Clean up duplicate includes in drivers/spi/
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / pci / vx222 / vx222_ops.c
blob55558bef7166ff80c7d5d51e21e891160d3dd848
1 /*
2 * Driver for Digigram VX222 V2/Mic soundcards
4 * VX222-specific low-level routines
6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <sound/driver.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/firmware.h>
27 #include <linux/mutex.h>
29 #include <sound/core.h>
30 #include <sound/control.h>
31 #include <sound/tlv.h>
32 #include <asm/io.h>
33 #include "vx222.h"
36 static int vx2_reg_offset[VX_REG_MAX] = {
37 [VX_ICR] = 0x00,
38 [VX_CVR] = 0x04,
39 [VX_ISR] = 0x08,
40 [VX_IVR] = 0x0c,
41 [VX_RXH] = 0x14,
42 [VX_RXM] = 0x18,
43 [VX_RXL] = 0x1c,
44 [VX_DMA] = 0x10,
45 [VX_CDSP] = 0x20,
46 [VX_CFG] = 0x24,
47 [VX_RUER] = 0x28,
48 [VX_DATA] = 0x2c,
49 [VX_STATUS] = 0x30,
50 [VX_LOFREQ] = 0x34,
51 [VX_HIFREQ] = 0x38,
52 [VX_CSUER] = 0x3c,
53 [VX_SELMIC] = 0x40,
54 [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
55 [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
56 [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
57 [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
58 [VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET
59 [VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030)
62 static int vx2_reg_index[VX_REG_MAX] = {
63 [VX_ICR] = 1,
64 [VX_CVR] = 1,
65 [VX_ISR] = 1,
66 [VX_IVR] = 1,
67 [VX_RXH] = 1,
68 [VX_RXM] = 1,
69 [VX_RXL] = 1,
70 [VX_DMA] = 1,
71 [VX_CDSP] = 1,
72 [VX_CFG] = 1,
73 [VX_RUER] = 1,
74 [VX_DATA] = 1,
75 [VX_STATUS] = 1,
76 [VX_LOFREQ] = 1,
77 [VX_HIFREQ] = 1,
78 [VX_CSUER] = 1,
79 [VX_SELMIC] = 1,
80 [VX_COMPOT] = 1,
81 [VX_SCOMPR] = 1,
82 [VX_GLIMIT] = 1,
83 [VX_INTCSR] = 0, /* on the PLX */
84 [VX_CNTRL] = 0, /* on the PLX */
85 [VX_GPIOC] = 0, /* on the PLX */
88 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
90 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
91 return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
94 /**
95 * snd_vx_inb - read a byte from the register
96 * @offset: register enum
98 static unsigned char vx2_inb(struct vx_core *chip, int offset)
100 return inb(vx2_reg_addr(chip, offset));
104 * snd_vx_outb - write a byte on the register
105 * @offset: the register offset
106 * @val: the value to write
108 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
110 outb(val, vx2_reg_addr(chip, offset));
111 //printk("outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
115 * snd_vx_inl - read a 32bit word from the register
116 * @offset: register enum
118 static unsigned int vx2_inl(struct vx_core *chip, int offset)
120 return inl(vx2_reg_addr(chip, offset));
124 * snd_vx_outl - write a 32bit word on the register
125 * @offset: the register enum
126 * @val: the value to write
128 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
130 // printk("outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
131 outl(val, vx2_reg_addr(chip, offset));
135 * redefine macros to call directly
137 #undef vx_inb
138 #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
139 #undef vx_outb
140 #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
141 #undef vx_inl
142 #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
143 #undef vx_outl
144 #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
148 * vx_reset_dsp - reset the DSP
151 #define XX_DSP_RESET_WAIT_TIME 2 /* ms */
153 static void vx2_reset_dsp(struct vx_core *_chip)
155 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
157 /* set the reset dsp bit to 0 */
158 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
160 mdelay(XX_DSP_RESET_WAIT_TIME);
162 chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
163 /* set the reset dsp bit to 1 */
164 vx_outl(chip, CDSP, chip->regCDSP);
168 static int vx2_test_xilinx(struct vx_core *_chip)
170 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
171 unsigned int data;
173 snd_printdd("testing xilinx...\n");
174 /* This test uses several write/read sequences on TEST0 and TEST1 bits
175 * to figure out whever or not the xilinx was correctly loaded
178 /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
179 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
180 vx_inl(chip, ISR);
181 data = vx_inl(chip, STATUS);
182 if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
183 snd_printdd("bad!\n");
184 return -ENODEV;
187 /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
188 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
189 vx_inl(chip, ISR);
190 data = vx_inl(chip, STATUS);
191 if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
192 snd_printdd("bad! #2\n");
193 return -ENODEV;
196 if (_chip->type == VX_TYPE_BOARD) {
197 /* not implemented on VX_2_BOARDS */
198 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
199 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
200 vx_inl(chip, ISR);
201 data = vx_inl(chip, STATUS);
202 if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
203 snd_printdd("bad! #3\n");
204 return -ENODEV;
207 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
208 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
209 vx_inl(chip, ISR);
210 data = vx_inl(chip, STATUS);
211 if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
212 snd_printdd("bad! #4\n");
213 return -ENODEV;
216 snd_printdd("ok, xilinx fine.\n");
217 return 0;
222 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
223 * @do_write: 0 = read, 1 = set up for DMA write
225 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
227 /* Interrupt mode and HREQ pin enabled for host transmit data transfers
228 * (in case of the use of the pseudo-dma facility).
