1 /* -*- mode: c; c-basic-offset: 8 -*- */
3 /* NCR (or Symbios) 53c700 and 53c700-66 Driver
5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com
6 **-----------------------------------------------------------------------------
8 ** This program is free software; you can redistribute it and/or modify
9 ** it under the terms of the GNU General Public License as published by
10 ** the Free Software Foundation; either version 2 of the License, or
11 ** (at your option) any later version.
13 ** This program is distributed in the hope that it will be useful,
14 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
15 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 ** GNU General Public License for more details.
18 ** You should have received a copy of the GNU General Public License
19 ** along with this program; if not, write to the Free Software
20 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 **-----------------------------------------------------------------------------
27 * This driver is designed exclusively for these chips (virtually the
28 * earliest of the scripts engine chips). They need their own drivers
29 * because they are missing so many of the scripts and snazzy register
30 * features of their elder brothers (the 710, 720 and 770).
32 * The 700 is the lowliest of the line, it can only do async SCSI.
33 * The 700-66 can at least do synchronous SCSI up to 10MHz.
35 * The 700 chip has no host bus interface logic of its own. However,
36 * it is usually mapped to a location with well defined register
37 * offsets. Therefore, if you can determine the base address and the
38 * irq your board incorporating this chip uses, you can probably use
39 * this driver to run it (although you'll probably have to write a
40 * minimal wrapper for the purpose---see the NCR_D700 driver for
41 * details about how to do this).
46 * 1. Better statistics in the proc fs
48 * 2. Implement message queue (queues SCSI messages like commands) and make
49 * the abort and device reset functions use them.
56 * Fixed bad bug affecting tag starvation processing (previously the
57 * driver would hang the system if too many tags starved. Also fixed
58 * bad bug having to do with 10 byte command processing and REQUEST
59 * SENSE (the command would loop forever getting a transfer length
60 * mismatch in the CMD phase).
64 * Fixed scripts problem which caused certain devices (notably CDRWs)
65 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use
66 * __raw_readl/writel for parisc compatibility (Thomas
67 * Bogendoerfer). Added missing SCp->request_bufflen initialisation
68 * for sense requests (Ryan Bradetich).
72 * Following test of the 64 bit parisc kernel by Richard Hirst,
73 * several problems have now been corrected. Also adds support for
74 * consistent memory allocation.
78 * More Compatibility changes for 710 (now actually works). Enhanced
79 * support for odd clock speeds which constrain SDTR negotiations.
80 * correct cacheline separation for scsi messages and status for
81 * incoherent architectures. Use of the pci mapping functions on
82 * buffers to begin support for 64 bit drivers.
86 * Added support for the 53c710 chip (in 53c700 emulation mode only---no
87 * special 53c710 instructions or registers are used).
91 * More endianness/cache coherency changes.
93 * Better bad device handling (handles devices lying about tag
94 * queueing support and devices which fail to provide sense data on
95 * contingent allegiance conditions)
97 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently
98 * debugging this driver on the parisc architecture and suggesting
99 * many improvements and bug fixes.
101 * Thanks also go to Linuxcare Inc. for providing several PARISC
102 * machines for me to debug the driver on.
106 * Made the driver mem or io mapped; added endian invariance; added
107 * dma cache flushing operations for architectures which need it;
108 * added support for more varied clocking speeds.
112 * Initial modularisation from the D700. See NCR_D700.c for the rest of
115 #define NCR_700_VERSION "2.8"
117 #include <linux/kernel.h>
118 #include <linux/types.h>
119 #include <linux/string.h>
120 #include <linux/ioport.h>
121 #include <linux/delay.h>
122 #include <linux/spinlock.h>
123 #include <linux/completion.h>
124 #include <linux/init.h>
125 #include <linux/proc_fs.h>
126 #include <linux/blkdev.h>
127 #include <linux/module.h>
128 #include <linux/interrupt.h>
129 #include <linux/device.h>
131 #include <asm/system.h>
133 #include <asm/pgtable.h>
134 #include <asm/byteorder.h>
136 #include <scsi/scsi.h>
137 #include <scsi/scsi_cmnd.h>
138 #include <scsi/scsi_dbg.h>
139 #include <scsi/scsi_eh.h>
140 #include <scsi/scsi_host.h>
141 #include <scsi/scsi_tcq.h>
142 #include <scsi/scsi_transport.h>
143 #include <scsi/scsi_transport_spi.h>
147 /* NOTE: For 64 bit drivers there are points in the code where we use
148 * a non dereferenceable pointer to point to a structure in dma-able
149 * memory (which is 32 bits) so that we can use all of the structure
150 * operations but take the address at the end. This macro allows us
151 * to truncate the 64 bit pointer down to 32 bits without the compiler
153 #define to32bit(x) ((__u32)((unsigned long)(x)))
158 #define STATIC static
161 MODULE_AUTHOR("James Bottomley");
162 MODULE_DESCRIPTION("53c700 and 53c700-66 Driver");
163 MODULE_LICENSE("GPL");
165 /* This is the script */
166 #include "53c700_d.h"
169 STATIC
int NCR_700_queuecommand(struct scsi_cmnd
*, void (*done
)(struct scsi_cmnd
*));
170 STATIC
int NCR_700_abort(struct scsi_cmnd
* SCpnt
);
171 STATIC
int NCR_700_bus_reset(struct scsi_cmnd
* SCpnt
);
172 STATIC
int NCR_700_host_reset(struct scsi_cmnd
* SCpnt
);
173 STATIC
void NCR_700_chip_setup(struct Scsi_Host
*host
);
174 STATIC
void NCR_700_chip_reset(struct Scsi_Host
*host
);
175 STATIC
int NCR_700_slave_alloc(struct scsi_device
*SDpnt
);
176 STATIC
int NCR_700_slave_configure(struct scsi_device
*SDpnt
);
177 STATIC
void NCR_700_slave_destroy(struct scsi_device
*SDpnt
);
178 static int NCR_700_change_queue_depth(struct scsi_device
*SDpnt
, int depth
, int reason
);
179 static int NCR_700_change_queue_type(struct scsi_device
*SDpnt
, int depth
);
181 STATIC
struct device_attribute
*NCR_700_dev_attrs
[];
183 STATIC
struct scsi_transport_template
*NCR_700_transport_template
= NULL
;
185 static char *NCR_700_phase
[] = {
188 "before command phase",
189 "after command phase",
190 "after status phase",
191 "after data in phase",
192 "after data out phase",
196 static char *NCR_700_condition
[] = {
204 "REJECT_MSG RECEIVED",
205 "DISCONNECT_MSG RECEIVED",
211 static char *NCR_700_fatal_messages
[] = {
212 "unexpected message after reselection",
213 "still MSG_OUT after message injection",
214 "not MSG_IN after selection",
215 "Illegal message length received",
218 static char *NCR_700_SBCL_bits
[] = {
229 static char *NCR_700_SBCL_to_phase
[] = {
240 /* This translates the SDTR message offset and period to a value
241 * which can be loaded into the SXFER_REG.
243 * NOTE: According to SCSI-2, the true transfer period (in ns) is
244 * actually four times this period value */
246 NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters
*hostdata
,
247 __u8 offset
, __u8 period
)
251 __u8 min_xferp
= (hostdata
->chip710
252 ? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
253 __u8 max_offset
= (hostdata
->chip710
254 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
);
259 if(period
< hostdata
->min_period
) {
260 printk(KERN_WARNING
"53c700: Period %dns is less than this chip's minimum, setting to %d\n", period
*4, NCR_700_MIN_PERIOD
*4);
261 period
= hostdata
->min_period
;
263 XFERP
= (period
*4 * hostdata
->sync_clock
)/1000 - 4;
264 if(offset
> max_offset
) {
265 printk(KERN_WARNING
"53c700: Offset %d exceeds chip maximum, setting to %d\n",
269 if(XFERP
< min_xferp
) {
272 return (offset
& 0x0f) | (XFERP
& 0x07)<<4;
276 NCR_700_get_SXFER(struct scsi_device
*SDp
)
278 struct NCR_700_Host_Parameters
*hostdata
=
279 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
281 return NCR_700_offset_period_to_sxfer(hostdata
,
282 spi_offset(SDp
->sdev_target
),
283 spi_period(SDp
->sdev_target
));
287 NCR_700_detect(struct scsi_host_template
*tpnt
,
288 struct NCR_700_Host_Parameters
*hostdata
, struct device
*dev
)
290 dma_addr_t pScript
, pSlots
;
293 struct Scsi_Host
*host
;
294 static int banner
= 0;
297 if(tpnt
->sdev_attrs
== NULL
)
298 tpnt
->sdev_attrs
= NCR_700_dev_attrs
;
300 memory
= dma_alloc_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
301 &pScript
, GFP_KERNEL
);
303 printk(KERN_ERR
"53c700: Failed to allocate memory for driver, detatching\n");
307 script
= (__u32
*)memory
;
308 hostdata
->msgin
= memory
+ MSGIN_OFFSET
;
309 hostdata
->msgout
= memory
+ MSGOUT_OFFSET
;
310 hostdata
->status
= memory
+ STATUS_OFFSET
;
311 /* all of these offsets are L1_CACHE_BYTES separated. It is fatal
312 * if this isn't sufficient separation to avoid dma flushing issues */
313 BUG_ON(!dma_is_consistent(hostdata
->dev
, pScript
) && L1_CACHE_BYTES
< dma_get_cache_alignment());
314 hostdata
->slots
= (struct NCR_700_command_slot
*)(memory
+ SLOTS_OFFSET
);
317 pSlots
= pScript
+ SLOTS_OFFSET
;
319 /* Fill in the missing routines from the host template */
320 tpnt
->queuecommand
= NCR_700_queuecommand
;
321 tpnt
->eh_abort_handler
= NCR_700_abort
;
322 tpnt
->eh_bus_reset_handler
= NCR_700_bus_reset
;
323 tpnt
->eh_host_reset_handler
= NCR_700_host_reset
;
324 tpnt
->can_queue
= NCR_700_COMMAND_SLOTS_PER_HOST
;
325 tpnt
->sg_tablesize
= NCR_700_SG_SEGMENTS
;
326 tpnt
->cmd_per_lun
= NCR_700_CMD_PER_LUN
;
327 tpnt
->use_clustering
= ENABLE_CLUSTERING
;
328 tpnt
->slave_configure
