM_DEBUG_KMS("disabled FBC\n");
1211 static bool g4x_fbc_enabled(struct drm_device
*dev
)
1213 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1215 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1218 static void ironlake_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1220 struct drm_device
*dev
= crtc
->dev
;
1221 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1222 struct drm_framebuffer
*fb
= crtc
->fb
;
1223 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1224 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(intel_fb
->obj
);
1225 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1226 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1227 unsigned long stall_watermark
= 200;
1230 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1231 if (dpfc_ctl
& DPFC_CTL_EN
) {
1232 if (dev_priv
->cfb_pitch
== dev_priv
->cfb_pitch
/ 64 - 1 &&
1233 dev_priv
->cfb_fence
== obj_priv
->fence_reg
&&
1234 dev_priv
->cfb_plane
== intel_crtc
->plane
&&
1235 dev_priv
->cfb_offset
== obj_priv
->gtt_offset
&&
1236 dev_priv
->cfb_y
== crtc
->y
)
1239 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
& ~DPFC_CTL_EN
);
1240 POSTING_READ(ILK_DPFC_CONTROL
);
1241 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
1244 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1245 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1246 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1247 dev_priv
->cfb_offset
= obj_priv
->gtt_offset
;
1248 dev_priv
->cfb_y
= crtc
->y
;
1250 dpfc_ctl
&= DPFC_RESERVED
;
1251 dpfc_ctl
|= (plane
| DPFC_CTL_LIMIT_1X
);
1252 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1253 dpfc_ctl
|= (DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
);
1254 I915_WRITE(ILK_DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1256 I915_WRITE(ILK_DPFC_CHICKEN
, ~DPFC_HT_MODIFY
);
1259 I915_WRITE(ILK_DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1260 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1261 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1262 I915_WRITE(ILK_DPFC_FENCE_YOFF
, crtc
->y
);
1263 I915_WRITE(ILK_FBC_RT_BASE
, obj_priv
->gtt_offset
| ILK_FBC_RT_VALID
);
1265 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
| DPFC_CTL_EN
);
1267 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1270 void ironlake_disable_fbc(struct drm_device
*dev
)
1272 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1275 /* Disable compression */
1276 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1277 if (dpfc_ctl
& DPFC_CTL_EN
) {
1278 dpfc_ctl
&= ~DPFC_CTL_EN
;
1279 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
);
1281 DRM_DEBUG_KMS("disabled FBC\n");
1285 static bool ironlake_fbc_enabled(struct drm_device
*dev
)
1287 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1289 return I915_READ(ILK_DPFC_CONTROL
) & DPFC_CTL_EN
;
1292 bool intel_fbc_enabled(struct drm_device
*dev
)
1294 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1296 if (!dev_priv
->display
.fbc_enabled
)
1299 return dev_priv
->display
.fbc_enabled(dev
);
1302 void intel_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1304 struct drm_i915_private
*dev_priv
= crtc
->dev
->dev_private
;
1306 if (!dev_priv
->display
.enable_fbc
)
1309 dev_priv
->display
.enable_fbc(crtc
, interval
);
1312 void intel_disable_fbc(struct drm_device
*dev
)
1314 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1316 if (!dev_priv
->display
.disable_fbc
)
1319 dev_priv
->display
.disable_fbc(dev
);
1323 * intel_update_fbc - enable/disable FBC as needed
1324 * @dev: the drm_device
1326 * Set up the framebuffer compression hardware at mode set time. We
1327 * enable it if possible:
1328 * - plane A only (on pre-965)
1329 * - no pixel mulitply/line duplication
1330 * - no alpha buffer discard
1332 * - framebuffer <= 2048 in width, 1536 in height
1334 * We can't assume that any compression will take place (worst case),
1335 * so the compressed buffer has to be the same size as the uncompressed
1336 * one. It also must reside (along with the line length buffer) in
1339 * We need to enable/disable FBC on a global basis.
1341 static void intel_update_fbc(struct drm_device
*dev
)
1343 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1344 struct drm_crtc
*crtc
= NULL
, *tmp_crtc
;
1345 struct intel_crtc
*intel_crtc
;
1346 struct drm_framebuffer
*fb
;
1347 struct intel_framebuffer
*intel_fb
;
1348 struct drm_i915_gem_object
*obj_priv
;
1350 DRM_DEBUG_KMS("\n");
1352 if (!i915_powersave
)
1355 if (!I915_HAS_FBC(dev
))
1359 * If FBC is already on, we just have to verify that we can
1360 * keep it that way...
1361 * Need to disable if:
1362 * - more than one pipe is active
1363 * - changing FBC params (stride, fence, mode)
1364 * - new fb is too large to fit in compressed buffer
1365 * - going to an unsupported config (interlace, pixel multiply, etc.)
1367 list_for_each_entry(tmp_crtc
, &dev
->mode_config
.crtc_list
, head
) {
1368 if (tmp_crtc
->enabled
) {
1370 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1371 dev_priv
->no_fbc_reason
= FBC_MULTIPLE_PIPES
;
1378 if (!crtc
|| crtc
->fb
== NULL
) {
1379 DRM_DEBUG_KMS("no output, disabling\n");
1380 dev_priv
->no_fbc_reason
= FBC_NO_OUTPUT
;
1384 intel_crtc
= to_intel_crtc(crtc
);
1386 intel_fb
= to_intel_framebuffer(fb
);
1387 obj_priv
= to_intel_bo(intel_fb
->obj
);
1389 if (intel_fb
->obj
->size
> dev_priv
->cfb_size
) {
1390 DRM_DEBUG_KMS("framebuffer too large, disabling "
1392 dev_priv
->no_fbc_reason
= FBC_STOLEN_TOO_SMALL
;
1395 if ((crtc
->mode
.flags
& DRM_MODE_FLAG_INTERLACE
) ||
1396 (crtc
->mode
.flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1397 DRM_DEBUG_KMS("mode incompatible with compression, "
1399 dev_priv
->no_fbc_reason
= FBC_UNSUPPORTED_MODE
;
1402 if ((crtc
->mode
.hdisplay
> 2048) ||
1403 (crtc
->mode
.vdisplay
> 1536)) {
1404 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1405 dev_priv
->no_fbc_reason
= FBC_MODE_TOO_LARGE
;
1408 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && intel_crtc
->plane
!= 0) {
1409 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1410 dev_priv
->no_fbc_reason
= FBC_BAD_PLANE
;
1413 if (obj_priv
->tiling_mode
!= I915_TILING_X
) {
1414 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1415 dev_priv
->no_fbc_reason
= FBC_NOT_TILED
;
1419 /* If the kernel debugger is active, always disable compression */
1420 if (in_dbg_master())
1423 intel_enable_fbc(crtc
, 500);
1427 /* Multiple disables should be harmless */
1428 if (intel_fbc_enabled(dev
)) {
1429 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1430 intel_disable_fbc(dev
);
1435 intel_pin_and_fence_fb_obj(struct drm_device
*dev
,
1436 struct drm_gem_object
*obj
,
1439 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(obj
);
1443 switch (obj_priv
->tiling_mode
) {
1444 case I915_TILING_NONE
:
1445 if (IS_BROADWATER(dev
) || IS_CRESTLINE(dev
))
1446 alignment
= 128 * 1024;
1447 else if (INTEL_INFO(dev
)->gen
>= 4)
1448 alignment
= 4 * 1024;
1450 alignment
= 64 * 1024;
1453 /* pin() will align the object as required by fence */
1457 /* FIXME: Is this true? */
1458 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1464 ret
= i915_gem_object_pin(obj
, alignment
,
1465 !pipelined
, obj_priv
->tiling_mode
);
1469 ret
= i915_gem_object_set_to_display_plane(obj
, pipelined
);
1473 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1474 * fence, whereas 965+ only requires a fence if using
1475 * framebuffer compression. For simplicity, we always install
1476 * a fence as the cost is not that onerous.
1478 if (obj_priv
->fence_reg
== I915_FENCE_REG_NONE
&&
1479 obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1480 ret
= i915_gem_object_get_fence_reg(obj
, false);
1488 i915_gem_object_unpin(obj
);
1492 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1494 intel_pipe_set_base_atomic(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
1495 int x
, int y
, enum mode_set_atomic state
)
1497 struct drm_device
*dev
= crtc
->dev
;
1498 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1499 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1500 struct intel_framebuffer
*intel_fb
;
1501 struct drm_i915_gem_object
*obj_priv
;
1502 struct drm_gem_object
*obj
;
1503 int plane
= intel_crtc
->plane
;
1504 unsigned long Start
, Offset
;
1513 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
1517 intel_fb
= to_intel_framebuffer(fb
);
1518 obj
= intel_fb
->obj
;
1519 obj_priv
= to_intel_bo(obj
);
1521 reg
= DSPCNTR(plane
);
1522 dspcntr
= I915_READ(reg
);
1523 /* Mask out pixel format bits in case we change it */
1524 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
1525 switch (fb
->bits_per_pixel
) {
1527 dspcntr
|= DISPPLANE_8BPP
;
1530 if (fb
->depth
== 15)
1531 dspcntr
|= DISPPLANE_15_16BPP
;
1533 dspcntr
|= DISPPLANE_16BPP
;
1537 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
1540 DRM_ERROR("Unknown color depth\n");
1543 if (INTEL_INFO(dev
)->gen
>= 4) {
1544 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1545 dspcntr
|= DISPPLANE_TILED
;
1547 dspcntr
&= ~DISPPLANE_TILED
;
1550 if (HAS_PCH_SPLIT(dev
))
1552 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
1554 I915_WRITE(reg
, dspcntr
);
1556 Start
= obj_priv
->gtt_offset
;
1557 Offset
= y
* fb
->pitch
+ x
* (fb
->bits_per_pixel
/ 8);
1559 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1560 Start
, Offset
, x
, y
, fb
->pitch
);
1561 I915_WRITE(DSPSTRIDE(plane
), fb
->pitch
);
1562 if (INTEL_INFO(dev
)->gen
>= 4) {
1563 I915_WRITE(DSPSURF(plane
), Start
);
1564 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
1565 I915_WRITE(DSPADDR(plane
), Offset
);
1567 I915_WRITE(DSPADDR(plane
), Start
+ Offset
);
1570 intel_update_fbc(dev
);
1571 intel_increase_pllclock(crtc
);
1577 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
1578 struct drm_framebuffer
*old_fb
)
1580 struct drm_device
*dev
= crtc
->dev
;
1581 struct drm_i915_master_private
*master_priv
;
1582 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1587 DRM_DEBUG_KMS("No FB bound\n");
1591 switch (intel_crtc
->plane
) {
1599 mutex_lock(&dev
->struct_mutex
);
1600 ret
= intel_pin_and_fence_fb_obj(dev
,
1601 to_intel_framebuffer(crtc
->fb
)->obj
,
1604 mutex_unlock(&dev
->struct_mutex
);
1609 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1610 struct drm_gem_object
*obj
= to_intel_framebuffer(old_fb
)->obj
;
1611 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(obj
);
1613 wait_event(dev_priv
->pending_flip_queue
,
1614 atomic_read(&obj_priv
->pending_flip
) == 0);
1617 ret
= intel_pipe_set_base_atomic(crtc
, crtc
->fb
, x
, y
,
1618 LEAVE_ATOMIC_MODE_SET
);
1620 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
1621 mutex_unlock(&dev
->struct_mutex
);
1626 i915_gem_object_unpin(to_intel_framebuffer(old_fb
)->obj
);
1628 mutex_unlock(&dev
->struct_mutex
);
1630 if (!dev
->primary
->master
)
1633 master_priv
= dev
->primary
->master
->driver_priv
;
1634 if (!master_priv
->sarea_priv
)
1637 if (intel_crtc
->pipe
) {
1638 master_priv
->sarea_priv
->pipeB_x
= x
;
1639 master_priv
->sarea_priv
->pipeB_y
= y
;
1641 master_priv
->sarea_priv
->pipeA_x
= x
;
1642 master_priv
->sarea_priv
->pipeA_y
= y
;
1648 static void ironlake_set_pll_edp(struct drm_crtc
*crtc
, int clock
)
1650 struct drm_device
*dev
= crtc
->dev
;
1651 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1654 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock
);
1655 dpa_ctl
= I915_READ(DP_A
);
1656 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
1658 if (clock
< 200000) {
1660 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
1661 /* workaround for 160Mhz:
1662 1) program 0x4600c bits 15:0 = 0x8124
1663 2) program 0x46010 bit 0 = 1
1664 3) program 0x46034 bit 24 = 1
1665 4) program 0x64000 bit 14 = 1
1667 temp
= I915_READ(0x4600c);
1669 I915_WRITE(0x4600c, temp
| 0x8124);
1671 temp
= I915_READ(0x46010);
1672 I915_WRITE(0x46010, temp
| 1);
1674 temp
= I915_READ(0x46034);
1675 I915_WRITE(0x46034, temp
| (1 << 24));
1677 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
1679 I915_WRITE(DP_A
, dpa_ctl
);
1685 /* The FDI link training functions for ILK/Ibexpeak. */
1686 static void ironlake_fdi_link_train(struct drm_crtc
*crtc
)
1688 struct drm_device
*dev
= crtc
->dev
;
1689 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1690 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1691 int pipe
= intel_crtc
->pipe
;
1692 u32 reg
, temp
, tries
;
1694 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1696 reg
= FDI_RX_IMR(pipe
);
1697 temp
= I915_READ(reg
);
1698 temp
&= ~FDI_RX_SYMBOL_LOCK
;
1699 temp
&= ~FDI_RX_BIT_LOCK
;
1700 I915_WRITE(reg
, temp
);
1704 /* enable CPU FDI TX and PCH FDI RX */
1705 reg
= FDI_TX_CTL(pipe
);
1706 temp
= I915_READ(reg
);
1708 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
1709 temp
&= ~FDI_LINK_TRAIN_NONE
;
1710 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1711 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
1713 reg
= FDI_RX_CTL(pipe
);
1714 temp
= I915_READ(reg
);
1715 temp
&= ~FDI_LINK_TRAIN_NONE
;
1716 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1717 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
1722 /* Ironlake workaround, enable clock pointer after FDI enable*/
1723 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_ENABLE
);
1725 reg
= FDI_RX_IIR(pipe
);
1726 for (tries
= 0; tries
< 5; tries
++) {
1727 temp
= I915_READ(reg
);
1728 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1730 if ((temp
& FDI_RX_BIT_LOCK
)) {
1731 DRM_DEBUG_KMS("FDI train 1 done.\n");
1732 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
1737 DRM_ERROR("FDI train 1 fail!\n");
1740 reg
= FDI_TX_CTL(pipe
);
1741 temp
= I915_READ(reg
);
1742 temp
&= ~FDI_LINK_TRAIN_NONE
;
1743 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1744 I915_WRITE(reg
, temp
);
1746 reg
= FDI_RX_CTL(pipe
);
1747 temp
= I915_READ(reg
);
1748 temp
&= ~FDI_LINK_TRAIN_NONE
;
1749 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1750 I915_WRITE(reg
, temp
);
1755 reg
= FDI_RX_IIR(pipe
);
1756 for (tries
= 0; tries
< 5; tries
++) {
1757 temp
= I915_READ(reg
);
1758 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1760 if (temp
& FDI_RX_SYMBOL_LOCK
) {
1761 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
1762 DRM_DEBUG_KMS("FDI train 2 done.\n");
1767 DRM_ERROR("FDI train 2 fail!\n");
1769 DRM_DEBUG_KMS("FDI train done\n");
1771 /* enable normal train */
1772 reg
= FDI_TX_CTL(pipe
);
1773 temp
= I915_READ(reg
);
1774 temp
&= ~FDI_LINK_TRAIN_NONE
;
1775 temp
|= FDI_LINK_TRAIN_NONE
| FDI_TX_ENHANCE_FRAME_ENABLE
;
1776 I915_WRITE(reg
, temp
);
1778 reg
= FDI_RX_CTL(pipe
);
1779 temp
= I915_READ(reg
);
1780 if (HAS_PCH_CPT(dev
)) {
1781 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
1782 temp
|= FDI_LINK_TRAIN_NORMAL_CPT
;
1784 temp
&= ~FDI_LINK_TRAIN_NONE
;
1785 temp
|= FDI_LINK_TRAIN_NONE
;
1787 I915_WRITE(reg
, temp
| FDI_RX_ENHANCE_FRAME_ENABLE
);
1789 /* wait one idle pattern time */
1794 static const int const snb_b_fdi_train_param
[] = {
1795 FDI_LINK_TRAIN_400MV_0DB_SNB_B
,
1796 FDI_LINK_TRAIN_400MV_6DB_SNB_B
,
1797 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B
,
1798 FDI_LINK_TRAIN_800MV_0DB_SNB_B
,
1801 /* The FDI link training functions for SNB/Cougarpoint. */
1802 static void gen6_fdi_link_train(struct drm_crtc
*crtc
)
1804 struct drm_device
*dev
= crtc
->dev
;
1805 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1806 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1807 int pipe
= intel_crtc
->pipe
;
1810 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1812 reg
= FDI_RX_IMR(pipe
);
1813 temp
= I915_READ(reg
);
1814 temp
&= ~FDI_RX_SYMBOL_LOCK
;
1815 temp
&= ~FDI_RX_BIT_LOCK
;
1816 I915_WRITE(reg
, temp
);
1821 /* enable CPU FDI TX and PCH FDI RX */
1822 reg
= FDI_TX_CTL(pipe
);
1823 temp
= I915_READ(reg
);
1825 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
1826 temp
&= ~FDI_LINK_TRAIN_NONE
;
1827 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1828 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
1830 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
1831 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
1833 reg
= FDI_RX_CTL(pipe
);
1834 temp
= I915_READ(reg
);
1835 if (HAS_PCH_CPT(dev
)) {
1836 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
1837 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
1839 temp
&= ~FDI_LINK_TRAIN_NONE
;
1840 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1842 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
1847 for (i
= 0; i
< 4; i
++ ) {
1848 reg
= FDI_TX_CTL(pipe
);
1849 temp
= I915_READ(reg
);
1850 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
1851 temp
|= snb_b_fdi_train_param
[i
];
1852 I915_WRITE(reg
, temp
);
1857 reg
= FDI_RX_IIR(pipe
);
1858 temp
= I915_READ(reg
);
1859 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1861 if (temp
& FDI_RX_BIT_LOCK
) {
1862 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
1863 DRM_DEBUG_KMS("FDI train 1 done.\n");
1868 DRM_ERROR("FDI train 1 fail!\n");
1871 reg
= FDI_TX_CTL(pipe
);
1872 temp
= I915_READ(reg
);
1873 temp
&= ~FDI_LINK_TRAIN_NONE
;
1874 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1876 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
1878 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
1880 I915_WRITE(reg
, temp
);
1882 reg
= FDI_RX_CTL(pipe
);
1883 temp
= I915_READ(reg
);
1884 if (HAS_PCH_CPT(dev
)) {
1885 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
1886 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
1888 temp
&= ~FDI_LINK_TRAIN_NONE
;
1889 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1891 I915_WRITE(reg
, temp
);
1896 for (i
= 0; i
< 4; i
++ ) {
1897 reg
= FDI_TX_CTL(pipe
);
1898 temp
= I915_READ(reg
);
1899 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
1900 temp
|= snb_b_fdi_train_param
[i
];
1901 I915_WRITE(reg
, temp
);
1906 reg
= FDI_RX_IIR(pipe
);
1907 temp
= I915_READ(reg
);
1908 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1910 if (temp
& FDI_RX_SYMBOL_LOCK
) {
1911 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
1912 DRM_DEBUG_KMS("FDI train 2 done.\n");
1917 DRM_ERROR("FDI train 2 fail!\n");
1919 DRM_DEBUG_KMS("FDI train done.\n");
1922 static void ironlake_fdi_enable(struct drm_crtc
*crtc
)
1924 struct drm_device
*dev
= crtc
->dev
;
1925 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1926 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1927 int pipe
= intel_crtc
->pipe
;
1930 /* Write the TU size bits so error detection works */
1931 I915_WRITE(FDI_RX_TUSIZE1(pipe
),
1932 I915_READ(PIPE_DATA_M1(pipe
)) & TU_SIZE_MASK
);
1934 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1935 reg
= FDI_RX_CTL(pipe
);
1936 temp
= I915_READ(reg
);
1937 temp
&= ~((0x7 << 19) | (0x7 << 16));
1938 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
1939 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
1940 I915_WRITE(reg
, temp
| FDI_RX_PLL_ENABLE
);
1945 /* Switch from Rawclk to PCDclk */
1946 temp
= I915_READ(reg
);
1947 I915_WRITE(reg
, temp
| FDI_PCDCLK
);
1952 /* Enable CPU FDI TX PLL, always on for Ironlake */
1953 reg
= FDI_TX_CTL(pipe
);
1954 temp
= I915_READ(reg
);
1955 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
1956 I915_WRITE(reg
, temp
| FDI_TX_PLL_ENABLE
);
1963 static void intel_flush_display_plane(struct drm_device
*dev
,
1966 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1967 u32 reg
= DSPADDR(plane
);
1968 I915_WRITE(reg
, I915_READ(reg
));
1972 * When we disable a pipe, we need to clear any pending scanline wait events
1973 * to avoid hanging the ring, which we assume we are waiting on.
