2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
35 #include <asm/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
54 * Enumeration for sync targets
56 enum dma_sync_target
{
64 * Used to do a quick range check in unmap_single and
65 * sync_single_*, to see if the memory was in fact allocated by this
68 static char *io_tlb_start
, *io_tlb_end
;
71 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
74 static unsigned long io_tlb_nslabs
;
77 * When the IOMMU overflows we return a fallback buffer. This sets the size.
79 static unsigned long io_tlb_overflow
= 32*1024;
81 void *io_tlb_overflow_buffer
;
84 * This is a free list describing the number of free entries available from
87 static unsigned int *io_tlb_list
;
88 static unsigned int io_tlb_index
;
91 * We need to save away the original address corresponding to a mapped entry
92 * for the sync operations.
94 static phys_addr_t
*io_tlb_orig_addr
;
97 * Protect the above data structures in the map and unmap calls
99 static DEFINE_SPINLOCK(io_tlb_lock
);
101 static int late_alloc
;
104 setup_io_tlb_npages(char *str
)
107 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
108 /* avoid tail segment of size < IO_TLB_SEGSIZE */
109 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
113 if (!strcmp(str
, "force"))
118 __setup("swiotlb=", setup_io_tlb_npages
);
119 /* make io_tlb_overflow tunable too? */
121 /* Note that this doesn't work with highmem page */
122 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
123 volatile void *address
)
125 return phys_to_dma(hwdev
, virt_to_phys(address
));
128 void swiotlb_print_info(void)
130 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
131 phys_addr_t pstart
, pend
;
133 pstart
= virt_to_phys(io_tlb_start
);
134 pend
= virt_to_phys(io_tlb_end
);
136 printk(KERN_INFO
"Placing %luMB software IO TLB between %p - %p\n",
137 bytes
>> 20, io_tlb_start
, io_tlb_end
);
138 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx\n",
139 (unsigned long long)pstart
,
140 (unsigned long long)pend
);
144 * Statically reserve bounce buffer space and initialize bounce buffer data
145 * structures for the software IO TLB used to implement the DMA API.
148 swiotlb_init_with_default_size(size_t default_size
, int verbose
)
150 unsigned long i
, bytes
;
152 if (!io_tlb_nslabs
) {
153 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
154 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
157 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
160 * Get IO TLB memory from the low pages
162 io_tlb_start
= alloc_bootmem_low_pages(bytes
);
164 panic("Cannot allocate SWIOTLB buffer");
165 io_tlb_end
= io_tlb_start
+ bytes
;
168 * Allocate and initialize the free list array. This array is used
169 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
170 * between io_tlb_start and io_tlb_end.
172 io_tlb_list
= alloc_bootmem(io_tlb_nslabs
* sizeof(int));
173 for (i
= 0; i
< io_tlb_nslabs
; i
++)
174 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
176 io_tlb_orig_addr
= alloc_bootmem(io_tlb_nslabs
* sizeof(phys_addr_t
));
179 * Get the overflow emergency buffer
181 io_tlb_overflow_buffer
= alloc_bootmem_low(io_tlb_overflow
);
182 if (!io_tlb_overflow_buffer
)
183 panic("Cannot allocate SWIOTLB overflow buffer!\n");
185 swiotlb_print_info();
189 swiotlb_init(int verbose
)
191 swiotlb_init_with_default_size(64 * (1<<20), verbose
); /* default to 64MB */
195 * Systems with larger DMA zones (those that don't support ISA) can
196 * initialize the swiotlb later using the slab allocator if needed.
197 * This should be just like above, but with some error catching.
200 swiotlb_late_init_with_default_size(size_t default_size
)
202 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
205 if (!io_tlb_nslabs
) {
206 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
207 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
211 * Get IO TLB memory from the low pages
213 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
214 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
215 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
217 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
218 io_tlb_start
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
228 if (order
!= get_order(bytes
)) {
229 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
230 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
231 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
232 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
234 io_tlb_end
= io_tlb_start
+ bytes
;
235 memset(io_tlb_start
, 0, bytes
);
238 * Allocate and initialize the free list array. This array is used
239 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
240 * between io_tlb_start and io_tlb_end.