= NCR_700_slave_configure
;
329 tpnt
->slave_destroy
= NCR_700_slave_destroy
;
330 tpnt
->slave_alloc
= NCR_700_slave_alloc
;
331 tpnt
->change_queue_depth
= NCR_700_change_queue_depth
;
332 tpnt
->change_queue_type
= NCR_700_change_queue_type
;
334 if(tpnt
->name
== NULL
)
335 tpnt
->name
= "53c700";
336 if(tpnt
->proc_name
== NULL
)
337 tpnt
->proc_name
= "53c700";
339 host
= scsi_host_alloc(tpnt
, 4);
342 memset(hostdata
->slots
, 0, sizeof(struct NCR_700_command_slot
)
343 * NCR_700_COMMAND_SLOTS_PER_HOST
);
344 for (j
= 0; j
< NCR_700_COMMAND_SLOTS_PER_HOST
; j
++) {
345 dma_addr_t offset
= (dma_addr_t
)((unsigned long)&hostdata
->slots
[j
].SG
[0]
346 - (unsigned long)&hostdata
->slots
[0].SG
[0]);
347 hostdata
->slots
[j
].pSG
= (struct NCR_700_SG_List
*)((unsigned long)(pSlots
+ offset
));
349 hostdata
->free_list
= &hostdata
->slots
[j
];
351 hostdata
->slots
[j
-1].ITL_forw
= &hostdata
->slots
[j
];
352 hostdata
->slots
[j
].state
= NCR_700_SLOT_FREE
;
355 for (j
= 0; j
< ARRAY_SIZE(SCRIPT
); j
++)
356 script
[j
] = bS_to_host(SCRIPT
[j
]);
358 /* adjust all labels to be bus physical */
359 for (j
= 0; j
< PATCHES
; j
++)
360 script
[LABELPATCHES
[j
]] = bS_to_host(pScript
+ SCRIPT
[LABELPATCHES
[j
]]);
361 /* now patch up fixed addresses. */
362 script_patch_32(hostdata
->dev
, script
, MessageLocation
,
363 pScript
+ MSGOUT_OFFSET
);
364 script_patch_32(hostdata
->dev
, script
, StatusAddress
,
365 pScript
+ STATUS_OFFSET
);
366 script_patch_32(hostdata
->dev
, script
, ReceiveMsgAddress
,
367 pScript
+ MSGIN_OFFSET
);
369 hostdata
->script
= script
;
370 hostdata
->pScript
= pScript
;
371 dma_sync_single_for_device(hostdata
->dev
, pScript
, sizeof(SCRIPT
), DMA_TO_DEVICE
);
372 hostdata
->state
= NCR_700_HOST_FREE
;
373 hostdata
->cmd
= NULL
;
375 host
->max_lun
= NCR_700_MAX_LUNS
;
376 BUG_ON(NCR_700_transport_template
== NULL
);
377 host
->transportt
= NCR_700_transport_template
;
378 host
->unique_id
= (unsigned long)hostdata
->base
;
379 hostdata
->eh_complete
= NULL
;
380 host
->hostdata
[0] = (unsigned long)hostdata
;
382 NCR_700_writeb(0xff, host
, CTEST9_REG
);
383 if (hostdata
->chip710
)
384 hostdata
->rev
= (NCR_700_readb(host
, CTEST8_REG
)>>4) & 0x0f;
386 hostdata
->rev
= (NCR_700_readb(host
, CTEST7_REG
)>>4) & 0x0f;
387 hostdata
->fast
= (NCR_700_readb(host
, CTEST9_REG
) == 0);
389 printk(KERN_NOTICE
"53c700: Version " NCR_700_VERSION
" By James.Bottomley@HansenPartnership.com\n");
392 printk(KERN_NOTICE
"scsi%d: %s rev %d %s\n", host
->host_no
,
393 hostdata
->chip710
? "53c710" :
394 (hostdata
->fast
? "53c700-66" : "53c700"),
395 hostdata
->rev
, hostdata
->differential
?
396 "(Differential)" : "");
398 NCR_700_chip_reset(host
);
400 if (scsi_add_host(host
, dev
)) {
401 dev_printk(KERN_ERR
, dev
, "53c700: scsi_add_host failed\n");
406 spi_signalling(host
) = hostdata
->differential
? SPI_SIGNAL_HVD
:
413 NCR_700_release(struct Scsi_Host
*host
)
415 struct NCR_700_Host_Parameters
*hostdata
=
416 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
418 dma_free_noncoherent(hostdata
->dev
, TOTAL_MEM_SIZE
,
419 hostdata
->script
, hostdata
->pScript
);
424 NCR_700_identify(int can_disconnect
, __u8 lun
)
426 return IDENTIFY_BASE
|
427 ((can_disconnect
) ? 0x40 : 0) |
428 (lun
& NCR_700_LUN_MASK
);
432 * Function : static int data_residual (Scsi_Host *host)
434 * Purpose : return residual data count of what's in the chip. If you
435 * really want to know what this function is doing, it's almost a
436 * direct transcription of the algorithm described in the 53c710
437 * guide, except that the DBC and DFIFO registers are only 6 bits
440 * Inputs : host - SCSI host */
442 NCR_700_data_residual (struct Scsi_Host
*host
) {
443 struct NCR_700_Host_Parameters
*hostdata
=
444 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
445 int count
, synchronous
= 0;
448 if(hostdata
->chip710
) {
449 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x7f) -
450 (NCR_700_readl(host
, DBC_REG
) & 0x7f)) & 0x7f;
452 count
= ((NCR_700_readb(host
, DFIFO_REG
) & 0x3f) -
453 (NCR_700_readl(host
, DBC_REG
) & 0x3f)) & 0x3f;
457 synchronous
= NCR_700_readb(host
, SXFER_REG
) & 0x0f;
459 /* get the data direction */
460 ddir
= NCR_700_readb(host
, CTEST0_REG
) & 0x01;
465 count
+= (NCR_700_readb(host
, SSTAT2_REG
) & 0xf0) >> 4;
467 if (NCR_700_readb(host
, SSTAT1_REG
) & SIDL_REG_FULL
)
471 __u8 sstat
= NCR_700_readb(host
, SSTAT1_REG
);
472 if (sstat
& SODL_REG_FULL
)
474 if (synchronous
&& (sstat
& SODR_REG_FULL
))
479 printk("RESIDUAL IS %d (ddir %d)\n", count
, ddir
);
484 /* print out the SCSI wires and corresponding phase from the SBCL register
487 sbcl_to_string(__u8 sbcl
)
490 static char ret
[256];
495 strcat(ret
, NCR_700_SBCL_bits
[i
]);
497 strcat(ret
, NCR_700_SBCL_to_phase
[sbcl
& 0x07]);
502 bitmap_to_number(__u8 bitmap
)
506 for(i
=0; i
<8 && !(bitmap
&(1<<i
)); i
++)
511 /* Pull a slot off the free list */
512 STATIC
struct NCR_700_command_slot
*
513 find_empty_slot(struct NCR_700_Host_Parameters
*hostdata
)
515 struct NCR_700_command_slot
*slot
= hostdata
->free_list
;
519 if(hostdata
->command_slot_count
!= NCR_700_COMMAND_SLOTS_PER_HOST
)
520 printk(KERN_ERR
"SLOTS FULL, but count is %d, should be %d\n", hostdata
->command_slot_count
, NCR_700_COMMAND_SLOTS_PER_HOST
);
524 if(slot
->state
!= NCR_700_SLOT_FREE
)
526 printk(KERN_ERR
"BUSY SLOT ON FREE LIST!!!\n");
529 hostdata
->free_list
= slot
->ITL_forw
;
530 slot
->ITL_forw
= NULL
;
533 /* NOTE: set the state to busy here, not queued, since this
534 * indicates the slot is in use and cannot be run by the IRQ
535 * finish routine. If we cannot queue the command when it
536 * is properly build, we then change to NCR_700_SLOT_QUEUED */
537 slot
->state
= NCR_700_SLOT_BUSY
;
539 hostdata
->command_slot_count
++;
545 free_slot(struct NCR_700_command_slot
*slot
,
546 struct NCR_700_Host_Parameters
*hostdata
)
548 if((slot
->state
& NCR_700_SLOT_MASK
) != NCR_700_SLOT_MAGIC
) {
549 printk(KERN_ERR
"53c700: SLOT %p is not MAGIC!!!\n", slot
);
551 if(slot
->state
== NCR_700_SLOT_FREE
) {
552 printk(KERN_ERR
"53c700: SLOT %p is FREE!!!\n", slot
);
555 slot
->resume_offset
= 0;
557 slot
->state
= NCR_700_SLOT_FREE
;
558 slot
->ITL_forw
= hostdata
->free_list
;
559 hostdata
->free_list
= slot
;
560 hostdata
->command_slot_count
--;
564 /* This routine really does very little. The command is indexed on
565 the ITL and (if tagged) the ITLQ lists in _queuecommand */
567 save_for_reselection(struct NCR_700_Host_Parameters
*hostdata
,
568 struct scsi_cmnd
*SCp
, __u32 dsp
)
570 /* Its just possible that this gets executed twice */
572 struct NCR_700_command_slot
*slot
=
573 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
575 slot
->resume_offset
= dsp
;
577 hostdata
->state
= NCR_700_HOST_FREE
;
578 hostdata
->cmd
= NULL
;
582 NCR_700_unmap(struct NCR_700_Host_Parameters
*hostdata
, struct scsi_cmnd
*SCp
,
583 struct NCR_700_command_slot
*slot
)
585 if(SCp
->sc_data_direction
!= DMA_NONE
&&
586 SCp
->sc_data_direction
!= DMA_BIDIRECTIONAL
)
591 NCR_700_scsi_done(struct NCR_700_Host_Parameters
*hostdata
,
592 struct scsi_cmnd
*SCp
, int result
)
594 hostdata
->state
= NCR_700_HOST_FREE
;
595 hostdata
->cmd
= NULL
;
598 struct NCR_700_command_slot
*slot
=
599 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
601 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
602 MAX_COMMAND_SIZE
, DMA_TO_DEVICE
);
603 if (slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
604 char *cmnd
= NCR_700_get_sense_cmnd(SCp
->device
);
606 printk(" ORIGINAL CMD %p RETURNED %d, new return is %d sense is\n",
607 SCp
, SCp
->cmnd
[7], result
);
608 scsi_print_sense("53c700", SCp
);
611 dma_unmap_single(hostdata
->dev
, slot
->dma_handle
,
612 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
613 /* restore the old result if the request sense was
617 /* restore the original length */
618 SCp
->cmd_len
= cmnd
[8];
620 NCR_700_unmap(hostdata
, SCp
, slot
);
622 free_slot(slot
, hostdata
);
624 if(NCR_700_get_depth(SCp
->device
) == 0 ||
625 NCR_700_get_depth(SCp
->device
) > SCp
->device
->queue_depth
)
626 printk(KERN_ERR
"Invalid depth in NCR_700_scsi_done(): %d\n",
627 NCR_700_get_depth(SCp
->device
));
628 #endif /* NCR_700_DEBUG */
629 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) - 1);
631 SCp
->host_scribble
= NULL
;
632 SCp
->result
= result
;
635 printk(KERN_ERR
"53c700: SCSI DONE HAS NULL SCp\n");
641 NCR_700_internal_bus_reset(struct Scsi_Host
*host
)
644 NCR_700_writeb(ASSERT_RST
, host
, SCNTL1_REG
);
646 NCR_700_writeb(0, host
, SCNTL1_REG
);
651 NCR_700_chip_setup(struct Scsi_Host
*host
)
653 struct NCR_700_Host_Parameters
*hostdata
=
654 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
656 __u8 min_xferp
= (hostdata
->chip710
? NCR_710_MIN_XFERP
: NCR_700_MIN_XFERP
);
658 if(hostdata
->chip710
) {
659 __u8 burst_disable
= 0;
660 __u8 burst_length
= 0;
662 switch (hostdata
->burst_length
) {
664 burst_length
= BURST_LENGTH_1
;
667 burst_length
= BURST_LENGTH_2
;
670 burst_length
= BURST_LENGTH_4
;
673 burst_length
= BURST_LENGTH_8
;
676 burst_disable
= BURST_DISABLE
;
679 hostdata
->dcntl_extra
|= COMPAT_700_MODE
;
681 NCR_700_writeb(hostdata
->dcntl_extra
, host
, DCNTL_REG
);
682 NCR_700_writeb(burst_length
| hostdata
->dmode_extra
,
683 host
, DMODE_710_REG
);
684 NCR_700_writeb(burst_disable
| hostdata
->ctest7_extra
|
685 (hostdata
->differential
? DIFF
: 0),
687 NCR_700_writeb(BTB_TIMER_DISABLE
, host
, CTEST0_REG
);
688 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
| PARITY
689 | AUTO_ATN
, host
, SCNTL0_REG
);
691 NCR_700_writeb(BURST_LENGTH_8
| hostdata
->dmode_extra
,
692 host
, DMODE_700_REG
);
693 NCR_700_writeb(hostdata
->differential
?
