2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/smp_lock.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
62 #include <asm/atomic.h>
64 static DEFINE_MUTEX(cgroup_mutex
);
67 * Generate an array of cgroup subsystem pointers. At boot time, this is
68 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
69 * registered after that. The mutable section of this array is protected by
72 #define SUBSYS(_x) &_x ## _subsys,
73 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
74 #include <linux/cgroup_subsys.h>
77 #define MAX_CGROUP_ROOT_NAMELEN 64
80 * A cgroupfs_root represents the root of a cgroup hierarchy,
81 * and may be associated with a superblock to form an active
84 struct cgroupfs_root
{
85 struct super_block
*sb
;
88 * The bitmask of subsystems intended to be attached to this
91 unsigned long subsys_bits
;
93 /* Unique id for this hierarchy. */
96 /* The bitmask of subsystems currently attached to this hierarchy */
97 unsigned long actual_subsys_bits
;
99 /* A list running through the attached subsystems */
100 struct list_head subsys_list
;
102 /* The root cgroup for this hierarchy */
103 struct cgroup top_cgroup
;
105 /* Tracks how many cgroups are currently defined in hierarchy.*/
106 int number_of_cgroups
;
108 /* A list running through the active hierarchies */
109 struct list_head root_list
;
111 /* Hierarchy-specific flags */
114 /* The path to use for release notifications. */
115 char release_agent_path
[PATH_MAX
];
117 /* The name for this hierarchy - may be empty */
118 char name
[MAX_CGROUP_ROOT_NAMELEN
];
122 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
123 * subsystems that are otherwise unattached - it never has more than a
124 * single cgroup, and all tasks are part of that cgroup.
126 static struct cgroupfs_root rootnode
;
129 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
130 * cgroup_subsys->use_id != 0.
132 #define CSS_ID_MAX (65535)
135 * The css to which this ID points. This pointer is set to valid value
136 * after cgroup is populated. If cgroup is removed, this will be NULL.
137 * This pointer is expected to be RCU-safe because destroy()
138 * is called after synchronize_rcu(). But for safe use, css_is_removed()
139 * css_tryget() should be used for avoiding race.
141 struct cgroup_subsys_state
*css
;
147 * Depth in hierarchy which this ID belongs to.
149 unsigned short depth
;
151 * ID is freed by RCU. (and lookup routine is RCU safe.)
153 struct rcu_head rcu_head
;
155 * Hierarchy of CSS ID belongs to.
157 unsigned short stack
[0]; /* Array of Length (depth+1) */
161 * cgroup_event represents events which userspace want to recieve.
163 struct cgroup_event
{
165 * Cgroup which the event belongs to.
169 * Control file which the event associated.
173 * eventfd to signal userspace about the event.
175 struct eventfd_ctx
*eventfd
;
177 * Each of these stored in a list by the cgroup.
179 struct list_head list
;
181 * All fields below needed to unregister event when
182 * userspace closes eventfd.
185 wait_queue_head_t
*wqh
;
187 struct work_struct remove
;
190 /* The list of hierarchy roots */
192 static LIST_HEAD(roots
);
193 static int root_count
;
195 static DEFINE_IDA(hierarchy_ida
);
196 static int next_hierarchy_id
;
197 static DEFINE_SPINLOCK(hierarchy_id_lock
);
199 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
200 #define dummytop (&rootnode.top_cgroup)
202 /* This flag indicates whether tasks in the fork and exit paths should
203 * check for fork/exit handlers to call. This avoids us having to do
204 * extra work in the fork/exit path if none of the subsystems need to
207 static int need_forkexit_callback __read_mostly
;
209 #ifdef CONFIG_PROVE_LOCKING
210 int cgroup_lock_is_held(void)
212 return lockdep_is_held(&cgroup_mutex
);
214 #else /* #ifdef CONFIG_PROVE_LOCKING */
215 int cgroup_lock_is_held(void)
217 return mutex_is_locked(&cgroup_mutex
);
219 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
221 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
223 /* convenient tests for these bits */
224 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
226 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
229 /* bits in struct cgroupfs_root flags field */
231 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
234 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
237 (1 << CGRP_RELEASABLE
) |
238 (1 << CGRP_NOTIFY_ON_RELEASE
);
239 return (cgrp
->flags
& bits
) == bits
;
242 static int notify_on_release(const struct cgroup
*cgrp
)
244 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
248 * for_each_subsys() allows you to iterate on each subsystem attached to
249 * an active hierarchy
251 #define for_each_subsys(_root, _ss) \
252 list_for_each_entry(_ss, &_root->subsys_list, sibling)
254 /* for_each_active_root() allows you to iterate across the active hierarchies */
255 #define for_each_active_root(_root) \
256 list_for_each_entry(_root, &roots, root_list)
258 /* the list of cgroups eligible for automatic release. Protected by
259 * release_list_lock */
260 static LIST_HEAD(release_list
);
261 static DEFINE_SPINLOCK(release_list_lock
);
262 static void cgroup_release_agent(struct work_struct
*work
);
263 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
264 static void check_for_release(struct cgroup
*cgrp
);
266 /* Link structure for associating css_set objects with cgroups */
267 struct cg_cgroup_link
{
269 * List running through cg_cgroup_links associated with a
270 * cgroup, anchored on cgroup->css_sets
272 struct list_head cgrp_link_list
;
275 * List running through cg_cgroup_links pointing at a
276 * single css_set object, anchored on css_set->cg_links
278 struct list_head cg_link_list
;
282 /* The default css_set - used by init and its children prior to any
283 * hierarchies being mounted. It contains a pointer to the root state
284 * for each subsystem. Also used to anchor the list of css_sets. Not
285 * reference-counted, to improve performance when child cgroups
286 * haven't been created.
289 static struct css_set init_css_set
;
290 static struct cg_cgroup_link init_css_set_link
;
292 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
293 struct cgroup_subsys_state
*css
);
295 /* css_set_lock protects the list of css_set objects, and the
296 * chain of tasks off each css_set. Nests outside task->alloc_lock
297 * due to cgroup_iter_start() */
298 static DEFINE_RWLOCK(css_set_lock
);
299 static int css_set_count
;
302 * hash table for cgroup groups. This improves the performance to find
303 * an existing css_set. This hash doesn't (currently) take into
304 * account cgroups in empty hierarchies.
306 #define CSS_SET_HASH_BITS 7
307 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
308 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
310 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
314 unsigned long tmp
= 0UL;
316 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
317 tmp
+= (unsigned long)css
[i
];
318 tmp
= (tmp
>> 16) ^ tmp
;
320 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
322 return &css_set_table
[index
];
325 static void free_css_set_rcu(struct rcu_head
*obj
)
327 struct css_set
*cg
= container_of(obj
, struct css_set
, rcu_head
);
331 /* We don't maintain the lists running through each css_set to its
332 * task until after the first call to cgroup_iter_start(). This
333 * reduces the fork()/exit() overhead for people who have cgroups
334 * compiled into their kernel but not actually in use */
335 static int use_task_css_set_links __read_mostly
;
337 static void __put_css_set(struct css_set
*cg
, int taskexit
)
339 struct cg_cgroup_link
*link
;
340 struct cg_cgroup_link
*saved_link
;
342 * Ensure that the refcount doesn't hit zero while any readers
343 * can see it. Similar to atomic_dec_and_lock(), but for an
346 if (atomic_add_unless(&cg
->refcount
, -1, 1))
348 write_lock(&css_set_lock
);
349 if (!atomic_dec_and_test(&cg
->refcount
)) {
350 write_unlock(&css_set_lock
);
354 /* This css_set is dead. unlink it and release cgroup refcounts */
355 hlist_del(&cg
->hlist
);
358 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
360 struct cgroup
*cgrp
= link
->cgrp
;
361 list_del(&link
->cg_link_list
);
362 list_del(&link
->cgrp_link_list
);
363 if (atomic_dec_and_test(&cgrp
->count
) &&
364 notify_on_release(cgrp
)) {
366 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
367 check_for_release(cgrp
);
373 write_unlock(&css_set_lock
);
374 call_rcu(&cg
->rcu_head
, free_css_set_rcu
);
378 * refcounted get/put for css_set objects
380 static inline void get_css_set(struct css_set
*cg
)
382 atomic_inc(&cg
->refcount
);
385 static inline void put_css_set(struct css_set
*cg
)
387 __put_css_set(cg
, 0);
390 static inline void put_css_set_taskexit(struct css_set
*cg
)
392 __put_css_set(cg
, 1);
396 * compare_css_sets - helper function for find_existing_css_set().