230 vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
232 /* Reset the pseudo-dma register (in case of the use of the
233 * pseudo-dma facility).
235 vx_outl(chip, RESET_DMA, 0);
239 * vx_release_pseudo_dma - disable the pseudo-DMA mode
241 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
243 /* HREQ pin disabled. */
244 vx_outl(chip, ICR, 0);
249 /* pseudo-dma write */
250 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
251 struct vx_pipe *pipe, int count)
253 unsigned long port = vx2_reg_addr(chip, VX_DMA);
254 int offset = pipe->hw_ptr;
255 u32 *addr = (u32 *)(runtime->dma_area + offset);
257 snd_assert(count % 4 == 0, return);
259 vx2_setup_pseudo_dma(chip, 1);
261 /* Transfer using pseudo-dma.
263 if (offset + count > pipe->buffer_bytes) {
264 int length = pipe->buffer_bytes - offset;
265 count -= length;
266 length >>= 2; /* in 32bit words */
267 /* Transfer using pseudo-dma. */
268 while (length-- > 0) {
269 outl(cpu_to_le32(*addr), port);
270 addr++;
272 addr = (u32 *)runtime->dma_area;
273 pipe->hw_ptr = 0;
275 pipe->hw_ptr += count;
276 count >>= 2; /* in 32bit words */
277 /* Transfer using pseudo-dma. */
278 while (count-- > 0) {
279 outl(cpu_to_le32(*addr), port);
280 addr++;
283 vx2_release_pseudo_dma(chip);
287 /* pseudo dma read */
288 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
289 struct vx_pipe *pipe, int count)
291 int offset = pipe->hw_ptr;
292 u32 *addr = (u32 *)(runtime->dma_area + offset);
293 unsigned long port = vx2_reg_addr(chip, VX_DMA);
295 snd_assert(count % 4 == 0, return);
297 vx2_setup_pseudo_dma(chip, 0);
298 /* Transfer using pseudo-dma.
300 if (offset + count > pipe->buffer_bytes) {
301 int length = pipe->buffer_bytes - offset;
302 count -= length;
303 length >>= 2; /* in 32bit words */
304 /* Transfer using pseudo-dma. */
305 while (length-- > 0)
306 *addr++ = le32_to_cpu(inl(port));
307 addr = (u32 *)runtime->dma_area;
308 pipe->hw_ptr = 0;
310 pipe->hw_ptr += count;
311 count >>= 2; /* in 32bit words */
312 /* Transfer using pseudo-dma. */
313 while (count-- > 0)
314 *addr++ = le32_to_cpu(inl(port));
316 vx2_release_pseudo_dma(chip);
319 #define VX_XILINX_RESET_MASK 0x40000000
320 #define VX_USERBIT0_MASK 0x00000004
321 #define VX_USERBIT1_MASK 0x00000020
322 #define VX_CNTRL_REGISTER_VALUE 0x00172012
325 * transfer counts bits to PLX
327 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
329 unsigned int i;
331 for (i = 0; i < counts; i++) {
332 unsigned int val;
334 /* set the clock bit to 0. */
335 val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
336 vx2_outl(chip, port, val);
337 vx2_inl(chip, port);
338 udelay(1);
340 if (data & (1 << i))
341 val |= VX_USERBIT1_MASK;
342 else
343 val &= ~VX_USERBIT1_MASK;
344 vx2_outl(chip, port, val);
345 vx2_inl(chip, port);
347 /* set the clock bit to 1. */
348 val |= VX_USERBIT0_MASK;
349 vx2_outl(chip, port, val);
350 vx2_inl(chip, port);
351 udelay(1);
353 return 0;
357 * load the xilinx image
359 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
361 unsigned int i;
362 unsigned int port;
363 unsigned char *image;
365 /* XILINX reset (wait at least 1 milisecond between reset on and off). */
366 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
367 vx_inl(chip, CNTRL);
368 msleep(10);
369 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
370 vx_inl(chip, CNTRL);
371 msleep(10);
373 if (chip->type == VX_TYPE_BOARD)
374 port = VX_CNTRL;
375 else
376 port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
378 image = xilinx->data;
379 for (i = 0; i < xilinx->size; i++, image++) {
380 if (put_xilinx_data(chip, port, 8, *image) < 0)
381 return -EINVAL;
382 /* don't take too much time in this loop... */
383 cond_resched();
385 put_xilinx_data(chip, port, 4, 0xff); /* end signature */
387 msleep(200);
389 /* test after loading (is buggy with VX222) */
390 if (chip->type != VX_TYPE_BOARD) {
391 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
392 i = vx_inl(chip, GPIOC);
393 if (i & 0x0100)
394 return 0;
395 snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
396 return -EINVAL;
399 return 0;
404 * load the boot/dsp images
406 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
408 int err;
410 switch (index) {
411 case 1:
412 /* xilinx image */
413 if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
414 return err;
415 if ((err = vx2_test_xilinx(vx)) < 0)
416 return err;
417 return 0;
418 case 2:
419 /* DSP boot */
420 return snd_vx_dsp_boot(vx, dsp);
421 case 3:
422 /* DSP image */
423 return snd_vx_dsp_load(vx, dsp);
424 default:
425 snd_BUG();
426 return -EINVAL;
432 * vx_test_and_ack - test and acknowledge interrupt
434 * called from irq hander, too
436 * spinlock held!
438 static int vx2_test_and_ack(struct vx_core *chip)
440 /* not booted yet? */
441 if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
442 return -ENXIO;
444 if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
445 return -EIO;
447 /* ok, interrupts generated, now ack it */
448 /* set ACQUIT bit up and down */
449 vx_outl(chip, STATUS, 0);
450 /* useless read just to spend some time and maintain
451 * the ACQUIT signal up for a while ( a bus cycle )
453 vx_inl(chip, STATUS);
454 /* ack */
455 vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
456 /* useless read just to spend some time and maintain
457 * the ACQUIT signal up for a while ( a bus cycle ) */
458 vx_inl(chip, STATUS);
459 /* clear */
460 vx_outl(chip, STATUS, 0);
462 return 0;
467 * vx_validate_irq - enable/disable IRQ
469 static void vx2_validate_irq(struct vx_core *_chip, int enable)
471 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
473 /* Set the interrupt enable bit to 1 in CDSP register */
474 if (enable) {
475 /* Set the PCI interrupt enable bit to 1.*/
476 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
477 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
478 } else {
479 /* Set the PCI interrupt enable bit to 0. */
480 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
481 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
483 vx_outl(chip, CDSP, chip->regCDSP);
488 * write an AKM codec data (24bit)
490 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
492 unsigned int i;
494 vx_inl(chip, HIFREQ);