694 DIFF
: 0, host
, CTEST7_REG
);
696 /* this is for 700-66, does nothing on 700 */
697 NCR_700_writeb(LAST_DIS_ENBL
| ENABLE_ACTIVE_NEGATION
698 | GENERATE_RECEIVE_PARITY
, host
,
701 NCR_700_writeb(FULL_ARBITRATION
| ENABLE_PARITY
702 | PARITY
| AUTO_ATN
, host
, SCNTL0_REG
);
706 NCR_700_writeb(1 << host
->this_id
, host
, SCID_REG
);
707 NCR_700_writeb(0, host
, SBCL_REG
);
708 NCR_700_writeb(ASYNC_OPERATION
, host
, SXFER_REG
);
710 NCR_700_writeb(PHASE_MM_INT
| SEL_TIMEOUT_INT
| GROSS_ERR_INT
| UX_DISC_INT
711 | RST_INT
| PAR_ERR_INT
| SELECT_INT
, host
, SIEN_REG
);
713 NCR_700_writeb(ABORT_INT
| INT_INST_INT
| ILGL_INST_INT
, host
, DIEN_REG
);
714 NCR_700_writeb(ENABLE_SELECT
, host
, SCNTL1_REG
);
715 if(hostdata
->clock
> 75) {
716 printk(KERN_ERR
"53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata
->clock
);
717 /* do the best we can, but the async clock will be out
718 * of spec: sync divider 2, async divider 3 */
719 DEBUG(("53c700: sync 2 async 3\n"));
720 NCR_700_writeb(SYNC_DIV_2_0
, host
, SBCL_REG
);
721 NCR_700_writeb(ASYNC_DIV_3_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
722 hostdata
->sync_clock
= hostdata
->clock
/2;
723 } else if(hostdata
->clock
> 50 && hostdata
->clock
<= 75) {
724 /* sync divider 1.5, async divider 3 */
725 DEBUG(("53c700: sync 1.5 async 3\n"));
726 NCR_700_writeb(SYNC_DIV_1_5
, host
, SBCL_REG
);
727 NCR_700_writeb(ASYNC_DIV_3_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
728 hostdata
->sync_clock
= hostdata
->clock
*2;
729 hostdata
->sync_clock
/= 3;
731 } else if(hostdata
->clock
> 37 && hostdata
->clock
<= 50) {
732 /* sync divider 1, async divider 2 */
733 DEBUG(("53c700: sync 1 async 2\n"));
734 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
735 NCR_700_writeb(ASYNC_DIV_2_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
736 hostdata
->sync_clock
= hostdata
->clock
;
737 } else if(hostdata
->clock
> 25 && hostdata
->clock
<=37) {
738 /* sync divider 1, async divider 1.5 */
739 DEBUG(("53c700: sync 1 async 1.5\n"));
740 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
741 NCR_700_writeb(ASYNC_DIV_1_5
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
742 hostdata
->sync_clock
= hostdata
->clock
;
744 DEBUG(("53c700: sync 1 async 1\n"));
745 NCR_700_writeb(SYNC_DIV_1_0
, host
, SBCL_REG
);
746 NCR_700_writeb(ASYNC_DIV_1_0
| hostdata
->dcntl_extra
, host
, DCNTL_REG
);
747 /* sync divider 1, async divider 1 */
748 hostdata
->sync_clock
= hostdata
->clock
;
750 /* Calculate the actual minimum period that can be supported
751 * by our synchronous clock speed. See the 710 manual for
752 * exact details of this calculation which is based on a
753 * setting of the SXFER register */
754 min_period
= 1000*(4+min_xferp
)/(4*hostdata
->sync_clock
);
755 hostdata
->min_period
= NCR_700_MIN_PERIOD
;
756 if(min_period
> NCR_700_MIN_PERIOD
)
757 hostdata
->min_period
= min_period
;
761 NCR_700_chip_reset(struct Scsi_Host
*host
)
763 struct NCR_700_Host_Parameters
*hostdata
=
764 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
765 if(hostdata
->chip710
) {
766 NCR_700_writeb(SOFTWARE_RESET_710
, host
, ISTAT_REG
);
769 NCR_700_writeb(0, host
, ISTAT_REG
);
771 NCR_700_writeb(SOFTWARE_RESET
, host
, DCNTL_REG
);
774 NCR_700_writeb(0, host
, DCNTL_REG
);
779 NCR_700_chip_setup(host
);
782 /* The heart of the message processing engine is that the instruction
783 * immediately after the INT is the normal case (and so must be CLEAR
784 * ACK). If we want to do something else, we call that routine in
785 * scripts and set temp to be the normal case + 8 (skipping the CLEAR
786 * ACK) so that the routine returns correctly to resume its activity
789 process_extended_message(struct Scsi_Host
*host
,
790 struct NCR_700_Host_Parameters
*hostdata
,
791 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
793 __u32 resume_offset
= dsp
, temp
= dsp
+ 8;
794 __u8 pun
= 0xff, lun
= 0xff;
797 pun
= SCp
->device
->id
;
798 lun
= SCp
->device
->lun
;
801 switch(hostdata
->msgin
[2]) {
803 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
804 struct scsi_target
*starget
= SCp
->device
->sdev_target
;
805 __u8 period
= hostdata
->msgin
[3];
806 __u8 offset
= hostdata
->msgin
[4];
808 if(offset
== 0 || period
== 0) {
813 spi_offset(starget
) = offset
;
814 spi_period(starget
) = period
;
816 if(NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
)) {
817 spi_display_xfer_agreement(starget
);
818 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_PRINT_SYNC_NEGOTIATION
);
821 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
822 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
824 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
828 /* SDTR message out of the blue, reject it */
829 shost_printk(KERN_WARNING
, host
,
830 "Unexpected SDTR msg\n");
831 hostdata
->msgout
[0] = A_REJECT_MSG
;
832 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
833 script_patch_16(hostdata
->dev
, hostdata
->script
,
835 /* SendMsgOut returns, so set up the return
837 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
842 printk(KERN_INFO
"scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n",
843 host
->host_no
, pun
, lun
);
844 hostdata
->msgout
[0] = A_REJECT_MSG
;
845 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
846 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
848 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
853 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
854 host
->host_no
, pun
, lun
,
855 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
856 spi_print_msg(hostdata
->msgin
);
859 hostdata
->msgout
[0] = A_REJECT_MSG
;
860 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
861 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
863 /* SendMsgOut returns, so set up the return
865 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
867 NCR_700_writel(temp
, host
, TEMP_REG
);
868 return resume_offset
;
872 process_message(struct Scsi_Host
*host
, struct NCR_700_Host_Parameters
*hostdata
,
873 struct scsi_cmnd
*SCp
, __u32 dsp
, __u32 dsps
)
875 /* work out where to return to */
876 __u32 temp
= dsp
+ 8, resume_offset
= dsp
;
877 __u8 pun
= 0xff, lun
= 0xff;
880 pun
= SCp
->device
->id
;
881 lun
= SCp
->device
->lun
;
885 printk("scsi%d (%d:%d): message %s: ", host
->host_no
, pun
, lun
,
886 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
887 spi_print_msg(hostdata
->msgin
);
891 switch(hostdata
->msgin
[0]) {
894 resume_offset
= process_extended_message(host
, hostdata
, SCp
,
899 if(SCp
!= NULL
&& NCR_700_is_flag_set(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
)) {
900 /* Rejected our sync negotiation attempt */
901 spi_period(SCp
->device
->sdev_target
) =
902 spi_offset(SCp
->device
->sdev_target
) = 0;
903 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
904 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
905 } else if(SCp
!= NULL
&& NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
) {
906 /* rejected our first simple tag message */
907 scmd_printk(KERN_WARNING
, SCp
,
908 "Rejected first tag queue attempt, turning off tag queueing\n");
909 /* we're done negotiating */
910 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_FINISHED_TAG_NEGOTIATION
);
911 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
912 SCp
->device
->tagged_supported
= 0;
913 scsi_deactivate_tcq(SCp
->device
, host
->cmd_per_lun
);
915 shost_printk(KERN_WARNING
, host
,
916 "(%d:%d) Unexpected REJECT Message %s\n",
918 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
919 /* however, just ignore it */
923 case A_PARITY_ERROR_MSG
:
924 printk(KERN_ERR
"scsi%d (%d:%d) Parity Error!\n", host
->host_no
,
926 NCR_700_internal_bus_reset(host
);
928 case A_SIMPLE_TAG_MSG
:
929 printk(KERN_INFO
"scsi%d (%d:%d) SIMPLE TAG %d %s\n", host
->host_no
,
930 pun
, lun
, hostdata
->msgin
[1],
931 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
935 printk(KERN_INFO
"scsi%d (%d:%d): Unexpected message %s: ",
936 host
->host_no
, pun
, lun
,
937 NCR_700_phase
[(dsps
& 0xf00) >> 8]);
939 spi_print_msg(hostdata
->msgin
);
942 hostdata
->msgout
[0] = A_REJECT_MSG
;
943 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, 1, DMA_TO_DEVICE
);
944 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
,
946 /* SendMsgOut returns, so set up the return
948 resume_offset
= hostdata
->pScript
+ Ent_SendMessageWithATN
;
952 NCR_700_writel(temp
, host
, TEMP_REG
);
953 /* set us up to receive another message */