397 * @cg: candidate css_set being tested
398 * @old_cg: existing css_set for a task
399 * @new_cgrp: cgroup that's being entered by the task
400 * @template: desired set of css pointers in css_set (pre-calculated)
402 * Returns true if "cg" matches "old_cg" except for the hierarchy
403 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
405 static bool compare_css_sets(struct css_set
*cg
,
406 struct css_set
*old_cg
,
407 struct cgroup
*new_cgrp
,
408 struct cgroup_subsys_state
*template[])
410 struct list_head
*l1
, *l2
;
412 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
413 /* Not all subsystems matched */
418 * Compare cgroup pointers in order to distinguish between
419 * different cgroups in heirarchies with no subsystems. We
420 * could get by with just this check alone (and skip the
421 * memcmp above) but on most setups the memcmp check will
422 * avoid the need for this more expensive check on almost all
427 l2
= &old_cg
->cg_links
;
429 struct cg_cgroup_link
*cgl1
, *cgl2
;
430 struct cgroup
*cg1
, *cg2
;
434 /* See if we reached the end - both lists are equal length. */
435 if (l1
== &cg
->cg_links
) {
436 BUG_ON(l2
!= &old_cg
->cg_links
);
439 BUG_ON(l2
== &old_cg
->cg_links
);
441 /* Locate the cgroups associated with these links. */
442 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
443 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
446 /* Hierarchies should be linked in the same order. */
447 BUG_ON(cg1
->root
!= cg2
->root
);
450 * If this hierarchy is the hierarchy of the cgroup
451 * that's changing, then we need to check that this
452 * css_set points to the new cgroup; if it's any other
453 * hierarchy, then this css_set should point to the
454 * same cgroup as the old css_set.
456 if (cg1
->root
== new_cgrp
->root
) {
468 * find_existing_css_set() is a helper for
469 * find_css_set(), and checks to see whether an existing
470 * css_set is suitable.
472 * oldcg: the cgroup group that we're using before the cgroup
475 * cgrp: the cgroup that we're moving into
477 * template: location in which to build the desired set of subsystem
478 * state objects for the new cgroup group
480 static struct css_set
*find_existing_css_set(
481 struct css_set
*oldcg
,
483 struct cgroup_subsys_state
*template[])
486 struct cgroupfs_root
*root
= cgrp
->root
;
487 struct hlist_head
*hhead
;
488 struct hlist_node
*node
;
492 * Build the set of subsystem state objects that we want to see in the
493 * new css_set. while subsystems can change globally, the entries here
494 * won't change, so no need for locking.
496 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
497 if (root
->subsys_bits
& (1UL << i
)) {
498 /* Subsystem is in this hierarchy. So we want
499 * the subsystem state from the new
501 template[i
] = cgrp
->subsys
[i
];
503 /* Subsystem is not in this hierarchy, so we
504 * don't want to change the subsystem state */
505 template[i
] = oldcg
->subsys
[i
];
509 hhead
= css_set_hash(template);
510 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
511 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
514 /* This css_set matches what we need */
518 /* No existing cgroup group matched */
522 static void free_cg_links(struct list_head
*tmp
)
524 struct cg_cgroup_link
*link
;
525 struct cg_cgroup_link
*saved_link
;
527 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
528 list_del(&link
->cgrp_link_list
);
534 * allocate_cg_links() allocates "count" cg_cgroup_link structures
535 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
536 * success or a negative error
538 static int allocate_cg_links(int count
, struct list_head
*tmp
)
540 struct cg_cgroup_link
*link
;
543 for (i
= 0; i
< count
; i
++) {
544 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
549 list_add(&link
->cgrp_link_list
, tmp
);
555 * link_css_set - a helper function to link a css_set to a cgroup
556 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
557 * @cg: the css_set to be linked
558 * @cgrp: the destination cgroup
560 static void link_css_set(struct list_head
*tmp_cg_links
,
561 struct css_set
*cg
, struct cgroup
*cgrp
)
563 struct cg_cgroup_link
*link
;
565 BUG_ON(list_empty(tmp_cg_links
));
566 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
570 atomic_inc(&cgrp
->count
);
571 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
573 * Always add links to the tail of the list so that the list
574 * is sorted by order of hierarchy creation
576 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
580 * find_css_set() takes an existing cgroup group and a
581 * cgroup object, and returns a css_set object that's
582 * equivalent to the old group, but with the given cgroup
583 * substituted into the appropriate hierarchy. Must be called with
586 static struct css_set
*find_css_set(
587 struct css_set
*oldcg
, struct cgroup
*cgrp
)
590 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
592 struct list_head tmp_cg_links
;
594 struct hlist_head
*hhead
;
595 struct cg_cgroup_link
*link
;
597 /* First see if we already have a cgroup group that matches
599 read_lock(&css_set_lock
);
600 res
= find_existing_css_set(oldcg
, cgrp
, template);
603 read_unlock(&css_set_lock
);
608 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
612 /* Allocate all the cg_cgroup_link objects that we'll need */
613 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
618 atomic_set(&res
->refcount
, 1);
619 INIT_LIST_HEAD(&res
->cg_links
);
620 INIT_LIST_HEAD(&res
->tasks
);
621 INIT_HLIST_NODE(&res
->hlist
);
623 /* Copy the set of subsystem state objects generated in
624 * find_existing_css_set() */
625 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
627 write_lock(&css_set_lock
);
628 /* Add reference counts and links from the new css_set. */
629 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
630 struct cgroup
*c
= link
->cgrp
;
631 if (c
->root
== cgrp
->root
)
633 link_css_set(&tmp_cg_links
, res
, c
);
636 BUG_ON(!list_empty(&tmp_cg_links
));
640 /* Add this cgroup group to the hash table */
641 hhead
= css_set_hash(res
->subsys
);
642 hlist_add_head(&res
->hlist
, hhead
);
644 write_unlock(&css_set_lock
);
650 * Return the cgroup for "task" from the given hierarchy. Must be
651 * called with cgroup_mutex held.
653 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
654 struct cgroupfs_root
*root
)
657 struct cgroup
*res
= NULL
;
659 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
660 read_lock(&css_set_lock
);
662 * No need to lock the task - since we hold cgroup_mutex the
663 * task can't change groups, so the only thing that can happen
664 * is that it exits and its css is set back to init_css_set.
667 if (css
== &init_css_set
) {
668 res
= &root
->top_cgroup
;
670 struct cg_cgroup_link
*link
;
671 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
672 struct cgroup
*c
= link
->cgrp
;
673 if (c
->root
== root
) {
679 read_unlock(&css_set_lock
);
685 * There is one global cgroup mutex. We also require taking
686 * task_lock() when dereferencing a task's cgroup subsys pointers.
687 * See "The task_lock() exception", at the end of this comment.
