Staging: IIO: Documentation: iio_utils: fix channel array generation.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / proc / task_mmu.c
blob60b914860f815e146d8ae5fea8eefae2dcaf95ea
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <asm/elf.h>
14 #include <asm/uaccess.h>
15 #include <asm/tlbflush.h>
16 #include "internal.h"
18 void task_mem(struct seq_file *m, struct mm_struct *mm)
20 unsigned long data, text, lib, swap;
21 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24 * Note: to minimize their overhead, mm maintains hiwater_vm and
25 * hiwater_rss only when about to *lower* total_vm or rss. Any
26 * collector of these hiwater stats must therefore get total_vm
27 * and rss too, which will usually be the higher. Barriers? not
28 * worth the effort, such snapshots can always be inconsistent.
30 hiwater_vm = total_vm = mm->total_vm;
31 if (hiwater_vm < mm->hiwater_vm)
32 hiwater_vm = mm->hiwater_vm;
33 hiwater_rss = total_rss = get_mm_rss(mm);
34 if (hiwater_rss < mm->hiwater_rss)
35 hiwater_rss = mm->hiwater_rss;
37 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
38 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
39 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
40 swap = get_mm_counter(mm, MM_SWAPENTS);
41 seq_printf(m,
42 "VmPeak:\t%8lu kB\n"
43 "VmSize:\t%8lu kB\n"
44 "VmLck:\t%8lu kB\n"
45 "VmHWM:\t%8lu kB\n"
46 "VmRSS:\t%8lu kB\n"
47 "VmData:\t%8lu kB\n"
48 "VmStk:\t%8lu kB\n"
49 "VmExe:\t%8lu kB\n"
50 "VmLib:\t%8lu kB\n"
51 "VmPTE:\t%8lu kB\n"
52 "VmSwap:\t%8lu kB\n",
53 hiwater_vm << (PAGE_SHIFT-10),
54 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
55 mm->locked_vm << (PAGE_SHIFT-10),
56 hiwater_rss << (PAGE_SHIFT-10),
57 total_rss << (PAGE_SHIFT-10),
58 data << (PAGE_SHIFT-10),
59 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
60 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
61 swap << (PAGE_SHIFT-10));
64 unsigned long task_vsize(struct mm_struct *mm)
66 return PAGE_SIZE * mm->total_vm;
69 unsigned long task_statm(struct mm_struct *mm,
70 unsigned long *shared, unsigned long *text,
71 unsigned long *data, unsigned long *resident)
73 *shared = get_mm_counter(mm, MM_FILEPAGES);
74 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
75 >> PAGE_SHIFT;
76 *data = mm->total_vm - mm->shared_vm;
77 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
78 return mm->total_vm;
81 static void pad_len_spaces(struct seq_file *m, int len)
83 len = 25 + sizeof(void*) * 6 - len;
84 if (len < 1)
85 len = 1;
86 seq_printf(m, "%*c", len, ' ');
89 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
91 if (vma && vma != priv->tail_vma) {
92 struct mm_struct *mm = vma->vm_mm;
93 up_read(&mm->mmap_sem);
94 mmput(mm);
98 static void *m_start(struct seq_file *m, loff_t *pos)
100 struct proc_maps_private *priv = m->private;
101 unsigned long last_addr = m->version;
102 struct mm_struct *mm;
103 struct vm_area_struct *vma, *tail_vma = NULL;
104 loff_t l = *pos;
106 /* Clear the per syscall fields in priv */
107 priv->task = NULL;
108 priv->tail_vma = NULL;
111 * We remember last_addr rather than next_addr to hit with
112 * mmap_cache most of the time. We have zero last_addr at
113 * the beginning and also after lseek. We will have -1 last_addr
114 * after the end of the vmas.
117 if (last_addr == -1UL)
118 return NULL;
120 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
121 if (!priv->task)
122 return NULL;
124 mm = mm_for_maps(priv->task);
125 if (!mm)
126 return NULL;
127 down_read(&mm->mmap_sem);
129 tail_vma = get_gate_vma(priv->task);
130 priv->tail_vma = tail_vma;
132 /* Start with last addr hint */
133 vma = find_vma(mm, last_addr);
134 if (last_addr && vma) {
135 vma = vma->vm_next;
136 goto out;
140 * Check the vma index is within the range and do
141 * sequential scan until m_index.