954 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
955 return resume_offset
;
959 process_script_interrupt(__u32 dsps
, __u32 dsp
, struct scsi_cmnd
*SCp
,
960 struct Scsi_Host
*host
,
961 struct NCR_700_Host_Parameters
*hostdata
)
963 __u32 resume_offset
= 0;
964 __u8 pun
= 0xff, lun
=0xff;
967 pun
= SCp
->device
->id
;
968 lun
= SCp
->device
->lun
;
971 if(dsps
== A_GOOD_STATUS_AFTER_STATUS
) {
972 DEBUG((" COMMAND COMPLETE, status=%02x\n",
973 hostdata
->status
[0]));
974 /* OK, if TCQ still under negotiation, we now know it works */
975 if (NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_DURING_TAG_NEGOTIATION
)
976 NCR_700_set_tag_neg_state(SCp
->device
,
977 NCR_700_FINISHED_TAG_NEGOTIATION
);
979 /* check for contingent allegiance contitions */
980 if(status_byte(hostdata
->status
[0]) == CHECK_CONDITION
||
981 status_byte(hostdata
->status
[0]) == COMMAND_TERMINATED
) {
982 struct NCR_700_command_slot
*slot
=
983 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
984 if(slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
985 /* OOPS: bad device, returning another
986 * contingent allegiance condition */
987 scmd_printk(KERN_ERR
, SCp
,
988 "broken device is looping in contingent allegiance: ignoring\n");
989 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
992 NCR_700_get_sense_cmnd(SCp
->device
);
994 scsi_print_command(SCp
);
995 printk(" cmd %p has status %d, requesting sense\n",
996 SCp
, hostdata
->status
[0]);
998 /* we can destroy the command here
999 * because the contingent allegiance
1000 * condition will cause a retry which
1001 * will re-copy the command from the
1002 * saved data_cmnd. We also unmap any
1003 * data associated with the command
1005 NCR_700_unmap(hostdata
, SCp
, slot
);
1006 dma_unmap_single(hostdata
->dev
, slot
->pCmd
,
1010 cmnd
[0] = REQUEST_SENSE
;
1011 cmnd
[1] = (SCp
->device
->lun
& 0x7) << 5;
1014 cmnd
[4] = SCSI_SENSE_BUFFERSIZE
;
1016 /* Here's a quiet hack: the
1017 * REQUEST_SENSE command is six bytes,
1018 * so store a flag indicating that
1019 * this was an internal sense request
1020 * and the original status at the end
1022 cmnd
[6] = NCR_700_INTERNAL_SENSE_MAGIC
;
1023 cmnd
[7] = hostdata
->status
[0];
1024 cmnd
[8] = SCp
->cmd_len
;
1025 SCp
->cmd_len
= 6; /* command length for
1027 slot
->pCmd
= dma_map_single(hostdata
->dev
, cmnd
, MAX_COMMAND_SIZE
, DMA_TO_DEVICE
);
1028 slot
->dma_handle
= dma_map_single(hostdata
->dev
, SCp
->sense_buffer
, SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
1029 slot
->SG
[0].ins
= bS_to_host(SCRIPT_MOVE_DATA_IN
| SCSI_SENSE_BUFFERSIZE
);
1030 slot
->SG
[0].pAddr
= bS_to_host(slot
->dma_handle
);
1031 slot
->SG
[1].ins
= bS_to_host(SCRIPT_RETURN
);
1032 slot
->SG
[1].pAddr
= 0;
1033 slot
->resume_offset
= hostdata
->pScript
;
1034 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
[0])*2, DMA_TO_DEVICE
);
1035 dma_cache_sync(hostdata
->dev
, SCp
->sense_buffer
, SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
1037 /* queue the command for reissue */
1038 slot
->state
= NCR_700_SLOT_QUEUED
;
1039 slot
->flags
= NCR_700_FLAG_AUTOSENSE
;
1040 hostdata
->state
= NCR_700_HOST_FREE
;
1041 hostdata
->cmd
= NULL
;
1044 // Currently rely on the mid layer evaluation
1045 // of the tag queuing capability
1047 //if(status_byte(hostdata->status[0]) == GOOD &&
1048 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) {
1049 // /* Piggy back the tag queueing support
1050 // * on this command */
1051 // dma_sync_single_for_cpu(hostdata->dev,
1052 // slot->dma_handle,
1053 // SCp->request_bufflen,
1054 // DMA_FROM_DEVICE);
1055 // if(((char *)SCp->request_buffer)[7] & 0x02) {
1056 // scmd_printk(KERN_INFO, SCp,
1057 // "Enabling Tag Command Queuing\n");
1058 // hostdata->tag_negotiated |= (1<<scmd_id(SCp));
1059 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1061 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING);
1062 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp));
1065 NCR_700_scsi_done(hostdata
, SCp
, hostdata
->status
[0]);
1067 } else if((dsps
& 0xfffff0f0) == A_UNEXPECTED_PHASE
) {
1068 __u8 i
= (dsps
& 0xf00) >> 8;
1070 scmd_printk(KERN_ERR
, SCp
, "UNEXPECTED PHASE %s (%s)\n",
1072 sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1073 scmd_printk(KERN_ERR
, SCp
, " len = %d, cmd =",
1075 scsi_print_command(SCp
);
1077 NCR_700_internal_bus_reset(host
);
1078 } else if((dsps
& 0xfffff000) == A_FATAL
) {
1079 int i
= (dsps
& 0xfff);
1081 printk(KERN_ERR
"scsi%d: (%d:%d) FATAL ERROR: %s\n",
1082 host
->host_no
, pun
, lun
, NCR_700_fatal_messages
[i
]);
1083 if(dsps
== A_FATAL_ILLEGAL_MSG_LENGTH
) {
1084 printk(KERN_ERR
" msg begins %02x %02x\n",
1085 hostdata
->msgin
[0], hostdata
->msgin
[1]);
1087 NCR_700_internal_bus_reset(host
);
1088 } else if((dsps
& 0xfffff0f0) == A_DISCONNECT
) {
1089 #ifdef NCR_700_DEBUG
1090 __u8 i
= (dsps
& 0xf00) >> 8;
1092 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n",
1093 host
->host_no
, pun
, lun
,
1094 i
, NCR_700_phase
[i
]);
1096 save_for_reselection(hostdata
, SCp
, dsp
);
1098 } else if(dsps
== A_RESELECTION_IDENTIFIED
) {
1100 struct NCR_700_command_slot
*slot
;
1101 __u8 reselection_id
= hostdata
->reselection_id
;
1102 struct scsi_device
*SDp
;
1104 lun
= hostdata
->msgin
[0] & 0x1f;
1106 hostdata
->reselection_id
= 0xff;
1107 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n",
1108 host
->host_no
, reselection_id
, lun
));
1109 /* clear the reselection indicator */
1110 SDp
= __scsi_device_lookup(host
, 0, reselection_id
, lun
);
1111 if(unlikely(SDp
== NULL
)) {
1112 printk(KERN_ERR
"scsi%d: (%d:%d) HAS NO device\n",
1113 host
->host_no
, reselection_id
, lun
);
1116 if(hostdata
->msgin
[1] == A_SIMPLE_TAG_MSG
) {
1117 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, hostdata
->msgin
[2]);
1118 if(unlikely(SCp
== NULL
)) {
1119 printk(KERN_ERR
"scsi%d: (%d:%d) no saved request for tag %d\n",
1120 host
->host_no
, reselection_id
, lun
, hostdata
->msgin
[2]);
1124 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1125 DDEBUG(KERN_DEBUG
, SDp
,
1126 "reselection is tag %d, slot %p(%d)\n",
1127 hostdata
->msgin
[2], slot
, slot
->tag
);
1129 struct scsi_cmnd
*SCp
= scsi_find_tag(SDp
, SCSI_NO_TAG
);
1130 if(unlikely(SCp
== NULL
)) {
1131 sdev_printk(KERN_ERR
, SDp
,
1132 "no saved request for untagged cmd\n");
1135 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1139 printk(KERN_ERR
"scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n",
1140 host
->host_no
, reselection_id
, lun
,
1141 hostdata
->msgin
[0], hostdata
->msgin
[1],
1142 hostdata
->msgin
[2]);
1144 if(hostdata
->state
!= NCR_700_HOST_BUSY
)
1145 printk(KERN_ERR
"scsi%d: FATAL, host not busy during valid reselection!\n",
1147 resume_offset
= slot
->resume_offset
;
1148 hostdata
->cmd
= slot
->cmnd
;
1150 /* re-patch for this command */
1151 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1152 CommandAddress
, slot
->pCmd
);
1153 script_patch_16(hostdata
->dev
, hostdata
->script
,
1154 CommandCount
, slot
->cmnd
->cmd_len
);
1155 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1156 SGScriptStartAddress
,
1157 to32bit(&slot
->pSG
[0].ins
));
1159 /* Note: setting SXFER only works if we're
1160 * still in the MESSAGE phase, so it is vital
1161 * that ACK is still asserted when we process
1162 * the reselection message. The resume offset
1163 * should therefore always clear ACK */
1164 NCR_700_writeb(NCR_700_get_SXFER(hostdata
->cmd
->device
),
1166 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
,
1167 MSG_ARRAY_SIZE
, DMA_FROM_DEVICE
);
1168 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
,
1169 MSG_ARRAY_SIZE
, DMA_TO_DEVICE
);
1170 /* I'm just being paranoid here, the command should
1171 * already have been flushed from the cache */
1172 dma_cache_sync(hostdata
->dev
, slot
->cmnd
->cmnd
,
1173 slot
->cmnd
->cmd_len
, DMA_TO_DEVICE
);
1178 } else if(dsps
== A_RESELECTED_DURING_SELECTION
) {
1180 /* This section is full of debugging code because I've
1181 * never managed to reach it. I think what happens is
1182 * that, because the 700 runs with selection
1183 * interrupts enabled the whole time that we take a
1184 * selection interrupt before we manage to get to the
1185 * reselected script interrupt */
1187 __u8 reselection_id
= NCR_700_readb(host
, SFBR_REG
);
1188 struct NCR_700_command_slot
*slot
;
1190 /* Take out our own ID */
1191 reselection_id
&= ~(1<<host
->this_id
);