1975 static void intel_clear_scanline_wait(struct drm_device
*dev
)
1977 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1981 /* Can't break the hang on i8xx */
1984 tmp
= I915_READ(PRB0_CTL
);
1985 if (tmp
& RING_WAIT
) {
1986 I915_WRITE(PRB0_CTL
, tmp
);
1987 POSTING_READ(PRB0_CTL
);
1991 static void intel_crtc_wait_for_pending_flips(struct drm_crtc
*crtc
)
1993 struct drm_i915_gem_object
*obj_priv
;
1994 struct drm_i915_private
*dev_priv
;
1996 if (crtc
->fb
== NULL
)
1999 obj_priv
= to_intel_bo(to_intel_framebuffer(crtc
->fb
)->obj
);
2000 dev_priv
= crtc
->dev
->dev_private
;
2001 wait_event(dev_priv
->pending_flip_queue
,
2002 atomic_read(&obj_priv
->pending_flip
) == 0);
2005 static void ironlake_crtc_enable(struct drm_crtc
*crtc
)
2007 struct drm_device
*dev
= crtc
->dev
;
2008 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2009 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2010 int pipe
= intel_crtc
->pipe
;
2011 int plane
= intel_crtc
->plane
;
2014 if (intel_crtc
->active
)
2017 intel_crtc
->active
= true;
2018 intel_update_watermarks(dev
);
2020 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
2021 temp
= I915_READ(PCH_LVDS
);
2022 if ((temp
& LVDS_PORT_EN
) == 0)
2023 I915_WRITE(PCH_LVDS
, temp
| LVDS_PORT_EN
);
2026 ironlake_fdi_enable(crtc
);
2028 /* Enable panel fitting for LVDS */
2029 if (dev_priv
->pch_pf_size
&&
2030 (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) || HAS_eDP
)) {
2031 /* Force use of hard-coded filter coefficients
2032 * as some pre-programmed values are broken,
2035 I915_WRITE(pipe
? PFB_CTL_1
: PFA_CTL_1
,
2036 PF_ENABLE
| PF_FILTER_MED_3x3
);
2037 I915_WRITE(pipe
? PFB_WIN_POS
: PFA_WIN_POS
,
2038 dev_priv
->pch_pf_pos
);
2039 I915_WRITE(pipe
? PFB_WIN_SZ
: PFA_WIN_SZ
,
2040 dev_priv
->pch_pf_size
);
2043 /* Enable CPU pipe */
2044 reg
= PIPECONF(pipe
);
2045 temp
= I915_READ(reg
);
2046 if ((temp
& PIPECONF_ENABLE
) == 0) {
2047 I915_WRITE(reg
, temp
| PIPECONF_ENABLE
);
2049 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
2052 /* configure and enable CPU plane */
2053 reg
= DSPCNTR(plane
);
2054 temp
= I915_READ(reg
);
2055 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
2056 I915_WRITE(reg
, temp
| DISPLAY_PLANE_ENABLE
);
2057 intel_flush_display_plane(dev
, plane
);
2060 /* For PCH output, training FDI link */
2062 gen6_fdi_link_train(crtc
);
2064 ironlake_fdi_link_train(crtc
);
2066 /* enable PCH DPLL */
2067 reg
= PCH_DPLL(pipe
);
2068 temp
= I915_READ(reg
);
2069 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
2070 I915_WRITE(reg
, temp
| DPLL_VCO_ENABLE
);
2075 if (HAS_PCH_CPT(dev
)) {
2076 /* Be sure PCH DPLL SEL is set */
2077 temp
= I915_READ(PCH_DPLL_SEL
);
2078 if (pipe
== 0 && (temp
& TRANSA_DPLL_ENABLE
) == 0)
2079 temp
|= (TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
);
2080 else if (pipe
== 1 && (temp
& TRANSB_DPLL_ENABLE
) == 0)
2081 temp
|= (TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
2082 I915_WRITE(PCH_DPLL_SEL
, temp
);
2085 /* set transcoder timing */
2086 I915_WRITE(TRANS_HTOTAL(pipe
), I915_READ(HTOTAL(pipe
)));
2087 I915_WRITE(TRANS_HBLANK(pipe
), I915_READ(HBLANK(pipe
)));
2088 I915_WRITE(TRANS_HSYNC(pipe
), I915_READ(HSYNC(pipe
)));
2090 I915_WRITE(TRANS_VTOTAL(pipe
), I915_READ(VTOTAL(pipe
)));
2091 I915_WRITE(TRANS_VBLANK(pipe
), I915_READ(VBLANK(pipe
)));
2092 I915_WRITE(TRANS_VSYNC(pipe
), I915_READ(VSYNC(pipe
)));
2094 /* For PCH DP, enable TRANS_DP_CTL */
2095 if (HAS_PCH_CPT(dev
) &&
2096 intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
2097 reg
= TRANS_DP_CTL(pipe
);
2098 temp
= I915_READ(reg
);
2099 temp
&= ~(TRANS_DP_PORT_SEL_MASK
|
2100 TRANS_DP_SYNC_MASK
);
2101 temp
|= (TRANS_DP_OUTPUT_ENABLE
|
2102 TRANS_DP_ENH_FRAMING
);
2104 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PHSYNC
)
2105 temp
|= TRANS_DP_HSYNC_ACTIVE_HIGH
;
2106 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PVSYNC
)
2107 temp
|= TRANS_DP_VSYNC_ACTIVE_HIGH
;
2109 switch (intel_trans_dp_port_sel(crtc
)) {
2111 temp
|= TRANS_DP_PORT_SEL_B
;
2114 temp
|= TRANS_DP_PORT_SEL_C
;
2117 temp
|= TRANS_DP_PORT_SEL_D
;
2120 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2121 temp
|= TRANS_DP_PORT_SEL_B
;
2125 I915_WRITE(reg
, temp
);
2128 /* enable PCH transcoder */
2129 reg
= TRANSCONF(pipe
);
2130 temp
= I915_READ(reg
);
2132 * make the BPC in transcoder be consistent with
2133 * that in pipeconf reg.
2135 temp
&= ~PIPE_BPC_MASK
;
2136 temp
|= I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
;
2137 I915_WRITE(reg
, temp
| TRANS_ENABLE
);
2138 if (wait_for(I915_READ(reg
) & TRANS_STATE_ENABLE
, 100))
2139 DRM_ERROR("failed to enable transcoder %d\n", pipe
);
2141 intel_crtc_load_lut(crtc
);
2142 intel_update_fbc(dev
);
2143 intel_crtc_update_cursor(crtc
, true);
2146 static void ironlake_crtc_disable(struct drm_crtc
*crtc
)
2148 struct drm_device
*dev
= crtc
->dev
;
2149 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2150 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2151 int pipe
= intel_crtc
->pipe
;
2152 int plane
= intel_crtc
->plane
;
2155 if (!intel_crtc
->active
)
2158 intel_crtc_wait_for_pending_flips(crtc
);
2159 drm_vblank_off(dev
, pipe
);
2160 intel_crtc_update_cursor(crtc
, false);
2162 /* Disable display plane */
2163 reg
= DSPCNTR(plane
);
2164 temp
= I915_READ(reg
);
2165 if (temp
& DISPLAY_PLANE_ENABLE
) {
2166 I915_WRITE(reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
2167 intel_flush_display_plane(dev
, plane
);
2170 if (dev_priv
->cfb_plane
== plane
&&
2171 dev_priv
->display
.disable_fbc
)
2172 dev_priv
->display
.disable_fbc(dev
);
2174 /* disable cpu pipe, disable after all planes disabled */
2175 reg
= PIPECONF(pipe
);
2176 temp
= I915_READ(reg
);
2177 if (temp
& PIPECONF_ENABLE
) {
2178 I915_WRITE(reg
, temp
& ~PIPECONF_ENABLE
);
2180 /* wait for cpu pipe off, pipe state */
2181 intel_wait_for_pipe_off(dev
, intel_crtc
->pipe
);
2185 I915_WRITE(pipe
? PFB_CTL_1
: PFA_CTL_1
, 0);
2186 I915_WRITE(pipe
? PFB_WIN_SZ
: PFA_WIN_SZ
, 0);
2188 /* disable CPU FDI tx and PCH FDI rx */
2189 reg
= FDI_TX_CTL(pipe
);
2190 temp
= I915_READ(reg
);
2191 I915_WRITE(reg
, temp
& ~FDI_TX_ENABLE
);
2194 reg
= FDI_RX_CTL(pipe
);
2195 temp
= I915_READ(reg
);
2196 temp
&= ~(0x7 << 16);
2197 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2198 I915_WRITE(reg
, temp
& ~FDI_RX_ENABLE
);
2203 /* Ironlake workaround, disable clock pointer after downing FDI */
2204 I915_WRITE(FDI_RX_CHICKEN(pipe
),
2205 I915_READ(FDI_RX_CHICKEN(pipe
) &
2206 ~FDI_RX_PHASE_SYNC_POINTER_ENABLE
));
2208 /* still set train pattern 1 */
2209 reg
= FDI_TX_CTL(pipe
);
2210 temp
= I915_READ(reg
);
2211 temp
&= ~FDI_LINK_TRAIN_NONE
;
2212 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2213 I915_WRITE(reg
, temp
);
2215 reg
= FDI_RX_CTL(pipe
);
2216 temp
= I915_READ(reg
);
2217 if (HAS_PCH_CPT(dev
)) {
2218 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2219 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2221 temp
&= ~FDI_LINK_TRAIN_NONE
;
2222 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2224 /* BPC in FDI rx is consistent with that in PIPECONF */
2225 temp
&= ~(0x07 << 16);
2226 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2227 I915_WRITE(reg
, temp
);
2232 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
2233 temp
= I915_READ(PCH_LVDS
);
2234 if (temp
& LVDS_PORT_EN
) {
2235 I915_WRITE(PCH_LVDS
, temp
& ~LVDS_PORT_EN
);
2236 POSTING_READ(PCH_LVDS
);
2241 /* disable PCH transcoder */
2242 reg
= TRANSCONF(plane
);
2243 temp
= I915_READ(reg
);
2244 if (temp
& TRANS_ENABLE
) {
2245 I915_WRITE(reg
, temp
& ~TRANS_ENABLE
);
2246 /* wait for PCH transcoder off, transcoder state */
2247 if (wait_for((I915_READ(reg
) & TRANS_STATE_ENABLE
) == 0, 50))
2248 DRM_ERROR("failed to disable transcoder\n");
2251 if (HAS_PCH_CPT(dev
)) {
2252 /* disable TRANS_DP_CTL */
2253 reg
= TRANS_DP_CTL(pipe
);
2254 temp
= I915_READ(reg
);
2255 temp
&= ~(TRANS_DP_OUTPUT_ENABLE
| TRANS_DP_PORT_SEL_MASK
);
2256 I915_WRITE(reg
, temp
);
2258 /* disable DPLL_SEL */
2259 temp
= I915_READ(PCH_DPLL_SEL
);
2261 temp
&= ~(TRANSA_DPLL_ENABLE
| TRANSA_DPLLB_SEL
);
2263 temp
&= ~(TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
2264 I915_WRITE(PCH_DPLL_SEL
, temp
);
2267 /* disable PCH DPLL */
2268 reg
= PCH_DPLL(pipe
);
2269 temp
= I915_READ(reg
);
2270 I915_WRITE(reg
, temp
& ~DPLL_VCO_ENABLE
);
2272 /* Switch from PCDclk to Rawclk */
2273 reg
= FDI_RX_CTL(pipe
);
2274 temp
= I915_READ(reg
);
2275 I915_WRITE(reg
, temp
& ~FDI_PCDCLK
);
2277 /* Disable CPU FDI TX PLL */
2278 reg
= FDI_TX_CTL(pipe
);
2279 temp
= I915_READ(reg
);
2280 I915_WRITE(reg
, temp
& ~FDI_TX_PLL_ENABLE
);
2285 reg
= FDI_RX_CTL(pipe
);
2286 temp
= I915_READ(reg
);
2287 I915_WRITE(reg
, temp
& ~FDI_RX_PLL_ENABLE
);
2289 /* Wait for the clocks to turn off. */
2293 intel_crtc
->active
= false;
2294 intel_update_watermarks(dev
);
2295 intel_update_fbc(dev
);
2296 intel_clear_scanline_wait(dev
);
2299 static void ironlake_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2301 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2302 int pipe
= intel_crtc
->pipe
;
2303 int plane
= intel_crtc
->plane
;
2305 /* XXX: When our outputs are all unaware of DPMS modes other than off
2306 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2309 case DRM_MODE_DPMS_ON
:
2310 case DRM_MODE_DPMS_STANDBY
:
2311 case DRM_MODE_DPMS_SUSPEND
:
2312 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe
, plane
);
2313 ironlake_crtc_enable(crtc
);
2316 case DRM_MODE_DPMS_OFF
:
2317 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe
, plane
);
2318 ironlake_crtc_disable(crtc
);
2323 static void intel_crtc_dpms_overlay(struct intel_crtc
*intel_crtc
, bool enable
)
2325 if (!enable
&& intel_crtc
->overlay
) {
2326 struct drm_device
*dev
= intel_crtc
->base
.dev
;
2328 mutex_lock(&dev
->struct_mutex
);
2329 (void) intel_overlay_switch_off(intel_crtc
->overlay
, false);
2330 mutex_unlock(&dev
->struct_mutex
);
2333 /* Let userspace switch the overlay on again. In most cases userspace
2334 * has to recompute where to put it anyway.