496 /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
497 for (i = 0; i < 24; i++, data <<= 1)
498 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
499 /* Terminate access to codec registers */
500 vx_inl(chip, RUER);
504 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
505 #define AKM_CODEC_RESET_ON_CMD 0xA100
506 #define AKM_CODEC_RESET_OFF_CMD 0xA103
507 #define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
508 #define AKM_CODEC_MUTE_CMD 0xA38D
509 #define AKM_CODEC_UNMUTE_CMD 0xA30D
510 #define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
511 #define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
513 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
514 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
515 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
516 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
517 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
518 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
519 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
520 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
521 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
522 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
523 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
524 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
525 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
526 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
527 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
528 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
529 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
530 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
531 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
532 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
533 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
534 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
535 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
536 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
537 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
538 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
539 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
540 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
541 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
542 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
543 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
544 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
545 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
546 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
547 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
548 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
549 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
550 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
551 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
552 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
553 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
554 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
555 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
556 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
557 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
558 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
559 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
560 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
561 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
562 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
563 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
564 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
565 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
566 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
567 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
568 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
569 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
570 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
571 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
572 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
573 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
574 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
575 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
576 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
577 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
578 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
579 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
580 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
581 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
582 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
583 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
584 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
585 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
586 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
587 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
588 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
589 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
590 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
591 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
592 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
593 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
594 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
595 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
596 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
597 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
598 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
599 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
600 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
601 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
602 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
603 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
604 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
605 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
606 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
607 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
608 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