1193 /* I've never seen this happen, so keep this as a printk rather
1195 printk(KERN_INFO
"scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n",
1196 host
->host_no
, reselection_id
, lun
, dsp
, dsp
- hostdata
->pScript
, hostdata
->state
, hostdata
->command_slot_count
);
1199 /* FIXME: DEBUGGING CODE */
1200 __u32 SG
= (__u32
)bS_to_cpu(hostdata
->script
[A_SGScriptStartAddress_used
[0]]);
1203 for(i
=0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1204 if(SG
>= to32bit(&hostdata
->slots
[i
].pSG
[0])
1205 && SG
<= to32bit(&hostdata
->slots
[i
].pSG
[NCR_700_SG_SEGMENTS
]))
1208 printk(KERN_INFO
"IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG
, &hostdata
->slots
[i
], hostdata
->slots
[i
].cmnd
, hostdata
->slots
[i
].resume_offset
);
1209 SCp
= hostdata
->slots
[i
].cmnd
;
1213 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1214 /* change slot from busy to queued to redo command */
1215 slot
->state
= NCR_700_SLOT_QUEUED
;
1217 hostdata
->cmd
= NULL
;
1219 if(reselection_id
== 0) {
1220 if(hostdata
->reselection_id
== 0xff) {
1221 printk(KERN_ERR
"scsi%d: Invalid reselection during selection!!\n", host
->host_no
);
1224 printk(KERN_ERR
"scsi%d: script reselected and we took a selection interrupt\n",
1226 reselection_id
= hostdata
->reselection_id
;
1230 /* convert to real ID */
1231 reselection_id
= bitmap_to_number(reselection_id
);
1233 hostdata
->reselection_id
= reselection_id
;
1234 /* just in case we have a stale simple tag message, clear it */
1235 hostdata
->msgin
[1] = 0;
1236 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
,
1237 MSG_ARRAY_SIZE
, DMA_BIDIRECTIONAL
);
1238 if(hostdata
->tag_negotiated
& (1<<reselection_id
)) {
1239 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1241 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1243 } else if(dsps
== A_COMPLETED_SELECTION_AS_TARGET
) {
1244 /* we've just disconnected from the bus, do nothing since
1245 * a return here will re-run the queued command slot
1246 * that may have been interrupted by the initial selection */
1247 DEBUG((" SELECTION COMPLETED\n"));
1248 } else if((dsps
& 0xfffff0f0) == A_MSG_IN
) {
1249 resume_offset
= process_message(host
, hostdata
, SCp
,
1251 } else if((dsps
& 0xfffff000) == 0) {
1252 __u8 i
= (dsps
& 0xf0) >> 4, j
= (dsps
& 0xf00) >> 8;
1253 printk(KERN_ERR
"scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n",
1254 host
->host_no
, pun
, lun
, NCR_700_condition
[i
],
1255 NCR_700_phase
[j
], dsp
- hostdata
->pScript
);
1257 struct scatterlist
*sg
;
1259 scsi_print_command(SCp
);
1260 scsi_for_each_sg(SCp
, sg
, scsi_sg_count(SCp
) + 1, i
) {
1261 printk(KERN_INFO
" SG[%d].length = %d, move_insn=%08x, addr %08x\n", i
, sg
->length
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].ins
, ((struct NCR_700_command_slot
*)SCp
->host_scribble
)->SG
[i
].pAddr
);
1264 NCR_700_internal_bus_reset(host
);
1265 } else if((dsps
& 0xfffff000) == A_DEBUG_INTERRUPT
) {
1266 printk(KERN_NOTICE
"scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n",
1267 host
->host_no
, pun
, lun
, dsps
& 0xfff, dsp
, dsp
- hostdata
->pScript
);
1268 resume_offset
= dsp
;
1270 printk(KERN_ERR
"scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n",
1271 host
->host_no
, pun
, lun
, dsps
, dsp
- hostdata
->pScript
);
1272 NCR_700_internal_bus_reset(host
);
1274 return resume_offset
;
1277 /* We run the 53c700 with selection interrupts always enabled. This
1278 * means that the chip may be selected as soon as the bus frees. On a
1279 * busy bus, this can be before the scripts engine finishes its
1280 * processing. Therefore, part of the selection processing has to be
1281 * to find out what the scripts engine is doing and complete the
1282 * function if necessary (i.e. process the pending disconnect or save
1283 * the interrupted initial selection */
1285 process_selection(struct Scsi_Host
*host
, __u32 dsp
)
1287 __u8 id
= 0; /* Squash compiler warning */
1289 __u32 resume_offset
= 0;
1290 struct NCR_700_Host_Parameters
*hostdata
=
1291 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1292 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1295 for(count
= 0; count
< 5; count
++) {
1296 id
= NCR_700_readb(host
, hostdata
->chip710
?
1297 CTEST9_REG
: SFBR_REG
);
1299 /* Take out our own ID */
1300 id
&= ~(1<<host
->this_id
);
1305 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1306 if((sbcl
& SBCL_IO
) == 0) {
1307 /* mark as having been selected rather than reselected */
1310 /* convert to real ID */
1311 hostdata
->reselection_id
= id
= bitmap_to_number(id
);
1312 DEBUG(("scsi%d: Reselected by %d\n",
1313 host
->host_no
, id
));
1315 if(hostdata
->state
== NCR_700_HOST_BUSY
&& SCp
!= NULL
) {
1316 struct NCR_700_command_slot
*slot
=
1317 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1318 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id
, hostdata
->cmd
, slot
, dsp
, dsp
- hostdata
->pScript
, resume_offset
));
1320 switch(dsp
- hostdata
->pScript
) {
1321 case Ent_Disconnect1
:
1322 case Ent_Disconnect2
:
1323 save_for_reselection(hostdata
, SCp
, Ent_Disconnect2
+ hostdata
->pScript
);
1325 case Ent_Disconnect3
:
1326 case Ent_Disconnect4
:
1327 save_for_reselection(hostdata
, SCp
, Ent_Disconnect4
+ hostdata
->pScript
);
1329 case Ent_Disconnect5
:
1330 case Ent_Disconnect6
:
1331 save_for_reselection(hostdata
, SCp
, Ent_Disconnect6
+ hostdata
->pScript
);
1333 case Ent_Disconnect7
:
1334 case Ent_Disconnect8
:
1335 save_for_reselection(hostdata
, SCp
, Ent_Disconnect8
+ hostdata
->pScript
);
1339 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS
, dsp
, SCp
, host
, hostdata
);
1343 slot
->state
= NCR_700_SLOT_QUEUED
;
1347 hostdata
->state
= NCR_700_HOST_BUSY
;
1348 hostdata
->cmd
= NULL
;
1349 /* clear any stale simple tag message */
1350 hostdata
->msgin
[1] = 0;
1351 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
,
1355 /* Selected as target, Ignore */
1356 resume_offset
= hostdata
->pScript
+ Ent_SelectedAsTarget
;
1357 } else if(hostdata
->tag_negotiated
& (1<<id
)) {
1358 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionWithTag
;
1360 resume_offset
= hostdata
->pScript
+ Ent_GetReselectionData
;
1362 return resume_offset
;
1366 NCR_700_clear_fifo(struct Scsi_Host
*host
) {
1367 const struct NCR_700_Host_Parameters
*hostdata
1368 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1369 if(hostdata
->chip710
) {
1370 NCR_700_writeb(CLR_FIFO_710
, host
, CTEST8_REG
);
1372 NCR_700_writeb(CLR_FIFO
, host
, DFIFO_REG
);
1377 NCR_700_flush_fifo(struct Scsi_Host
*host
) {
1378 const struct NCR_700_Host_Parameters
*hostdata
1379 = (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1380 if(hostdata
->chip710
) {
1381 NCR_700_writeb(FLUSH_DMA_FIFO_710
, host
, CTEST8_REG
);
1383 NCR_700_writeb(0, host
, CTEST8_REG
);
1385 NCR_700_writeb(FLUSH_DMA_FIFO
, host
, DFIFO_REG
);
1387 NCR_700_writeb(0, host
, DFIFO_REG
);
1392 /* The queue lock with interrupts disabled must be held on entry to
1395 NCR_700_start_command(struct scsi_cmnd
*SCp
)
1397 struct NCR_700_command_slot
*slot
=
1398 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1399 struct NCR_700_Host_Parameters
*hostdata
=
1400 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1401 __u16 count
= 1; /* for IDENTIFY message */
1403 if(hostdata
->state
!= NCR_700_HOST_FREE
) {
1404 /* keep this inside the lock to close the race window where
1405 * the running command finishes on another CPU while we don't
1406 * change the state to queued on this one */
1407 slot
->state
= NCR_700_SLOT_QUEUED
;
1409 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n",
1410 SCp
->device
->host
->host_no
, slot
->cmnd
, slot
));
1413 hostdata
->state
= NCR_700_HOST_BUSY
;
1414 hostdata
->cmd
= SCp
;
1415 slot
->state
= NCR_700_SLOT_BUSY
;
1416 /* keep interrupts disabled until we have the command correctly
1417 * set up so we cannot take a selection interrupt */
1419 hostdata
->msgout
[0] = NCR_700_identify((SCp
->cmnd
[0] != REQUEST_SENSE
&&
1420 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
),
1422 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure
1423 * if the negotiated transfer parameters still hold, so
1424 * always renegotiate them */
1425 if(SCp
->cmnd
[0] == INQUIRY
|| SCp
->cmnd
[0] == REQUEST_SENSE
||
1426 slot
->flags
== NCR_700_FLAG_AUTOSENSE
) {
1427 NCR_700_clear_flag(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
);
1430 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status.