2338 static void i9xx_crtc_enable(struct drm_crtc
*crtc
)
2340 struct drm_device
*dev
= crtc
->dev
;
2341 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2342 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2343 int pipe
= intel_crtc
->pipe
;
2344 int plane
= intel_crtc
->plane
;
2347 if (intel_crtc
->active
)
2350 intel_crtc
->active
= true;
2351 intel_update_watermarks(dev
);
2353 /* Enable the DPLL */
2355 temp
= I915_READ(reg
);
2356 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
2357 I915_WRITE(reg
, temp
);
2359 /* Wait for the clocks to stabilize. */
2363 I915_WRITE(reg
, temp
| DPLL_VCO_ENABLE
);
2365 /* Wait for the clocks to stabilize. */
2369 I915_WRITE(reg
, temp
| DPLL_VCO_ENABLE
);
2371 /* Wait for the clocks to stabilize. */
2376 /* Enable the pipe */
2377 reg
= PIPECONF(pipe
);
2378 temp
= I915_READ(reg
);
2379 if ((temp
& PIPECONF_ENABLE
) == 0)
2380 I915_WRITE(reg
, temp
| PIPECONF_ENABLE
);
2382 /* Enable the plane */
2383 reg
= DSPCNTR(plane
);
2384 temp
= I915_READ(reg
);
2385 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
2386 I915_WRITE(reg
, temp
| DISPLAY_PLANE_ENABLE
);
2387 intel_flush_display_plane(dev
, plane
);
2390 intel_crtc_load_lut(crtc
);
2391 intel_update_fbc(dev
);
2393 /* Give the overlay scaler a chance to enable if it's on this pipe */
2394 intel_crtc_dpms_overlay(intel_crtc
, true);
2395 intel_crtc_update_cursor(crtc
, true);
2398 static void i9xx_crtc_disable(struct drm_crtc
*crtc
)
2400 struct drm_device
*dev
= crtc
->dev
;
2401 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2402 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2403 int pipe
= intel_crtc
->pipe
;
2404 int plane
= intel_crtc
->plane
;
2407 if (!intel_crtc
->active
)
2410 /* Give the overlay scaler a chance to disable if it's on this pipe */
2411 intel_crtc_wait_for_pending_flips(crtc
);
2412 drm_vblank_off(dev
, pipe
);
2413 intel_crtc_dpms_overlay(intel_crtc
, false);
2414 intel_crtc_update_cursor(crtc
, false);
2416 if (dev_priv
->cfb_plane
== plane
&&
2417 dev_priv
->display
.disable_fbc
)
2418 dev_priv
->display
.disable_fbc(dev
);
2420 /* Disable display plane */
2421 reg
= DSPCNTR(plane
);
2422 temp
= I915_READ(reg
);
2423 if (temp
& DISPLAY_PLANE_ENABLE
) {
2424 I915_WRITE(reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
2425 /* Flush the plane changes */
2426 intel_flush_display_plane(dev
, plane
);
2428 /* Wait for vblank for the disable to take effect */
2430 intel_wait_for_vblank(dev
, pipe
);
2433 /* Don't disable pipe A or pipe A PLLs if needed */
2434 if (pipe
== 0 && (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
2437 /* Next, disable display pipes */
2438 reg
= PIPECONF(pipe
);
2439 temp
= I915_READ(reg
);
2440 if (temp
& PIPECONF_ENABLE
) {
2441 I915_WRITE(reg
, temp
& ~PIPECONF_ENABLE
);
2443 /* Wait for the pipe to turn off */
2445 intel_wait_for_pipe_off(dev
, pipe
);
2449 temp
= I915_READ(reg
);
2450 if (temp
& DPLL_VCO_ENABLE
) {
2451 I915_WRITE(reg
, temp
& ~DPLL_VCO_ENABLE
);
2453 /* Wait for the clocks to turn off. */
2459 intel_crtc
->active
= false;
2460 intel_update_fbc(dev
);
2461 intel_update_watermarks(dev
);
2462 intel_clear_scanline_wait(dev
);
2465 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2467 /* XXX: When our outputs are all unaware of DPMS modes other than off
2468 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2471 case DRM_MODE_DPMS_ON
:
2472 case DRM_MODE_DPMS_STANDBY
:
2473 case DRM_MODE_DPMS_SUSPEND
:
2474 i9xx_crtc_enable(crtc
);
2476 case DRM_MODE_DPMS_OFF
:
2477 i9xx_crtc_disable(crtc
);
2483 * Sets the power management mode of the pipe and plane.
2485 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2487 struct drm_device
*dev
= crtc
->dev
;
2488 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2489 struct drm_i915_master_private
*master_priv
;
2490 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2491 int pipe
= intel_crtc
->pipe
;
2494 if (intel_crtc
->dpms_mode
== mode
)
2497 intel_crtc
->dpms_mode
= mode
;
2499 dev_priv
->display
.dpms(crtc
, mode
);
2501 if (!dev
->primary
->master
)
2504 master_priv
= dev
->primary
->master
->driver_priv
;
2505 if (!master_priv
->sarea_priv
)
2508 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
2512 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2513 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2516 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2517 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2520 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe
);
2525 static void intel_crtc_disable(struct drm_crtc
*crtc
)
2527 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
2528 struct drm_device
*dev
= crtc
->dev
;
2530 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
2533 mutex_lock(&dev
->struct_mutex
);
2534 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
2535 mutex_unlock(&dev
->struct_mutex
);
2539 /* Prepare for a mode set.
2541 * Note we could be a lot smarter here. We need to figure out which outputs
2542 * will be enabled, which disabled (in short, how the config will changes)
2543 * and perform the minimum necessary steps to accomplish that, e.g. updating
2544 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2545 * panel fitting is in the proper state, etc.
2547 static void i9xx_crtc_prepare(struct drm_crtc
*crtc
)
2549 i9xx_crtc_disable(crtc
);
2552 static void i9xx_crtc_commit(struct drm_crtc
*crtc
)
2554 i9xx_crtc_enable(crtc
);
2557 static void ironlake_crtc_prepare(struct drm_crtc
*crtc
)
2559 ironlake_crtc_disable(crtc
);
2562 static void ironlake_crtc_commit(struct drm_crtc
*crtc
)
2564 ironlake_crtc_enable(crtc
);
2567 void intel_encoder_prepare (struct drm_encoder
*encoder
)
2569 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2570 /* lvds has its own version of prepare see intel_lvds_prepare */
2571 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
2574 void intel_encoder_commit (struct drm_encoder
*encoder
)
2576 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2577 /* lvds has its own version of commit see intel_lvds_commit */
2578 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
2581 void intel_encoder_destroy(struct drm_encoder
*encoder
)
2583 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
2585 drm_encoder_cleanup(encoder
);
2586 kfree(intel_encoder
);
2589 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
2590 struct drm_display_mode
*mode
,
2591 struct drm_display_mode
*adjusted_mode
)
2593 struct drm_device
*dev
= crtc
->dev
;
2595 if (HAS_PCH_SPLIT(dev
)) {
2596 /* FDI link clock is fixed at 2.7G */
2597 if (mode
->clock
* 3 > IRONLAKE_FDI_FREQ
* 4)
2601 /* XXX some encoders set the crtcinfo, others don't.
2602 * Obviously we need some form of conflict resolution here...
2604 if (adjusted_mode
->crtc_htotal
== 0)
2605 drm_mode_set_crtcinfo(adjusted_mode
, 0);
2610 static int i945_get_display_clock_speed(struct drm_device
*dev
)
2615 static int i915_get_display_clock_speed(struct drm_device
*dev
)
2620 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
2625 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
2629 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
2631 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
2634 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
2635 case GC_DISPLAY_CLOCK_333_MHZ
:
2638 case GC_DISPLAY_CLOCK_190_200_MHZ
:
2644 static int i865_get_display_clock_speed(struct drm_device
*dev
)
2649 static int i855_get_display_clock_speed(struct drm_device
*dev
)
2652 /* Assume that the hardware is in the high speed state. This
2653 * should be the default.
2655 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
2656 case GC_CLOCK_133_200
:
2657 case GC_CLOCK_100_200
:
2659 case GC_CLOCK_166_250
:
2661 case GC_CLOCK_100_133
:
2665 /* Shouldn't happen */
2669 static int i830_get_display_clock_speed(struct drm_device
*dev
)
2683 fdi_reduce_ratio(u32
*num
, u32
*den
)
2685 while (*num
> 0xffffff || *den
> 0xffffff) {
2691 #define DATA_N 0x800000
2692 #define LINK_N 0x80000
2695 ironlake_compute_m_n(int bits_per_pixel
, int nlanes
, int pixel_clock
,
2696 int link_clock
, struct fdi_m_n
*m_n
)
2700 m_n
->tu
= 64; /* default size */
2702 temp
= (u64
) DATA_N
* pixel_clock
;
2703 temp
= div_u64(temp
, link_clock
);
2704 m_n
->gmch_m
= div_u64(temp
* bits_per_pixel
, nlanes
);
2705 m_n
->gmch_m
>>= 3; /* convert to bytes_per_pixel */
2706 m_n
->gmch_n
= DATA_N
;
2707 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
2709 temp
= (u64
) LINK_N
* pixel_clock
;
2710 m_n
->link_m
= div_u64(temp
, link_clock
);
2711 m_n
->link_n
= LINK_N
;
2712 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
2716 struct intel_watermark_params
{
2717 unsigned long fifo_size
;
2718 unsigned long max_wm
;
2719 unsigned long default_wm
;
2720 unsigned long guard_size
;
2721 unsigned long cacheline_size
;
2724 /* Pineview has different values for various configs */
2725 static struct intel_watermark_params pineview_display_wm
= {
2726 PINEVIEW_DISPLAY_FIFO
,
2730 PINEVIEW_FIFO_LINE_SIZE
2732 static struct intel_watermark_params pineview_display_hplloff_wm
= {
2733 PINEVIEW_DISPLAY_FIFO
,
2735 PINEVIEW_DFT_HPLLOFF_WM
,
2737 PINEVIEW_FIFO_LINE_SIZE
2739 static struct intel_watermark_params pineview_cursor_wm
= {
2740 PINEVIEW_CURSOR_FIFO
,
2741 PINEVIEW_CURSOR_MAX_WM
,
2742 PINEVIEW_CURSOR_DFT_WM
,
2743 PINEVIEW_CURSOR_GUARD_WM
,
2744 PINEVIEW_FIFO_LINE_SIZE
,
2746 static struct intel_watermark_params pineview_cursor_hplloff_wm
= {
2747 PINEVIEW_CURSOR_FIFO
,
2748 PINEVIEW_CURSOR_MAX_WM
,
2749 PINEVIEW_CURSOR_DFT_WM
,
2750 PINEVIEW_CURSOR_GUARD_WM
,
2751 PINEVIEW_FIFO_LINE_SIZE
2753 static struct intel_watermark_params g4x_wm_info
= {
2760 static struct intel_watermark_params g4x_cursor_wm_info
= {
2767 static struct intel_watermark_params i965_cursor_wm_info
= {
2772 I915_FIFO_LINE_SIZE
,
2774 static struct intel_watermark_params i945_wm_info
= {
2781 static struct intel_watermark_params i915_wm_info
= {
2788 static struct intel_watermark_params i855_wm_info
= {
2795 static struct intel_watermark_params i830_wm_info
= {
2803 static struct intel_watermark_params ironlake_display_wm_info
= {
2811 static struct intel_watermark_params ironlake_cursor_wm_info
= {
2819 static struct intel_watermark_params ironlake_display_srwm_info
= {
2820 ILK_DISPLAY_SR_FIFO
,
2821 ILK_DISPLAY_MAX_SRWM
,
2822 ILK_DISPLAY_DFT_SRWM
,
2827 static struct intel_watermark_params ironlake_cursor_srwm_info
= {
2829 ILK_CURSOR_MAX_SRWM
,
2830 ILK_CURSOR_DFT_SRWM
,
2836 * intel_calculate_wm - calculate watermark level
2837 * @clock_in_khz: pixel clock
2838 * @wm: chip FIFO params
2839 * @pixel_size: display pixel size
2840 * @latency_ns: memory latency for the platform
2842 * Calculate the watermark level (the level at which the display plane will
2843 * start fetching from memory again). Each chip has a different display
2844 * FIFO size and allocation, so the caller needs to figure that out and pass
2845 * in the correct intel_watermark_params structure.
2847 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2848 * on the pixel size. When it reaches the watermark level, it'll start
2849 * fetching FIFO line sized based chunks from memory until the FIFO fills
2850 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2851 * will occur, and a display engine hang could result.
2853 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
2854 struct intel_watermark_params
*wm
,
2856 unsigned long latency_ns
)
2858 long entries_required
, wm_size
;
2861 * Note: we need to make sure we don't overflow for various clock &
2863 * clocks go from a few thousand to several hundred thousand.
2864 * latency is usually a few thousand
2866 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
2868 entries_required
= DIV_ROUND_UP(entries_required
, wm
->cacheline_size
);
2870 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required
);
2872 wm_size
= wm
->fifo_size
- (entries_required
+ wm
->guard_size
);
2874 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size
);
2876 /* Don't promote wm_size to unsigned... */
2877 if (wm_size
> (long)wm
->max_wm
)
2878 wm_size
= wm
->max_wm
;
2880 wm_size
= wm
->default_wm
;
2884 struct cxsr_latency
{
2887 unsigned long fsb_freq
;
2888 unsigned long mem_freq
;
2889 unsigned long display_sr
;
2890 unsigned long display_hpll_disable
;
2891 unsigned long cursor_sr
;
2892 unsigned long cursor_hpll_disable
;
2895 static const struct cxsr_latency cxsr_latency_table
[] = {
2896 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2897 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2898 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2899 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2900 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2902 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2903 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2904 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2905 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2906 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2908 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2909 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2910 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2911 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2912 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2914 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2915 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2916 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2917 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2918 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2920 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2921 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2922 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2923 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2924 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2926 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2927 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2928 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2929 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2930 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2933 static const struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
,
2938 const struct cxsr_latency
*latency
;
2941 if (fsb
== 0 || mem
== 0)
2944 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
2945 latency
= &cxsr_latency_table
[i
];
2946 if (is_desktop
== latency
->is_desktop
&&
2947 is_ddr3
== latency
->is_ddr3
&&
2948 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
2952 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2957 static void pineview_disable_cxsr(struct drm_device
*dev
)
2959 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2961 /* deactivate cxsr */
2962 I915_WRITE(DSPFW3
, I915_READ(DSPFW3
) & ~PINEVIEW_SELF_REFRESH_EN
);
2966 * Latency for FIFO fetches is dependent on several factors:
2967 * - memory configuration (speed, channels)
2969 * - current MCH state
2970 * It can be fairly high in some situations, so here we assume a fairly
2971 * pessimal value. It's a tradeoff between extra memory fetches (if we
2972 * set this value too high, the FIFO will fetch frequently to stay full)
2973 * and power consumption (set it too low to save power and we might see
2974 * FIFO underruns and display "flicker").
2976 * A value of 5us seems to be a good balance; safe for very low end
2977 * platforms but not overly aggressive on lower latency configs.
2979 static const int latency_ns
= 5000;
2981 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
2983 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2984 uint32_t dsparb
= I915_READ(DSPARB
);
2987 size
= dsparb
& 0x7f;
2989 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
2991 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2992 plane
? "B" : "A", size
);
2997 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
2999 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3000 uint32_t dsparb
= I915_READ(DSPARB
);
3003 size
= dsparb
& 0x1ff;
3005 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
3006 size
>>= 1; /* Convert to cachelines */
3008 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3009 plane
? "B" : "A", size
);
3014 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
3016 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3017 uint32_t dsparb
= I915_READ(DSPARB
);
3020 size
= dsparb
& 0x7f;
3021 size
>>= 2; /* Convert to cachelines */
3023 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3030 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
3032 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3033 uint32_t dsparb
= I915_READ(DSPARB
);
3036 size
= dsparb
& 0x7f;
3037 size
>>= 1; /* Convert to cachelines */
3039 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3040 plane
? "B" : "A", size
);
3045 static void pineview_update_wm(struct drm_device
*dev
, int planea_clock
,
3046 int planeb_clock
, int sr_hdisplay
, int unused
,
3049 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3050 const struct cxsr_latency
*latency
;
3055 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->is_ddr3
,
3056 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
3058 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3059 pineview_disable_cxsr(dev
);
3063 if (!planea_clock
|| !planeb_clock
) {
3064 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3067 wm
= intel_calculate_wm(sr_clock
, &pineview_display_wm
,
3068 pixel_size
, latency
->display_sr
);
3069 reg
= I915_READ(DSPFW1
);
3070 reg
&= ~DSPFW_SR_MASK
;
3071 reg
|= wm
<< DSPFW_SR_SHIFT
;
3072 I915_WRITE(DSPFW1
, reg
);
3073 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
3076 wm
= intel_calculate_wm(sr_clock
, &pineview_cursor_wm
,
3077 pixel_size
, latency
->cursor_sr
);
3078 reg
= I915_READ(DSPFW3
);
3079 reg
&= ~DSPFW_CURSOR_SR_MASK
;
3080 reg
|= (wm
& 0x3f) << DSPFW_CURSOR_SR_SHIFT
;
3081 I915_WRITE(DSPFW3
, reg
);
3083 /* Display HPLL off SR */
3084 wm
= intel_calculate_wm(sr_clock
, &pineview_display_hplloff_wm
,
3085 pixel_size
, latency
->display_hpll_disable
);
3086 reg
= I915_READ(DSPFW3
);
3087 reg
&= ~DSPFW_HPLL_SR_MASK
;
3088 reg
|= wm
& DSPFW_HPLL_SR_MASK
;
3089 I915_WRITE(DSPFW3
, reg
);
3091 /* cursor HPLL off SR */
3092 wm
= intel_calculate_wm(sr_clock
, &pineview_cursor_hplloff_wm
,
3093 pixel_size
, latency
->cursor_hpll_disable
);
3094 reg
= I915_READ(DSPFW3
);
3095 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
3096 reg
|= (wm
& 0x3f) << DSPFW_HPLL_CURSOR_SHIFT
;
3097 I915_WRITE(DSPFW3
, reg
);
3098 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
3102 I915_READ(DSPFW3
) | PINEVIEW_SELF_REFRESH_EN
);
3103 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3105 pineview_disable_cxsr(dev
);
3106 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3110 static void g4x_update_wm(struct drm_device
*dev
, int planea_clock
,
3111 int planeb_clock
, int sr_hdisplay
, int sr_htotal
,
3114 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3115 int total_size
, cacheline_size
;
3116 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
, cursor_sr
;
3117 struct intel_watermark_params planea_params
, planeb_params
;
3118 unsigned long line_time_us
;
3119 int sr_clock
, sr_entries
= 0, entries_required
;
3121 /* Create copies of the base settings for each pipe */
3122 planea_params
= planeb_params
= g4x_wm_info
;
3124 /* Grab a couple of global values before we overwrite them */
3125 total_size
= planea_params
.fifo_size
;
3126 cacheline_size
= planea_params
.cacheline_size
;
3129 * Note: we need to make sure we don't overflow for various clock &
3131 * clocks go from a few thousand to several hundred thousand.