242 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
243 get_order(io_tlb_nslabs
* sizeof(int)));
247 for (i
= 0; i
< io_tlb_nslabs
; i
++)
248 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
251 io_tlb_orig_addr
= (phys_addr_t
*)
252 __get_free_pages(GFP_KERNEL
,
253 get_order(io_tlb_nslabs
*
254 sizeof(phys_addr_t
)));
255 if (!io_tlb_orig_addr
)
258 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
261 * Get the overflow emergency buffer
263 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
264 get_order(io_tlb_overflow
));
265 if (!io_tlb_overflow_buffer
)
268 swiotlb_print_info();
275 free_pages((unsigned long)io_tlb_orig_addr
,
276 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
277 io_tlb_orig_addr
= NULL
;
279 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
284 free_pages((unsigned long)io_tlb_start
, order
);
287 io_tlb_nslabs
= req_nslabs
;
291 void __init
swiotlb_free(void)
293 if (!io_tlb_overflow_buffer
)
297 free_pages((unsigned long)io_tlb_overflow_buffer
,
298 get_order(io_tlb_overflow
));
299 free_pages((unsigned long)io_tlb_orig_addr
,
300 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
301 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
303 free_pages((unsigned long)io_tlb_start
,
304 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
306 free_bootmem_late(__pa(io_tlb_overflow_buffer
),
308 free_bootmem_late(__pa(io_tlb_orig_addr
),
309 io_tlb_nslabs
* sizeof(phys_addr_t
));
310 free_bootmem_late(__pa(io_tlb_list
),
311 io_tlb_nslabs
* sizeof(int));
312 free_bootmem_late(__pa(io_tlb_start
),
313 io_tlb_nslabs
<< IO_TLB_SHIFT
);
317 static int is_swiotlb_buffer(phys_addr_t paddr
)
319 return paddr
>= virt_to_phys(io_tlb_start
) &&
320 paddr
< virt_to_phys(io_tlb_end
);
324 * Bounce: copy the swiotlb buffer back to the original dma location
326 static void swiotlb_bounce(phys_addr_t phys
, char *dma_addr
, size_t size
,
327 enum dma_data_direction dir
)
329 unsigned long pfn
= PFN_DOWN(phys
);
331 if (PageHighMem(pfn_to_page(pfn
))) {
332 /* The buffer does not have a mapping. Map it in and copy */
333 unsigned int offset
= phys
& ~PAGE_MASK
;
339 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
341 local_irq_save(flags
);
342 buffer
= kmap_atomic(pfn_to_page(pfn
),
344 if (dir
== DMA_TO_DEVICE
)
345 memcpy(dma_addr
, buffer
+ offset
, sz
);
347 memcpy(buffer
+ offset
, dma_addr
, sz
);
348 kunmap_atomic(buffer
, KM_BOUNCE_READ
);
349 local_irq_restore(flags
);
357 if (dir
== DMA_TO_DEVICE
)
358 memcpy(dma_addr
, phys_to_virt(phys
), size
);
360 memcpy(phys_to_virt(phys
), dma_addr
, size
);
365 * Allocates bounce buffer and returns its kernel virtual address.
368 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
, int dir
)
372 unsigned int nslots
, stride
, index
, wrap
;
374 unsigned long start_dma_addr
;
376 unsigned long offset_slots
;
377 unsigned long max_slots
;
379 mask
= dma_get_seg_boundary(hwdev
);
380 start_dma_addr
= swiotlb_virt_to_bus(hwdev
, io_tlb_start
) & mask
;
382 offset_slots
= ALIGN(start_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
385 * Carefully handle integer overflow which can occur when mask == ~0UL.
