2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 static unsigned long nr_huge_pages
, free_huge_pages
, resv_huge_pages
;
26 static unsigned long surplus_huge_pages
;
27 static unsigned long nr_overcommit_huge_pages
;
28 unsigned long max_huge_pages
;
29 unsigned long sysctl_overcommit_huge_pages
;
30 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
31 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
32 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
33 static unsigned int surplus_huge_pages_node
[MAX_NUMNODES
];
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
36 static int hugetlb_next_nid
;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock
);
43 static void clear_huge_page(struct page
*page
, unsigned long addr
)
48 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); i
++) {
50 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
54 static void copy_huge_page(struct page
*dst
, struct page
*src
,
55 unsigned long addr
, struct vm_area_struct
*vma
)
60 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++) {
62 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
66 static void enqueue_huge_page(struct page
*page
)
68 int nid
= page_to_nid(page
);
69 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
71 free_huge_pages_node
[nid
]++;
74 static struct page
*dequeue_huge_page(void)
77 struct page
*page
= NULL
;
79 for (nid
= 0; nid
< MAX_NUMNODES
; ++nid
) {
80 if (!list_empty(&hugepage_freelists
[nid
])) {
81 page
= list_entry(hugepage_freelists
[nid
].next
,
85 free_huge_pages_node
[nid
]--;
92 static struct page
*dequeue_huge_page_vma(struct vm_area_struct
*vma
,
93 unsigned long address
)
96 struct page
*page
= NULL
;
97 struct mempolicy
*mpol
;
98 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
99 htlb_alloc_mask
, &mpol
);
102 for (z
= zonelist
->zones
; *z
; z
++) {
103 nid
= zone_to_nid(*z
);
104 if (cpuset_zone_allowed_softwall(*z
, htlb_alloc_mask
) &&
105 !list_empty(&hugepage_freelists
[nid
])) {
106 page
= list_entry(hugepage_freelists
[nid
].next
,
108 list_del(&page
->lru
);
110 free_huge_pages_node
[nid
]--;
111 if (vma
&& vma
->vm_flags
& VM_MAYSHARE
)
116 mpol_free(mpol
); /* unref if mpol !NULL */
120 static void update_and_free_page(struct page
*page
)
124 nr_huge_pages_node
[page_to_nid(page
)]--;
125 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
126 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
127 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
128 1 << PG_private
| 1<< PG_writeback
);
130 set_compound_page_dtor(page
, NULL
);
131 set_page_refcounted(page
);
132 __free_pages(page
, HUGETLB_PAGE_ORDER
);
135 static void free_huge_page(struct page
*page
)
137 int nid
= page_to_nid(page
);
138 struct address_space
*mapping
;
140 mapping
= (struct address_space
*) page_private(page
);
141 set_page_private(page
, 0);
142 BUG_ON(page_count(page
));
143 INIT_LIST_HEAD(&page
->lru
);
145 spin_lock(&hugetlb_lock
);
146 if (surplus_huge_pages_node
[nid
]) {
147 update_and_free_page(page
);
148 surplus_huge_pages
--;
149 surplus_huge_pages_node
[nid
]--;
151 enqueue_huge_page(page
);
153 spin_unlock(&hugetlb_lock
);
155 hugetlb_put_quota(mapping
, 1);
159 * Increment or decrement surplus_huge_pages. Keep node-specific counters
160 * balanced by operating on them in a round-robin fashion.
161 * Returns 1 if an adjustment was made.