143 vma = NULL;
144 if ((unsigned long)l < mm->map_count) {
145 vma = mm->mmap;
146 while (l-- && vma)
147 vma = vma->vm_next;
148 goto out;
151 if (l != mm->map_count)
152 tail_vma = NULL; /* After gate vma */
154 out:
155 if (vma)
156 return vma;
158 /* End of vmas has been reached */
159 m->version = (tail_vma != NULL)? 0: -1UL;
160 up_read(&mm->mmap_sem);
161 mmput(mm);
162 return tail_vma;
165 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
167 struct proc_maps_private *priv = m->private;
168 struct vm_area_struct *vma = v;
169 struct vm_area_struct *tail_vma = priv->tail_vma;
171 (*pos)++;
172 if (vma && (vma != tail_vma) && vma->vm_next)
173 return vma->vm_next;
174 vma_stop(priv, vma);
175 return (vma != tail_vma)? tail_vma: NULL;
178 static void m_stop(struct seq_file *m, void *v)
180 struct proc_maps_private *priv = m->private;
181 struct vm_area_struct *vma = v;
183 vma_stop(priv, vma);
184 if (priv->task)
185 put_task_struct(priv->task);
188 static int do_maps_open(struct inode *inode, struct file *file,
189 const struct seq_operations *ops)
191 struct proc_maps_private *priv;
192 int ret = -ENOMEM;
193 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
194 if (priv) {
195 priv->pid = proc_pid(inode);
196 ret = seq_open(file, ops);
197 if (!ret) {
198 struct seq_file *m = file->private_data;
199 m->private = priv;
200 } else {
201 kfree(priv);
204 return ret;
207 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
209 struct mm_struct *mm = vma->vm_mm;
210 struct file *file = vma->vm_file;
211 int flags = vma->vm_flags;
212 unsigned long ino = 0;
213 unsigned long long pgoff = 0;
214 unsigned long start;
215 dev_t dev = 0;
216 int len;
218 if (file) {
219 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
220 dev = inode->i_sb->s_dev;
221 ino = inode->i_ino;
222 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
225 /* We don't show the stack guard page in /proc/maps */
226 start = vma->vm_start;
227 if (vma->vm_flags & VM_GROWSDOWN)
228 if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
229 start += PAGE_SIZE;
231 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
232 start,
233 vma->vm_end,
234 flags & VM_READ ? 'r' : '-',
235 flags & VM_WRITE ? 'w' : '-',
236 flags & VM_EXEC ? 'x' : '-',
237 flags & VM_MAYSHARE ? 's' : 'p',
238 pgoff,
239 MAJOR(dev), MINOR(dev), ino, &len);
242 * Print the dentry name for named mappings, and a
243 * special [heap] marker for the heap:
245 if (file) {
246 pad_len_spaces(m, len);
247 seq_path(m, &file->f_path, "\n");
248 } else {
249 const char *name = arch_vma_name(vma);
250 if (!name) {
251 if (mm) {
252 if (vma->vm_start <= mm->start_brk &&
253 vma->vm_end >= mm->brk) {
254 name = "[heap]";
255 } else if (vma->vm_start <= mm->start_stack &&
256 vma->vm_end >= mm->start_stack) {
257 name = "[stack]";
259 } else {
260 name = "[vdso]";
263 if (name) {
264 pad_len_spaces(m, len);
265 seq_puts(m, name);
268 seq_putc(m, '\n');
271 static int show_map(struct seq_file *m, void *v)
273 struct vm_area_struct *vma = v;
274 struct proc_maps_private *priv = m->private;
275 struct task_struct *task = priv->task;
277 show_map_vma(m, vma);
279 if (m->count < m->size) /* vma is copied successfully */
280 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
281 return 0;
284 static const struct seq_operations proc_pid_maps_op = {
285 .start = m_start,
286 .next = m_next,
287 .stop = m_stop,
288 .show = show_map
291 static int maps_open(struct inode *inode, struct file *file)
293 return do_maps_open(inode, file, &proc_pid_maps_op);
296 const struct file_operations proc_maps_operations = {
297 .open = maps_open,
298 .read = seq_read,
299 .llseek = seq_lseek,
300 .release = seq_release_private,
304 * Proportional Set Size(PSS): my share of RSS.