1431 * If a contingent allegiance condition exists, the device
1432 * will refuse all tags, so send the request sense as untagged
1434 if((hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1435 && (slot
->tag
!= SCSI_NO_TAG
&& SCp
->cmnd
[0] != REQUEST_SENSE
&&
1436 slot
->flags
!= NCR_700_FLAG_AUTOSENSE
)) {
1437 count
+= scsi_populate_tag_msg(SCp
, &hostdata
->msgout
[count
]);
1440 if(hostdata
->fast
&&
1441 NCR_700_is_flag_clear(SCp
->device
, NCR_700_DEV_NEGOTIATED_SYNC
)) {
1442 count
+= spi_populate_sync_msg(&hostdata
->msgout
[count
],
1443 spi_period(SCp
->device
->sdev_target
),
1444 spi_offset(SCp
->device
->sdev_target
));
1445 NCR_700_set_flag(SCp
->device
, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
1448 script_patch_16(hostdata
->dev
, hostdata
->script
, MessageCount
, count
);
1451 script_patch_ID(hostdata
->dev
, hostdata
->script
,
1452 Device_ID
, 1<<scmd_id(SCp
));
1454 script_patch_32_abs(hostdata
->dev
, hostdata
->script
, CommandAddress
,
1456 script_patch_16(hostdata
->dev
, hostdata
->script
, CommandCount
,
1458 /* finally plumb the beginning of the SG list into the script
1460 script_patch_32_abs(hostdata
->dev
, hostdata
->script
,
1461 SGScriptStartAddress
, to32bit(&slot
->pSG
[0].ins
));
1462 NCR_700_clear_fifo(SCp
->device
->host
);
1464 if(slot
->resume_offset
== 0)
1465 slot
->resume_offset
= hostdata
->pScript
;
1466 /* now perform all the writebacks and invalidates */
1467 dma_cache_sync(hostdata
->dev
, hostdata
->msgout
, count
, DMA_TO_DEVICE
);
1468 dma_cache_sync(hostdata
->dev
, hostdata
->msgin
, MSG_ARRAY_SIZE
,
1470 dma_cache_sync(hostdata
->dev
, SCp
->cmnd
, SCp
->cmd_len
, DMA_TO_DEVICE
);
1471 dma_cache_sync(hostdata
->dev
, hostdata
->status
, 1, DMA_FROM_DEVICE
);
1473 /* set the synchronous period/offset */
1474 NCR_700_writeb(NCR_700_get_SXFER(SCp
->device
),
1475 SCp
->device
->host
, SXFER_REG
);
1476 NCR_700_writel(slot
->temp
, SCp
->device
->host
, TEMP_REG
);
1477 NCR_700_writel(slot
->resume_offset
, SCp
->device
->host
, DSP_REG
);
1483 NCR_700_intr(int irq
, void *dev_id
)
1485 struct Scsi_Host
*host
= (struct Scsi_Host
*)dev_id
;
1486 struct NCR_700_Host_Parameters
*hostdata
=
1487 (struct NCR_700_Host_Parameters
*)host
->hostdata
[0];
1489 __u32 resume_offset
= 0;
1490 __u8 pun
= 0xff, lun
= 0xff;
1491 unsigned long flags
;
1494 /* Use the host lock to serialise access to the 53c700
1495 * hardware. Note: In future, we may need to take the queue
1496 * lock to enter the done routines. When that happens, we
1497 * need to ensure that for this driver, the host lock and the
1498 * queue lock point to the same thing. */
1499 spin_lock_irqsave(host
->host_lock
, flags
);
1500 if((istat
= NCR_700_readb(host
, ISTAT_REG
))
1501 & (SCSI_INT_PENDING
| DMA_INT_PENDING
)) {
1503 __u8 sstat0
= 0, dstat
= 0;
1505 struct scsi_cmnd
*SCp
= hostdata
->cmd
;
1506 enum NCR_700_Host_State state
;
1509 state
= hostdata
->state
;
1510 SCp
= hostdata
->cmd
;
1512 if(istat
& SCSI_INT_PENDING
) {
1515 sstat0
= NCR_700_readb(host
, SSTAT0_REG
);
1518 if(istat
& DMA_INT_PENDING
) {
1521 dstat
= NCR_700_readb(host
, DSTAT_REG
);
1524 dsps
= NCR_700_readl(host
, DSPS_REG
);
1525 dsp
= NCR_700_readl(host
, DSP_REG
);
1527 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n",
1528 host
->host_no
, istat
, sstat0
, dstat
,
1529 (dsp
- (__u32
)(hostdata
->pScript
))/4,
1533 pun
= SCp
->device
->id
;
1534 lun
= SCp
->device
->lun
;
1537 if(sstat0
& SCSI_RESET_DETECTED
) {
1538 struct scsi_device
*SDp
;
1541 hostdata
->state
= NCR_700_HOST_BUSY
;
1543 printk(KERN_ERR
"scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n",
1544 host
->host_no
, SCp
, SCp
== NULL
? NULL
: SCp
->host_scribble
, dsp
, dsp
- hostdata
->pScript
);
1546 scsi_report_bus_reset(host
, 0);
1548 /* clear all the negotiated parameters */
1549 __shost_for_each_device(SDp
, host
)
1550 NCR_700_clear_flag(SDp
, ~0);
1552 /* clear all the slots and their pending commands */
1553 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1554 struct scsi_cmnd
*SCp
;
1555 struct NCR_700_command_slot
*slot
=
1556 &hostdata
->slots
[i
];
1558 if(slot
->state
== NCR_700_SLOT_FREE
)
1562 printk(KERN_ERR
" failing command because of reset, slot %p, cmnd %p\n",
1564 free_slot(slot
, hostdata
);
1565 SCp
->host_scribble
= NULL
;
1566 NCR_700_set_depth(SCp
->device
, 0);
1567 /* NOTE: deadlock potential here: we
1568 * rely on mid-layer guarantees that
1569 * scsi_done won't try to issue the
1570 * command again otherwise we'll
1572 * hostdata->state_lock */
1573 SCp
->result
= DID_RESET
<< 16;
1574 SCp
->scsi_done(SCp
);
1577 NCR_700_chip_setup(host
);
1579 hostdata
->state
= NCR_700_HOST_FREE
;
1580 hostdata
->cmd
= NULL
;
1581 /* signal back if this was an eh induced reset */
1582 if(hostdata
->eh_complete
!= NULL
)
1583 complete(hostdata
->eh_complete
);
1585 } else if(sstat0
& SELECTION_TIMEOUT
) {
1586 DEBUG(("scsi%d: (%d:%d) selection timeout\n",
1587 host
->host_no
, pun
, lun
));
1588 NCR_700_scsi_done(hostdata
, SCp
, DID_NO_CONNECT
<<16);
1589 } else if(sstat0
& PHASE_MISMATCH
) {
1590 struct NCR_700_command_slot
*slot
= (SCp
== NULL
) ? NULL
:
1591 (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1593 if(dsp
== Ent_SendMessage
+ 8 + hostdata
->pScript
) {
1594 /* It wants to reply to some part of
1596 #ifdef NCR_700_DEBUG
1597 __u32 temp
= NCR_700_readl(host
, TEMP_REG
);
1598 int count
= (hostdata
->script
[Ent_SendMessage
/4] & 0xffffff) - ((NCR_700_readl(host
, DBC_REG
) & 0xffffff) + NCR_700_data_residual(host
));
1599 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host
->host_no
, pun
, lun
, count
, (void *)temp
, temp
- hostdata
->pScript
, sbcl_to_string(NCR_700_readb(host
, SBCL_REG
)));
1601 resume_offset
= hostdata
->pScript
+ Ent_SendMessagePhaseMismatch
;
1602 } else if(dsp
>= to32bit(&slot
->pSG
[0].ins
) &&
1603 dsp
<= to32bit(&slot
->pSG
[NCR_700_SG_SEGMENTS
].ins
)) {
1604 int data_transfer
= NCR_700_readl(host
, DBC_REG
) & 0xffffff;
1605 int SGcount
= (dsp
- to32bit(&slot
->pSG
[0].ins
))/sizeof(struct NCR_700_SG_List
);
1606 int residual
= NCR_700_data_residual(host
);
1608 #ifdef NCR_700_DEBUG
1609 __u32 naddr
= NCR_700_readl(host
, DNAD_REG
);
1611 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n",
1612 host
->host_no
, pun
, lun
,
1613 SGcount
, data_transfer
);
1614 scsi_print_command(SCp
);
1616 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n",
1617 host
->host_no
, pun
, lun
,
1618 SGcount
, data_transfer
, residual
);
1621 data_transfer
+= residual
;
1623 if(data_transfer
!= 0) {
1629 count
= (bS_to_cpu(slot
->SG
[SGcount
].ins
) & 0x00ffffff);
1630 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count
, count
-data_transfer
));
1631 slot
->SG
[SGcount
].ins
&= bS_to_host(0xff000000);
1632 slot
->SG
[SGcount
].ins
|= bS_to_host(data_transfer
);
1633 pAddr
= bS_to_cpu(slot
->SG
[SGcount
].pAddr
);
1634 pAddr