689 * A task must hold cgroup_mutex to modify cgroups.
691 * Any task can increment and decrement the count field without lock.
692 * So in general, code holding cgroup_mutex can't rely on the count
693 * field not changing. However, if the count goes to zero, then only
694 * cgroup_attach_task() can increment it again. Because a count of zero
695 * means that no tasks are currently attached, therefore there is no
696 * way a task attached to that cgroup can fork (the other way to
697 * increment the count). So code holding cgroup_mutex can safely
698 * assume that if the count is zero, it will stay zero. Similarly, if
699 * a task holds cgroup_mutex on a cgroup with zero count, it
700 * knows that the cgroup won't be removed, as cgroup_rmdir()
703 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
704 * (usually) take cgroup_mutex. These are the two most performance
705 * critical pieces of code here. The exception occurs on cgroup_exit(),
706 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
707 * is taken, and if the cgroup count is zero, a usermode call made
708 * to the release agent with the name of the cgroup (path relative to
709 * the root of cgroup file system) as the argument.
711 * A cgroup can only be deleted if both its 'count' of using tasks
712 * is zero, and its list of 'children' cgroups is empty. Since all
713 * tasks in the system use _some_ cgroup, and since there is always at
714 * least one task in the system (init, pid == 1), therefore, top_cgroup
715 * always has either children cgroups and/or using tasks. So we don't
716 * need a special hack to ensure that top_cgroup cannot be deleted.
718 * The task_lock() exception
720 * The need for this exception arises from the action of
721 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
722 * another. It does so using cgroup_mutex, however there are
723 * several performance critical places that need to reference
724 * task->cgroup without the expense of grabbing a system global
725 * mutex. Therefore except as noted below, when dereferencing or, as
726 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
727 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
728 * the task_struct routinely used for such matters.
730 * P.S. One more locking exception. RCU is used to guard the
731 * update of a tasks cgroup pointer by cgroup_attach_task()
735 * cgroup_lock - lock out any changes to cgroup structures
738 void cgroup_lock(void)
740 mutex_lock(&cgroup_mutex
);
742 EXPORT_SYMBOL_GPL(cgroup_lock
);
745 * cgroup_unlock - release lock on cgroup changes
747 * Undo the lock taken in a previous cgroup_lock() call.
749 void cgroup_unlock(void)
751 mutex_unlock(&cgroup_mutex
);
753 EXPORT_SYMBOL_GPL(cgroup_unlock
);
756 * A couple of forward declarations required, due to cyclic reference loop:
757 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
758 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
762 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
763 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
764 static int cgroup_populate_dir(struct cgroup
*cgrp
);
765 static const struct inode_operations cgroup_dir_inode_operations
;
766 static const struct file_operations proc_cgroupstats_operations
;
768 static struct backing_dev_info cgroup_backing_dev_info
= {
770 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
773 static int alloc_css_id(struct cgroup_subsys
*ss
,
774 struct cgroup
*parent
, struct cgroup
*child
);
776 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
778 struct inode
*inode
= new_inode(sb
);
781 inode
->i_mode
= mode
;
782 inode
->i_uid
= current_fsuid();
783 inode
->i_gid
= current_fsgid();
784 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
785 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
791 * Call subsys's pre_destroy handler.
792 * This is called before css refcnt check.
794 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
796 struct cgroup_subsys
*ss
;
799 for_each_subsys(cgrp
->root
, ss
)
800 if (ss
->pre_destroy
) {
801 ret
= ss
->pre_destroy(ss
, cgrp
);
809 static void free_cgroup_rcu(struct rcu_head
*obj
)
811 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
816 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
818 /* is dentry a directory ? if so, kfree() associated cgroup */
819 if (S_ISDIR(inode
->i_mode
)) {
820 struct cgroup
*cgrp
= dentry
->d_fsdata
;
821 struct cgroup_subsys
*ss
;
822 BUG_ON(!(cgroup_is_removed(cgrp
)));
823 /* It's possible for external users to be holding css
824 * reference counts on a cgroup; css_put() needs to
825 * be able to access the cgroup after decrementing
826 * the reference count in order to know if it needs to
827 * queue the cgroup to be handled by the release
831 mutex_lock(&cgroup_mutex
);
833 * Release the subsystem state objects.
835 for_each_subsys(cgrp
->root
, ss
)
836 ss
->destroy(ss
, cgrp
);
838 cgrp
->root
->number_of_cgroups
--;
839 mutex_unlock(&cgroup_mutex
);
842 * Drop the active superblock reference that we took when we
845 deactivate_super(cgrp
->root
->sb
);
848 * if we're getting rid of the cgroup, refcount should ensure
849 * that there are no pidlists left.
851 BUG_ON(!list_empty(&cgrp
->pidlists
));
853 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
858 static void remove_dir(struct dentry
*d
)
860 struct dentry
*parent
= dget(d
->d_parent
);
863 simple_rmdir(parent
->d_inode
, d
);
867 static void cgroup_clear_directory(struct dentry
*dentry
)
869 struct list_head
*node
;
871 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
872 spin_lock(&dcache_lock
);
873 node
= dentry
->d_subdirs
.next
;
874 while (node
!= &dentry
->d_subdirs
) {
875 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
878 /* This should never be called on a cgroup
879 * directory with child cgroups */
880 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
882 spin_unlock(&dcache_lock
);
884 simple_unlink(dentry
->d_inode
, d
);
886 spin_lock(&dcache_lock
);
888 node
= dentry
->d_subdirs
.next
;
890 spin_unlock(&dcache_lock
);
894 * NOTE : the dentry must have been dget()'ed
896 static void cgroup_d_remove_dir(struct dentry
*dentry
)
898 cgroup_clear_directory(dentry
);
900 spin_lock(&dcache_lock
);
901 list_del_init(&dentry
->d_u
.d_child
);
902 spin_unlock(&dcache_lock
);
907 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
908 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
909 * reference to css->refcnt. In general, this refcnt is expected to goes down
912 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
914 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
916 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
918 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
919 wake_up_all(&cgroup_rmdir_waitq
);
922 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
927 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
929 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
934 * Call with cgroup_mutex held. Drops reference counts on modules, including
935 * any duplicate ones that parse_cgroupfs_options took. If this function
936 * returns an error, no reference counts are touched.
938 static int rebind_subsystems(struct cgroupfs_root
*root
,
939 unsigned long final_bits
)
941 unsigned long added_bits
, removed_bits
;
942 struct cgroup
*cgrp
= &root
->top_cgroup
;
945 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
947 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
948 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
949 /* Check that any added subsystems are currently free */
950 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
951 unsigned long bit
= 1UL << i
;
952 struct cgroup_subsys
*ss
= subsys
[i
];
953 if (!(bit
& added_bits
))
956 * Nobody should tell us to do a subsys that doesn't exist:
957 * parse_cgroupfs_options should catch that case and refcounts
958 * ensure that subsystems won't disappear once selected.