306 * PSS of a process is the count of pages it has in memory, where each
307 * page is divided by the number of processes sharing it. So if a
308 * process has 1000 pages all to itself, and 1000 shared with one other
309 * process, its PSS will be 1500.
311 * To keep (accumulated) division errors low, we adopt a 64bit
312 * fixed-point pss counter to minimize division errors. So (pss >>
313 * PSS_SHIFT) would be the real byte count.
315 * A shift of 12 before division means (assuming 4K page size):
316 * - 1M 3-user-pages add up to 8KB errors;
317 * - supports mapcount up to 2^24, or 16M;
318 * - supports PSS up to 2^52 bytes, or 4PB.
320 #define PSS_SHIFT 12
322 #ifdef CONFIG_PROC_PAGE_MONITOR
323 struct mem_size_stats {
324 struct vm_area_struct *vma;
325 unsigned long resident;
326 unsigned long shared_clean;
327 unsigned long shared_dirty;
328 unsigned long private_clean;
329 unsigned long private_dirty;
330 unsigned long referenced;
331 unsigned long anonymous;
332 unsigned long swap;
333 u64 pss;
336 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
337 struct mm_walk *walk)
339 struct mem_size_stats *mss = walk->private;
340 struct vm_area_struct *vma = mss->vma;
341 pte_t *pte, ptent;
342 spinlock_t *ptl;
343 struct page *page;
344 int mapcount;
346 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
347 for (; addr != end; pte++, addr += PAGE_SIZE) {
348 ptent = *pte;
350 if (is_swap_pte(ptent)) {
351 mss->swap += PAGE_SIZE;
352 continue;
355 if (!pte_present(ptent))
356 continue;
358 page = vm_normal_page(vma, addr, ptent);
359 if (!page)
360 continue;
362 if (PageAnon(page))
363 mss->anonymous += PAGE_SIZE;
365 mss->resident += PAGE_SIZE;
366 /* Accumulate the size in pages that have been accessed. */
367 if (pte_young(ptent) || PageReferenced(page))
368 mss->referenced += PAGE_SIZE;
369 mapcount = page_mapcount(page);
370 if (mapcount >= 2) {
371 if (pte_dirty(ptent) || PageDirty(page))
372 mss->shared_dirty += PAGE_SIZE;
373 else
374 mss->shared_clean += PAGE_SIZE;
375 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
376 } else {
377 if (pte_dirty(ptent) || PageDirty(page))
378 mss->private_dirty += PAGE_SIZE;
379 else
380 mss->private_clean += PAGE_SIZE;
381 mss->pss += (PAGE_SIZE << PSS_SHIFT);
384 pte_unmap_unlock(pte - 1, ptl);
385 cond_resched();
386 return 0;
389 static int show_smap(struct seq_file *m, void *v)
391 struct proc_maps_private *priv = m->private;
392 struct task_struct *task = priv->task;
393 struct vm_area_struct *vma = v;
394 struct mem_size_stats mss;
395 struct mm_walk smaps_walk = {
396 .pmd_entry = smaps_pte_range,
397 .mm = vma->vm_mm,
398 .private = &mss,
401 memset(&mss, 0, sizeof mss);
402 mss.vma = vma;
403 /* mmap_sem is held in m_start */
404 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
405 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
407 show_map_vma(m, vma);
409 seq_printf(m,
410 "Size: %8lu kB\n"
411 "Rss: %8lu kB\n"
412 "Pss: %8lu kB\n"
413 "Shared_Clean: %8lu kB\n"
414 "Shared_Dirty: %8lu kB\n"
415 "Private_Clean: %8lu kB\n"
416 "Private_Dirty: %8lu kB\n"
417 "Referenced: %8lu kB\n"
418 "Anonymous: %8lu kB\n"
419 "Swap: %8lu kB\n"
420 "KernelPageSize: %8lu kB\n"
421 "MMUPageSize: %8lu kB\n"
422 "Locked: %8lu kB\n",
423 (vma->vm_end - vma->vm_start) >> 10,
424 mss.resident >> 10,
425 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
426 mss.shared_clean >> 10,
427 mss.shared_dirty >> 10,
428 mss.private_clean >> 10,
429 mss.private_dirty >> 10,
430 mss.referenced >> 10,
431 mss.anonymous >> 10,
432 mss.swap >> 10,
433 vma_kernel_pagesize(vma) >> 10,
434 vma_mmu_pagesize(vma) >> 10,
435 (vma->vm_flags & VM_LOCKED) ?