+= (count
- data_transfer
);
1635 #ifdef NCR_700_DEBUG
1636 if(pAddr
!= naddr
) {
1637 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host
->host_no
, pun
, lun
, (unsigned long)pAddr
, (unsigned long)naddr
, data_transfer
, residual
);
1640 slot
->SG
[SGcount
].pAddr
= bS_to_host(pAddr
);
1642 /* set the executed moves to nops */
1643 for(i
=0; i
<SGcount
; i
++) {
1644 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_NOP
);
1645 slot
->SG
[i
].pAddr
= 0;
1647 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1648 /* and pretend we disconnected after
1649 * the command phase */
1650 resume_offset
= hostdata
->pScript
+ Ent_MsgInDuringData
;
1651 /* make sure all the data is flushed */
1652 NCR_700_flush_fifo(host
);
1654 __u8 sbcl
= NCR_700_readb(host
, SBCL_REG
);
1655 printk(KERN_ERR
"scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n",
1656 host
->host_no
, pun
, lun
, dsp
- hostdata
->pScript
, sbcl_to_string(sbcl
));
1657 NCR_700_internal_bus_reset(host
);
1660 } else if(sstat0
& SCSI_GROSS_ERROR
) {
1661 printk(KERN_ERR
"scsi%d: (%d:%d) GROSS ERROR\n",
1662 host
->host_no
, pun
, lun
);
1663 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1664 } else if(sstat0
& PARITY_ERROR
) {
1665 printk(KERN_ERR
"scsi%d: (%d:%d) PARITY ERROR\n",
1666 host
->host_no
, pun
, lun
);
1667 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1668 } else if(dstat
& SCRIPT_INT_RECEIVED
) {
1669 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n",
1670 host
->host_no
, pun
, lun
));
1671 resume_offset
= process_script_interrupt(dsps
, dsp
, SCp
, host
, hostdata
);
1672 } else if(dstat
& (ILGL_INST_DETECTED
)) {
1673 printk(KERN_ERR
"scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n"
1674 " Please email James.Bottomley@HansenPartnership.com with the details\n",
1675 host
->host_no
, pun
, lun
,
1676 dsp
, dsp
- hostdata
->pScript
);
1677 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1678 } else if(dstat
& (WATCH_DOG_INTERRUPT
|ABORTED
)) {
1679 printk(KERN_ERR
"scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n",
1680 host
->host_no
, pun
, lun
, dstat
);
1681 NCR_700_scsi_done(hostdata
, SCp
, DID_ERROR
<<16);
1685 /* NOTE: selection interrupt processing MUST occur
1686 * after script interrupt processing to correctly cope
1687 * with the case where we process a disconnect and
1688 * then get reselected before we process the
1690 if(sstat0
& SELECTED
) {
1691 /* FIXME: It currently takes at least FOUR
1692 * interrupts to complete a command that
1693 * disconnects: one for the disconnect, one
1694 * for the reselection, one to get the
1695 * reselection data and one to complete the
1696 * command. If we guess the reselected
1697 * command here and prepare it, we only need
1698 * to get a reselection data interrupt if we
1699 * guessed wrongly. Since the interrupt
1700 * overhead is much greater than the command
1701 * setup, this would be an efficient
1702 * optimisation particularly as we probably
1703 * only have one outstanding command on a
1704 * target most of the time */
1706 resume_offset
= process_selection(host
, dsp
);
1713 if(hostdata
->state
!= NCR_700_HOST_BUSY
) {
1714 printk(KERN_ERR
"scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n",
1715 host
->host_no
, resume_offset
, resume_offset
- hostdata
->pScript
);
1716 hostdata
->state
= NCR_700_HOST_BUSY
;
1719 DEBUG(("Attempting to resume at %x\n", resume_offset
));
1720 NCR_700_clear_fifo(host
);
1721 NCR_700_writel(resume_offset
, host
, DSP_REG
);
1723 /* There is probably a technical no-no about this: If we're a
1724 * shared interrupt and we got this interrupt because the
1725 * other device needs servicing not us, we're still going to
1726 * check our queued commands here---of course, there shouldn't
1727 * be any outstanding.... */
1728 if(hostdata
->state
== NCR_700_HOST_FREE
) {
1731 for(i
= 0; i
< NCR_700_COMMAND_SLOTS_PER_HOST
; i
++) {
1732 /* fairness: always run the queue from the last
1733 * position we left off */
1734 int j
= (i
+ hostdata
->saved_slot_position
)
1735 % NCR_700_COMMAND_SLOTS_PER_HOST
;
1737 if(hostdata
->slots
[j
].state
!= NCR_700_SLOT_QUEUED
)
1739 if(NCR_700_start_command(hostdata
->slots
[j
].cmnd
)) {
1740 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n",
1741 host
->host_no
, &hostdata
->slots
[j
],
1742 hostdata
->slots
[j
].cmnd
));
1743 hostdata
->saved_slot_position
= j
+ 1;
1750 spin_unlock_irqrestore(host
->host_lock
, flags
);
1751 return IRQ_RETVAL(handled
);
1755 NCR_700_queuecommand(struct scsi_cmnd
*SCp
, void (*done
)(struct scsi_cmnd
*))
1757 struct NCR_700_Host_Parameters
*hostdata
=
1758 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1760 enum dma_data_direction direction
;
1761 struct NCR_700_command_slot
*slot
;
1763 if(hostdata
->command_slot_count
>= NCR_700_COMMAND_SLOTS_PER_HOST
) {
1764 /* We're over our allocation, this should never happen
1765 * since we report the max allocation to the mid layer */
1766 printk(KERN_WARNING
"scsi%d: Command depth has gone over queue depth\n", SCp
->device
->host
->host_no
);
1769 /* check for untagged commands. We cannot have any outstanding
1770 * commands if we accept them. Commands could be untagged because:
1772 * - The tag negotiated bitmap is clear
1773 * - The blk layer sent and untagged command
1775 if(NCR_700_get_depth(SCp
->device
) != 0
1776 && (!(hostdata
->tag_negotiated
& (1<<scmd_id(SCp
)))
1777 || !blk_rq_tagged(SCp
->request
))) {
1778 CDEBUG(KERN_ERR
, SCp
, "has non zero depth %d\n",
1779 NCR_700_get_depth(SCp
->device
));
1780 return SCSI_MLQUEUE_DEVICE_BUSY
;
1782 if(NCR_700_get_depth(SCp
->device
) >= SCp
->device
->queue_depth
) {
1783 CDEBUG(KERN_ERR
, SCp
, "has max tag depth %d\n",
1784 NCR_700_get_depth(SCp
->device
));
1785 return SCSI_MLQUEUE_DEVICE_BUSY
;
1787 NCR_700_set_depth(SCp
->device
, NCR_700_get_depth(SCp
->device
) + 1);
1789 /* begin the command here */
1790 /* no need to check for NULL, test for command_slot_count above
1791 * ensures a slot is free */
1792 slot
= find_empty_slot(hostdata
);
1796 SCp
->scsi_done
= done
;
1797 SCp
->host_scribble
= (unsigned char *)slot
;
1798 SCp
->SCp
.ptr
= NULL
;
1799 SCp
->SCp
.buffer
= NULL
;
1801 #ifdef NCR_700_DEBUG
1802 printk("53c700: scsi%d, command ", SCp
->device
->host
->host_no
);
1803 scsi_print_command(SCp
);
1805 if(blk_rq_tagged(SCp
->request
)
1806 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
))) == 0
1807 && NCR_700_get_tag_neg_state(SCp
->device
) == NCR_700_START_TAG_NEGOTIATION
) {
1808 scmd_printk(KERN_ERR
, SCp
, "Enabling Tag Command Queuing\n");
1809 hostdata
->tag_negotiated
|= (1<<scmd_id(SCp
));
1810 NCR_700_set_tag_neg_state(SCp
->device
, NCR_700_DURING_TAG_NEGOTIATION
);
1813 /* here we may have to process an untagged command. The gate
1814 * above ensures that this will be the only one outstanding,
1815 * so clear the tag negotiated bit.