163 static int adjust_pool_surplus(int delta
)
169 VM_BUG_ON(delta
!= -1 && delta
!= 1);
171 nid
= next_node(nid
, node_online_map
);
172 if (nid
== MAX_NUMNODES
)
173 nid
= first_node(node_online_map
);
175 /* To shrink on this node, there must be a surplus page */
176 if (delta
< 0 && !surplus_huge_pages_node
[nid
])
178 /* Surplus cannot exceed the total number of pages */
179 if (delta
> 0 && surplus_huge_pages_node
[nid
] >=
180 nr_huge_pages_node
[nid
])
183 surplus_huge_pages
+= delta
;
184 surplus_huge_pages_node
[nid
] += delta
;
187 } while (nid
!= prev_nid
);
193 static struct page
*alloc_fresh_huge_page_node(int nid
)
197 page
= alloc_pages_node(nid
,
198 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|__GFP_NOWARN
,
201 set_compound_page_dtor(page
, free_huge_page
);
202 spin_lock(&hugetlb_lock
);
204 nr_huge_pages_node
[nid
]++;
205 spin_unlock(&hugetlb_lock
);
206 put_page(page
); /* free it into the hugepage allocator */
212 static int alloc_fresh_huge_page(void)
219 start_nid
= hugetlb_next_nid
;
222 page
= alloc_fresh_huge_page_node(hugetlb_next_nid
);
226 * Use a helper variable to find the next node and then
227 * copy it back to hugetlb_next_nid afterwards:
228 * otherwise there's a window in which a racer might
229 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
230 * But we don't need to use a spin_lock here: it really
231 * doesn't matter if occasionally a racer chooses the
232 * same nid as we do. Move nid forward in the mask even
233 * if we just successfully allocated a hugepage so that
234 * the next caller gets hugepages on the next node.
236 next_nid
= next_node(hugetlb_next_nid
, node_online_map
);
237 if (next_nid
== MAX_NUMNODES
)
238 next_nid
= first_node(node_online_map
);
239 hugetlb_next_nid
= next_nid
;
240 } while (!page
&& hugetlb_next_nid
!= start_nid
);
245 static struct page
*alloc_buddy_huge_page(struct vm_area_struct
*vma
,
246 unsigned long address
)
252 * Assume we will successfully allocate the surplus page to
253 * prevent racing processes from causing the surplus to exceed
256 * This however introduces a different race, where a process B
257 * tries to grow the static hugepage pool while alloc_pages() is
258 * called by process A. B will only examine the per-node
259 * counters in determining if surplus huge pages can be
260 * converted to normal huge pages in adjust_pool_surplus(). A
261 * won't be able to increment the per-node counter, until the
262 * lock is dropped by B, but B doesn't drop hugetlb_lock until
263 * no more huge pages can be converted from surplus to normal
264 * state (and doesn't try to convert again). Thus, we have a
265 * case where a surplus huge page exists, the pool is grown, and
266 * the surplus huge page still exists after, even though it
267 * should just have been converted to a normal huge page. This
268 * does not leak memory, though, as the hugepage will be freed
269 * once it is out of use. It also does not allow the counters to
270 * go out of whack in adjust_pool_surplus() as we don't modify
271 * the node values until we've gotten the hugepage and only the
272 * per-node value is checked there.
274 spin_lock(&hugetlb_lock
);
275 if (surplus_huge_pages
>= nr_overcommit_huge_pages
) {
276 spin_unlock(&hugetlb_lock
);
280 surplus_huge_pages
++;
282 spin_unlock(&hugetlb_lock
);
284 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|__GFP_NOWARN
,
287 spin_lock(&hugetlb_lock
);
290 * This page is now managed by the hugetlb allocator and has
291 * no users -- drop the buddy allocator's reference.
293 put_page_testzero(page
);
294 VM_BUG_ON(page_count(page
));
295 nid
= page_to_nid(page
);
296 set_compound_page_dtor(page
, free_huge_page
);
298 * We incremented the global counters already
300 nr_huge_pages_node
[nid
]++;
301 surplus_huge_pages_node
[nid
]++;
304 surplus_huge_pages
--;
306 spin_unlock(&hugetlb_lock
);
312 * Increase the hugetlb pool such that it can accomodate a reservation
315 static int gather_surplus_pages(int delta
)
317 struct list_head surplus_list
;
318 struct page
*page
, *tmp
;
320 int needed
, allocated
;
322 needed
= (resv_huge_pages
+ delta
) - free_huge_pages
;
324 resv_huge_pages
+= delta
;
329 INIT_LIST_HEAD(&surplus_list
);
333 spin_unlock(&hugetlb_lock
);
334 for (i
= 0; i
< needed
; i
++) {
335 page
= alloc_buddy_huge_page(NULL
, 0);
338 * We were not able to allocate enough pages to
339 * satisfy the entire reservation so we free what
340 * we've allocated so far.
342 spin_lock(&hugetlb_lock
);
347 list_add(&page
->lru
, &surplus_list
);
352 * After retaking hugetlb_lock, we need to recalculate 'needed'
353 * because either resv_huge_pages or free_huge_pages may have changed.