961 if (ss
->root
!= &rootnode
) {
962 /* Subsystem isn't free */
967 /* Currently we don't handle adding/removing subsystems when
968 * any child cgroups exist. This is theoretically supportable
969 * but involves complex error handling, so it's being left until
971 if (root
->number_of_cgroups
> 1)
974 /* Process each subsystem */
975 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
976 struct cgroup_subsys
*ss
= subsys
[i
];
977 unsigned long bit
= 1UL << i
;
978 if (bit
& added_bits
) {
979 /* We're binding this subsystem to this hierarchy */
981 BUG_ON(cgrp
->subsys
[i
]);
982 BUG_ON(!dummytop
->subsys
[i
]);
983 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
984 mutex_lock(&ss
->hierarchy_mutex
);
985 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
986 cgrp
->subsys
[i
]->cgroup
= cgrp
;
987 list_move(&ss
->sibling
, &root
->subsys_list
);
991 mutex_unlock(&ss
->hierarchy_mutex
);
992 /* refcount was already taken, and we're keeping it */
993 } else if (bit
& removed_bits
) {
994 /* We're removing this subsystem */
996 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
997 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
998 mutex_lock(&ss
->hierarchy_mutex
);
1000 ss
->bind(ss
, dummytop
);
1001 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1002 cgrp
->subsys
[i
] = NULL
;
1003 subsys
[i
]->root
= &rootnode
;
1004 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1005 mutex_unlock(&ss
->hierarchy_mutex
);
1006 /* subsystem is now free - drop reference on module */
1007 module_put(ss
->module
);
1008 } else if (bit
& final_bits
) {
1009 /* Subsystem state should already exist */
1011 BUG_ON(!cgrp
->subsys
[i
]);
1013 * a refcount was taken, but we already had one, so
1014 * drop the extra reference.
1016 module_put(ss
->module
);
1017 #ifdef CONFIG_MODULE_UNLOAD
1018 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1021 /* Subsystem state shouldn't exist */
1022 BUG_ON(cgrp
->subsys
[i
]);
1025 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
1031 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
1033 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
1034 struct cgroup_subsys
*ss
;
1036 mutex_lock(&cgroup_mutex
);
1037 for_each_subsys(root
, ss
)
1038 seq_printf(seq
, ",%s", ss
->name
);
1039 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1040 seq_puts(seq
, ",noprefix");
1041 if (strlen(root
->release_agent_path
))
1042 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1043 if (strlen(root
->name
))
1044 seq_printf(seq
, ",name=%s", root
->name
);
1045 mutex_unlock(&cgroup_mutex
);
1049 struct cgroup_sb_opts
{
1050 unsigned long subsys_bits
;
1051 unsigned long flags
;
1052 char *release_agent
;
1054 /* User explicitly requested empty subsystem */
1057 struct cgroupfs_root
*new_root
;
1062 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1063 * with cgroup_mutex held to protect the subsys[] array. This function takes
1064 * refcounts on subsystems to be used, unless it returns error, in which case
1065 * no refcounts are taken.
1067 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1069 char *token
, *o
= data
?: "all";
1070 unsigned long mask
= (unsigned long)-1;
1072 bool module_pin_failed
= false;
1074 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1076 #ifdef CONFIG_CPUSETS
1077 mask
= ~(1UL << cpuset_subsys_id
);
1080 memset(opts
, 0, sizeof(*opts
));
1082 while ((token
= strsep(&o
, ",")) != NULL
) {
1085 if (!strcmp(token
, "all")) {
1086 /* Add all non-disabled subsystems */
1087 opts
->subsys_bits
= 0;
1088 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1089 struct cgroup_subsys
*ss
= subsys
[i
];
1093 opts
->subsys_bits
|= 1ul << i
;
1095 } else if (!strcmp(token
, "none")) {
1096 /* Explicitly have no subsystems */
1098 } else if (!strcmp(token
, "noprefix")) {
1099 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1100 } else if (!strncmp(token
, "release_agent=", 14)) {
1101 /* Specifying two release agents is forbidden */
1102 if (opts
->release_agent
)
1104 opts
->release_agent
=
1105 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1106 if (!opts
->release_agent
)
1108 } else if (!strncmp(token
, "name=", 5)) {
1109 const char *name
= token
+ 5;
1110 /* Can't specify an empty name */
1113 /* Must match [\w.-]+ */
1114 for (i
= 0; i
< strlen(name
); i
++) {
1118 if ((c
== '.') || (c
== '-') || (c
== '_'))
1122 /* Specifying two names is forbidden */
1125 opts
->name
= kstrndup(name
,
1126 MAX_CGROUP_ROOT_NAMELEN
- 1,
1131 struct cgroup_subsys
*ss
;
1132 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1136 if (!strcmp(token
, ss
->name
)) {
1138 set_bit(i
, &opts
->subsys_bits
);
1142 if (i
== CGROUP_SUBSYS_COUNT
)
1147 /* Consistency checks */
1150 * Option noprefix was introduced just for backward compatibility
1151 * with the old cpuset, so we allow noprefix only if mounting just
1152 * the cpuset subsystem.
1154 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1155 (opts
->subsys_bits
& mask
))
1159 /* Can't specify "none" and some subsystems */
1160 if (opts
->subsys_bits
&& opts
->none
)
1164 * We either have to specify by name or by subsystems. (So all
1165 * empty hierarchies must have a name).
1167 if (!opts
->subsys_bits
&& !opts
->name
)
1171 * Grab references on all the modules we'll need, so the subsystems
1172 * don't dance around before rebind_subsystems attaches them. This may
1173 * take duplicate reference counts on a subsystem that's already used,
1174 * but rebind_subsystems handles this case.
1176 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1177 unsigned long bit
= 1UL << i
;
1179 if (!(bit
& opts
->subsys_bits
))
1181 if (!try_module_get(subsys
[i
]->module
)) {
1182 module_pin_failed
= true;
1186 if (module_pin_failed
) {
1188 * oops, one of the modules was going away. this means that we
1189 * raced with a module_delete call, and to the user this is
1190 * essentially a "subsystem doesn't exist" case.
1192 for (i
--; i
>= CGROUP_BUILTIN_SUBSYS_COUNT
; i
--) {
1193 /* drop refcounts only on the ones we took */
1194 unsigned long bit
= 1UL << i
;
1196 if (!(bit
& opts
->subsys_bits
))
1198 module_put(subsys
[i
]->module
);
1206 static void drop_parsed_module_refcounts(unsigned long subsys_bits
)
1209 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1210 unsigned long bit
= 1UL << i
;
1212 if (!(bit
& subsys_bits
))
1214 module_put(subsys
[i
]->module
);
1218 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1221 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1222 struct cgroup
*cgrp
= &root
->top_cgroup
;
1223 struct cgroup_sb_opts opts
;
1226 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1227 mutex_lock(&cgroup_mutex
);
1229 /* See what subsystems are wanted */
1230 ret