436 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
438 if (m->count < m->size) /* vma is copied successfully */
439 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
440 return 0;
443 static const struct seq_operations proc_pid_smaps_op = {
444 .start = m_start,
445 .next = m_next,
446 .stop = m_stop,
447 .show = show_smap
450 static int smaps_open(struct inode *inode, struct file *file)
452 return do_maps_open(inode, file, &proc_pid_smaps_op);
455 const struct file_operations proc_smaps_operations = {
456 .open = smaps_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = seq_release_private,
462 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
463 unsigned long end, struct mm_walk *walk)
465 struct vm_area_struct *vma = walk->private;
466 pte_t *pte, ptent;
467 spinlock_t *ptl;
468 struct page *page;
470 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
471 for (; addr != end; pte++, addr += PAGE_SIZE) {
472 ptent = *pte;
473 if (!pte_present(ptent))
474 continue;
476 page = vm_normal_page(vma, addr, ptent);
477 if (!page)
478 continue;
480 /* Clear accessed and referenced bits. */
481 ptep_test_and_clear_young(vma, addr, pte);
482 ClearPageReferenced(page);
484 pte_unmap_unlock(pte - 1, ptl);
485 cond_resched();
486 return 0;
489 #define CLEAR_REFS_ALL 1
490 #define CLEAR_REFS_ANON 2
491 #define CLEAR_REFS_MAPPED 3
493 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
494 size_t count, loff_t *ppos)
496 struct task_struct *task;
497 char buffer[PROC_NUMBUF];
498 struct mm_struct *mm;
499 struct vm_area_struct *vma;
500 long type;
502 memset(buffer, 0, sizeof(buffer));
503 if (count > sizeof(buffer) - 1)
504 count = sizeof(buffer) - 1;
505 if (copy_from_user(buffer, buf, count))
506 return -EFAULT;
507 if (strict_strtol(strstrip(buffer), 10, &type))
508 return -EINVAL;
509 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
510 return -EINVAL;
511 task = get_proc_task(file->f_path.dentry->d_inode);
512 if (!task)
513 return -ESRCH;
514 mm = get_task_mm(task);
515 if (mm) {
516 struct mm_walk clear_refs_walk = {
517 .pmd_entry = clear_refs_pte_range,
518 .mm = mm,
520 down_read(&mm->mmap_sem);
521 for (vma = mm->mmap; vma; vma = vma->vm_next) {
522 clear_refs_walk.private = vma;
523 if (is_vm_hugetlb_page(vma))
524 continue;
526 * Writing 1 to /proc/pid/clear_refs affects all pages.
528 * Writing 2 to /proc/pid/clear_refs only affects
529 * Anonymous pages.
531 * Writing 3 to /proc/pid/clear_refs only affects file
532 * mapped pages.