3132 * latency is usually a few thousand
3134 entries_required
= ((planea_clock
/ 1000) * pixel_size
* latency_ns
) /
3136 entries_required
= DIV_ROUND_UP(entries_required
, G4X_FIFO_LINE_SIZE
);
3137 planea_wm
= entries_required
+ planea_params
.guard_size
;
3139 entries_required
= ((planeb_clock
/ 1000) * pixel_size
* latency_ns
) /
3141 entries_required
= DIV_ROUND_UP(entries_required
, G4X_FIFO_LINE_SIZE
);
3142 planeb_wm
= entries_required
+ planeb_params
.guard_size
;
3144 cursora_wm
= cursorb_wm
= 16;
3147 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
3149 /* Calc sr entries for one plane configs */
3150 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
3151 /* self-refresh has much higher latency */
3152 static const int sr_latency_ns
= 12000;
3154 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3155 line_time_us
= ((sr_htotal
* 1000) / sr_clock
);
3157 /* Use ns/us then divide to preserve precision */
3158 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3159 pixel_size
* sr_hdisplay
;
3160 sr_entries
= DIV_ROUND_UP(sr_entries
, cacheline_size
);
3162 entries_required
= (((sr_latency_ns
/ line_time_us
) +
3163 1000) / 1000) * pixel_size
* 64;
3164 entries_required
= DIV_ROUND_UP(entries_required
,
3165 g4x_cursor_wm_info
.cacheline_size
);
3166 cursor_sr
= entries_required
+ g4x_cursor_wm_info
.guard_size
;
3168 if (cursor_sr
> g4x_cursor_wm_info
.max_wm
)
3169 cursor_sr
= g4x_cursor_wm_info
.max_wm
;
3170 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3171 "cursor %d\n", sr_entries
, cursor_sr
);
3173 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
3175 /* Turn off self refresh if both pipes are enabled */
3176 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
3180 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3181 planea_wm
, planeb_wm
, sr_entries
);
3186 I915_WRITE(DSPFW1
, (sr_entries
<< DSPFW_SR_SHIFT
) |
3187 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
3188 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) | planea_wm
);
3189 I915_WRITE(DSPFW2
, (I915_READ(DSPFW2
) & DSPFW_CURSORA_MASK
) |
3190 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
3191 /* HPLL off in SR has some issues on G4x... disable it */
3192 I915_WRITE(DSPFW3
, (I915_READ(DSPFW3
) & ~DSPFW_HPLL_SR_EN
) |
3193 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
3196 static void i965_update_wm(struct drm_device
*dev
, int planea_clock
,
3197 int planeb_clock
, int sr_hdisplay
, int sr_htotal
,
3200 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3201 unsigned long line_time_us
;
3202 int sr_clock
, sr_entries
, srwm
= 1;
3205 /* Calc sr entries for one plane configs */
3206 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
3207 /* self-refresh has much higher latency */
3208 static const int sr_latency_ns
= 12000;
3210 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3211 line_time_us
= ((sr_htotal
* 1000) / sr_clock
);
3213 /* Use ns/us then divide to preserve precision */
3214 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3215 pixel_size
* sr_hdisplay
;
3216 sr_entries
= DIV_ROUND_UP(sr_entries
, I915_FIFO_LINE_SIZE
);
3217 DRM_DEBUG("self-refresh entries: %d\n", sr_entries
);
3218 srwm
= I965_FIFO_SIZE
- sr_entries
;
3223 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3225 sr_entries
= DIV_ROUND_UP(sr_entries
,
3226 i965_cursor_wm_info
.cacheline_size
);
3227 cursor_sr
= i965_cursor_wm_info
.fifo_size
-
3228 (sr_entries
+ i965_cursor_wm_info
.guard_size
);
3230 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
3231 cursor_sr
= i965_cursor_wm_info
.max_wm
;
3233 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3234 "cursor %d\n", srwm
, cursor_sr
);
3236 if (IS_CRESTLINE(dev
))
3237 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
3239 /* Turn off self refresh if both pipes are enabled */
3240 if (IS_CRESTLINE(dev
))
3241 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
3245 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3248 /* 965 has limitations... */
3249 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) | (8 << 16) | (8 << 8) |
3251 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
3252 /* update cursor SR watermark */
3253 I915_WRITE(DSPFW3
, (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
3256 static void i9xx_update_wm(struct drm_device
*dev
, int planea_clock
,
3257 int planeb_clock
, int sr_hdisplay
, int sr_htotal
,
3260 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3263 int total_size
, cacheline_size
, cwm
, srwm
= 1;
3264 int planea_wm
, planeb_wm
;
3265 struct intel_watermark_params planea_params
, planeb_params
;
3266 unsigned long line_time_us
;
3267 int sr_clock
, sr_entries
= 0;
3269 /* Create copies of the base settings for each pipe */
3270 if (IS_CRESTLINE(dev
) || IS_I945GM(dev
))
3271 planea_params
= planeb_params
= i945_wm_info
;
3272 else if (!IS_GEN2(dev
))
3273 planea_params
= planeb_params
= i915_wm_info
;
3275 planea_params
= planeb_params
= i855_wm_info
;
3277 /* Grab a couple of global values before we overwrite them */
3278 total_size
= planea_params
.fifo_size
;
3279 cacheline_size
= planea_params
.cacheline_size
;
3281 /* Update per-plane FIFO sizes */
3282 planea_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
3283 planeb_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
3285 planea_wm
= intel_calculate_wm(planea_clock
, &planea_params
,
3286 pixel_size
, latency_ns
);
3287 planeb_wm
= intel_calculate_wm(planeb_clock
, &planeb_params
,
3288 pixel_size
, latency_ns
);
3289 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
3292 * Overlay gets an aggressive default since video jitter is bad.
3296 /* Calc sr entries for one plane configs */
3297 if (HAS_FW_BLC(dev
) && sr_hdisplay
&&
3298 (!planea_clock
|| !planeb_clock
)) {
3299 /* self-refresh has much higher latency */
3300 static const int sr_latency_ns
= 6000;
3302 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3303 line_time_us
= ((sr_htotal
* 1000) / sr_clock
);
3305 /* Use ns/us then divide to preserve precision */
3306 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3307 pixel_size
* sr_hdisplay
;
3308 sr_entries
= DIV_ROUND_UP(sr_entries
, cacheline_size
);
3309 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries
);
3310 srwm
= total_size
- sr_entries
;
3314 if (IS_I945G(dev
) || IS_I945GM(dev
))
3315 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
3316 else if (IS_I915GM(dev
)) {
3317 /* 915M has a smaller SRWM field */
3318 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
3319 I915_WRITE(INSTPM
, I915_READ(INSTPM
) | INSTPM_SELF_EN
);
3322 /* Turn off self refresh if both pipes are enabled */
3323 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
3324 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
3326 } else if (IS_I915GM(dev
)) {
3327 I915_WRITE(INSTPM
, I915_READ(INSTPM
) & ~INSTPM_SELF_EN
);
3331 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3332 planea_wm
, planeb_wm
, cwm
, srwm
);
3334 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
3335 fwater_hi
= (cwm
& 0x1f);
3337 /* Set request length to 8 cachelines per fetch */
3338 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
3339 fwater_hi
= fwater_hi
| (1 << 8);
3341 I915_WRITE(FW_BLC
, fwater_lo
);
3342 I915_WRITE(FW_BLC2
, fwater_hi
);
3345 static void i830_update_wm(struct drm_device
*dev
, int planea_clock
, int unused
,
3346 int unused2
, int unused3
, int pixel_size
)
3348 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3349 uint32_t fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
3352 i830_wm_info
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
3354 planea_wm
= intel_calculate_wm(planea_clock
, &i830_wm_info
,
3355 pixel_size
, latency_ns
);
3356 fwater_lo
|= (3<<8) | planea_wm
;
3358 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
3360 I915_WRITE(FW_BLC
, fwater_lo
);
3363 #define ILK_LP0_PLANE_LATENCY 700
3364 #define ILK_LP0_CURSOR_LATENCY 1300
3366 static bool ironlake_compute_wm0(struct drm_device
*dev
,
3371 struct drm_crtc
*crtc
;
3372 int htotal
, hdisplay
, clock
, pixel_size
= 0;
3373 int line_time_us
, line_count
, entries
;
3375 crtc
= intel_get_crtc_for_pipe(dev
, pipe
);
3376 if (crtc
->fb
== NULL
|| !crtc
->enabled
)
3379 htotal
= crtc
->mode
.htotal
;
3380 hdisplay
= crtc
->mode
.hdisplay
;
3381 clock
= crtc
->mode
.clock
;
3382 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3384 /* Use the small buffer method to calculate plane watermark */
3385 entries
= ((clock
* pixel_size
/ 1000) * ILK_LP0_PLANE_LATENCY
) / 1000;
3386 entries
= DIV_ROUND_UP(entries
,
3387 ironlake_display_wm_info
.cacheline_size
);
3388 *plane_wm
= entries
+ ironlake_display_wm_info
.guard_size
;
3389 if (*plane_wm
> (int)ironlake_display_wm_info
.max_wm
)
3390 *plane_wm
= ironlake_display_wm_info
.max_wm
;
3392 /* Use the large buffer method to calculate cursor watermark */
3393 line_time_us
= ((htotal
* 1000) / clock
);
3394 line_count
= (ILK_LP0_CURSOR_LATENCY
/ line_time_us
+ 1000) / 1000;
3395 entries
= line_count
* 64 * pixel_size
;
3396 entries
= DIV_ROUND_UP(entries
,
3397 ironlake_cursor_wm_info
.cacheline_size
);
3398 *cursor_wm
= entries
+ ironlake_cursor_wm_info
.guard_size
;
3399 if (*cursor_wm
> ironlake_cursor_wm_info
.max_wm
)
3400 *cursor_wm
= ironlake_cursor_wm_info
.max_wm
;
3405 static void ironlake_update_wm(struct drm_device
*dev
,
3406 int planea_clock
, int planeb_clock
,
3407 int sr_hdisplay
, int sr_htotal
,
3410 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3411 int plane_wm
, cursor_wm
, enabled
;
3415 if (ironlake_compute_wm0(dev
, 0, &plane_wm
, &cursor_wm
)) {
3416 I915_WRITE(WM0_PIPEA_ILK
,
3417 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
3418 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3419 " plane %d, " "cursor: %d\n",
3420 plane_wm
, cursor_wm
);
3424 if (ironlake_compute_wm0(dev
, 1, &plane_wm
, &cursor_wm
)) {
3425 I915_WRITE(WM0_PIPEB_ILK
,
3426 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
3427 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3428 " plane %d, cursor: %d\n",
3429 plane_wm
, cursor_wm
);
3434 * Calculate and update the self-refresh watermark only when one
3435 * display plane is used.
3438 if (enabled
== 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3439 unsigned long line_time_us
;
3440 int small
, large
, plane_fbc
;
3441 int sr_clock
, entries
;
3442 int line_count
, line_size
;
3443 /* Read the self-refresh latency. The unit is 0.5us */
3444 int ilk_sr_latency
= I915_READ(MLTR_ILK
) & ILK_SRLT_MASK
;
3446 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3447 line_time_us
= (sr_htotal
* 1000) / sr_clock
;
3449 /* Use ns/us then divide to preserve precision */
3450 line_count
= ((ilk_sr_latency
* 500) / line_time_us
+ 1000)
3452 line_size
= sr_hdisplay
* pixel_size
;
3454 /* Use the minimum of the small and large buffer method for primary */
3455 small
= ((sr_clock
* pixel_size
/ 1000) * (ilk_sr_latency
* 500)) / 1000;
3456 large
= line_count
* line_size
;
3458 entries
= DIV_ROUND_UP(min(small
, large
),
3459 ironlake_display_srwm_info
.cacheline_size
);
3461 plane_fbc
= entries
* 64;
3462 plane_fbc
= DIV_ROUND_UP(plane_fbc
, line_size
);
3464 plane_wm
= entries
+ ironlake_display_srwm_info
.guard_size
;
3465 if (plane_wm
> (int)ironlake_display_srwm_info
.max_wm
)
3466 plane_wm
= ironlake_display_srwm_info
.max_wm
;
3468 /* calculate the self-refresh watermark for display cursor */
3469 entries
= line_count
* pixel_size
* 64;
3470 entries
= DIV_ROUND_UP(entries
,
3471 ironlake_cursor_srwm_info
.cacheline_size
);
3473 cursor_wm
= entries
+ ironlake_cursor_srwm_info
.guard_size
;
3474 if (cursor_wm
> (int)ironlake_cursor_srwm_info
.max_wm
)
3475 cursor_wm
= ironlake_cursor_srwm_info
.max_wm
;
3477 /* configure watermark and enable self-refresh */
3478 tmp
= (WM1_LP_SR_EN
|
3479 (ilk_sr_latency
<< WM1_LP_LATENCY_SHIFT
) |
3480 (plane_fbc
<< WM1_LP_FBC_SHIFT
) |
3481 (plane_wm
<< WM1_LP_SR_SHIFT
) |
3483 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3484 " cursor %d\n", plane_wm
, plane_fbc
, cursor_wm
);
3486 I915_WRITE(WM1_LP_ILK
, tmp
);
3487 /* XXX setup WM2 and WM3 */
3491 * intel_update_watermarks - update FIFO watermark values based on current modes
3493 * Calculate watermark values for the various WM regs based on current mode
3494 * and plane configuration.
3496 * There are several cases to deal with here:
3497 * - normal (i.e. non-self-refresh)
3498 * - self-refresh (SR) mode
3499 * - lines are large relative to FIFO size (buffer can hold up to 2)
3500 * - lines are small relative to FIFO size (buffer can hold more than 2
3501 * lines), so need to account for TLB latency
3503 * The normal calculation is:
3504 * watermark = dotclock * bytes per pixel * latency
3505 * where latency is platform & configuration dependent (we assume pessimal
3508 * The SR calculation is:
3509 * watermark = (trunc(latency/line time)+1) * surface width *
3512 * line time = htotal / dotclock
3513 * surface width = hdisplay for normal plane and 64 for cursor
3514 * and latency is assumed to be high, as above.
3516 * The final value programmed to the register should always be rounded up,
3517 * and include an extra 2 entries to account for clock crossings.
3519 * We don't use the sprite, so we can ignore that. And on Crestline we have
3520 * to set the non-SR watermarks to 8.
3522 static void intel_update_watermarks(struct drm_device
*dev
)
3524 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3525 struct drm_crtc
*crtc
;
3526 int sr_hdisplay
= 0;
3527 unsigned long planea_clock
= 0, planeb_clock
= 0, sr_clock
= 0;
3528 int enabled
= 0, pixel_size
= 0;
3531 if (!dev_priv
->display
.update_wm
)
3534 /* Get the clock config from both planes */
3535 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3536 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3537 if (intel_crtc
->active
) {
3539 if (intel_crtc
->plane
== 0) {
3540 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3541 intel_crtc
->pipe
, crtc
->mode
.clock
);
3542 planea_clock
= crtc
->mode
.clock
;
3544 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3545 intel_crtc
->pipe
, crtc
->mode
.clock
);
3546 planeb_clock
= crtc
->mode
.clock
;
3548 sr_hdisplay
= crtc
->mode
.hdisplay
;
3549 sr_clock
= crtc
->mode
.clock
;
3550 sr_htotal
= crtc
->mode
.htotal
;
3552 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3554 pixel_size
= 4; /* by default */
3561 dev_priv
->display
.update_wm(dev
, planea_clock
, planeb_clock
,
3562 sr_hdisplay
, sr_htotal
, pixel_size
);
3565 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
3566 struct drm_display_mode
*mode
,
3567 struct drm_display_mode
*adjusted_mode
,
3569 struct drm_framebuffer
*old_fb
)
3571 struct drm_device
*dev
= crtc
->dev
;
3572 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3573 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3574 int pipe
= intel_crtc
->pipe
;
3575 int plane
= intel_crtc
->plane
;
3576 u32 fp_reg
, dpll_reg
;
3577 int refclk
, num_connectors
= 0;
3578 intel_clock_t clock
, reduced_clock
;
3579 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
3580 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
3581 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
3582 struct intel_encoder
*has_edp_encoder
= NULL
;
3583 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
3584 struct intel_encoder
*encoder
;
3585 const intel_limit_t
*limit
;
3587 struct fdi_m_n m_n
= {0};
3591 drm_vblank_pre_modeset(dev
, pipe
);
3593 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
3594 if (encoder
->base
.crtc
!= crtc
)
3597 switch (encoder
->type
) {
3598 case INTEL_OUTPUT_LVDS
:
3601 case INTEL_OUTPUT_SDVO
:
3602 case INTEL_OUTPUT_HDMI
:
3604 if (encoder
->needs_tv_clock
)
3607 case INTEL_OUTPUT_DVO
:
3610 case INTEL_OUTPUT_TVOUT
:
3613 case INTEL_OUTPUT_ANALOG
:
3616 case INTEL_OUTPUT_DISPLAYPORT
:
3619 case INTEL_OUTPUT_EDP
:
3620 has_edp_encoder
= encoder
;
3627 if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_connectors
< 2) {
3628 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
3629 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3631 } else if (!IS_GEN2(dev
)) {
3633 if (HAS_PCH_SPLIT(dev
) &&
3634 (!has_edp_encoder
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)))
3635 refclk
= 120000; /* 120Mhz refclk */
3641 * Returns a set of divisors for the desired target clock with the given
3642 * refclk, or FALSE. The returned values represent the clock equation:
3643 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3645 limit
= intel_limit(crtc
);
3646 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
3648 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3649 drm_vblank_post_modeset(dev
, pipe
);
3653 /* Ensure that the cursor is valid for the new mode before changing... */
3654 intel_crtc_update_cursor(crtc
, true);
3656 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
3657 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
3658 dev_priv
->lvds_downclock
,
3661 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
3663 * If the different P is found, it means that we can't
3664 * switch the display clock by using the FP0/FP1.
3665 * In such case we will disable the LVDS downclock
3668 DRM_DEBUG_KMS("Different P is found for "
3669 "LVDS clock/downclock\n");
3670 has_reduced_clock
= 0;
3673 /* SDVO TV has fixed PLL values depend on its clock range,
3674 this mirrors vbios setting. */
3675 if (is_sdvo
&& is_tv
) {
3676 if (adjusted_mode
->clock
>= 100000
3677 && adjusted_mode
->clock
< 140500) {
3683 } else if (adjusted_mode
->clock
>= 140500
3684 && adjusted_mode
->clock
<= 200000) {
3694 if (HAS_PCH_SPLIT(dev
)) {
3695 int lane
= 0, link_bw
, bpp
;
3696 /* CPU eDP doesn't require FDI link, so just set DP M/N
3697 according to current link config */
3698 if (has_edp_encoder
&& !intel_encoder_is_pch_edp(&encoder
->base
)) {
3699 target_clock
= mode
->clock
;
3700 intel_edp_link_config(has_edp_encoder
,
3703 /* [e]DP over FDI requires target mode clock
3704 instead of link clock */
3705 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
3706 target_clock
= mode
->clock
;
3708 target_clock
= adjusted_mode
->clock
;
3710 /* FDI is a binary signal running at ~2.7GHz, encoding
3711 * each output octet as 10 bits. The actual frequency
3712 * is stored as a divider into a 100MHz clock, and the
3713 * mode pixel clock is stored in units of 1KHz.