= parse_cgroupfs_options(data
, &opts
);
1234 /* Don't allow flags or name to change at remount */
1235 if (opts
.flags
!= root
->flags
||
1236 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1238 drop_parsed_module_refcounts(opts
.subsys_bits
);
1242 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
1244 drop_parsed_module_refcounts(opts
.subsys_bits
);
1248 /* (re)populate subsystem files */
1249 cgroup_populate_dir(cgrp
);
1251 if (opts
.release_agent
)
1252 strcpy(root
->release_agent_path
, opts
.release_agent
);
1254 kfree(opts
.release_agent
);
1256 mutex_unlock(&cgroup_mutex
);
1257 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1262 static const struct super_operations cgroup_ops
= {
1263 .statfs
= simple_statfs
,
1264 .drop_inode
= generic_delete_inode
,
1265 .show_options
= cgroup_show_options
,
1266 .remount_fs
= cgroup_remount
,
1269 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1271 INIT_LIST_HEAD(&cgrp
->sibling
);
1272 INIT_LIST_HEAD(&cgrp
->children
);
1273 INIT_LIST_HEAD(&cgrp
->css_sets
);
1274 INIT_LIST_HEAD(&cgrp
->release_list
);
1275 INIT_LIST_HEAD(&cgrp
->pidlists
);
1276 mutex_init(&cgrp
->pidlist_mutex
);
1277 INIT_LIST_HEAD(&cgrp
->event_list
);
1278 spin_lock_init(&cgrp
->event_list_lock
);
1281 static void init_cgroup_root(struct cgroupfs_root
*root
)
1283 struct cgroup
*cgrp
= &root
->top_cgroup
;
1284 INIT_LIST_HEAD(&root
->subsys_list
);
1285 INIT_LIST_HEAD(&root
->root_list
);
1286 root
->number_of_cgroups
= 1;
1288 cgrp
->top_cgroup
= cgrp
;
1289 init_cgroup_housekeeping(cgrp
);
1292 static bool init_root_id(struct cgroupfs_root
*root
)
1297 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1299 spin_lock(&hierarchy_id_lock
);
1300 /* Try to allocate the next unused ID */
1301 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1302 &root
->hierarchy_id
);
1304 /* Try again starting from 0 */
1305 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1307 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1308 } else if (ret
!= -EAGAIN
) {
1309 /* Can only get here if the 31-bit IDR is full ... */
1312 spin_unlock(&hierarchy_id_lock
);
1317 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1319 struct cgroup_sb_opts
*opts
= data
;
1320 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1322 /* If we asked for a name then it must match */
1323 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1327 * If we asked for subsystems (or explicitly for no
1328 * subsystems) then they must match
1330 if ((opts
->subsys_bits
|| opts
->none
)
1331 && (opts
->subsys_bits
!= root
->subsys_bits
))
1337 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1339 struct cgroupfs_root
*root
;
1341 if (!opts
->subsys_bits
&& !opts
->none
)
1344 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1346 return ERR_PTR(-ENOMEM
);
1348 if (!init_root_id(root
)) {
1350 return ERR_PTR(-ENOMEM
);
1352 init_cgroup_root(root
);
1354 root
->subsys_bits
= opts
->subsys_bits
;
1355 root
->flags
= opts
->flags
;
1356 if (opts
->release_agent
)
1357 strcpy(root
->release_agent_path
, opts
->release_agent
);
1359 strcpy(root
->name
, opts
->name
);
1363 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1368 BUG_ON(!root
->hierarchy_id
);
1369 spin_lock(&hierarchy_id_lock
);
1370 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1371 spin_unlock(&hierarchy_id_lock
);
1375 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1378 struct cgroup_sb_opts
*opts
= data
;
1380 /* If we don't have a new root, we can't set up a new sb */
1381 if (!opts
->new_root
)
1384 BUG_ON(!opts
->subsys_bits
&& !opts
->none
);
1386 ret
= set_anon_super(sb
, NULL
);
1390 sb
->s_fs_info
= opts
->new_root
;
1391 opts
->new_root
->sb
= sb
;
1393 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1394 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1395 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1396 sb
->s_op
= &cgroup_ops
;
1401 static int cgroup_get_rootdir(struct super_block
*sb
)
1403 struct inode
*inode
=
1404 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1405 struct dentry
*dentry
;
1410 inode
->i_fop
= &simple_dir_operations
;
1411 inode
->i_op
= &cgroup_dir_inode_operations
;
1412 /* directories start off with i_nlink == 2 (for "." entry) */
1414 dentry
= d_alloc_root(inode
);
1419 sb
->s_root
= dentry
;
1423 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1424 int flags
, const char *unused_dev_name
,
1425 void *data
, struct vfsmount
*mnt
)
1427 struct cgroup_sb_opts opts
;
1428 struct cgroupfs_root
*root
;
1430 struct super_block
*sb
;
1431 struct cgroupfs_root
*new_root
;
1433 /* First find the desired set of subsystems */
1434 mutex_lock(&cgroup_mutex
);
1435 ret
= parse_cgroupfs_options(data
, &opts
);
1436 mutex_unlock(&cgroup_mutex
);
1441 * Allocate a new cgroup root. We may not need it if we're
1442 * reusing an existing hierarchy.
1444 new_root
= cgroup_root_from_opts(&opts
);
1445 if (IS_ERR(new_root
)) {
1446 ret
= PTR_ERR(new_root
);
1449 opts
.new_root
= new_root
;
1451 /* Locate an existing or new sb for this hierarchy */
1452 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, &opts
);
1455 cgroup_drop_root(opts
.new_root
);
1459 root
= sb
->s_fs_info
;
1461 if (root
== opts
.new_root
) {
1462 /* We used the new root structure, so this is a new hierarchy */
1463 struct list_head tmp_cg_links
;
1464 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1465 struct inode
*inode
;
1466 struct cgroupfs_root
*existing_root
;
1469 BUG_ON(sb
->s_root
!= NULL
);
1471 ret
= cgroup_get_rootdir(sb
);
1473 goto drop_new_super
;
1474 inode
= sb
->s_root
->d_inode
;
1476 mutex_lock(&inode
->i_mutex
);
1477 mutex_lock(&cgroup_mutex
);
1479 if (strlen(root
->name
)) {
1480 /* Check for name clashes with existing mounts */
1481 for_each_active_root(existing_root
) {
1482 if (!strcmp(existing_root
->name
, root
->name
)) {
1484 mutex_unlock(&cgroup_mutex
);
1485 mutex_unlock(&inode
->i_mutex
);
1486 goto drop_new_super
;
1492 * We're accessing css_set_count without locking
1493 * css_set_lock here, but that's OK - it can only be
1494 * increased by someone holding cgroup_lock, and
1495 * that's us. The worst that can happen is that we
1496 * have some link structures left over
1498 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1500 mutex_unlock(&cgroup_mutex
);
1501 mutex_unlock(&inode
->i_mutex
);
1502 goto drop_new_super
;
1505 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1506 if (ret
== -EBUSY
) {
1507 mutex_unlock(&cgroup_mutex
);
1508 mutex_unlock(&inode
->i_mutex
);
1509 free_cg_links(&tmp_cg_links
);
1510 goto drop_new_super
;
1513 * There must be no failure case after here, since rebinding
1514 * takes care of subsystems' refcounts, which are explicitly
1515 * dropped in the failure exit path.