388 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
389 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
392 * For mappings greater than a page, we limit the stride (and
393 * hence alignment) to a page size.
395 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
396 if (size
> PAGE_SIZE
)
397 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
404 * Find suitable number of IO TLB entries size that will fit this
405 * request and allocate a buffer from that IO TLB pool.
407 spin_lock_irqsave(&io_tlb_lock
, flags
);
408 index
= ALIGN(io_tlb_index
, stride
);
409 if (index
>= io_tlb_nslabs
)
414 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
417 if (index
>= io_tlb_nslabs
)
424 * If we find a slot that indicates we have 'nslots' number of
425 * contiguous buffers, we allocate the buffers from that slot
426 * and mark the entries as '0' indicating unavailable.
428 if (io_tlb_list
[index
] >= nslots
) {
431 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
433 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
434 io_tlb_list
[i
] = ++count
;
435 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
438 * Update the indices to avoid searching in the next
441 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
442 ? (index
+ nslots
) : 0);
447 if (index
>= io_tlb_nslabs
)
449 } while (index
!= wrap
);
452 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
455 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
458 * Save away the mapping from the original address to the DMA address.
459 * This is needed when we sync the memory. Then we sync the buffer if
462 for (i
= 0; i
< nslots
; i
++)
463 io_tlb_orig_addr
[index
+i
] = phys
+ (i
<< IO_TLB_SHIFT
);
464 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
465 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
471 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
474 do_unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
477 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
478 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
479 phys_addr_t phys
= io_tlb_orig_addr
[index
];
482 * First, sync the memory before unmapping the entry
484 if (phys
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
485 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
488 * Return the buffer to the free list by setting the corresponding
489 * entries to indicate the number of contiguous entries available.
490 * While returning the entries to the free list, we merge the entries
491 * with slots below and above the pool being returned.
493 spin_lock_irqsave(&io_tlb_lock
, flags
);
495 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
496 io_tlb_list
[index
+ nslots
] : 0);
498 * Step 1: return the slots to the free list, merging the
499 * slots with superceeding slots
501 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
502 io_tlb_list
[i
] = ++count
;
504 * Step 2: merge the returned slots with the preceding slots,
505 * if available (non zero)
507 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
508 io_tlb_list
[i
] = ++count
;
510 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
514 sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
517 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
518 phys_addr_t phys
= io_tlb_orig_addr
[index
];
520 phys
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
524 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
525 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
527 BUG_ON(dir
!= DMA_TO_DEVICE
);
529 case SYNC_FOR_DEVICE
:
530 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
531 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
533 BUG_ON(dir
!= DMA_FROM_DEVICE
);
541 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
542 dma_addr_t
*dma_handle
, gfp_t flags
)
546 int order
= get_order(size
);
547 u64 dma_mask
= DMA_BIT_MASK(32);
549 if (hwdev
&& hwdev
->coherent_dma_mask
)
550 dma_mask
= hwdev
->coherent_dma_mask
;
552 ret
= (void *)__get_free_pages(flags
, order
);
553 if (ret
&& swiotlb_virt_to_bus(hwdev
, ret
) + size
- 1 > dma_mask
) {
555 * The allocated memory isn't reachable by the device.
557 free_pages((unsigned long) ret
, order
);
562 * We are either out of memory or the device can't DMA
563 * to GFP_DMA memory; fall back on map_single(), which
564 * will grab memory from the lowest available address range.