3714 * Hence the bw of each lane in terms of the mode signal
3717 link_bw
= intel_fdi_link_freq(dev
) * MHz(100)/KHz(1)/10;
3720 /* determine panel color depth */
3721 temp
= I915_READ(PIPECONF(pipe
));
3722 temp
&= ~PIPE_BPC_MASK
;
3724 /* the BPC will be 6 if it is 18-bit LVDS panel */
3725 if ((I915_READ(PCH_LVDS
) & LVDS_A3_POWER_MASK
) == LVDS_A3_POWER_UP
)
3729 } else if (has_edp_encoder
) {
3730 switch (dev_priv
->edp
.bpp
/3) {
3746 I915_WRITE(PIPECONF(pipe
), temp
);
3748 switch (temp
& PIPE_BPC_MASK
) {
3762 DRM_ERROR("unknown pipe bpc value\n");
3768 * Account for spread spectrum to avoid
3769 * oversubscribing the link. Max center spread
3770 * is 2.5%; use 5% for safety's sake.
3772 u32 bps
= target_clock
* bpp
* 21 / 20;
3773 lane
= bps
/ (link_bw
* 8) + 1;
3776 intel_crtc
->fdi_lanes
= lane
;
3778 ironlake_compute_m_n(bpp
, lane
, target_clock
, link_bw
, &m_n
);
3781 /* Ironlake: try to setup display ref clock before DPLL
3782 * enabling. This is only under driver's control after
3783 * PCH B stepping, previous chipset stepping should be
3784 * ignoring this setting.
3786 if (HAS_PCH_SPLIT(dev
)) {
3787 temp
= I915_READ(PCH_DREF_CONTROL
);
3788 /* Always enable nonspread source */
3789 temp
&= ~DREF_NONSPREAD_SOURCE_MASK
;
3790 temp
|= DREF_NONSPREAD_SOURCE_ENABLE
;
3791 temp
&= ~DREF_SSC_SOURCE_MASK
;
3792 temp
|= DREF_SSC_SOURCE_ENABLE
;
3793 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3795 POSTING_READ(PCH_DREF_CONTROL
);
3798 if (has_edp_encoder
) {
3799 if (dev_priv
->lvds_use_ssc
) {
3800 temp
|= DREF_SSC1_ENABLE
;
3801 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3803 POSTING_READ(PCH_DREF_CONTROL
);
3806 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
3808 /* Enable CPU source on CPU attached eDP */
3809 if (!intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
3810 if (dev_priv
->lvds_use_ssc
)
3811 temp
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
3813 temp
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
3815 /* Enable SSC on PCH eDP if needed */
3816 if (dev_priv
->lvds_use_ssc
) {
3817 DRM_ERROR("enabling SSC on PCH\n");
3818 temp
|= DREF_SUPERSPREAD_SOURCE_ENABLE
;
3821 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3822 POSTING_READ(PCH_DREF_CONTROL
);
3827 if (IS_PINEVIEW(dev
)) {
3828 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
3829 if (has_reduced_clock
)
3830 fp2
= (1 << reduced_clock
.n
) << 16 |
3831 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
3833 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
3834 if (has_reduced_clock
)
3835 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
3840 if (!HAS_PCH_SPLIT(dev
))
3841 dpll
= DPLL_VGA_MODE_DIS
;
3843 if (!IS_GEN2(dev
)) {
3845 dpll
|= DPLLB_MODE_LVDS
;
3847 dpll
|= DPLLB_MODE_DAC_SERIAL
;
3849 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
3850 if (pixel_multiplier
> 1) {
3851 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
3852 dpll
|= (pixel_multiplier
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
3853 else if (HAS_PCH_SPLIT(dev
))
3854 dpll
|= (pixel_multiplier
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
3856 dpll
|= DPLL_DVO_HIGH_SPEED
;
3858 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
3859 dpll
|= DPLL_DVO_HIGH_SPEED
;
3861 /* compute bitmask from p1 value */
3862 if (IS_PINEVIEW(dev
))
3863 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
3865 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3867 if (HAS_PCH_SPLIT(dev
))
3868 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3869 if (IS_G4X(dev
) && has_reduced_clock
)
3870 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3874 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
3877 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
3880 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
3883 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
3886 if (INTEL_INFO(dev
)->gen
>= 4 && !HAS_PCH_SPLIT(dev
))
3887 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
3890 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3893 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
3895 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3897 dpll
|= PLL_P2_DIVIDE_BY_4
;
3901 if (is_sdvo
&& is_tv
)
3902 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
3904 /* XXX: just matching BIOS for now */
3905 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3907 else if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_connectors
< 2)
3908 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
3910 dpll
|= PLL_REF_INPUT_DREFCLK
;
3912 /* setup pipeconf */
3913 pipeconf
= I915_READ(PIPECONF(pipe
));
3915 /* Set up the display plane register */
3916 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
3918 /* Ironlake's plane is forced to pipe, bit 24 is to
3919 enable color space conversion */
3920 if (!HAS_PCH_SPLIT(dev
)) {
3922 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
3924 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
3927 if (pipe
== 0 && INTEL_INFO(dev
)->gen
< 4) {
3928 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3931 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3935 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
3936 pipeconf
|= PIPECONF_DOUBLE_WIDE
;
3938 pipeconf
&= ~PIPECONF_DOUBLE_WIDE
;
3941 dspcntr
|= DISPLAY_PLANE_ENABLE
;
3942 pipeconf
|= PIPECONF_ENABLE
;
3943 dpll
|= DPLL_VCO_ENABLE
;
3945 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
3946 drm_mode_debug_printmodeline(mode
);
3948 /* assign to Ironlake registers */
3949 if (HAS_PCH_SPLIT(dev
)) {
3950 fp_reg
= PCH_FP0(pipe
);
3951 dpll_reg
= PCH_DPLL(pipe
);
3954 dpll_reg
= DPLL(pipe
);
3957 /* PCH eDP needs FDI, but CPU eDP does not */
3958 if (!has_edp_encoder
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
3959 I915_WRITE(fp_reg
, fp
);
3960 I915_WRITE(dpll_reg
, dpll
& ~DPLL_VCO_ENABLE
);
3962 POSTING_READ(dpll_reg
);
3966 /* enable transcoder DPLL */
3967 if (HAS_PCH_CPT(dev
)) {
3968 temp
= I915_READ(PCH_DPLL_SEL
);
3970 temp
|= TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
;
3972 temp
|= TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
;
3973 I915_WRITE(PCH_DPLL_SEL
, temp
);
3975 POSTING_READ(PCH_DPLL_SEL
);
3979 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3980 * This is an exception to the general rule that mode_set doesn't turn
3985 if (HAS_PCH_SPLIT(dev
))
3988 temp
= I915_READ(reg
);
3989 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
3991 if (HAS_PCH_CPT(dev
))
3992 temp
|= PORT_TRANS_B_SEL_CPT
;
3994 temp
|= LVDS_PIPEB_SELECT
;
3996 if (HAS_PCH_CPT(dev
))
3997 temp
&= ~PORT_TRANS_SEL_MASK
;
3999 temp
&= ~LVDS_PIPEB_SELECT
;
4001 /* set the corresponsding LVDS_BORDER bit */
4002 temp
|= dev_priv
->lvds_border_bits
;
4003 /* Set the B0-B3 data pairs corresponding to whether we're going to
4004 * set the DPLLs for dual-channel mode or not.
4007 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
4009 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
4011 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4012 * appropriately here, but we need to look more thoroughly into how
4013 * panels behave in the two modes.
4015 /* set the dithering flag on non-PCH LVDS as needed */
4016 if (INTEL_INFO(dev
)->gen
>= 4 && !HAS_PCH_SPLIT(dev
)) {
4017 if (dev_priv
->lvds_dither
)
4018 temp
|= LVDS_ENABLE_DITHER
;
4020 temp
&= ~LVDS_ENABLE_DITHER
;
4022 I915_WRITE(reg
, temp
);
4025 /* set the dithering flag and clear for anything other than a panel. */
4026 if (HAS_PCH_SPLIT(dev
)) {
4027 pipeconf
&= ~PIPECONF_DITHER_EN
;
4028 pipeconf
&= ~PIPECONF_DITHER_TYPE_MASK
;
4029 if (dev_priv
->lvds_dither
&& (is_lvds
|| has_edp_encoder
)) {
4030 pipeconf
|= PIPECONF_DITHER_EN
;
4031 pipeconf
|= PIPECONF_DITHER_TYPE_ST1
;
4035 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
4036 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
4037 } else if (HAS_PCH_SPLIT(dev
)) {
4038 /* For non-DP output, clear any trans DP clock recovery setting.*/
4040 I915_WRITE(TRANSA_DATA_M1
, 0);
4041 I915_WRITE(TRANSA_DATA_N1
, 0);
4042 I915_WRITE(TRANSA_DP_LINK_M1
, 0);
4043 I915_WRITE(TRANSA_DP_LINK_N1
, 0);
4045 I915_WRITE(TRANSB_DATA_M1
, 0);
4046 I915_WRITE(TRANSB_DATA_N1
, 0);
4047 I915_WRITE(TRANSB_DP_LINK_M1
, 0);
4048 I915_WRITE(TRANSB_DP_LINK_N1
, 0);
4052 if (!has_edp_encoder
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
4053 I915_WRITE(fp_reg
, fp
);
4054 I915_WRITE(dpll_reg
, dpll
);
4056 /* Wait for the clocks to stabilize. */
4057 POSTING_READ(dpll_reg
);
4060 if (INTEL_INFO(dev
)->gen
>= 4 && !HAS_PCH_SPLIT(dev
)) {
4063 temp
= intel_mode_get_pixel_multiplier(adjusted_mode
);
4065 temp
= (temp
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
4069 I915_WRITE(DPLL_MD(pipe
), temp
);
4071 /* write it again -- the BIOS does, after all */
4072 I915_WRITE(dpll_reg
, dpll
);
4075 /* Wait for the clocks to stabilize. */
4076 POSTING_READ(dpll_reg
);
4080 intel_crtc
->lowfreq_avail
= false;
4081 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
4082 I915_WRITE(fp_reg
+ 4, fp2
);
4083 intel_crtc
->lowfreq_avail
= true;
4084 if (HAS_PIPE_CXSR(dev
)) {
4085 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4086 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
4089 I915_WRITE(fp_reg
+ 4, fp
);
4090 if (HAS_PIPE_CXSR(dev
)) {
4091 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4092 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
4096 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
4097 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
4098 /* the chip adds 2 halflines automatically */
4099 adjusted_mode
->crtc_vdisplay
-= 1;
4100 adjusted_mode
->crtc_vtotal
-= 1;
4101 adjusted_mode
->crtc_vblank_start
-= 1;
4102 adjusted_mode
->crtc_vblank_end
-= 1;
4103 adjusted_mode
->crtc_vsync_end
-= 1;
4104 adjusted_mode
->crtc_vsync_start
-= 1;
4106 pipeconf
&= ~PIPECONF_INTERLACE_W_FIELD_INDICATION
; /* progressive */
4108 I915_WRITE(HTOTAL(pipe
),
4109 (adjusted_mode
->crtc_hdisplay
- 1) |
4110 ((adjusted_mode
->crtc_htotal
- 1) << 16));
4111 I915_WRITE(HBLANK(pipe
),
4112 (adjusted_mode
->crtc_hblank_start
- 1) |
4113 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
4114 I915_WRITE(HSYNC(pipe
),
4115 (adjusted_mode
->crtc_hsync_start
- 1) |
4116 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
4118 I915_WRITE(VTOTAL(pipe
),
4119 (adjusted_mode
->crtc_vdisplay
- 1) |
4120 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
4121 I915_WRITE(VBLANK(pipe
),
4122 (adjusted_mode
->crtc_vblank_start
- 1) |
4123 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
4124 I915_WRITE(VSYNC(pipe
),
4125 (adjusted_mode
->crtc_vsync_start
- 1) |
4126 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
4128 /* pipesrc and dspsize control the size that is scaled from,
4129 * which should always be the user's requested size.
4131 if (!HAS_PCH_SPLIT(dev
)) {
4132 I915_WRITE(DSPSIZE(plane
),
4133 ((mode
->vdisplay
- 1) << 16) |
4134 (mode
->hdisplay
- 1));
4135 I915_WRITE(DSPPOS(plane
), 0);
4137 I915_WRITE(PIPESRC(pipe
),
4138 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
4140 if (HAS_PCH_SPLIT(dev
)) {
4141 I915_WRITE(PIPE_DATA_M1(pipe
), TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
4142 I915_WRITE(PIPE_DATA_N1(pipe
), m_n
.gmch_n
);
4143 I915_WRITE(PIPE_LINK_M1(pipe
), m_n
.link_m
);
4144 I915_WRITE(PIPE_LINK_N1(pipe
), m_n
.link_n
);
4146 if (has_edp_encoder
&& !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
4147 ironlake_set_pll_edp(crtc
, adjusted_mode
->clock
);
4151 I915_WRITE(PIPECONF(pipe
), pipeconf
);
4152 POSTING_READ(PIPECONF(pipe
));
4154 intel_wait_for_vblank(dev
, pipe
);
4157 /* enable address swizzle for tiling buffer */
4158 temp
= I915_READ(DISP_ARB_CTL
);
4159 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
4162 I915_WRITE(DSPCNTR(plane
), dspcntr
);
4164 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
4166 intel_update_watermarks(dev
);
4168 drm_vblank_post_modeset(dev
, pipe
);
4173 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4174 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
4176 struct drm_device
*dev
= crtc
->dev
;
4177 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4178 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4179 int palreg
= (intel_crtc
->pipe
== 0) ? PALETTE_A
: PALETTE_B
;
4182 /* The clocks have to be on to load the palette. */
4186 /* use legacy palette for Ironlake */
4187 if (HAS_PCH_SPLIT(dev
))
4188 palreg
= (intel_crtc
->pipe
== 0) ? LGC_PALETTE_A
:
4191 for (i
= 0; i
< 256; i
++) {
4192 I915_WRITE(palreg
+ 4 * i
,
4193 (intel_crtc
->lut_r
[i
] << 16) |
4194 (intel_crtc
->lut_g
[i
] << 8) |
4195 intel_crtc
->lut_b
[i
]);
4199 static void i845_update_cursor(struct drm_crtc
*crtc
, u32 base
)
4201 struct drm_device
*dev
= crtc
->dev
;
4202 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4203 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4204 bool visible
= base
!= 0;
4207 if (intel_crtc
->cursor_visible
== visible
)
4210 cntl
= I915_READ(CURACNTR
);
4212 /* On these chipsets we can only modify the base whilst
4213 * the cursor is disabled.
4215 I915_WRITE(CURABASE
, base
);
4217 cntl
&= ~(CURSOR_FORMAT_MASK
);
4218 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4219 cntl
|= CURSOR_ENABLE
|
4220 CURSOR_GAMMA_ENABLE
|
4223 cntl
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
4224 I915_WRITE(CURACNTR
, cntl
);
4226 intel_crtc
->cursor_visible
= visible
;
4229 static void i9xx_update_cursor(struct drm_crtc
*crtc
, u32 base
)
4231 struct drm_device
*dev
= crtc
->dev
;
4232 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4233 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4234 int pipe
= intel_crtc
->pipe
;
4235 bool visible
= base
!= 0;
4237 if (intel_crtc
->cursor_visible
!= visible
) {
4238 uint32_t cntl
= I915_READ(pipe
== 0 ? CURACNTR
: CURBCNTR
);
4240 cntl
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
4241 cntl
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
4242 cntl
|= pipe
<< 28; /* Connect to correct pipe */
4244 cntl
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
4245 cntl
|= CURSOR_MODE_DISABLE
;
4247 I915_WRITE(pipe
== 0 ? CURACNTR
: CURBCNTR
, cntl
);
4249 intel_crtc
->cursor_visible
= visible
;
4251 /* and commit changes on next vblank */
4252 I915_WRITE(pipe
== 0 ? CURABASE
: CURBBASE
, base
);
4255 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4256 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
,
4259 struct drm_device
*dev
= crtc
->dev
;
4260 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4261 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4262 int pipe
= intel_crtc
->pipe
;
4263 int x
= intel_crtc
->cursor_x
;
4264 int y
= intel_crtc
->cursor_y
;
4270 if (on
&& crtc
->enabled
&& crtc
->fb
) {
4271 base
= intel_crtc
->cursor_addr
;
4272 if (x
> (int) crtc
->fb
->width
)
4275 if (y
> (int) crtc
->fb
->height
)
4281 if (x
+ intel_crtc
->cursor_width
< 0)
4284 pos
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
4287 pos
|= x
<< CURSOR_X_SHIFT
;
4290 if (y
+ intel_crtc
->cursor_height
< 0)
4293 pos
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
4296 pos
|= y
<< CURSOR_Y_SHIFT
;
4298 visible
= base
!= 0;
4299 if (!visible
&& !intel_crtc
->cursor_visible
)
4302 I915_WRITE(pipe
== 0 ? CURAPOS
: CURBPOS
, pos
);
4303 if (IS_845G(dev
) || IS_I865G(dev
))
4304 i845_update_cursor(crtc
, base
);
4306 i9xx_update_cursor(crtc
, base
);
4309 intel_mark_busy(dev
, to_intel_framebuffer(crtc
->fb
)->obj
);
4312 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
4313 struct drm_file
*file_priv
,
4315 uint32_t width
, uint32_t height
)
4317 struct drm_device
*dev
= crtc
->dev
;
4318 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4319 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4320 struct drm_gem_object
*bo
;
4321 struct drm_i915_gem_object
*obj_priv
;
4325 DRM_DEBUG_KMS("\n");
4327 /* if we want to turn off the cursor ignore width and height */
4329 DRM_DEBUG_KMS("cursor off\n");
4332 mutex_lock(&dev
->struct_mutex
);
4336 /* Currently we only support 64x64 cursors */
4337 if (width
!= 64 || height
!= 64) {
4338 DRM_ERROR("we currently only support 64x64 cursors\n");
4342 bo
= drm_gem_object_lookup(dev
, file_priv
, handle
);
4346 obj_priv
= to_intel_bo(bo
);
4348 if (bo
->size
< width
* height
* 4) {
4349 DRM_ERROR("buffer is to small\n");
4354 /* we only need to pin inside GTT if cursor is non-phy */
4355 mutex_lock(&dev
->struct_mutex
);
4356 if (!dev_priv
->info
->cursor_needs_physical
) {
4357 ret
= i915_gem_object_pin(bo
, PAGE_SIZE
, true, false);
4359 DRM_ERROR("failed to pin cursor bo\n");
4363 ret
= i915_gem_object_set_to_gtt_domain(bo
, 0);
4365 DRM_ERROR("failed to move cursor bo into the GTT\n");
4369 addr
= obj_priv
->gtt_offset
;
4371 int align
= IS_I830(dev
) ? 16 * 1024 : 256;
4372 ret
= i915_gem_attach_phys_object(dev
, bo
,
4373 (intel_crtc
->pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
,
4376 DRM_ERROR("failed to attach phys object\n");
4379 addr
= obj_priv
->phys_obj
->handle
->busaddr
;
4383 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
4386 if (intel_crtc
->cursor_bo
) {
4387 if (dev_priv
->info
->cursor_needs_physical
) {
4388 if (intel_crtc
->cursor_bo
!= bo
)
4389 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
4391 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
4392 drm_gem_object_unreference(intel_crtc
->cursor_bo
);
4395 mutex_unlock(&dev
->struct_mutex
);
4397 intel_crtc
->cursor_addr
= addr
;
4398 intel_crtc
->cursor_bo
= bo
;
4399 intel_crtc
->cursor_width
= width
;
4400 intel_crtc
->cursor_height
= height
;
4402 intel_crtc_update_cursor(crtc
, true);
4406 i915_gem_object_unpin(bo
);
4408 mutex_unlock(&dev
->struct_mutex
);
4410 drm_gem_object_unreference_unlocked(bo
);
4414 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
4416 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4418 intel_crtc
->cursor_x
= x
;
4419 intel_crtc
->cursor_y
= y
;
4421 intel_crtc_update_cursor(crtc
, true);
4426 /** Sets the color ramps on behalf of RandR */
4427 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
4428 u16 blue
, int regno
)
4430 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4432 intel_crtc
->lut_r
[regno
] = red
>> 8;
4433 intel_crtc
->lut_g
[regno
] = green
>> 8;
4434 intel_crtc
->lut_b
[regno
] = blue
>> 8;
4437 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
4438 u16
*blue
, int regno
)
4440 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4442 *red
= intel_crtc
->lut_r
[regno
] << 8;
4443 *green
= intel_crtc
->lut_g
[regno
] << 8;
4444 *blue
= intel_crtc
->lut_b
[regno
] << 8;
4447 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
4448 u16
*blue
, uint32_t start
, uint32_t size
)
4450 int end
= (start
+ size
> 256) ? 256 : start
+ size
, i
;
4451 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4453 for (i
= start
; i
< end
; i
++) {
4454 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
4455 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
4456 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
4459 intel_crtc_load_lut(crtc
);
4463 * Get a pipe with a simple mode set on it for doing load-based monitor
4466 * It will be up to the load-detect code to adjust the pipe as appropriate for
4467 * its requirements. The pipe will be connected to no other encoders.