1518 /* EBUSY should be the only error here */
1521 list_add(&root
->root_list
, &roots
);
1524 sb
->s_root
->d_fsdata
= root_cgrp
;
1525 root
->top_cgroup
.dentry
= sb
->s_root
;
1527 /* Link the top cgroup in this hierarchy into all
1528 * the css_set objects */
1529 write_lock(&css_set_lock
);
1530 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1531 struct hlist_head
*hhead
= &css_set_table
[i
];
1532 struct hlist_node
*node
;
1535 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1536 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1538 write_unlock(&css_set_lock
);
1540 free_cg_links(&tmp_cg_links
);
1542 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1543 BUG_ON(!list_empty(&root_cgrp
->children
));
1544 BUG_ON(root
->number_of_cgroups
!= 1);
1546 cgroup_populate_dir(root_cgrp
);
1547 mutex_unlock(&cgroup_mutex
);
1548 mutex_unlock(&inode
->i_mutex
);
1551 * We re-used an existing hierarchy - the new root (if
1552 * any) is not needed
1554 cgroup_drop_root(opts
.new_root
);
1555 /* no subsys rebinding, so refcounts don't change */
1556 drop_parsed_module_refcounts(opts
.subsys_bits
);
1559 simple_set_mnt(mnt
, sb
);
1560 kfree(opts
.release_agent
);
1565 deactivate_locked_super(sb
);
1567 drop_parsed_module_refcounts(opts
.subsys_bits
);
1569 kfree(opts
.release_agent
);
1575 static void cgroup_kill_sb(struct super_block
*sb
) {
1576 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1577 struct cgroup
*cgrp
= &root
->top_cgroup
;
1579 struct cg_cgroup_link
*link
;
1580 struct cg_cgroup_link
*saved_link
;
1584 BUG_ON(root
->number_of_cgroups
!= 1);
1585 BUG_ON(!list_empty(&cgrp
->children
));
1586 BUG_ON(!list_empty(&cgrp
->sibling
));
1588 mutex_lock(&cgroup_mutex
);
1590 /* Rebind all subsystems back to the default hierarchy */
1591 ret
= rebind_subsystems(root
, 0);
1592 /* Shouldn't be able to fail ... */
1596 * Release all the links from css_sets to this hierarchy's
1599 write_lock(&css_set_lock
);
1601 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1603 list_del(&link
->cg_link_list
);
1604 list_del(&link
->cgrp_link_list
);
1607 write_unlock(&css_set_lock
);
1609 if (!list_empty(&root
->root_list
)) {
1610 list_del(&root
->root_list
);
1614 mutex_unlock(&cgroup_mutex
);
1616 kill_litter_super(sb
);
1617 cgroup_drop_root(root
);
1620 static struct file_system_type cgroup_fs_type
= {
1622 .get_sb
= cgroup_get_sb
,
1623 .kill_sb
= cgroup_kill_sb
,
1626 static struct kobject
*cgroup_kobj
;
1628 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1630 return dentry
->d_fsdata
;
1633 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1635 return dentry
->d_fsdata
;
1639 * cgroup_path - generate the path of a cgroup
1640 * @cgrp: the cgroup in question
1641 * @buf: the buffer to write the path into
1642 * @buflen: the length of the buffer
1644 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1645 * reference. Writes path of cgroup into buf. Returns 0 on success,
1648 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1651 struct dentry
*dentry
= rcu_dereference_check(cgrp
->dentry
,
1652 rcu_read_lock_held() ||
1653 cgroup_lock_is_held());
1655 if (!dentry
|| cgrp
== dummytop
) {
1657 * Inactive subsystems have no dentry for their root
1664 start
= buf
+ buflen
;
1668 int len
= dentry
->d_name
.len
;
1670 if ((start
-= len
) < buf
)
1671 return -ENAMETOOLONG
;
1672 memcpy(start
, dentry
->d_name
.name
, len
);
1673 cgrp
= cgrp
->parent
;
1677 dentry
= rcu_dereference_check(cgrp
->dentry
,
1678 rcu_read_lock_held() ||
1679 cgroup_lock_is_held());
1683 return -ENAMETOOLONG
;
1686 memmove(buf
, start
, buf
+ buflen
- start
);
1689 EXPORT_SYMBOL_GPL(cgroup_path
);
1692 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1693 * @cgrp: the cgroup the task is attaching to
1694 * @tsk: the task to be attached
1696 * Call holding cgroup_mutex. May take task_lock of
1697 * the task 'tsk' during call.
1699 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1702 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1703 struct cgroup
*oldcgrp
;
1705 struct css_set
*newcg
;
1706 struct cgroupfs_root
*root
= cgrp
->root
;
1708 /* Nothing to do if the task is already in that cgroup */
1709 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1710 if (cgrp
== oldcgrp
)
1713 for_each_subsys(root
, ss
) {
1714 if (ss
->can_attach
) {
1715 retval
= ss
->can_attach(ss
, cgrp
, tsk
, false);
1718 * Remember on which subsystem the can_attach()
1719 * failed, so that we only call cancel_attach()
1720 * against the subsystems whose can_attach()
1721 * succeeded. (See below)
1734 * Locate or allocate a new css_set for this task,
1735 * based on its final set of cgroups
1737 newcg
= find_css_set(cg
, cgrp
);
1745 if (tsk
->flags
& PF_EXITING
) {
1751 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1754 /* Update the css_set linked lists if we're using them */
1755 write_lock(&css_set_lock
);
1756 if (!list_empty(&tsk
->cg_list
)) {
1757 list_del(&tsk
->cg_list
);
1758 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1760 write_unlock(&css_set_lock
);
1762 for_each_subsys(root
, ss
) {
1764 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
, false);
1766 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1771 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1772 * is no longer empty.
1774 cgroup_wakeup_rmdir_waiter(cgrp
);
1777 for_each_subsys(root
, ss
) {
1778 if (ss
== failed_ss
)
1780 * This subsystem was the one that failed the
1781 * can_attach() check earlier, so we don't need
1782 * to call cancel_attach() against it or any
1783 * remaining subsystems.
1786 if (ss
->cancel_attach
)
1787 ss
->cancel_attach(ss
, cgrp
, tsk
, false);
1794 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1795 * @from: attach to all cgroups of a given task
1796 * @tsk: the task to be attached
1798 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
1800 struct cgroupfs_root
*root
;
1804 for_each_active_root(root
) {
1805 struct cgroup
*from_cg
= task_cgroup_from_root(from
, root
);
1807 retval
= cgroup_attach_task(from_cg
, tsk
);
1815 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
1818 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1819 * held. May take task_lock of task
1821 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1823 struct task_struct
*tsk
;
1824 const struct cred
*cred
= current_cred(), *tcred
;
1829 tsk
= find_task_by_vpid(pid
);
1830 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1835 tcred
= __task_cred(tsk
);
1837 cred
->euid
!= tcred
->uid
&&
1838 cred
->euid
!= tcred
->suid
) {
1842 get_task_struct(tsk
);
1846 get_task_struct(tsk
);
1849 ret
= cgroup_attach_task(cgrp
, tsk
);
1850 put_task_struct(tsk
);
1854 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1857 if (!cgroup_lock_live_group(cgrp
))
1859 ret
= attach_task_by_pid(cgrp
, pid
);
1865 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1866 * @cgrp: the cgroup to be checked for liveness
1868 * On success, returns true; the lock should be later released with
1869 * cgroup_unlock(). On failure returns false with no lock held.
1871 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1873 mutex_lock(&cgroup_mutex
);
1874 if (cgroup_is_removed(cgrp
)) {
1875 mutex_unlock(&cgroup_mutex
);
1880 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
1882 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1885 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1886 if (!cgroup_lock_live_group(cgrp
))
1888 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1893 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1894 struct seq_file
*seq
)
1896 if (!cgroup_lock_live_group(cgrp
))
1898 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1899 seq_putc(seq
, '\n');
1904 /* A buffer size big enough for numbers or short strings */
1905 #define CGROUP_LOCAL_BUFFER_SIZE 64
1907 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1909 const char __user
*userbuf
,
1910 size_t nbytes
, loff_t
*unused_ppos
)
1912 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1918 if (nbytes
>= sizeof(buffer
))
1920 if (copy_from_user(buffer
, userbuf
, nbytes
))
1923 buffer
[nbytes
] = 0; /* nul-terminate */
1924 if (cft
->write_u64
) {
1925 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
1928 retval
= cft
->write_u64(cgrp
, cft
, val
);
1930 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
1933 retval
= cft
->write_s64(cgrp
, cft
, val
);
1940 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1942 const char __user
*userbuf
,
1943 size_t nbytes
, loff_t
*unused_ppos
)
1945 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1947 size_t max_bytes
= cft
->max_write_len
;
1948 char *buffer
= local_buffer
;
1951 max_bytes
= sizeof(local_buffer
) - 1;
1952 if (nbytes
>= max_bytes
)
1954 /* Allocate a dynamic buffer if we need one */
1955 if (nbytes
>= sizeof(local_buffer
)) {
1956 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1960 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1965 buffer
[nbytes
] = 0; /* nul-terminate */
1966 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
1970 if (buffer
!= local_buffer
)
1975 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1976 size_t nbytes
, loff_t
*ppos
)
1978 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1979 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1981 if (cgroup_is_removed(cgrp
))
1984 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1985 if (cft
->write_u64
|| cft
->write_s64
)
1986 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1987 if (cft
->write_string
)
1988 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1990 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1991 return ret
? ret
: nbytes
;
1996 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1998 char __user
*buf
, size_t nbytes
,
2001 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2002 u64 val
= cft
->read_u64(cgrp
, cft
);
2003 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2005 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2008 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
2010 char __user
*buf
, size_t nbytes
,
2013 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2014 s64 val
= cft
->read_s64(cgrp
, cft
);
2015 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2017 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2020 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2021 size_t nbytes
, loff_t
*ppos
)
2023 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2024 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2026 if (cgroup_is_removed(cgrp
))
2030 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2032 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2034 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2039 * seqfile ops/methods for returning structured data. Currently just
2040 * supports string->u64 maps, but can be extended in future.