355 spin_lock(&hugetlb_lock
);
356 needed
= (resv_huge_pages
+ delta
) - (free_huge_pages
+ allocated
);
361 * The surplus_list now contains _at_least_ the number of extra pages
362 * needed to accomodate the reservation. Add the appropriate number
363 * of pages to the hugetlb pool and free the extras back to the buddy
364 * allocator. Commit the entire reservation here to prevent another
365 * process from stealing the pages as they are added to the pool but
366 * before they are reserved.
369 resv_huge_pages
+= delta
;
372 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
373 list_del(&page
->lru
);
375 enqueue_huge_page(page
);
378 * The page has a reference count of zero already, so
379 * call free_huge_page directly instead of using
380 * put_page. This must be done with hugetlb_lock
381 * unlocked which is safe because free_huge_page takes
382 * hugetlb_lock before deciding how to free the page.
384 spin_unlock(&hugetlb_lock
);
385 free_huge_page(page
);
386 spin_lock(&hugetlb_lock
);
394 * When releasing a hugetlb pool reservation, any surplus pages that were
395 * allocated to satisfy the reservation must be explicitly freed if they were
398 static void return_unused_surplus_pages(unsigned long unused_resv_pages
)
402 unsigned long nr_pages
;
405 * We want to release as many surplus pages as possible, spread
406 * evenly across all nodes. Iterate across all nodes until we
407 * can no longer free unreserved surplus pages. This occurs when
408 * the nodes with surplus pages have no free pages.
410 unsigned long remaining_iterations
= num_online_nodes();
412 /* Uncommit the reservation */
413 resv_huge_pages
-= unused_resv_pages
;
415 nr_pages
= min(unused_resv_pages
, surplus_huge_pages
);
417 while (remaining_iterations
-- && nr_pages
) {
418 nid
= next_node(nid
, node_online_map
);
419 if (nid
== MAX_NUMNODES
)
420 nid
= first_node(node_online_map
);
422 if (!surplus_huge_pages_node
[nid
])
425 if (!list_empty(&hugepage_freelists
[nid
])) {
426 page
= list_entry(hugepage_freelists
[nid
].next
,
428 list_del(&page
->lru
);
429 update_and_free_page(page
);
431 free_huge_pages_node
[nid
]--;
432 surplus_huge_pages
--;
433 surplus_huge_pages_node
[nid
]--;
435 remaining_iterations
= num_online_nodes();
441 static struct page
*alloc_huge_page_shared(struct vm_area_struct
*vma
,
446 spin_lock(&hugetlb_lock
);
447 page
= dequeue_huge_page_vma(vma
, addr
);
448 spin_unlock(&hugetlb_lock
);
449 return page
? page
: ERR_PTR(-VM_FAULT_OOM
);
452 static struct page
*alloc_huge_page_private(struct vm_area_struct
*vma
,
455 struct page
*page
= NULL
;
457 if (hugetlb_get_quota(vma
->vm_file
->f_mapping
, 1))
458 return ERR_PTR(-VM_FAULT_SIGBUS
);
460 spin_lock(&hugetlb_lock
);
461 if (free_huge_pages
> resv_huge_pages
)
462 page
= dequeue_huge_page_vma(vma
, addr
);
463 spin_unlock(&hugetlb_lock
);
465 page
= alloc_buddy_huge_page(vma
, addr
);
467 hugetlb_put_quota(vma
->vm_file
->f_mapping
, 1);
468 return ERR_PTR(-VM_FAULT_OOM
);
474 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
478 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
480 if (vma
->vm_flags
& VM_MAYSHARE
)
481 page
= alloc_huge_page_shared(vma
, addr
);
483 page
= alloc_huge_page_private(vma
, addr
);
486 set_page_refcounted(page
);
487 set_page_private(page
, (unsigned long) mapping
);
492 static int __init
hugetlb_init(void)
496 if (HPAGE_SHIFT
== 0)
499 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
500 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
502 hugetlb_next_nid
= first_node(node_online_map
);
504 for (i
= 0; i
< max_huge_pages
; ++i
) {
505 if (!alloc_fresh_huge_page())
508 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
509 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
512 module_init(hugetlb_init
);
514 static int __init
hugetlb_setup(char *s
)
516 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
520 __setup("hugepages=", hugetlb_setup
);
522 static unsigned int cpuset_mems_nr(unsigned int *array
)
527 for_each_node_mask(node
, cpuset_current_mems_allowed
)
534 #ifdef CONFIG_HIGHMEM
535 static void try_to_free_low(unsigned long count
)
539 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
540 struct page
*page
, *next
;
541 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
542 if (count
>= nr_huge_pages
)
544 if (PageHighMem(page
))
546 list_del(&page
->lru
);
547 update_and_free_page(page
);
549 free_huge_pages_node
[page_to_nid(page
)]--;
554 static inline void try_to_free_low(unsigned long count
)
559 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
560 static unsigned long set_max_huge_pages(unsigned long count
)
562 unsigned long min_count
, ret
;
565 * Increase the pool size
566 * First take pages out of surplus state. Then make up the
567 * remaining difference by allocating fresh huge pages.