4469 * Currently this code will only succeed if there is a pipe with no encoders
4470 * configured for it. In the future, it could choose to temporarily disable
4471 * some outputs to free up a pipe for its use.
4473 * \return crtc, or NULL if no pipes are available.
4476 /* VESA 640x480x72Hz mode to set on the pipe */
4477 static struct drm_display_mode load_detect_mode
= {
4478 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
4479 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
4482 struct drm_crtc
*intel_get_load_detect_pipe(struct intel_encoder
*intel_encoder
,
4483 struct drm_connector
*connector
,
4484 struct drm_display_mode
*mode
,
4487 struct intel_crtc
*intel_crtc
;
4488 struct drm_crtc
*possible_crtc
;
4489 struct drm_crtc
*supported_crtc
=NULL
;
4490 struct drm_encoder
*encoder
= &intel_encoder
->base
;
4491 struct drm_crtc
*crtc
= NULL
;
4492 struct drm_device
*dev
= encoder
->dev
;
4493 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
4494 struct drm_crtc_helper_funcs
*crtc_funcs
;
4498 * Algorithm gets a little messy:
4499 * - if the connector already has an assigned crtc, use it (but make
4500 * sure it's on first)
4501 * - try to find the first unused crtc that can drive this connector,
4502 * and use that if we find one
4503 * - if there are no unused crtcs available, try to use the first
4504 * one we found that supports the connector
4507 /* See if we already have a CRTC for this connector */
4508 if (encoder
->crtc
) {
4509 crtc
= encoder
->crtc
;
4510 /* Make sure the crtc and connector are running */
4511 intel_crtc
= to_intel_crtc(crtc
);
4512 *dpms_mode
= intel_crtc
->dpms_mode
;
4513 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
4514 crtc_funcs
= crtc
->helper_private
;
4515 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
4516 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
4521 /* Find an unused one (if possible) */
4522 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
4524 if (!(encoder
->possible_crtcs
& (1 << i
)))
4526 if (!possible_crtc
->enabled
) {
4527 crtc
= possible_crtc
;
4530 if (!supported_crtc
)
4531 supported_crtc
= possible_crtc
;
4535 * If we didn't find an unused CRTC, don't use any.
4541 encoder
->crtc
= crtc
;
4542 connector
->encoder
= encoder
;
4543 intel_encoder
->load_detect_temp
= true;
4545 intel_crtc
= to_intel_crtc(crtc
);
4546 *dpms_mode
= intel_crtc
->dpms_mode
;
4548 if (!crtc
->enabled
) {
4550 mode
= &load_detect_mode
;
4551 drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, crtc
->fb
);
4553 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
4554 crtc_funcs
= crtc
->helper_private
;
4555 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
4558 /* Add this connector to the crtc */
4559 encoder_funcs
->mode_set(encoder
, &crtc
->mode
, &crtc
->mode
);
4560 encoder_funcs
->commit(encoder
);
4562 /* let the connector get through one full cycle before testing */
4563 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
4568 void intel_release_load_detect_pipe(struct intel_encoder
*intel_encoder
,
4569 struct drm_connector
*connector
, int dpms_mode
)
4571 struct drm_encoder
*encoder
= &intel_encoder
->base
;
4572 struct drm_device
*dev
= encoder
->dev
;
4573 struct drm_crtc
*crtc
= encoder
->crtc
;
4574 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
4575 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
4577 if (intel_encoder
->load_detect_temp
) {
4578 encoder
->crtc
= NULL
;
4579 connector
->encoder
= NULL
;
4580 intel_encoder
->load_detect_temp
= false;
4581 crtc
->enabled
= drm_helper_crtc_in_use(crtc
);
4582 drm_helper_disable_unused_functions(dev
);
4585 /* Switch crtc and encoder back off if necessary */
4586 if (crtc
->enabled
&& dpms_mode
!= DRM_MODE_DPMS_ON
) {
4587 if (encoder
->crtc
== crtc
)
4588 encoder_funcs
->dpms(encoder
, dpms_mode
);
4589 crtc_funcs
->dpms(crtc
, dpms_mode
);
4593 /* Returns the clock of the currently programmed mode of the given pipe. */
4594 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
4596 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4597 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4598 int pipe
= intel_crtc
->pipe
;
4599 u32 dpll
= I915_READ((pipe
== 0) ? DPLL_A
: DPLL_B
);
4601 intel_clock_t clock
;
4603 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
4604 fp
= I915_READ((pipe
== 0) ? FPA0
: FPB0
);
4606 fp
= I915_READ((pipe
== 0) ? FPA1
: FPB1
);
4608 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
4609 if (IS_PINEVIEW(dev
)) {
4610 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
4611 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
4613 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
4614 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
4617 if (!IS_GEN2(dev
)) {
4618 if (IS_PINEVIEW(dev
))
4619 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
4620 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
4622 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
4623 DPLL_FPA01_P1_POST_DIV_SHIFT
);
4625 switch (dpll
& DPLL_MODE_MASK
) {
4626 case DPLLB_MODE_DAC_SERIAL
:
4627 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
4630 case DPLLB_MODE_LVDS
:
4631 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
4635 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4636 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
4640 /* XXX: Handle the 100Mhz refclk */
4641 intel_clock(dev
, 96000, &clock
);
4643 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
4646 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
4647 DPLL_FPA01_P1_POST_DIV_SHIFT
);
4650 if ((dpll
& PLL_REF_INPUT_MASK
) ==
4651 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
4652 /* XXX: might not be 66MHz */
4653 intel_clock(dev
, 66000, &clock
);
4655 intel_clock(dev
, 48000, &clock
);
4657 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
4660 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
4661 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
4663 if (dpll
& PLL_P2_DIVIDE_BY_4
)
4668 intel_clock(dev
, 48000, &clock
);
4672 /* XXX: It would be nice to validate the clocks, but we can't reuse
4673 * i830PllIsValid() because it relies on the xf86_config connector
4674 * configuration being accurate, which it isn't necessarily.
4680 /** Returns the currently programmed mode of the given pipe. */
4681 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
4682 struct drm_crtc
*crtc
)
4684 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4685 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4686 int pipe
= intel_crtc
->pipe
;
4687 struct drm_display_mode
*mode
;
4688 int htot
= I915_READ((pipe
== 0) ? HTOTAL_A
: HTOTAL_B
);
4689 int hsync
= I915_READ((pipe
== 0) ? HSYNC_A
: HSYNC_B
);
4690 int vtot
= I915_READ((pipe
== 0) ? VTOTAL_A
: VTOTAL_B
);
4691 int vsync
= I915_READ((pipe
== 0) ? VSYNC_A
: VSYNC_B
);
4693 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
4697 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
4698 mode
->hdisplay
= (htot
& 0xffff) + 1;
4699 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
4700 mode
->hsync_start
= (hsync
& 0xffff) + 1;
4701 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
4702 mode
->vdisplay
= (vtot
& 0xffff) + 1;
4703 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
4704 mode
->vsync_start
= (vsync
& 0xffff) + 1;
4705 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
4707 drm_mode_set_name(mode
);
4708 drm_mode_set_crtcinfo(mode
, 0);
4713 #define GPU_IDLE_TIMEOUT 500 /* ms */
4715 /* When this timer fires, we've been idle for awhile */
4716 static void intel_gpu_idle_timer(unsigned long arg
)
4718 struct drm_device
*dev
= (struct drm_device
*)arg
;
4719 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4721 dev_priv
->busy
= false;
4723 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
4726 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4728 static void intel_crtc_idle_timer(unsigned long arg
)
4730 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
4731 struct drm_crtc
*crtc
= &intel_crtc
->base
;
4732 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
4734 intel_crtc
->busy
= false;
4736 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
4739 static void intel_increase_pllclock(struct drm_crtc
*crtc
)
4741 struct drm_device
*dev
= crtc
->dev
;
4742 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4743 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4744 int pipe
= intel_crtc
->pipe
;
4745 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
4746 int dpll
= I915_READ(dpll_reg
);
4748 if (HAS_PCH_SPLIT(dev
))
4751 if (!dev_priv
->lvds_downclock_avail
)
4754 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
4755 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4757 /* Unlock panel regs */
4758 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) |
4761 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
4762 I915_WRITE(dpll_reg
, dpll
);
4763 dpll
= I915_READ(dpll_reg
);
4764 intel_wait_for_vblank(dev
, pipe
);
4765 dpll
= I915_READ(dpll_reg
);
4766 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
4767 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4769 /* ...and lock them again */
4770 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
4773 /* Schedule downclock */
4774 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
4775 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
4778 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
4780 struct drm_device
*dev
= crtc
->dev
;
4781 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4782 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4783 int pipe
= intel_crtc
->pipe
;
4784 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
4785 int dpll
= I915_READ(dpll_reg
);
4787 if (HAS_PCH_SPLIT(dev
))
4790 if (!dev_priv
->lvds_downclock_avail
)
4794 * Since this is called by a timer, we should never get here in
4797 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
4798 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4800 /* Unlock panel regs */
4801 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) |
4804 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
4805 I915_WRITE(dpll_reg
, dpll
);
4806 dpll
= I915_READ(dpll_reg
);
4807 intel_wait_for_vblank(dev
, pipe
);
4808 dpll
= I915_READ(dpll_reg
);
4809 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
4810 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4812 /* ...and lock them again */
4813 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
4819 * intel_idle_update - adjust clocks for idleness
4820 * @work: work struct
4822 * Either the GPU or display (or both) went idle. Check the busy status
4823 * here and adjust the CRTC and GPU clocks as necessary.
4825 static void intel_idle_update(struct work_struct
*work
)
4827 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
4829 struct drm_device
*dev
= dev_priv
->dev
;
4830 struct drm_crtc
*crtc
;
4831 struct intel_crtc
*intel_crtc
;
4834 if (!i915_powersave
)
4837 mutex_lock(&dev
->struct_mutex
);
4839 i915_update_gfx_val(dev_priv
);
4841 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4842 /* Skip inactive CRTCs */
4847 intel_crtc
= to_intel_crtc(crtc
);
4848 if (!intel_crtc
->busy
)
4849 intel_decrease_pllclock(crtc
);
4852 if ((enabled
== 1) && (IS_I945G(dev
) || IS_I945GM(dev
))) {
4853 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4854 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN_MASK
| FW_BLC_SELF_EN
);
4857 mutex_unlock(&dev
->struct_mutex
);
4861 * intel_mark_busy - mark the GPU and possibly the display busy
4863 * @obj: object we're operating on
4865 * Callers can use this function to indicate that the GPU is busy processing
4866 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4867 * buffer), we'll also mark the display as busy, so we know to increase its
4870 void intel_mark_busy(struct drm_device
*dev
, struct drm_gem_object
*obj
)
4872 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4873 struct drm_crtc
*crtc
= NULL
;
4874 struct intel_framebuffer
*intel_fb
;
4875 struct intel_crtc
*intel_crtc
;
4877 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
4880 if (!dev_priv
->busy
) {
4881 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4884 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4885 fw_blc_self
= I915_READ(FW_BLC_SELF
);
4886 fw_blc_self
&= ~FW_BLC_SELF_EN
;
4887 I915_WRITE(FW_BLC_SELF
, fw_blc_self
| FW_BLC_SELF_EN_MASK
);
4889 dev_priv
->busy
= true;
4891 mod_timer(&dev_priv
->idle_timer
, jiffies
+
4892 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
4894 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4898 intel_crtc
= to_intel_crtc(crtc
);
4899 intel_fb
= to_intel_framebuffer(crtc
->fb
);
4900 if (intel_fb
->obj
== obj
) {
4901 if (!intel_crtc
->busy
) {
4902 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4905 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4906 fw_blc_self
= I915_READ(FW_BLC_SELF
);
4907 fw_blc_self
&= ~FW_BLC_SELF_EN
;
4908 I915_WRITE(FW_BLC_SELF
, fw_blc_self
| FW_BLC_SELF_EN_MASK
);
4910 /* Non-busy -> busy, upclock */
4911 intel_increase_pllclock(crtc
);
4912 intel_crtc
->busy
= true;
4914 /* Busy -> busy, put off timer */
4915 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
4916 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
4922 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
4924 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4925 struct drm_device
*dev
= crtc
->dev
;
4926 struct intel_unpin_work
*work
;
4927 unsigned long flags
;
4929 spin_lock_irqsave(&dev
->event_lock
, flags
);
4930 work
= intel_crtc
->unpin_work
;
4931 intel_crtc
->unpin_work
= NULL
;
4932 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4935 cancel_work_sync(&work
->work
);
4939 drm_crtc_cleanup(crtc
);
4944 static void intel_unpin_work_fn(struct work_struct
*__work
)
4946 struct intel_unpin_work
*work
=
4947 container_of(__work
, struct intel_unpin_work
, work
);
4949 mutex_lock(&work
->dev
->struct_mutex
);
4950 i915_gem_object_unpin(work
->old_fb_obj
);
4951 drm_gem_object_unreference(work
->pending_flip_obj
);
4952 drm_gem_object_unreference(work
->old_fb_obj
);
4953 mutex_unlock(&work
->dev
->struct_mutex
);
4957 static void do_intel_finish_page_flip(struct drm_device
*dev
,
4958 struct drm_crtc
*crtc
)
4960 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4961 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4962 struct intel_unpin_work
*work
;
4963 struct drm_i915_gem_object
*obj_priv
;
4964 struct drm_pending_vblank_event
*e
;
4966 unsigned long flags
;
4968 /* Ignore early vblank irqs */
4969 if (intel_crtc
== NULL
)
4972 spin_lock_irqsave(&dev
->event_lock
, flags
);
4973 work
= intel_crtc
->unpin_work
;
4974 if (work
== NULL
|| !work
->pending
) {
4975 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4979 intel_crtc
->unpin_work
= NULL
;
4980 drm_vblank_put(dev
, intel_crtc
->pipe
);
4984 do_gettimeofday(&now
);
4985 e
->event
.sequence
= drm_vblank_count(dev
, intel_crtc
->pipe
);
4986 e
->event
.tv_sec
= now
.tv_sec
;
4987 e
->event
.tv_usec
= now
.tv_usec
;
4988 list_add_tail(&e
->base
.link
,
4989 &e
->base
.file_priv
->event_list
);
4990 wake_up_interruptible(&e
->base
.file_priv
->event_wait
);
4993 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4995 obj_priv
= to_intel_bo(work
->old_fb_obj
);
4996 atomic_clear_mask(1 << intel_crtc
->plane
,
4997 &obj_priv
->pending_flip
.counter
);
4998 if (atomic_read(&obj_priv
->pending_flip
) == 0)
4999 wake_up(&dev_priv
->pending_flip_queue
);
5000 schedule_work(&work
->work
);
5002 trace_i915_flip_complete(intel_crtc
->plane
, work
->pending_flip_obj
);
5005 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
5007 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5008 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
5010 do_intel_finish_page_flip(dev
, crtc
);
5013 void intel_finish_page_flip_plane(struct drm_device
*dev
, int plane
)
5015 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5016 struct drm_crtc
*crtc
= dev_priv
->plane_to_crtc_mapping
[plane
];
5018 do_intel_finish_page_flip(dev
, crtc
);
5021 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
5023 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5024 struct intel_crtc
*intel_crtc
=
5025 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
5026 unsigned long flags
;
5028 spin_lock_irqsave(&dev
->event_lock
, flags
);
5029 if (intel_crtc
->unpin_work
) {
5030 if ((++intel_crtc
->unpin_work
->pending
) > 1)
5031 DRM_ERROR("Prepared flip multiple times\n");
5033 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5035 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
5038 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
5039 struct drm_framebuffer
*fb
,
5040 struct drm_pending_vblank_event
*event
)
5042 struct drm_device
*dev
= crtc
->dev
;
5043 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5044 struct intel_framebuffer
*intel_fb
;
5045 struct drm_i915_gem_object
*obj_priv
;
5046 struct drm_gem_object
*obj
;
5047 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5048 struct intel_unpin_work
*work
;
5049 unsigned long flags
, offset
;
5050 int pipe
= intel_crtc
->pipe
;
5054 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
5058 work
->event
= event
;
5059 work
->dev
= crtc
->dev
;
5060 intel_fb
= to_intel_framebuffer(crtc
->fb
);
5061 work
->old_fb_obj
= intel_fb
->obj
;
5062 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
5064 /* We borrow the event spin lock for protecting unpin_work */
5065 spin_lock_irqsave(&dev
->event_lock
, flags
);
5066 if (intel_crtc
->unpin_work
) {
5067 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
5070 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5073 intel_crtc
->unpin_work
= work
;
5074 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
5076 intel_fb
= to_intel_framebuffer(fb
);
5077 obj
= intel_fb
->obj
;
5079 mutex_lock(&dev
->struct_mutex
);
5080 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, true);
5084 /* Reference the objects for the scheduled work. */
5085 drm_gem_object_reference(work
->old_fb_obj
);
5086 drm_gem_object_reference(obj
);
5090 ret
= drm_vblank_get(dev
, intel_crtc
->pipe
);
5094 if (IS_GEN3(dev
) || IS_GEN2(dev
)) {
5097 /* Can't queue multiple flips, so wait for the previous
5098 * one to finish before executing the next.