2043 struct cgroup_seqfile_state
{
2045 struct cgroup
*cgroup
;
2048 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2050 struct seq_file
*sf
= cb
->state
;
2051 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2054 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2056 struct cgroup_seqfile_state
*state
= m
->private;
2057 struct cftype
*cft
= state
->cft
;
2058 if (cft
->read_map
) {
2059 struct cgroup_map_cb cb
= {
2060 .fill
= cgroup_map_add
,
2063 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2065 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2068 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2070 struct seq_file
*seq
= file
->private_data
;
2071 kfree(seq
->private);
2072 return single_release(inode
, file
);
2075 static const struct file_operations cgroup_seqfile_operations
= {
2077 .write
= cgroup_file_write
,
2078 .llseek
= seq_lseek
,
2079 .release
= cgroup_seqfile_release
,
2082 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2087 err
= generic_file_open(inode
, file
);
2090 cft
= __d_cft(file
->f_dentry
);
2092 if (cft
->read_map
|| cft
->read_seq_string
) {
2093 struct cgroup_seqfile_state
*state
=
2094 kzalloc(sizeof(*state
), GFP_USER
);
2098 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2099 file
->f_op
= &cgroup_seqfile_operations
;
2100 err
= single_open(file
, cgroup_seqfile_show
, state
);
2103 } else if (cft
->open
)
2104 err
= cft
->open(inode
, file
);
2111 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2113 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2115 return cft
->release(inode
, file
);
2120 * cgroup_rename - Only allow simple rename of directories in place.
2122 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2123 struct inode
*new_dir
, struct dentry
*new_dentry
)
2125 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2127 if (new_dentry
->d_inode
)
2129 if (old_dir
!= new_dir
)
2131 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2134 static const struct file_operations cgroup_file_operations
= {
2135 .read
= cgroup_file_read
,
2136 .write
= cgroup_file_write
,
2137 .llseek
= generic_file_llseek
,
2138 .open
= cgroup_file_open
,
2139 .release
= cgroup_file_release
,
2142 static const struct inode_operations cgroup_dir_inode_operations
= {
2143 .lookup
= simple_lookup
,
2144 .mkdir
= cgroup_mkdir
,
2145 .rmdir
= cgroup_rmdir
,
2146 .rename
= cgroup_rename
,
2150 * Check if a file is a control file
2152 static inline struct cftype
*__file_cft(struct file
*file
)
2154 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2155 return ERR_PTR(-EINVAL
);
2156 return __d_cft(file
->f_dentry
);
2159 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
2160 struct super_block
*sb
)
2162 static const struct dentry_operations cgroup_dops
= {
2163 .d_iput
= cgroup_diput
,
2166 struct inode
*inode
;
2170 if (dentry
->d_inode
)
2173 inode
= cgroup_new_inode(mode
, sb
);
2177 if (S_ISDIR(mode
)) {
2178 inode
->i_op
= &cgroup_dir_inode_operations
;
2179 inode
->i_fop
= &simple_dir_operations
;
2181 /* start off with i_nlink == 2 (for "." entry) */
2184 /* start with the directory inode held, so that we can
2185 * populate it without racing with another mkdir */
2186 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2187 } else if (S_ISREG(mode
)) {
2189 inode
->i_fop
= &cgroup_file_operations
;
2191 dentry
->d_op
= &cgroup_dops
;
2192 d_instantiate(dentry
, inode
);
2193 dget(dentry
); /* Extra count - pin the dentry in core */
2198 * cgroup_create_dir - create a directory for an object.
2199 * @cgrp: the cgroup we create the directory for. It must have a valid
2200 * ->parent field. And we are going to fill its ->dentry field.
2201 * @dentry: dentry of the new cgroup
2202 * @mode: mode to set on new directory.
2204 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2207 struct dentry
*parent
;
2210 parent
= cgrp
->parent
->dentry
;
2211 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2213 dentry
->d_fsdata
= cgrp
;
2214 inc_nlink(parent
->d_inode
);
2215 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2224 * cgroup_file_mode - deduce file mode of a control file
2225 * @cft: the control file in question
2227 * returns cft->mode if ->mode is not 0
2228 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2229 * returns S_IRUGO if it has only a read handler
2230 * returns S_IWUSR if it has only a write hander
2232 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
2239 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2240 cft
->read_map
|| cft
->read_seq_string
)
2243 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2244 cft
->write_string
|| cft
->trigger
)
2250 int cgroup_add_file(struct cgroup
*cgrp
,
2251 struct cgroup_subsys
*subsys
,
2252 const struct cftype
*cft
)
2254 struct dentry
*dir
= cgrp
->dentry
;
2255 struct dentry
*dentry
;
2259 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2260 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2261 strcpy(name
, subsys
->name
);
2264 strcat(name
, cft
->name
);
2265 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2266 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2267 if (!IS_ERR(dentry
)) {
2268 mode
= cgroup_file_mode(cft
);
2269 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
2272 dentry
->d_fsdata
= (void *)cft
;
2275 error
= PTR_ERR(dentry
);
2278 EXPORT_SYMBOL_GPL(cgroup_add_file
);
2280 int cgroup_add_files(struct cgroup
*cgrp
,
2281 struct cgroup_subsys
*subsys
,
2282 const struct cftype cft
[],
2286 for (i
= 0; i
< count
; i
++) {
2287 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
2293 EXPORT_SYMBOL_GPL(cgroup_add_files
);
2296 * cgroup_task_count - count the number of tasks in a cgroup.
2297 * @cgrp: the cgroup in question
2299 * Return the number of tasks in the cgroup.
2301 int cgroup_task_count(const struct cgroup
*cgrp
)
2304 struct cg_cgroup_link
*link
;
2306 read_lock(&css_set_lock
);
2307 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2308 count
+= atomic_read(&link
->cg
->refcount
);
2310 read_unlock(&css_set_lock
);
2315 * Advance a list_head iterator. The iterator should be positioned at
2316 * the start of a css_set
2318 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2319 struct cgroup_iter
*it
)
2321 struct list_head
*l
= it
->cg_link
;
2322 struct cg_cgroup_link
*link
;
2325 /* Advance to the next non-empty css_set */
2328 if (l
== &cgrp
->css_sets
) {
2332 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
2334 } while (list_empty(&cg
->tasks
));
2336 it
->task
= cg
->tasks
.next
;
2340 * To reduce the fork() overhead for systems that are not actually
2341 * using their cgroups capability, we don't maintain the lists running
2342 * through each css_set to its tasks until we see the list actually
2343 * used - in other words after the first call to cgroup_iter_start().
2345 * The tasklist_lock is not held here, as do_each_thread() and
2346 * while_each_thread() are protected by RCU.
2348 static void cgroup_enable_task_cg_lists(void)
2350 struct task_struct
*p
, *g
;
2351 write_lock(&css_set_lock
);
2352 use_task_css_set_links
= 1;
2353 do_each_thread(g
, p
) {
2356 * We should check if the process is exiting, otherwise
2357 * it will race with cgroup_exit() in that the list
2358 * entry won't be deleted though the process has exited.