534 if (type == CLEAR_REFS_ANON && vma->vm_file)
535 continue;
536 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
537 continue;
538 walk_page_range(vma->vm_start, vma->vm_end,
539 &clear_refs_walk);
541 flush_tlb_mm(mm);
542 up_read(&mm->mmap_sem);
543 mmput(mm);
545 put_task_struct(task);
547 return count;
550 const struct file_operations proc_clear_refs_operations = {
551 .write = clear_refs_write,
552 .llseek = noop_llseek,
555 struct pagemapread {
556 int pos, len;
557 u64 *buffer;
560 #define PM_ENTRY_BYTES sizeof(u64)
561 #define PM_STATUS_BITS 3
562 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
563 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
564 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
565 #define PM_PSHIFT_BITS 6
566 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
567 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
568 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
569 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
570 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
572 #define PM_PRESENT PM_STATUS(4LL)
573 #define PM_SWAP PM_STATUS(2LL)
574 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
575 #define PM_END_OF_BUFFER 1
577 static int add_to_pagemap(unsigned long addr, u64 pfn,
578 struct pagemapread *pm)
580 pm->buffer[pm->pos++] = pfn;
581 if (pm->pos >= pm->len)
582 return PM_END_OF_BUFFER;
583 return 0;
586 static int pagemap_pte_hole(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
589 struct pagemapread *pm = walk->private;
590 unsigned long addr;
591 int err = 0;
592 for (addr = start; addr < end; addr += PAGE_SIZE) {
593 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
594 if (err)
595 break;
597 return err;
600 static u64 swap_pte_to_pagemap_entry(pte_t pte)
602 swp_entry_t e = pte_to_swp_entry(pte);
603 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
606 static u64 pte_to_pagemap_entry(pte_t pte)
608 u64 pme = 0;
609 if (is_swap_pte(pte))
610 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
611 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
612 else if (pte_present(pte))
613 pme = PM_PFRAME(pte_pfn(pte))
614 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
615 return pme;
618 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
619 struct mm_walk *walk)
621 struct vm_area_struct *vma;
622 struct pagemapread *pm = walk->private;
623 pte_t *pte;
624 int err = 0;
626 /* find the first VMA at or above 'addr' */
627 vma = find_vma(walk->mm, addr);
628 for (; addr != end; addr += PAGE_SIZE) {
629 u64 pfn = PM_NOT_PRESENT;
631 /* check to see if we've left 'vma' behind
632 * and need a new, higher one */
633 if (vma && (addr >= vma->vm_end))
634 vma = find_vma(walk->mm, addr);
636 /* check that 'vma' actually covers this address,
637 * and that it isn't a huge page vma */
638 if (vma && (vma->vm_start <= addr) &&
639 !is_vm_hugetlb_page(vma)) {
640 pte = pte_offset_map(pmd, addr);
641 pfn = pte_to_pagemap_entry(*pte);
642 /* unmap before userspace copy */
643 pte_unmap(pte);
645 err = add_to_pagemap(addr, pfn, pm);
646 if (err)
647 return err;
650 cond_resched();
652 return err;
655 #ifdef CONFIG_HUGETLB_PAGE
656 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
658 u64 pme = 0;
659 if (pte_present(pte))
660 pme = PM_PFRAME(pte_pfn(pte) + offset)
661 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
662 return pme;
665 /* This function walks within one hugetlb entry in the single call */
666 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
667 unsigned long addr, unsigned long end,
668 struct mm_walk *walk)
670 struct pagemapread *pm = walk->private;
671 int err = 0;
672 u64 pfn;
674 for (; addr != end; addr += PAGE_SIZE) {
675 int offset = (addr & ~hmask) >> PAGE_SHIFT;
676 pfn = huge_pte_to_pagemap_entry(*pte, offset);
677 err = add_to_pagemap(addr, pfn, pm);
678 if (err)
679 return err;
682 cond_resched();
684 return err;
686 #endif /* HUGETLB_PAGE */
689 * /proc/pid/pagemap - an array mapping virtual pages to pfns
691 * For each page in the address space, this file contains one 64-bit entry
692 * consisting of the following:
694 * Bits 0-55 page frame number (PFN) if present
695 * Bits 0-4 swap type if swapped
696 * Bits 5-55 swap offset if swapped
697 * Bits 55-60 page shift (page size = 1<<page shift)
698 * Bit 61 reserved for future use
699 * Bit 62 page swapped
700 * Bit 63 page present
702 * If the page is not present but in swap, then the PFN contains an
703 * encoding of the swap file number and the page's offset into the
704 * swap. Unmapped pages return a null PFN. This allows determining
705 * precisely which pages are mapped (or in swap) and comparing mapped
706 * pages between processes.