5100 ret
= BEGIN_LP_RING(2);
5104 if (intel_crtc
->plane
)
5105 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
5107 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
5108 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
5113 work
->pending_flip_obj
= obj
;
5114 obj_priv
= to_intel_bo(obj
);
5116 work
->enable_stall_check
= true;
5118 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5119 offset
= crtc
->y
* fb
->pitch
+ crtc
->x
* fb
->bits_per_pixel
/8;
5121 ret
= BEGIN_LP_RING(4);
5125 /* Block clients from rendering to the new back buffer until
5126 * the flip occurs and the object is no longer visible.
5128 atomic_add(1 << intel_crtc
->plane
,
5129 &to_intel_bo(work
->old_fb_obj
)->pending_flip
);
5131 switch (INTEL_INFO(dev
)->gen
) {
5133 OUT_RING(MI_DISPLAY_FLIP
|
5134 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
5135 OUT_RING(fb
->pitch
);
5136 OUT_RING(obj_priv
->gtt_offset
+ offset
);
5141 OUT_RING(MI_DISPLAY_FLIP_I915
|
5142 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
5143 OUT_RING(fb
->pitch
);
5144 OUT_RING(obj_priv
->gtt_offset
+ offset
);
5150 /* i965+ uses the linear or tiled offsets from the
5151 * Display Registers (which do not change across a page-flip)
5152 * so we need only reprogram the base address.
5154 OUT_RING(MI_DISPLAY_FLIP
|
5155 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
5156 OUT_RING(fb
->pitch
);
5157 OUT_RING(obj_priv
->gtt_offset
| obj_priv
->tiling_mode
);
5159 /* XXX Enabling the panel-fitter across page-flip is so far
5160 * untested on non-native modes, so ignore it for now.
5161 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5164 pipesrc
= I915_READ(pipe
== 0 ? PIPEASRC
: PIPEBSRC
) & 0x0fff0fff;
5165 OUT_RING(pf
| pipesrc
);
5169 OUT_RING(MI_DISPLAY_FLIP
|
5170 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
5171 OUT_RING(fb
->pitch
| obj_priv
->tiling_mode
);
5172 OUT_RING(obj_priv
->gtt_offset
);
5174 pf
= I915_READ(pipe
== 0 ? PFA_CTL_1
: PFB_CTL_1
) & PF_ENABLE
;
5175 pipesrc
= I915_READ(pipe
== 0 ? PIPEASRC
: PIPEBSRC
) & 0x0fff0fff;
5176 OUT_RING(pf
| pipesrc
);
5181 mutex_unlock(&dev
->struct_mutex
);
5183 trace_i915_flip_request(intel_crtc
->plane
, obj
);
5188 drm_gem_object_unreference(work
->old_fb_obj
);
5189 drm_gem_object_unreference(obj
);
5191 mutex_unlock(&dev
->struct_mutex
);
5193 spin_lock_irqsave(&dev
->event_lock
, flags
);
5194 intel_crtc
->unpin_work
= NULL
;
5195 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
5202 static struct drm_crtc_helper_funcs intel_helper_funcs
= {
5203 .dpms
= intel_crtc_dpms
,
5204 .mode_fixup
= intel_crtc_mode_fixup
,
5205 .mode_set
= intel_crtc_mode_set
,
5206 .mode_set_base
= intel_pipe_set_base
,
5207 .mode_set_base_atomic
= intel_pipe_set_base_atomic
,
5208 .load_lut
= intel_crtc_load_lut
,
5209 .disable
= intel_crtc_disable
,
5212 static const struct drm_crtc_funcs intel_crtc_funcs
= {
5213 .cursor_set
= intel_crtc_cursor_set
,
5214 .cursor_move
= intel_crtc_cursor_move
,
5215 .gamma_set
= intel_crtc_gamma_set
,
5216 .set_config
= drm_crtc_helper_set_config
,
5217 .destroy
= intel_crtc_destroy
,
5218 .page_flip
= intel_crtc_page_flip
,
5222 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
5224 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5225 struct intel_crtc
*intel_crtc
;
5228 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
5229 if (intel_crtc
== NULL
)
5232 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
5234 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
5235 for (i
= 0; i
< 256; i
++) {
5236 intel_crtc
->lut_r
[i
] = i
;
5237 intel_crtc
->lut_g
[i
] = i
;
5238 intel_crtc
->lut_b
[i
] = i
;
5241 /* Swap pipes & planes for FBC on pre-965 */
5242 intel_crtc
->pipe
= pipe
;
5243 intel_crtc
->plane
= pipe
;
5244 if (IS_MOBILE(dev
) && IS_GEN3(dev
)) {
5245 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5246 intel_crtc
->plane
= !pipe
;
5249 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
5250 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
5251 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
5252 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
5254 intel_crtc
->cursor_addr
= 0;
5255 intel_crtc
->dpms_mode
= -1;
5256 intel_crtc
->active
= true; /* force the pipe off on setup_init_config */
5258 if (HAS_PCH_SPLIT(dev
)) {
5259 intel_helper_funcs
.prepare
= ironlake_crtc_prepare
;
5260 intel_helper_funcs
.commit
= ironlake_crtc_commit
;
5262 intel_helper_funcs
.prepare
= i9xx_crtc_prepare
;
5263 intel_helper_funcs
.commit
= i9xx_crtc_commit
;
5266 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
5268 intel_crtc
->busy
= false;
5270 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
5271 (unsigned long)intel_crtc
);
5274 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
5275 struct drm_file
*file_priv
)
5277 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5278 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
5279 struct drm_mode_object
*drmmode_obj
;
5280 struct intel_crtc
*crtc
;
5283 DRM_ERROR("called with no initialization\n");
5287 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
5288 DRM_MODE_OBJECT_CRTC
);
5291 DRM_ERROR("no such CRTC id\n");
5295 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
5296 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
5301 static int intel_encoder_clones(struct drm_device
*dev
, int type_mask
)
5303 struct intel_encoder
*encoder
;
5307 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
5308 if (type_mask
& encoder
->clone_mask
)
5309 index_mask
|= (1 << entry
);
5316 static void intel_setup_outputs(struct drm_device
*dev
)
5318 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5319 struct intel_encoder
*encoder
;
5320 bool dpd_is_edp
= false;
5322 if (IS_MOBILE(dev
) && !IS_I830(dev
))
5323 intel_lvds_init(dev
);
5325 if (HAS_PCH_SPLIT(dev
)) {
5326 dpd_is_edp
= intel_dpd_is_edp(dev
);
5328 if (IS_MOBILE(dev
) && (I915_READ(DP_A
) & DP_DETECTED
))
5329 intel_dp_init(dev
, DP_A
);
5331 if (dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
5332 intel_dp_init(dev
, PCH_DP_D
);
5335 intel_crt_init(dev
);
5337 if (HAS_PCH_SPLIT(dev
)) {
5340 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
5341 /* PCH SDVOB multiplex with HDMIB */
5342 found
= intel_sdvo_init(dev
, PCH_SDVOB
);
5344 intel_hdmi_init(dev
, HDMIB
);
5345 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
5346 intel_dp_init(dev
, PCH_DP_B
);
5349 if (I915_READ(HDMIC
) & PORT_DETECTED
)
5350 intel_hdmi_init(dev
, HDMIC
);
5352 if (I915_READ(HDMID
) & PORT_DETECTED
)
5353 intel_hdmi_init(dev
, HDMID
);
5355 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
5356 intel_dp_init(dev
, PCH_DP_C
);
5358 if (!dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
5359 intel_dp_init(dev
, PCH_DP_D
);
5361 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev
)) {
5364 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
5365 DRM_DEBUG_KMS("probing SDVOB\n");
5366 found
= intel_sdvo_init(dev
, SDVOB
);
5367 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
)) {
5368 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5369 intel_hdmi_init(dev
, SDVOB
);
5372 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
)) {
5373 DRM_DEBUG_KMS("probing DP_B\n");
5374 intel_dp_init(dev
, DP_B
);
5378 /* Before G4X SDVOC doesn't have its own detect register */
5380 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
5381 DRM_DEBUG_KMS("probing SDVOC\n");
5382 found
= intel_sdvo_init(dev
, SDVOC
);
5385 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
5387 if (SUPPORTS_INTEGRATED_HDMI(dev
)) {
5388 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5389 intel_hdmi_init(dev
, SDVOC
);
5391 if (SUPPORTS_INTEGRATED_DP(dev
)) {
5392 DRM_DEBUG_KMS("probing DP_C\n");
5393 intel_dp_init(dev
, DP_C
);
5397 if (SUPPORTS_INTEGRATED_DP(dev
) &&
5398 (I915_READ(DP_D
) & DP_DETECTED
)) {
5399 DRM_DEBUG_KMS("probing DP_D\n");
5400 intel_dp_init(dev
, DP_D
);
5402 } else if (IS_GEN2(dev
))
5403 intel_dvo_init(dev
);
5405 if (SUPPORTS_TV(dev
))
5408 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
5409 encoder
->base
.possible_crtcs
= encoder
->crtc_mask
;
5410 encoder
->base
.possible_clones
=
5411 intel_encoder_clones(dev
, encoder
->clone_mask
);
5415 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
5417 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
5419 drm_framebuffer_cleanup(fb
);
5420 drm_gem_object_unreference_unlocked(intel_fb
->obj
);
5425 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
5426 struct drm_file
*file_priv
,
5427 unsigned int *handle
)
5429 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
5430 struct drm_gem_object
*object
= intel_fb
->obj
;
5432 return drm_gem_handle_create(file_priv
, object
, handle
);
5435 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
5436 .destroy
= intel_user_framebuffer_destroy
,
5437 .create_handle
= intel_user_framebuffer_create_handle
,
5440 int intel_framebuffer_init(struct drm_device
*dev
,
5441 struct intel_framebuffer
*intel_fb
,
5442 struct drm_mode_fb_cmd
*mode_cmd
,
5443 struct drm_gem_object
*obj
)
5445 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(obj
);
5448 if (obj_priv
->tiling_mode
== I915_TILING_Y
)
5451 if (mode_cmd
->pitch
& 63)
5454 switch (mode_cmd
->bpp
) {
5464 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
5466 DRM_ERROR("framebuffer init failed %d\n", ret
);
5470 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
5471 intel_fb
->obj
= obj
;
5475 static struct drm_framebuffer
*
5476 intel_user_framebuffer_create(struct drm_device
*dev
,
5477 struct drm_file
*filp
,
5478 struct drm_mode_fb_cmd
*mode_cmd
)
5480 struct drm_gem_object
*obj
;
5481 struct intel_framebuffer
*intel_fb
;
5484 obj
= drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
);
5486 return ERR_PTR(-ENOENT
);
5488 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
5490 return ERR_PTR(-ENOMEM
);
5492 ret
= intel_framebuffer_init(dev
, intel_fb
,
5495 drm_gem_object_unreference_unlocked(obj
);
5497 return ERR_PTR(ret
);
5500 return &intel_fb
->base
;
5503 static const struct drm_mode_config_funcs intel_mode_funcs
= {
5504 .fb_create
= intel_user_framebuffer_create
,
5505 .output_poll_changed
= intel_fb_output_poll_changed
,
5508 static struct drm_gem_object
*
5509 intel_alloc_context_page(struct drm_device
*dev
)
5511 struct drm_gem_object
*ctx
;
5514 ctx
= i915_gem_alloc_object(dev
, 4096);
5516 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5520 mutex_lock(&dev
->struct_mutex
);
5521 ret
= i915_gem_object_pin(ctx
, 4096, false, false);
5523 DRM_ERROR("failed to pin power context: %d\n", ret
);
5527 ret
= i915_gem_object_set_to_gtt_domain(ctx
, 1);
5529 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
5532 mutex_unlock(&dev
->struct_mutex
);
5537 i915_gem_object_unpin(ctx
);
5539 drm_gem_object_unreference(ctx
);
5540 mutex_unlock(&dev
->struct_mutex
);
5544 bool ironlake_set_drps(struct drm_device
*dev
, u8 val
)
5546 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5549 rgvswctl
= I915_READ16(MEMSWCTL
);
5550 if (rgvswctl
& MEMCTL_CMD_STS
) {
5551 DRM_DEBUG("gpu busy, RCS change rejected\n");
5552 return false; /* still busy with another command */
5555 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
5556 (val
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
5557 I915_WRITE16(MEMSWCTL
, rgvswctl
);
5558 POSTING_READ16(MEMSWCTL
);
5560 rgvswctl
|= MEMCTL_CMD_STS
;
5561 I915_WRITE16(MEMSWCTL
, rgvswctl
);
5566 void ironlake_enable_drps(struct drm_device
*dev
)
5568 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5569 u32 rgvmodectl
= I915_READ(MEMMODECTL
);
5570 u8 fmax
, fmin
, fstart
, vstart
;
5572 /* Enable temp reporting */
5573 I915_WRITE16(PMMISC
, I915_READ(PMMISC
) | MCPPCE_EN
);
5574 I915_WRITE16(TSC1
, I915_READ(TSC1
) | TSE
);
5576 /* 100ms RC evaluation intervals */
5577 I915_WRITE(RCUPEI
, 100000);
5578 I915_WRITE(RCDNEI
, 100000);
5580 /* Set max/min thresholds to 90ms and 80ms respectively */
5581 I915_WRITE(RCBMAXAVG
, 90000);
5582 I915_WRITE(RCBMINAVG
, 80000);
5584 I915_WRITE(MEMIHYST
, 1);
5586 /* Set up min, max, and cur for interrupt handling */
5587 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
5588 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
5589 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
5590 MEMMODE_FSTART_SHIFT
;
5592 vstart
= (I915_READ(PXVFREQ_BASE
+ (fstart
* 4)) & PXVFREQ_PX_MASK
) >>
5595 dev_priv
->fmax
= fmax
; /* IPS callback will increase this */
5596 dev_priv
->fstart
= fstart
;
5598 dev_priv
->max_delay
= fstart
;
5599 dev_priv
->min_delay
= fmin
;
5600 dev_priv
->cur_delay
= fstart
;
5602 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5603 fmax
, fmin
, fstart
);
5605 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
5608 * Interrupts will be enabled in ironlake_irq_postinstall
5611 I915_WRITE(VIDSTART
, vstart
);
5612 POSTING_READ(VIDSTART
);
5614 rgvmodectl
|= MEMMODE_SWMODE_EN
;
5615 I915_WRITE(MEMMODECTL
, rgvmodectl
);
5617 if (wait_for((I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) == 0, 10))
5618 DRM_ERROR("stuck trying to change perf mode\n");
5621 ironlake_set_drps(dev
, fstart
);
5623 dev_priv
->last_count1
= I915_READ(0x112e4) + I915_READ(0x112e8) +
5625 dev_priv
->last_time1
= jiffies_to_msecs(jiffies
);
5626 dev_priv
->last_count2
= I915_READ(0x112f4);
5627 getrawmonotonic(&dev_priv
->last_time2
);
5630 void ironlake_disable_drps(struct drm_device
*dev
)
5632 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5633 u16 rgvswctl
= I915_READ16(MEMSWCTL
);
5635 /* Ack interrupts, disable EFC interrupt */
5636 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
5637 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
5638 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
5639 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
5640 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
5642 /* Go back to the starting frequency */
5643 ironlake_set_drps(dev
, dev_priv
->fstart
);
5645 rgvswctl
|= MEMCTL_CMD_STS
;
5646 I915_WRITE(MEMSWCTL
, rgvswctl
);
5651 static unsigned long intel_pxfreq(u32 vidfreq
)
5654 int div
= (vidfreq
& 0x3f0000) >> 16;
5655 int post
= (vidfreq
& 0x3000) >> 12;
5656 int pre
= (vidfreq
& 0x7);
5661 freq
= ((div
* 133333) / ((1<<post
) * pre
));
5666 void intel_init_emon(struct drm_device
*dev
)
5668 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5673 /* Disable to program */
5677 /* Program energy weights for various events */
5678 I915_WRITE(SDEW
, 0x15040d00);
5679 I915_WRITE(CSIEW0
, 0x007f0000);
5680 I915_WRITE(CSIEW1
, 0x1e220004);
5681 I915_WRITE(CSIEW2
, 0x04000004);
5683 for (i
= 0; i
< 5; i
++)
5684 I915_WRITE(PEW
+ (i
* 4), 0);
5685 for (i
= 0; i
< 3; i
++)
5686 I915_WRITE(DEW
+ (i
* 4), 0);
5688 /* Program P-state weights to account for frequency power adjustment */
5689 for (i
= 0; i
< 16; i
++) {
5690 u32 pxvidfreq
= I915_READ(PXVFREQ_BASE
+ (i
* 4));
5691 unsigned long freq
= intel_pxfreq(pxvidfreq
);
5692 unsigned long vid
= (pxvidfreq
& PXVFREQ_PX_MASK
) >>
5697 val
*= (freq
/ 1000);
5699 val
/= (127*127*900);
5701 DRM_ERROR("bad pxval: %ld\n", val
);
5704 /* Render standby states get 0 weight */
5708 for (i
= 0; i
< 4; i
++) {
5709 u32 val
= (pxw
[i
*4] << 24) | (pxw
[(i
*4)+1] << 16) |
5710 (pxw
[(i
*4)+2] << 8) | (pxw
[(i
*4)+3]);
5711 I915_WRITE(PXW
+ (i
* 4), val
);
5714 /* Adjust magic regs to magic values (more experimental results) */
5715 I915_WRITE(OGW0
, 0);
5716 I915_WRITE(OGW1
, 0);
5717 I915_WRITE(EG0
, 0x00007f00);
5718 I915_WRITE(EG1
, 0x0000000e);
5719 I915_WRITE(EG2
, 0x000e0000);
5720 I915_WRITE(EG3
, 0x68000300);
5721 I915_WRITE(EG4
, 0x42000000);
5722 I915_WRITE(EG5
, 0x00140031);
5726 for (i
= 0; i
< 8; i
++)
5727 I915_WRITE(PXWL
+ (i
* 4), 0);
5729 /* Enable PMON + select events */
5730 I915_WRITE(ECR
, 0x80000019);
5732 lcfuse
= I915_READ(LCFUSE02
);
5734 dev_priv
->corr
= (lcfuse
& LCFUSE_HIV_MASK
);
5737 void intel_init_clock_gating(struct drm_device
*dev
)
5739 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5742 * Disable clock gating reported to work incorrectly according to the
5743 * specs, but enable as much else as we can.