569 * We might race with alloc_buddy_huge_page() here and be unable
570 * to convert a surplus huge page to a normal huge page. That is
571 * not critical, though, it just means the overall size of the
572 * pool might be one hugepage larger than it needs to be, but
573 * within all the constraints specified by the sysctls.
575 spin_lock(&hugetlb_lock
);
576 while (surplus_huge_pages
&& count
> persistent_huge_pages
) {
577 if (!adjust_pool_surplus(-1))
581 while (count
> persistent_huge_pages
) {
584 * If this allocation races such that we no longer need the
585 * page, free_huge_page will handle it by freeing the page
586 * and reducing the surplus.
588 spin_unlock(&hugetlb_lock
);
589 ret
= alloc_fresh_huge_page();
590 spin_lock(&hugetlb_lock
);
597 * Decrease the pool size
598 * First return free pages to the buddy allocator (being careful
599 * to keep enough around to satisfy reservations). Then place
600 * pages into surplus state as needed so the pool will shrink
601 * to the desired size as pages become free.
603 * By placing pages into the surplus state independent of the
604 * overcommit value, we are allowing the surplus pool size to
605 * exceed overcommit. There are few sane options here. Since
606 * alloc_buddy_huge_page() is checking the global counter,
607 * though, we'll note that we're not allowed to exceed surplus
608 * and won't grow the pool anywhere else. Not until one of the
609 * sysctls are changed, or the surplus pages go out of use.
611 min_count
= resv_huge_pages
+ nr_huge_pages
- free_huge_pages
;
612 min_count
= max(count
, min_count
);
613 try_to_free_low(min_count
);
614 while (min_count
< persistent_huge_pages
) {
615 struct page
*page
= dequeue_huge_page();
618 update_and_free_page(page
);
620 while (count
< persistent_huge_pages
) {
621 if (!adjust_pool_surplus(1))
625 ret
= persistent_huge_pages
;
626 spin_unlock(&hugetlb_lock
);
630 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
631 struct file
*file
, void __user
*buffer
,
632 size_t *length
, loff_t
*ppos
)
634 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
635 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
639 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
640 struct file
*file
, void __user
*buffer
,
641 size_t *length
, loff_t
*ppos
)
643 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
644 if (hugepages_treat_as_movable
)
645 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
647 htlb_alloc_mask
= GFP_HIGHUSER
;
651 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
652 struct file
*file
, void __user
*buffer
,
653 size_t *length
, loff_t
*ppos
)
655 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
656 spin_lock(&hugetlb_lock
);
657 nr_overcommit_huge_pages
= sysctl_overcommit_huge_pages
;
658 spin_unlock(&hugetlb_lock
);
662 #endif /* CONFIG_SYSCTL */
664 int hugetlb_report_meminfo(char *buf
)
667 "HugePages_Total: %5lu\n"
668 "HugePages_Free: %5lu\n"
669 "HugePages_Rsvd: %5lu\n"
670 "HugePages_Surp: %5lu\n"
671 "Hugepagesize: %5lu kB\n",
679 int hugetlb_report_node_meminfo(int nid
, char *buf
)
682 "Node %d HugePages_Total: %5u\n"
683 "Node %d HugePages_Free: %5u\n"
684 "Node %d HugePages_Surp: %5u\n",
685 nid
, nr_huge_pages_node
[nid
],
686 nid
, free_huge_pages_node
[nid
],
687 nid
, surplus_huge_pages_node
[nid
]);
690 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
691 unsigned long hugetlb_total_pages(void)
693 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
697 * We cannot handle pagefaults against hugetlb pages at all. They cause
698 * handle_mm_fault() to try to instantiate regular-sized pages in the
699 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
702 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
708 struct vm_operations_struct hugetlb_vm_ops
= {
709 .fault
= hugetlb_vm_op_fault
,
712 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
719 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
721 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
723 entry
= pte_mkyoung(entry
);
724 entry
= pte_mkhuge(entry
);