566 ret
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
571 memset(ret
, 0, size
);
572 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
574 /* Confirm address can be DMA'd by device */
575 if (dev_addr
+ size
- 1 > dma_mask
) {
576 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
577 (unsigned long long)dma_mask
,
578 (unsigned long long)dev_addr
);
580 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
581 do_unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
584 *dma_handle
= dev_addr
;
587 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
590 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
593 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
595 WARN_ON(irqs_disabled());
596 if (!is_swiotlb_buffer(paddr
))
597 free_pages((unsigned long)vaddr
, get_order(size
));
599 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
600 do_unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
602 EXPORT_SYMBOL(swiotlb_free_coherent
);
605 swiotlb_full(struct device
*dev
, size_t size
, int dir
, int do_panic
)
608 * Ran out of IOMMU space for this operation. This is very bad.
609 * Unfortunately the drivers cannot handle this operation properly.
610 * unless they check for dma_mapping_error (most don't)
611 * When the mapping is small enough return a static buffer to limit
612 * the damage, or panic when the transfer is too big.
614 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
615 "device %s\n", size
, dev
? dev_name(dev
) : "?");
617 if (size
<= io_tlb_overflow
|| !do_panic
)
620 if (dir
== DMA_BIDIRECTIONAL
)
621 panic("DMA: Random memory could be DMA accessed\n");
622 if (dir
== DMA_FROM_DEVICE
)
623 panic("DMA: Random memory could be DMA written\n");
624 if (dir
== DMA_TO_DEVICE
)
625 panic("DMA: Random memory could be DMA read\n");
629 * Map a single buffer of the indicated size for DMA in streaming mode. The
630 * physical address to use is returned.
632 * Once the device is given the dma address, the device owns this memory until
633 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
635 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
636 unsigned long offset
, size_t size
,
637 enum dma_data_direction dir
,
638 struct dma_attrs
*attrs
)
640 phys_addr_t phys
= page_to_phys(page
) + offset
;
641 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
644 BUG_ON(dir
== DMA_NONE
);
646 * If the address happens to be in the device's DMA window,
647 * we can safely return the device addr and not worry about bounce
650 if (dma_capable(dev
, dev_addr
, size
) && !swiotlb_force
)
654 * Oh well, have to allocate and map a bounce buffer.
656 map
= map_single(dev
, phys
, size
, dir
);
658 swiotlb_full(dev
, size
, dir
, 1);
659 map
= io_tlb_overflow_buffer
;
662 dev_addr
= swiotlb_virt_to_bus(dev
, map
);
665 * Ensure that the address returned is DMA'ble
667 if (!dma_capable(dev
, dev_addr
, size
))
668 panic("map_single: bounce buffer is not DMA'ble");
672 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
675 * Unmap a single streaming mode DMA translation. The dma_addr and size must
676 * match what was provided for in a previous swiotlb_map_page call. All
677 * other usages are undefined.
679 * After this call, reads by the cpu to the buffer are guaranteed to see
680 * whatever the device wrote there.
682 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
683 size_t size
, int dir
)
685 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
687 BUG_ON(dir
== DMA_NONE
);
689 if (is_swiotlb_buffer(paddr
)) {
690 do_unmap_single(hwdev
, phys_to_virt(paddr
), size
, dir
);
694 if (dir
!= DMA_FROM_DEVICE
)
698 * phys_to_virt doesn't work with hihgmem page but we could
699 * call dma_mark_clean() with hihgmem page here. However, we
700 * are fine since dma_mark_clean() is null on POWERPC. We can
701 * make dma_mark_clean() take a physical address if necessary.
703 dma_mark_clean(phys_to_virt(paddr
), size
);
706 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
707 size_t size
, enum dma_data_direction dir
,
708 struct dma_attrs
*attrs
)
710 unmap_single(hwdev
, dev_addr
, size
, dir
);
712 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
715 * Make physical memory consistent for a single streaming mode DMA translation
718 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
719 * using the cpu, yet do not wish to teardown the dma mapping, you must
720 * call this function before doing so. At the next point you give the dma
721 * address back to the card, you must first perform a
722 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
725 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
726 size_t size
, int dir
, int target
)
728 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
730 BUG_ON(dir
== DMA_NONE
);
732 if (is_swiotlb_buffer(paddr
)) {
733 sync_single(hwdev
, phys_to_virt(paddr
), size
, dir
, target
);
737 if (dir
!= DMA_FROM_DEVICE
)
740 dma_mark_clean(phys_to_virt(paddr
), size
);
744 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
745 size_t size
, enum dma_data_direction dir
)
747 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
749 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
752 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
753 size_t size
, enum dma_data_direction dir
)
755 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
757 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
760 * Same as above, but for a sub-range of the mapping.