708 * Efficient users of this interface will use /proc/pid/maps to
709 * determine which areas of memory are actually mapped and llseek to
710 * skip over unmapped regions.
712 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
713 #define PAGEMAP_WALK_MASK (PMD_MASK)
714 static ssize_t pagemap_read(struct file *file, char __user *buf,
715 size_t count, loff_t *ppos)
717 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
718 struct mm_struct *mm;
719 struct pagemapread pm;
720 int ret = -ESRCH;
721 struct mm_walk pagemap_walk = {};
722 unsigned long src;
723 unsigned long svpfn;
724 unsigned long start_vaddr;
725 unsigned long end_vaddr;
726 int copied = 0;
728 if (!task)
729 goto out;
731 ret = -EACCES;
732 if (!ptrace_may_access(task, PTRACE_MODE_READ))
733 goto out_task;
735 ret = -EINVAL;
736 /* file position must be aligned */
737 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
738 goto out_task;
740 ret = 0;
742 if (!count)
743 goto out_task;
745 mm = get_task_mm(task);
746 if (!mm)
747 goto out_task;
749 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
750 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
751 ret = -ENOMEM;
752 if (!pm.buffer)
753 goto out_mm;
755 pagemap_walk.pmd_entry = pagemap_pte_range;
756 pagemap_walk.pte_hole = pagemap_pte_hole;
757 #ifdef CONFIG_HUGETLB_PAGE
758 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
759 #endif
760 pagemap_walk.mm = mm;
761 pagemap_walk.private = &pm;
763 src = *ppos;
764 svpfn = src / PM_ENTRY_BYTES;
765 start_vaddr = svpfn << PAGE_SHIFT;
766 end_vaddr = TASK_SIZE_OF(task);
768 /* watch out for wraparound */
769 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
770 start_vaddr = end_vaddr;
773 * The odds are that this will stop walking way
774 * before end_vaddr, because the length of the
775 * user buffer is tracked in "pm", and the walk
776 * will stop when we hit the end of the buffer.
778 ret = 0;
779 while (count && (start_vaddr < end_vaddr)) {
780 int len;
781 unsigned long end;
783 pm.pos = 0;
784 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
785 /* overflow ? */
786 if (end < start_vaddr || end > end_vaddr)
787 end = end_vaddr;
788 down_read(&mm->mmap_sem);
789 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
790 up_read(&mm->mmap_sem);
791 start_vaddr = end;
793 len = min(count, PM_ENTRY_BYTES * pm.pos);
794 if (copy_to_user(buf, pm.buffer, len)) {
795 ret = -EFAULT;
796 goto out_free;
798 copied += len;
799 buf += len;
800 count -= len;
802 *ppos += copied;
803 if (!ret || ret == PM_END_OF_BUFFER)
804 ret = copied;
806 out_free:
807 kfree(pm.buffer);
808 out_mm:
809 mmput(mm);
810 out_task:
811 put_task_struct(task);
812 out:
813 return ret;
816 const struct file_operations proc_pagemap_operations = {
817 .llseek = mem_lseek, /* borrow this */
818 .read = pagemap_read,
820 #endif /* CONFIG_PROC_PAGE_MONITOR */
822 #ifdef CONFIG_NUMA
823 extern int show_numa_map(struct seq_file *m, void *v);
825 static const struct seq_operations proc_pid_numa_maps_op = {
826 .start = m_start,
827 .next = m_next,
828 .stop = m_stop,
829 .show = show_numa_map,
832 static int numa_maps_open(struct inode *inode, struct file *file)
834 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
837 const struct file_operations proc_numa_maps_operations = {
838 .open = numa_maps_open,
839 .read = seq_read,
840 .llseek = seq_lseek,
841 .release = seq_release_private,
843 #endif