729 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
730 unsigned long address
, pte_t
*ptep
)
734 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
735 if (ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
736 update_mmu_cache(vma
, address
, entry
);
741 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
742 struct vm_area_struct
*vma
)
744 pte_t
*src_pte
, *dst_pte
, entry
;
745 struct page
*ptepage
;
749 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
751 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
752 src_pte
= huge_pte_offset(src
, addr
);
755 dst_pte
= huge_pte_alloc(dst
, addr
);
759 /* If the pagetables are shared don't copy or take references */
760 if (dst_pte
== src_pte
)
763 spin_lock(&dst
->page_table_lock
);
764 spin_lock(&src
->page_table_lock
);
765 if (!pte_none(*src_pte
)) {
767 ptep_set_wrprotect(src
, addr
, src_pte
);
769 ptepage
= pte_page(entry
);
771 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
773 spin_unlock(&src
->page_table_lock
);
774 spin_unlock(&dst
->page_table_lock
);
782 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
785 struct mm_struct
*mm
= vma
->vm_mm
;
786 unsigned long address
;
792 * A page gathering list, protected by per file i_mmap_lock. The
793 * lock is used to avoid list corruption from multiple unmapping
794 * of the same page since we are using page->lru.
796 LIST_HEAD(page_list
);
798 WARN_ON(!is_vm_hugetlb_page(vma
));
799 BUG_ON(start
& ~HPAGE_MASK
);
800 BUG_ON(end
& ~HPAGE_MASK
);
802 spin_lock(&mm
->page_table_lock
);
803 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
804 ptep
= huge_pte_offset(mm
, address
);
808 if (huge_pmd_unshare(mm
, &address
, ptep
))
811 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
815 page
= pte_page(pte
);
817 set_page_dirty(page
);
818 list_add(&page
->lru
, &page_list
);
820 spin_unlock(&mm
->page_table_lock
);
821 flush_tlb_range(vma
, start
, end
);
822 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
823 list_del(&page
->lru
);
828 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
832 * It is undesirable to test vma->vm_file as it should be non-null
833 * for valid hugetlb area. However, vm_file will be NULL in the error
834 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
835 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
836 * to clean up. Since no pte has actually been setup, it is safe to
837 * do nothing in this case.
840 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
841 __unmap_hugepage_range(vma
, start
, end
);
842 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
846 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
847 unsigned long address
, pte_t
*ptep
, pte_t pte
)
849 struct page
*old_page
, *new_page
;
852 old_page
= pte_page(pte
);
854 /* If no-one else is actually using this page, avoid the copy
855 * and just make the page writable */
856 avoidcopy
= (page_count(old_page
) == 1);
858 set_huge_ptep_writable(vma
, address
, ptep
);
862 page_cache_get(old_page
);
863 new_page
= alloc_huge_page(vma
, address
);
865 if (IS_ERR(new_page
)) {
866 page_cache_release(old_page
);
867 return -PTR_ERR(new_page
);
870 spin_unlock(&mm
->page_table_lock
);
871 copy_huge_page(new_page
, old_page
, address
, vma
);
872 __SetPageUptodate(new_page
);
873 spin_lock(&mm
->page_table_lock
);
875 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
876 if (likely(pte_same(*ptep
, pte
))) {
878 set_huge_pte_at(mm
, address
, ptep
,
879 make_huge_pte(vma
, new_page
, 1));
880 /* Make the old page be freed below */
883 page_cache_release(new_page
);
884 page_cache_release(old_page
);
888 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
889 unsigned long address
, pte_t
*ptep
, int write_access
)
891 int ret
= VM_FAULT_SIGBUS
;
895 struct address_space
*mapping
;
898 mapping
= vma
->vm_file
->f_mapping
;
899 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
900 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
903 * Use page lock to guard against racing truncation
904 * before we get page_table_lock.