609 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
610 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
611 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
612 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
613 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
614 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
615 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
616 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
617 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
618 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
619 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
620 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
621 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
622 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
623 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
624 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
625 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
626 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
627 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
628 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
629 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
630 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
631 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
632 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
633 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
634 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
635 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
636 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
637 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
638 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
639 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
640 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
641 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
642 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
643 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
644 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
645 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
646 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
647 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
648 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
649 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
650 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
651 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
652 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
653 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
654 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
655 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
656 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
657 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
658 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
659 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
660 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
661 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
664 * pseudo-codec write entry
666 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
668 unsigned int val;
670 if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
671 vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
672 return;
675 /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
676 a look up table, as there is no linear matching between the driver codec values
677 and the real dBu value
679 snd_assert(data < sizeof(vx2_akm_gains_lut), return);
681 switch (reg) {
682 case XX_CODEC_LEVEL_LEFT_REGISTER:
683 val = AKM_CODEC_LEFT_LEVEL_CMD;
684 break;
685 case XX_CODEC_LEVEL_RIGHT_REGISTER:
686 val = AKM_CODEC_RIGHT_LEVEL_CMD;
687 break;
688 default:
689 snd_BUG();
690 return;
692 val |= vx2_akm_gains_lut[data];
694 vx2_write_codec_reg(chip, val);
699 * write codec bit for old VX222 board
701 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
703 int i;
705 /* activate access to codec registers */
706 vx_inl(chip, HIFREQ);
708 for (i = 0; i < 24; i++, data <<= 1)
709 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
711 /* Terminate access to codec registers */
712 vx_inl(chip, RUER);
717 * reset codec bit
719 static void vx2_reset_codec(struct vx_core *_chip)
721 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
723 /* Set the reset CODEC bit to 0. */
724 vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
725 vx_inl(chip, CDSP);
726 msleep(10);
727 /* Set the reset CODEC bit to 1. */
728 chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
729 vx_outl(chip, CDSP, chip->regCDSP);
730 vx_inl(chip, CDSP);
731 if (_chip->type == VX_TYPE_BOARD) {
732 msleep(1);
733 return;
736 msleep(5); /* additionnel wait time for AKM's */
738 vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
740 vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
741 vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
742 vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
744 if (_chip->type == VX_TYPE_MIC) {
745 /* set up the micro input selector */
746 chip->regSELMIC = MICRO_SELECT_INPUT_NORM |
747 MICRO_SELECT_PREAMPLI_G_0 |
748 MICRO_SELECT_NOISE_T_52DB;
750 /* reset phantom power supply */
751 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
753 vx_outl(_chip, SELMIC, chip->regSELMIC);
759 * change the audio source
761 static void vx2_change_audio_source(struct vx_core *_chip, int src)
763 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
765 switch (src) {
766 case VX_AUDIO_SRC_DIGITAL:
767 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
768 break;
769 default:
770 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
771 break;
773 vx_outl(chip, CFG, chip->regCFG);
778 * set the clock source
780 static void vx2_set_clock_source(struct vx_core *_chip, int source)
782 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
784 if (source == INTERNAL_QUARTZ)
785 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
786 else
787 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
788 vx_outl(chip, CFG, chip->regCFG);
792 * reset the board
794 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
796 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