763 swiotlb_sync_single_range(struct device
*hwdev
, dma_addr_t dev_addr
,
764 unsigned long offset
, size_t size
,
767 swiotlb_sync_single(hwdev
, dev_addr
+ offset
, size
, dir
, target
);
771 swiotlb_sync_single_range_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
772 unsigned long offset
, size_t size
,
773 enum dma_data_direction dir
)
775 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
778 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu
);
781 swiotlb_sync_single_range_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
782 unsigned long offset
, size_t size
,
783 enum dma_data_direction dir
)
785 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
788 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device
);
791 * Map a set of buffers described by scatterlist in streaming mode for DMA.
792 * This is the scatter-gather version of the above swiotlb_map_page
793 * interface. Here the scatter gather list elements are each tagged with the
794 * appropriate dma address and length. They are obtained via
795 * sg_dma_{address,length}(SG).
797 * NOTE: An implementation may be able to use a smaller number of
798 * DMA address/length pairs than there are SG table elements.
799 * (for example via virtual mapping capabilities)
800 * The routine returns the number of addr/length pairs actually
801 * used, at most nents.
803 * Device ownership issues as mentioned above for swiotlb_map_page are the
807 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
808 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
810 struct scatterlist
*sg
;
813 BUG_ON(dir
== DMA_NONE
);
815 for_each_sg(sgl
, sg
, nelems
, i
) {
816 phys_addr_t paddr
= sg_phys(sg
);
817 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
820 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
821 void *map
= map_single(hwdev
, sg_phys(sg
),
824 /* Don't panic here, we expect map_sg users
825 to do proper error handling. */
826 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
827 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
829 sgl
[0].dma_length
= 0;
832 sg
->dma_address
= swiotlb_virt_to_bus(hwdev
, map
);
834 sg
->dma_address
= dev_addr
;
835 sg
->dma_length
= sg
->length
;
839 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
842 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
845 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
847 EXPORT_SYMBOL(swiotlb_map_sg
);
850 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
851 * concerning calls here are the same as for swiotlb_unmap_page() above.
854 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
855 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
857 struct scatterlist
*sg
;
860 BUG_ON(dir
== DMA_NONE
);
862 for_each_sg(sgl
, sg
, nelems
, i
)
863 unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
866 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
869 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
872 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
874 EXPORT_SYMBOL(swiotlb_unmap_sg
);
877 * Make physical memory consistent for a set of streaming mode DMA translations
880 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
884 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
885 int nelems
, int dir
, int target
)
887 struct scatterlist
*sg
;
890 for_each_sg(sgl
, sg
, nelems
, i
)
891 swiotlb_sync_single(hwdev
, sg
->dma_address
,
892 sg
->dma_length
, dir
, target
);
896 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
897 int nelems
, enum dma_data_direction dir
)
899 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
901 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
904 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
905 int nelems
, enum dma_data_direction dir
)
907 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
909 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
912 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
914 return (dma_addr
== swiotlb_virt_to_bus(hwdev
, io_tlb_overflow_buffer
));
916 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
919 * Return whether the given device DMA address mask can be supported
920 * properly. For example, if your device can only drive the low 24-bits
921 * during bus mastering, then you would pass 0x00ffffff as the mask to
925 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
927 return swiotlb_virt_to_bus(hwdev
, io_tlb_end
- 1) <= mask
;
929 EXPORT_SYMBOL(swiotlb_dma_supported
);