907 page
= find_lock_page(mapping
, idx
);
909 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
912 page
= alloc_huge_page(vma
, address
);
914 ret
= -PTR_ERR(page
);
917 clear_huge_page(page
, address
);
918 __SetPageUptodate(page
);
920 if (vma
->vm_flags
& VM_SHARED
) {
922 struct inode
*inode
= mapping
->host
;
924 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
932 spin_lock(&inode
->i_lock
);
933 inode
->i_blocks
+= BLOCKS_PER_HUGEPAGE
;
934 spin_unlock(&inode
->i_lock
);
939 spin_lock(&mm
->page_table_lock
);
940 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
945 if (!pte_none(*ptep
))
948 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
949 && (vma
->vm_flags
& VM_SHARED
)));
950 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
952 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
953 /* Optimization, do the COW without a second fault */
954 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
957 spin_unlock(&mm
->page_table_lock
);
963 spin_unlock(&mm
->page_table_lock
);
969 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
970 unsigned long address
, int write_access
)
975 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
977 ptep
= huge_pte_alloc(mm
, address
);
982 * Serialize hugepage allocation and instantiation, so that we don't
983 * get spurious allocation failures if two CPUs race to instantiate
984 * the same page in the page cache.
986 mutex_lock(&hugetlb_instantiation_mutex
);
988 if (pte_none(entry
)) {
989 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
990 mutex_unlock(&hugetlb_instantiation_mutex
);
996 spin_lock(&mm
->page_table_lock
);
997 /* Check for a racing update before calling hugetlb_cow */
998 if (likely(pte_same(entry
, *ptep
)))
999 if (write_access
&& !pte_write(entry
))
1000 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
1001 spin_unlock(&mm
->page_table_lock
);
1002 mutex_unlock(&hugetlb_instantiation_mutex
);
1007 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1008 struct page
**pages
, struct vm_area_struct
**vmas
,
1009 unsigned long *position
, int *length
, int i
,
1012 unsigned long pfn_offset
;
1013 unsigned long vaddr
= *position
;
1014 int remainder
= *length
;
1016 spin_lock(&mm
->page_table_lock
);
1017 while (vaddr
< vma
->vm_end
&& remainder
) {
1022 * Some archs (sparc64, sh*) have multiple pte_ts to
1023 * each hugepage. We have to make * sure we get the
1024 * first, for the page indexing below to work.
1026 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
1028 if (!pte
|| pte_none(*pte
) || (write
&& !pte_write(*pte
))) {
1031 spin_unlock(&mm
->page_table_lock
);
1032 ret
= hugetlb_fault(mm
, vma
, vaddr
, write
);
1033 spin_lock(&mm
->page_table_lock
);
1034 if (!(ret
& VM_FAULT_ERROR
))
1043 pfn_offset
= (vaddr
& ~HPAGE_MASK
) >> PAGE_SHIFT
;
1044 page
= pte_page(*pte
);
1048 pages
[i
] = page
+ pfn_offset
;
1058 if (vaddr
< vma
->vm_end
&& remainder
&&
1059 pfn_offset
< HPAGE_SIZE
/PAGE_SIZE
) {
1061 * We use pfn_offset to avoid touching the pageframes
1062 * of this compound page.