1817 * FIXME: This will royally screw up on multiple LUN devices
1819 if(!blk_rq_tagged(SCp
->request
)
1820 && (hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))) {
1821 scmd_printk(KERN_INFO
, SCp
, "Disabling Tag Command Queuing\n");
1822 hostdata
->tag_negotiated
&= ~(1<<scmd_id(SCp
));
1825 if((hostdata
->tag_negotiated
&(1<<scmd_id(SCp
)))
1826 && scsi_get_tag_type(SCp
->device
)) {
1827 slot
->tag
= SCp
->request
->tag
;
1828 CDEBUG(KERN_DEBUG
, SCp
, "sending out tag %d, slot %p\n",
1831 slot
->tag
= SCSI_NO_TAG
;
1832 /* must populate current_cmnd for scsi_find_tag to work */
1833 SCp
->device
->current_cmnd
= SCp
;
1835 /* sanity check: some of the commands generated by the mid-layer
1836 * have an eccentric idea of their sc_data_direction */
1837 if(!scsi_sg_count(SCp
) && !scsi_bufflen(SCp
) &&
1838 SCp
->sc_data_direction
!= DMA_NONE
) {
1839 #ifdef NCR_700_DEBUG
1840 printk("53c700: Command");
1841 scsi_print_command(SCp
);
1842 printk("Has wrong data direction %d\n", SCp
->sc_data_direction
);
1844 SCp
->sc_data_direction
= DMA_NONE
;
1847 switch (SCp
->cmnd
[0]) {
1849 /* clear the internal sense magic */
1853 /* OK, get it from the command */
1854 switch(SCp
->sc_data_direction
) {
1855 case DMA_BIDIRECTIONAL
:
1857 printk(KERN_ERR
"53c700: Unknown command for data direction ");
1858 scsi_print_command(SCp
);
1865 case DMA_FROM_DEVICE
:
1866 move_ins
= SCRIPT_MOVE_DATA_IN
;
1869 move_ins
= SCRIPT_MOVE_DATA_OUT
;
1874 /* now build the scatter gather list */
1875 direction
= SCp
->sc_data_direction
;
1879 dma_addr_t vPtr
= 0;
1880 struct scatterlist
*sg
;
1883 sg_count
= scsi_dma_map(SCp
);
1884 BUG_ON(sg_count
< 0);
1886 scsi_for_each_sg(SCp
, sg
, sg_count
, i
) {
1887 vPtr
= sg_dma_address(sg
);
1888 count
= sg_dma_len(sg
);
1890 slot
->SG
[i
].ins
= bS_to_host(move_ins
| count
);
1891 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n",
1892 i
, count
, slot
->SG
[i
].ins
, (unsigned long)vPtr
));
1893 slot
->SG
[i
].pAddr
= bS_to_host(vPtr
);
1895 slot
->SG
[i
].ins
= bS_to_host(SCRIPT_RETURN
);
1896 slot
->SG
[i
].pAddr
= 0;
1897 dma_cache_sync(hostdata
->dev
, slot
->SG
, sizeof(slot
->SG
), DMA_TO_DEVICE
);
1898 DEBUG((" SETTING %08lx to %x\n",
1899 (&slot
->pSG
[i
].ins
),
1902 slot
->resume_offset
= 0;
1903 slot
->pCmd
= dma_map_single(hostdata
->dev
, SCp
->cmnd
,
1904 MAX_COMMAND_SIZE
, DMA_TO_DEVICE
);
1905 NCR_700_start_command(SCp
);
1910 NCR_700_abort(struct scsi_cmnd
* SCp
)
1912 struct NCR_700_command_slot
*slot
;
1914 scmd_printk(KERN_INFO
, SCp
,
1915 "New error handler wants to abort command\n\t");
1916 scsi_print_command(SCp
);
1918 slot
= (struct NCR_700_command_slot
*)SCp
->host_scribble
;
1921 /* no outstanding command to abort */
1923 if(SCp
->cmnd
[0] == TEST_UNIT_READY
) {
1924 /* FIXME: This is because of a problem in the new
1925 * error handler. When it is in error recovery, it
1926 * will send a TUR to a device it thinks may still be
1927 * showing a problem. If the TUR isn't responded to,
1928 * it will abort it and mark the device off line.
1929 * Unfortunately, it does no other error recovery, so
1930 * this would leave us with an outstanding command
1931 * occupying a slot. Rather than allow this to
1932 * happen, we issue a bus reset to force all
1933 * outstanding commands to terminate here. */
1934 NCR_700_internal_bus_reset(SCp
->device
->host
);
1935 /* still drop through and return failed */
1942 NCR_700_bus_reset(struct scsi_cmnd
* SCp
)
1944 DECLARE_COMPLETION_ONSTACK(complete
);
1945 struct NCR_700_Host_Parameters
*hostdata
=
1946 (struct NCR_700_Host_Parameters
*)SCp
->device
->host
->hostdata
[0];
1948 scmd_printk(KERN_INFO
, SCp
,
1949 "New error handler wants BUS reset, cmd %p\n\t", SCp
);
1950 scsi_print_command(SCp
);
1952 /* In theory, eh_complete should always be null because the
1953 * eh is single threaded, but just in case we're handling a
1954 * reset via sg or something */
1955 spin_lock_irq(SCp
->device
->host
->host_lock
);
1956 while (hostdata
->eh_complete
!= NULL
) {
1957 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1958 msleep_interruptible(100);
1959 spin_lock_irq(SCp
->device
->host
->host_lock
);
1962 hostdata
->eh_complete
= &complete
;
1963 NCR_700_internal_bus_reset(SCp
->device
->host
);
1965 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1966 wait_for_completion(&complete
);
1967 spin_lock_irq(SCp
->device
->host
->host_lock
);
1969 hostdata
->eh_complete
= NULL
;
1970 /* Revalidate the transport parameters of the failing device */
1972 spi_schedule_dv_device(SCp
->device
);
1974 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1979 NCR_700_host_reset(struct scsi_cmnd
* SCp
)
1981 scmd_printk(KERN_INFO
, SCp
, "New error handler wants HOST reset\n\t");
1982 scsi_print_command(SCp
);
1984 spin_lock_irq(SCp
->device
->host
->host_lock
);
1986 NCR_700_internal_bus_reset(SCp
->device
->host
);
1987 NCR_700_chip_reset(SCp
->device
->host
);
1989 spin_unlock_irq(SCp
->device
->host
->host_lock
);
1995 NCR_700_set_period(struct scsi_target
*STp
, int period
)
1997 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
1998 struct NCR_700_Host_Parameters
*hostdata
=
1999 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2004 if(period
< hostdata
->min_period
)
2005 period
= hostdata
->min_period
;
2007 spi_period(STp
) = period
;
2008 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2009 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2010 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2014 NCR_700_set_offset(struct scsi_target
*STp
, int offset
)
2016 struct Scsi_Host
*SHp
= dev_to_shost(STp
->dev
.parent
);
2017 struct NCR_700_Host_Parameters
*hostdata
=
2018 (struct NCR_700_Host_Parameters
*)SHp
->hostdata
[0];
2019 int max_offset
= hostdata
->chip710
2020 ? NCR_710_MAX_OFFSET
: NCR_700_MAX_OFFSET
;
2025 if(offset
> max_offset
)
2026 offset
= max_offset
;
2028 /* if we're currently async, make sure the period is reasonable */
2029 if(spi_offset(STp
) == 0 && (spi_period(STp
) < hostdata
->min_period
||
2030 spi_period(STp
) > 0xff))
2031 spi_period(STp
) = hostdata
->min_period
;
2033 spi_offset(STp
) = offset
;
2034 spi_flags(STp
) &= ~(NCR_700_DEV_NEGOTIATED_SYNC
|
2035 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION
);
2036 spi_flags(STp
) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION
;
2040 NCR_700_slave_alloc(struct scsi_device
*SDp
)
2042 SDp
->hostdata
= kzalloc(sizeof(struct NCR_700_Device_Parameters
),
2052 NCR_700_slave_configure(struct scsi_device
*SDp
)
2054 struct NCR_700_Host_Parameters
*hostdata
=
2055 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2057 /* to do here: allocate memory; build a queue_full list */
2058 if(SDp
->tagged_supported
) {
2059 scsi_set_tag_type(SDp
, MSG_ORDERED_TAG
);
2060 scsi_activate_tcq(SDp
, NCR_700_DEFAULT_TAGS
);
2061 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2063 /* initialise to default depth */
2064 scsi_adjust_queue_depth(SDp
, 0, SDp
->host
->cmd_per_lun
);
2066 if(hostdata
->fast
) {
2067 /* Find the correct offset and period via domain validation */
2068 if (!spi_initial_dv(SDp
->sdev_target
))
2071 spi_offset(SDp
->sdev_target
) = 0;
2072 spi_period(SDp
->sdev_target
) = 0;
2078 NCR_700_slave_destroy(struct scsi_device
*SDp
)
2080 kfree(SDp
->hostdata
);
2081 SDp
->hostdata
= NULL
;
2085 NCR_700_change_queue_depth(struct scsi_device
*SDp
, int depth
, int reason
)
2087 if (reason
!= SCSI_QDEPTH_DEFAULT
)
2090 if (depth
> NCR_700_MAX_TAGS
)
2091 depth
= NCR_700_MAX_TAGS
;
2093 scsi_adjust_queue_depth(SDp
, scsi_get_tag_type(SDp
), depth
);
2097 static int NCR_700_change_queue_type(struct scsi_device
*SDp
, int tag_type
)
2099 int change_tag
= ((tag_type
==0 && scsi_get_tag_type(SDp
) != 0)
2100 || (tag_type
!= 0 && scsi_get_tag_type(SDp
) == 0));
2101 struct NCR_700_Host_Parameters
*hostdata
=
2102 (struct NCR_700_Host_Parameters
*)SDp
->host
->hostdata
[0];
2104 scsi_set_tag_type(SDp
, tag_type
);
2106 /* We have a global (per target) flag to track whether TCQ is
2107 * enabled, so we'll be turning it off for the entire target here.
2108 * our tag algorithm will fail if we mix tagged and untagged commands,
2109 * so quiesce the device before doing this */
2111 scsi_target_quiesce(SDp
->sdev_target
);
2114 /* shift back to the default unqueued number of commands
2115 * (the user can still raise this) */
2116 scsi_deactivate_tcq(SDp
, SDp
->host
->cmd_per_lun
);
2117 hostdata
->tag_negotiated
&= ~(1 << sdev_id(SDp
));
2119 /* Here, we cleared the negotiation flag above, so this
2120 * will force the driver to renegotiate */
2121 scsi_activate_tcq(SDp
, SDp
->queue_depth
);
2123 NCR_700_set_tag_neg_state(SDp
, NCR_700_START_TAG_NEGOTIATION
);
2126 scsi_target_resume(SDp
->sdev_target
);
2132 NCR_700_show_active_tags(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2134 struct scsi_device
*SDp
= to_scsi_device(dev
);
2136 return snprintf(buf
, 20, "%d\n", NCR_700_get_depth(SDp
));
2139 static struct device_attribute NCR_700_active_tags_attr
= {
2141 .name
= "active_tags",
2144 .show
= NCR_700_show_active_tags
,
2147 STATIC
struct device_attribute
*NCR_700_dev_attrs
[] = {
2148 &NCR_700_active_tags_attr
,
2152 EXPORT_SYMBOL(NCR_700_detect
);
2153 EXPORT_SYMBOL(NCR_700_release
);
2154 EXPORT_SYMBOL(NCR_700_intr
);
2156 static struct spi_function_template NCR_700_transport_functions
= {
2157 .set_period
= NCR_700_set_period
,
2159 .set_offset
= NCR_700_set_offset
,
2163 static int __init
NCR_700_init(void)
2165 NCR_700_transport_template
= spi_attach_transport(&NCR_700_transport_functions
);
2166 if(!NCR_700_transport_template
)
2171 static void __exit
NCR_700_exit(void)
2173 spi_release_transport(NCR_700_transport_template
);
2176 module_init(NCR_700_init
);
2177 module_exit(NCR_700_exit
);