798 /* initialize the register values */
799 chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
800 chip->regCFG = 0;
806 * input level controls for VX222 Mic
809 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
810 * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
811 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
813 #define V2_MICRO_LEVEL_RANGE (318 - 255)
815 static void vx2_set_input_level(struct snd_vx222 *chip)
817 int i, miclevel, preamp;
818 unsigned int data;
820 miclevel = chip->mic_level;
821 miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
822 preamp = 0;
823 while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
824 preamp++; /* raise pre ampli + 18dB */
825 miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
827 snd_assert(preamp < 4, return);
829 /* set pre-amp level */
830 chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
831 chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
832 vx_outl(chip, SELMIC, chip->regSELMIC);
834 data = (unsigned int)miclevel << 16 |
835 (unsigned int)chip->input_level[1] << 8 |
836 (unsigned int)chip->input_level[0];
837 vx_inl(chip, DATA); /* Activate input level programming */
839 /* We have to send 32 bits (4 x 8 bits) */
840 for (i = 0; i < 32; i++, data <<= 1)
841 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
843 vx_inl(chip, RUER); /* Terminate input level programming */
847 #define MIC_LEVEL_MAX 0xff
849 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
852 * controls API for input levels
855 /* input levels */
856 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
858 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
859 uinfo->count = 2;
860 uinfo->value.integer.min = 0;
861 uinfo->value.integer.max = MIC_LEVEL_MAX;
862 return 0;
865 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
867 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
868 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
869 mutex_lock(&_chip->mixer_mutex);
870 ucontrol->value.integer.value[0] = chip->input_level[0];
871 ucontrol->value.integer.value[1] = chip->input_level[1];
872 mutex_unlock(&_chip->mixer_mutex);
873 return 0;
876 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
878 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
879 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
880 mutex_lock(&_chip->mixer_mutex);
881 if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
882 chip->input_level[1] != ucontrol->value.integer.value[1]) {
883 chip->input_level[0] = ucontrol->value.integer.value[0];
884 chip->input_level[1] = ucontrol->value.integer.value[1];
885 vx2_set_input_level(chip);
886 mutex_unlock(&_chip->mixer_mutex);
887 return 1;
889 mutex_unlock(&_chip->mixer_mutex);
890 return 0;
893 /* mic level */
894 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
896 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
897 uinfo->count = 1;
898 uinfo->value.integer.min = 0;
899 uinfo->value.integer.max = MIC_LEVEL_MAX;
900 return 0;
903 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
905 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
906 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
907 ucontrol->value.integer.value[0] = chip->mic_level;
908 return 0;
911 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
913 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
914 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
915 mutex_lock(&_chip->mixer_mutex);
916 if (chip->mic_level != ucontrol->value.integer.value[0]) {
917 chip->mic_level = ucontrol->value.integer.value[0];
918 vx2_set_input_level(chip);
919 mutex_unlock(&_chip->mixer_mutex);
920 return 1;
922 mutex_unlock(&_chip->mixer_mutex);
923 return 0;
926 static struct snd_kcontrol_new vx_control_input_level = {
927 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
928 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
929 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
930 .name = "Capture Volume",
931 .info = vx_input_level_info,
932 .get = vx_input_level_get,
933 .put = vx_input_level_put,
934 .tlv = { .p = db_scale_mic },
937 static struct snd_kcontrol_new vx_control_mic_level = {
938 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
939 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
940 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
941 .name = "Mic Capture Volume",
942 .info = vx_mic_level_info,
943 .get = vx_mic_level_get,
944 .put = vx_mic_level_put,
945 .tlv = { .p = db_scale_mic },
949 * FIXME: compressor/limiter implementation is missing yet...
952 static int vx2_add_mic_controls(struct vx_core *_chip)
954 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
955 int err;
957 if (_chip->type != VX_TYPE_MIC)
958 return 0;
960 /* mute input levels */
961 chip->input_level[0] = chip->input_level[1] = 0;
962 chip->mic_level = 0;
963 vx2_set_input_level(chip);
965 /* controls */
966 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
967 return err;
968 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
969 return err;
971 return 0;
976 * callbacks
978 struct snd_vx_ops vx222_ops = {
979 .in8 = vx2_inb,
980 .in32 = vx2_inl,
981 .out8 = vx2_outb,
982 .out32 = vx2_outl,
983 .test_and_ack = vx2_test_and_ack,
984 .validate_irq = vx2_validate_irq,
985 .akm_write = vx2_write_akm,
986 .reset_codec = vx2_reset_codec,
987 .change_audio_source = vx2_change_audio_source,
988 .set_clock_source = vx2_set_clock_source,
989 .load_dsp = vx2_load_dsp,
990 .reset_dsp = vx2_reset_dsp,
991 .reset_board = vx2_reset_board,
992 .dma_write = vx2_dma_write,
993 .dma_read = vx2_dma_read,
994 .add_controls = vx2_add_mic_controls,
997 /* for old VX222 board */
998 struct snd_vx_ops vx222_old_ops = {
999 .in8 = vx2_inb,
1000 .in32 = vx2_inl,
1001 .out8 = vx2_outb,
1002 .out32 = vx2_outl,
1003 .test_and_ack = vx2_test_and_ack,
1004 .validate_irq = vx2_validate_irq,
1005 .write_codec = vx2_old_write_codec_bit,
1006 .reset_codec = vx2_reset_codec,
1007 .change_audio_source = vx2_change_audio_source,
1008 .set_clock_source = vx2_set_clock_source,
1009 .load_dsp = vx2_load_dsp,
1010 .reset_dsp = vx2_reset_dsp,
1011 .reset_board = vx2_reset_board,
1012 .dma_write = vx2_dma_write,
1013 .dma_read = vx2_dma_read,