1067 spin_unlock(&mm
->page_table_lock
);
1068 *length
= remainder
;
1074 void hugetlb_change_protection(struct vm_area_struct
*vma
,
1075 unsigned long address
, unsigned long end
, pgprot_t newprot
)
1077 struct mm_struct
*mm
= vma
->vm_mm
;
1078 unsigned long start
= address
;
1082 BUG_ON(address
>= end
);
1083 flush_cache_range(vma
, address
, end
);
1085 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1086 spin_lock(&mm
->page_table_lock
);
1087 for (; address
< end
; address
+= HPAGE_SIZE
) {
1088 ptep
= huge_pte_offset(mm
, address
);
1091 if (huge_pmd_unshare(mm
, &address
, ptep
))
1093 if (!pte_none(*ptep
)) {
1094 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
1095 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
1096 set_huge_pte_at(mm
, address
, ptep
, pte
);
1099 spin_unlock(&mm
->page_table_lock
);
1100 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
1102 flush_tlb_range(vma
, start
, end
);
1105 struct file_region
{
1106 struct list_head link
;
1111 static long region_add(struct list_head
*head
, long f
, long t
)
1113 struct file_region
*rg
, *nrg
, *trg
;
1115 /* Locate the region we are either in or before. */
1116 list_for_each_entry(rg
, head
, link
)
1120 /* Round our left edge to the current segment if it encloses us. */
1124 /* Check for and consume any regions we now overlap with. */
1126 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1127 if (&rg
->link
== head
)
1132 /* If this area reaches higher then extend our area to
1133 * include it completely. If this is not the first area
1134 * which we intend to reuse, free it. */
1138 list_del(&rg
->link
);
1147 static long region_chg(struct list_head
*head
, long f
, long t
)
1149 struct file_region
*rg
, *nrg
;
1152 /* Locate the region we are before or in. */
1153 list_for_each_entry(rg
, head
, link
)
1157 /* If we are below the current region then a new region is required.
1158 * Subtle, allocate a new region at the position but make it zero
1159 * size such that we can guarantee to record the reservation. */
1160 if (&rg
->link
== head
|| t
< rg
->from
) {
1161 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
1166 INIT_LIST_HEAD(&nrg
->link
);
1167 list_add(&nrg
->link
, rg
->link
.prev
);
1172 /* Round our left edge to the current segment if it encloses us. */
1177 /* Check for and consume any regions we now overlap with. */
1178 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
1179 if (&rg
->link
== head
)
1184 /* We overlap with this area, if it extends futher than
1185 * us then we must extend ourselves. Account for its
1186 * existing reservation. */
1191 chg
-= rg
->to
- rg
->from
;
1196 static long region_truncate(struct list_head
*head
, long end
)
1198 struct file_region
*rg
, *trg
;
1201 /* Locate the region we are either in or before. */
1202 list_for_each_entry(rg
, head
, link
)
1205 if (&rg
->link
== head
)
1208 /* If we are in the middle of a region then adjust it. */
1209 if (end
> rg
->from
) {
1212 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
1215 /* Drop any remaining regions. */
1216 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
1217 if (&rg
->link
== head
)
1219 chg
+= rg
->to
- rg
->from
;
1220 list_del(&rg
->link
);
1226 static int hugetlb_acct_memory(long delta
)
1230 spin_lock(&hugetlb_lock
);
1232 * When cpuset is configured, it breaks the strict hugetlb page
1233 * reservation as the accounting is done on a global variable. Such
1234 * reservation is completely rubbish in the presence of cpuset because
1235 * the reservation is not checked against page availability for the
1236 * current cpuset. Application can still potentially OOM'ed by kernel
1237 * with lack of free htlb page in cpuset that the task is in.
1238 * Attempt to enforce strict accounting with cpuset is almost
1239 * impossible (or too ugly) because cpuset is too fluid that
1240 * task or memory node can be dynamically moved between cpusets.
1242 * The change of semantics for shared hugetlb mapping with cpuset is
1243 * undesirable. However, in order to preserve some of the semantics,
1244 * we fall back to check against current free page availability as
1245 * a best attempt and hopefully to minimize the impact of changing
1246 * semantics that cpuset has.
1249 if (gather_surplus_pages(delta
) < 0)
1252 if (delta
> cpuset_mems_nr(free_huge_pages_node
)) {
1253 return_unused_surplus_pages(delta
);
1260 return_unused_surplus_pages((unsigned long) -delta
);
1263 spin_unlock(&hugetlb_lock
);
1267 int hugetlb_reserve_pages(struct inode
*inode
, long from
, long to
)
1271 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
1275 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1277 ret
= hugetlb_acct_memory(chg
);
1279 hugetlb_put_quota(inode
->i_mapping
, chg
);
1282 region_add(&inode
->i_mapping
->private_list
, from
, to
);
1286 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
1288 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
1290 spin_lock(&inode
->i_lock
);
1291 inode
->i_blocks
-= BLOCKS_PER_HUGEPAGE
* freed
;
1292 spin_unlock(&inode
->i_lock
);
1294 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
1295 hugetlb_acct_memory(-(chg
- freed
));