5745 if (HAS_PCH_SPLIT(dev
)) {
5746 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
5749 /* Required for FBC */
5750 dspclk_gate
|= DPFDUNIT_CLOCK_GATE_DISABLE
;
5751 /* Required for CxSR */
5752 dspclk_gate
|= DPARBUNIT_CLOCK_GATE_DISABLE
;
5754 I915_WRITE(PCH_3DCGDIS0
,
5755 MARIUNIT_CLOCK_GATE_DISABLE
|
5756 SVSMUNIT_CLOCK_GATE_DISABLE
);
5759 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
5762 * On Ibex Peak and Cougar Point, we need to disable clock
5763 * gating for the panel power sequencer or it will fail to
5764 * start up when no ports are active.
5766 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
5769 * According to the spec the following bits should be set in
5770 * order to enable memory self-refresh
5771 * The bit 22/21 of 0x42004
5772 * The bit 5 of 0x42020
5773 * The bit 15 of 0x45000
5776 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
5777 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
5778 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
5779 I915_WRITE(ILK_DSPCLK_GATE
,
5780 (I915_READ(ILK_DSPCLK_GATE
) |
5781 ILK_DPARB_CLK_GATE
));
5782 I915_WRITE(DISP_ARB_CTL
,
5783 (I915_READ(DISP_ARB_CTL
) |
5785 I915_WRITE(WM3_LP_ILK
, 0);
5786 I915_WRITE(WM2_LP_ILK
, 0);
5787 I915_WRITE(WM1_LP_ILK
, 0);
5790 * Based on the document from hardware guys the following bits
5791 * should be set unconditionally in order to enable FBC.
5792 * The bit 22 of 0x42000
5793 * The bit 22 of 0x42004
5794 * The bit 7,8,9 of 0x42020.
5796 if (IS_IRONLAKE_M(dev
)) {
5797 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
5798 I915_READ(ILK_DISPLAY_CHICKEN1
) |
5800 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
5801 I915_READ(ILK_DISPLAY_CHICKEN2
) |
5803 I915_WRITE(ILK_DSPCLK_GATE
,
5804 I915_READ(ILK_DSPCLK_GATE
) |
5810 } else if (IS_G4X(dev
)) {
5811 uint32_t dspclk_gate
;
5812 I915_WRITE(RENCLK_GATE_D1
, 0);
5813 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
5814 GS_UNIT_CLOCK_GATE_DISABLE
|
5815 CL_UNIT_CLOCK_GATE_DISABLE
);
5816 I915_WRITE(RAMCLK_GATE_D
, 0);
5817 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
5818 OVRUNIT_CLOCK_GATE_DISABLE
|
5819 OVCUNIT_CLOCK_GATE_DISABLE
;
5821 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
5822 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
5823 } else if (IS_CRESTLINE(dev
)) {
5824 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
5825 I915_WRITE(RENCLK_GATE_D2
, 0);
5826 I915_WRITE(DSPCLK_GATE_D
, 0);
5827 I915_WRITE(RAMCLK_GATE_D
, 0);
5828 I915_WRITE16(DEUC
, 0);
5829 } else if (IS_BROADWATER(dev
)) {
5830 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
5831 I965_RCC_CLOCK_GATE_DISABLE
|
5832 I965_RCPB_CLOCK_GATE_DISABLE
|
5833 I965_ISC_CLOCK_GATE_DISABLE
|
5834 I965_FBC_CLOCK_GATE_DISABLE
);
5835 I915_WRITE(RENCLK_GATE_D2
, 0);
5836 } else if (IS_GEN3(dev
)) {
5837 u32 dstate
= I915_READ(D_STATE
);
5839 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
5840 DSTATE_DOT_CLOCK_GATING
;
5841 I915_WRITE(D_STATE
, dstate
);
5842 } else if (IS_I85X(dev
) || IS_I865G(dev
)) {
5843 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
5844 } else if (IS_I830(dev
)) {
5845 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
5849 * GPU can automatically power down the render unit if given a page
5852 if (IS_IRONLAKE_M(dev
)) {
5853 if (dev_priv
->renderctx
== NULL
)
5854 dev_priv
->renderctx
= intel_alloc_context_page(dev
);
5855 if (dev_priv
->renderctx
) {
5856 struct drm_i915_gem_object
*obj_priv
;
5857 obj_priv
= to_intel_bo(dev_priv
->renderctx
);
5859 if (BEGIN_LP_RING(4) == 0) {
5860 OUT_RING(MI_SET_CONTEXT
);
5861 OUT_RING(obj_priv
->gtt_offset
|
5863 MI_SAVE_EXT_STATE_EN
|
5864 MI_RESTORE_EXT_STATE_EN
|
5865 MI_RESTORE_INHIBIT
);
5872 DRM_DEBUG_KMS("Failed to allocate render context."
5876 if (I915_HAS_RC6(dev
) && drm_core_check_feature(dev
, DRIVER_MODESET
)) {
5877 struct drm_i915_gem_object
*obj_priv
= NULL
;
5879 if (dev_priv
->pwrctx
) {
5880 obj_priv
= to_intel_bo(dev_priv
->pwrctx
);
5882 struct drm_gem_object
*pwrctx
;
5884 pwrctx
= intel_alloc_context_page(dev
);
5886 dev_priv
->pwrctx
= pwrctx
;
5887 obj_priv
= to_intel_bo(pwrctx
);
5892 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
| PWRCTX_EN
);
5893 I915_WRITE(MCHBAR_RENDER_STANDBY
,
5894 I915_READ(MCHBAR_RENDER_STANDBY
) & ~RCX_SW_EXIT
);
5899 /* Set up chip specific display functions */
5900 static void intel_init_display(struct drm_device
*dev
)
5902 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5904 /* We always want a DPMS function */
5905 if (HAS_PCH_SPLIT(dev
))
5906 dev_priv
->display
.dpms
= ironlake_crtc_dpms
;
5908 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
5910 if (I915_HAS_FBC(dev
)) {
5911 if (IS_IRONLAKE_M(dev
)) {
5912 dev_priv
->display
.fbc_enabled
= ironlake_fbc_enabled
;
5913 dev_priv
->display
.enable_fbc
= ironlake_enable_fbc
;
5914 dev_priv
->display
.disable_fbc
= ironlake_disable_fbc
;
5915 } else if (IS_GM45(dev
)) {
5916 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
5917 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
5918 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
5919 } else if (IS_CRESTLINE(dev
)) {
5920 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
5921 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
5922 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
5924 /* 855GM needs testing */
5927 /* Returns the core display clock speed */
5928 if (IS_I945G(dev
) || (IS_G33(dev
) && ! IS_PINEVIEW_M(dev
)))
5929 dev_priv
->display
.get_display_clock_speed
=
5930 i945_get_display_clock_speed
;
5931 else if (IS_I915G(dev
))
5932 dev_priv
->display
.get_display_clock_speed
=
5933 i915_get_display_clock_speed
;
5934 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_PINEVIEW_M(dev
))
5935 dev_priv
->display
.get_display_clock_speed
=
5936 i9xx_misc_get_display_clock_speed
;
5937 else if (IS_I915GM(dev
))
5938 dev_priv
->display
.get_display_clock_speed
=
5939 i915gm_get_display_clock_speed
;
5940 else if (IS_I865G(dev
))
5941 dev_priv
->display
.get_display_clock_speed
=
5942 i865_get_display_clock_speed
;
5943 else if (IS_I85X(dev
))
5944 dev_priv
->display
.get_display_clock_speed
=
5945 i855_get_display_clock_speed
;
5947 dev_priv
->display
.get_display_clock_speed
=
5948 i830_get_display_clock_speed
;
5950 /* For FIFO watermark updates */
5951 if (HAS_PCH_SPLIT(dev
)) {
5953 if (I915_READ(MLTR_ILK
) & ILK_SRLT_MASK
)
5954 dev_priv
->display
.update_wm
= ironlake_update_wm
;
5956 DRM_DEBUG_KMS("Failed to get proper latency. "
5958 dev_priv
->display
.update_wm
= NULL
;
5961 dev_priv
->display
.update_wm
= NULL
;
5962 } else if (IS_PINEVIEW(dev
)) {
5963 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
5966 dev_priv
->mem_freq
)) {
5967 DRM_INFO("failed to find known CxSR latency "
5968 "(found ddr%s fsb freq %d, mem freq %d), "
5970 (dev_priv
->is_ddr3
== 1) ? "3": "2",
5971 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
5972 /* Disable CxSR and never update its watermark again */
5973 pineview_disable_cxsr(dev
);
5974 dev_priv
->display
.update_wm
= NULL
;
5976 dev_priv
->display
.update_wm
= pineview_update_wm
;
5977 } else if (IS_G4X(dev
))
5978 dev_priv
->display
.update_wm
= g4x_update_wm
;
5979 else if (IS_GEN4(dev
))
5980 dev_priv
->display
.update_wm
= i965_update_wm
;
5981 else if (IS_GEN3(dev
)) {
5982 dev_priv
->display
.update_wm
= i9xx_update_wm
;
5983 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
5984 } else if (IS_I85X(dev
)) {
5985 dev_priv
->display
.update_wm
= i9xx_update_wm
;
5986 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
5988 dev_priv
->display
.update_wm
= i830_update_wm
;
5990 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
5992 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
5997 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5998 * resume, or other times. This quirk makes sure that's the case for
6001 static void quirk_pipea_force (struct drm_device
*dev
)
6003 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6005 dev_priv
->quirks
|= QUIRK_PIPEA_FORCE
;
6006 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6009 struct intel_quirk
{
6011 int subsystem_vendor
;
6012 int subsystem_device
;
6013 void (*hook
)(struct drm_device
*dev
);
6016 struct intel_quirk intel_quirks
[] = {
6017 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6018 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force
},
6019 /* HP Mini needs pipe A force quirk (LP: #322104) */
6020 { 0x27ae,0x103c, 0x361a, quirk_pipea_force
},
6022 /* Thinkpad R31 needs pipe A force quirk */
6023 { 0x3577, 0x1014, 0x0505, quirk_pipea_force
},
6024 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6025 { 0x2592, 0x1179, 0x0001, quirk_pipea_force
},
6027 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6028 { 0x3577, 0x1014, 0x0513, quirk_pipea_force
},
6029 /* ThinkPad X40 needs pipe A force quirk */
6031 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6032 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force
},
6034 /* 855 & before need to leave pipe A & dpll A up */
6035 { 0x3582, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
6036 { 0x2562, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
6039 static void intel_init_quirks(struct drm_device
*dev
)
6041 struct pci_dev
*d
= dev
->pdev
;
6044 for (i
= 0; i
< ARRAY_SIZE(intel_quirks
); i
++) {
6045 struct intel_quirk
*q
= &intel_quirks
[i
];
6047 if (d
->device
== q
->device
&&
6048 (d
->subsystem_vendor
== q
->subsystem_vendor
||
6049 q
->subsystem_vendor
== PCI_ANY_ID
) &&
6050 (d
->subsystem_device
== q
->subsystem_device
||
6051 q
->subsystem_device
== PCI_ANY_ID
))
6056 /* Disable the VGA plane that we never use */
6057 static void i915_disable_vga(struct drm_device
*dev
)
6059 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6063 if (HAS_PCH_SPLIT(dev
))
6064 vga_reg
= CPU_VGACNTRL
;
6068 vga_get_uninterruptible(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
6069 outb(1, VGA_SR_INDEX
);
6070 sr1
= inb(VGA_SR_DATA
);
6071 outb(sr1
| 1<<5, VGA_SR_DATA
);
6072 vga_put(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
6075 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
6076 POSTING_READ(vga_reg
);
6079 void intel_modeset_init(struct drm_device
*dev
)
6081 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6084 drm_mode_config_init(dev
);
6086 dev
->mode_config
.min_width
= 0;
6087 dev
->mode_config
.min_height
= 0;
6089 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
6091 intel_init_quirks(dev
);
6093 intel_init_display(dev
);
6096 dev
->mode_config
.max_width
= 2048;
6097 dev
->mode_config
.max_height
= 2048;
6098 } else if (IS_GEN3(dev
)) {
6099 dev
->mode_config
.max_width
= 4096;
6100 dev
->mode_config
.max_height
= 4096;
6102 dev
->mode_config
.max_width
= 8192;
6103 dev
->mode_config
.max_height
= 8192;
6106 /* set memory base */
6108 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 0);
6110 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 2);
6112 if (IS_MOBILE(dev
) || !IS_GEN2(dev
))
6113 dev_priv
->num_pipe
= 2;
6115 dev_priv
->num_pipe
= 1;
6116 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6117 dev_priv
->num_pipe
, dev_priv
->num_pipe
> 1 ? "s" : "");
6119 for (i
= 0; i
< dev_priv
->num_pipe
; i
++) {
6120 intel_crtc_init(dev
, i
);
6123 intel_setup_outputs(dev
);
6125 intel_init_clock_gating(dev
);
6127 /* Just disable it once at startup */
6128 i915_disable_vga(dev
);
6130 if (IS_IRONLAKE_M(dev
)) {
6131 ironlake_enable_drps(dev
);
6132 intel_init_emon(dev
);
6135 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
6136 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
6137 (unsigned long)dev
);
6139 intel_setup_overlay(dev
);
6142 void intel_modeset_cleanup(struct drm_device
*dev
)
6144 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6145 struct drm_crtc
*crtc
;
6146 struct intel_crtc
*intel_crtc
;
6148 drm_kms_helper_poll_fini(dev
);
6149 mutex_lock(&dev
->struct_mutex
);
6151 intel_unregister_dsm_handler();
6154 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6155 /* Skip inactive CRTCs */
6159 intel_crtc
= to_intel_crtc(crtc
);
6160 intel_increase_pllclock(crtc
);
6163 if (dev_priv
->display
.disable_fbc
)
6164 dev_priv
->display
.disable_fbc(dev
);
6166 if (dev_priv
->renderctx
) {
6167 struct drm_i915_gem_object
*obj_priv
;
6169 obj_priv
= to_intel_bo(dev_priv
->renderctx
);
6170 I915_WRITE(CCID
, obj_priv
->gtt_offset
&~ CCID_EN
);
6172 i915_gem_object_unpin(dev_priv
->renderctx
);
6173 drm_gem_object_unreference(dev_priv
->renderctx
);
6176 if (dev_priv
->pwrctx
) {
6177 struct drm_i915_gem_object
*obj_priv
;
6179 obj_priv
= to_intel_bo(dev_priv
->pwrctx
);
6180 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
&~ PWRCTX_EN
);
6182 i915_gem_object_unpin(dev_priv
->pwrctx
);
6183 drm_gem_object_unreference(dev_priv
->pwrctx
);
6186 if (IS_IRONLAKE_M(dev
))
6187 ironlake_disable_drps(dev
);
6189 mutex_unlock(&dev
->struct_mutex
);
6191 /* Disable the irq before mode object teardown, for the irq might
6192 * enqueue unpin/hotplug work. */
6193 drm_irq_uninstall(dev
);
6194 cancel_work_sync(&dev_priv
->hotplug_work
);
6196 /* Shut off idle work before the crtcs get freed. */
6197 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6198 intel_crtc
= to_intel_crtc(crtc
);
6199 del_timer_sync(&intel_crtc
->idle_timer
);
6201 del_timer_sync(&dev_priv
->idle_timer
);
6202 cancel_work_sync(&dev_priv
->idle_work
);
6204 drm_mode_config_cleanup(dev
);
6208 * Return which encoder is currently attached for connector.
6210 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
6212 return &intel_attached_encoder(connector
)->base
;
6215 void intel_connector_attach_encoder(struct intel_connector
*connector
,
6216 struct intel_encoder
*encoder
)
6218 connector
->encoder
= encoder
;
6219 drm_mode_connector_attach_encoder(&connector
->base
,
6224 * set vga decode state - true == enable VGA decode
6226 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
6228 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6231 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
6233 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
6235 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
6236 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);