2360 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2361 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
2363 } while_each_thread(g
, p
);
2364 write_unlock(&css_set_lock
);
2367 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2370 * The first time anyone tries to iterate across a cgroup,
2371 * we need to enable the list linking each css_set to its
2372 * tasks, and fix up all existing tasks.
2374 if (!use_task_css_set_links
)
2375 cgroup_enable_task_cg_lists();
2377 read_lock(&css_set_lock
);
2378 it
->cg_link
= &cgrp
->css_sets
;
2379 cgroup_advance_iter(cgrp
, it
);
2382 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
2383 struct cgroup_iter
*it
)
2385 struct task_struct
*res
;
2386 struct list_head
*l
= it
->task
;
2387 struct cg_cgroup_link
*link
;
2389 /* If the iterator cg is NULL, we have no tasks */
2392 res
= list_entry(l
, struct task_struct
, cg_list
);
2393 /* Advance iterator to find next entry */
2395 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
2396 if (l
== &link
->cg
->tasks
) {
2397 /* We reached the end of this task list - move on to
2398 * the next cg_cgroup_link */
2399 cgroup_advance_iter(cgrp
, it
);
2406 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2408 read_unlock(&css_set_lock
);
2411 static inline int started_after_time(struct task_struct
*t1
,
2412 struct timespec
*time
,
2413 struct task_struct
*t2
)
2415 int start_diff
= timespec_compare(&t1
->start_time
, time
);
2416 if (start_diff
> 0) {
2418 } else if (start_diff
< 0) {
2422 * Arbitrarily, if two processes started at the same
2423 * time, we'll say that the lower pointer value
2424 * started first. Note that t2 may have exited by now
2425 * so this may not be a valid pointer any longer, but
2426 * that's fine - it still serves to distinguish
2427 * between two tasks started (effectively) simultaneously.
2434 * This function is a callback from heap_insert() and is used to order
2436 * In this case we order the heap in descending task start time.
2438 static inline int started_after(void *p1
, void *p2
)
2440 struct task_struct
*t1
= p1
;
2441 struct task_struct
*t2
= p2
;
2442 return started_after_time(t1
, &t2
->start_time
, t2
);
2446 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2447 * @scan: struct cgroup_scanner containing arguments for the scan
2449 * Arguments include pointers to callback functions test_task() and
2451 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2452 * and if it returns true, call process_task() for it also.
2453 * The test_task pointer may be NULL, meaning always true (select all tasks).
2454 * Effectively duplicates cgroup_iter_{start,next,end}()
2455 * but does not lock css_set_lock for the call to process_task().
2456 * The struct cgroup_scanner may be embedded in any structure of the caller's
2458 * It is guaranteed that process_task() will act on every task that
2459 * is a member of the cgroup for the duration of this call. This
2460 * function may or may not call process_task() for tasks that exit
2461 * or move to a different cgroup during the call, or are forked or
2462 * move into the cgroup during the call.
2464 * Note that test_task() may be called with locks held, and may in some
2465 * situations be called multiple times for the same task, so it should
2467 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2468 * pre-allocated and will be used for heap operations (and its "gt" member will
2469 * be overwritten), else a temporary heap will be used (allocation of which
2470 * may cause this function to fail).
2472 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2475 struct cgroup_iter it
;
2476 struct task_struct
*p
, *dropped
;
2477 /* Never dereference latest_task, since it's not refcounted */
2478 struct task_struct
*latest_task
= NULL
;
2479 struct ptr_heap tmp_heap
;
2480 struct ptr_heap
*heap
;
2481 struct timespec latest_time
= { 0, 0 };
2484 /* The caller supplied our heap and pre-allocated its memory */
2486 heap
->gt
= &started_after
;
2488 /* We need to allocate our own heap memory */
2490 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2492 /* cannot allocate the heap */
2498 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2499 * to determine which are of interest, and using the scanner's
2500 * "process_task" callback to process any of them that need an update.
2501 * Since we don't want to hold any locks during the task updates,
2502 * gather tasks to be processed in a heap structure.
2503 * The heap is sorted by descending task start time.
2504 * If the statically-sized heap fills up, we overflow tasks that
2505 * started later, and in future iterations only consider tasks that
2506 * started after the latest task in the previous pass. This
2507 * guarantees forward progress and that we don't miss any tasks.
2510 cgroup_iter_start(scan
->cg
, &it
);
2511 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2513 * Only affect tasks that qualify per the caller's callback,
2514 * if he provided one
2516 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2519 * Only process tasks that started after the last task
2522 if (!started_after_time(p
, &latest_time
, latest_task
))
2524 dropped
= heap_insert(heap
, p
);
2525 if (dropped
== NULL
) {
2527 * The new task was inserted; the heap wasn't
2531 } else if (dropped
!= p
) {
2533 * The new task was inserted, and pushed out a
2537 put_task_struct(dropped
);
2540 * Else the new task was newer than anything already in
2541 * the heap and wasn't inserted
2544 cgroup_iter_end(scan
->cg
, &it
);
2547 for (i
= 0; i
< heap
->size
; i
++) {
2548 struct task_struct
*q
= heap
->ptrs
[i
];
2550 latest_time
= q
->start_time
;
2553 /* Process the task per the caller's callback */
2554 scan
->process_task(q
, scan
);
2558 * If we had to process any tasks at all, scan again
2559 * in case some of them were in the middle of forking
2560 * children that didn't get processed.
2561 * Not the most efficient way to do it, but it avoids
2562 * having to take callback_mutex in the fork path
2566 if (heap
== &tmp_heap
)
2567 heap_free(&tmp_heap
);
2572 * Stuff for reading the 'tasks'/'procs' files.
2574 * Reading this file can return large amounts of data if a cgroup has
2575 * *lots* of attached tasks. So it may need several calls to read(),
2576 * but we cannot guarantee that the information we produce is correct
2577 * unless we produce it entirely atomically.
2582 * The following two functions "fix" the issue where there are more pids
2583 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2584 * TODO: replace with a kernel-wide solution to this problem
2586 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2587 static void *pidlist_allocate(int count
)
2589 if (PIDLIST_TOO_LARGE(count
))
2590 return vmalloc(count
* sizeof(pid_t
));
2592 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
2594 static void pidlist_free(void *p
)
2596 if (is_vmalloc_addr(p
))
2601 static void *pidlist_resize(void *p
, int newcount
)
2604 /* note: if new alloc fails, old p will still be valid either way */
2605 if (is_vmalloc_addr(p
)) {
2606 newlist
= vmalloc(newcount
* sizeof(pid_t
));
2609 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
2612 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
2618 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2619 * If the new stripped list is sufficiently smaller and there's enough memory
2620 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2621 * number of unique elements.
2623 /* is the size difference enough that we should re-allocate the array? */
2624 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2625 static int pidlist_uniq(pid_t
**p
, int length
)
2632 * we presume the 0th element is unique, so i starts at 1. trivial
2633 * edge cases first; no work needs to be done for either
2635 if (length
== 0 || length
== 1)
2637 /* src and dest walk down the list; dest counts unique elements */
2638 for (src
= 1; src
< length
; src
++) {
2639 /* find next unique element */
2640 while (list
[src
] == list
[src
-1]) {
2645 /* dest always points to where the next unique element goes */
2646 list
[dest
] = list
[src
];
2651 * if the length difference is large enough, we want to allocate a
2652 * smaller buffer to save memory. if this fails due to out of memory,
2653 * we'll just stay with what we've got.
2655 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
2656 newlist
= pidlist_resize(list
, dest
);
2663 static int cmppid(const void *a
, const void *b
)
2665 return *(pid_t
*)a
- *(pid_t
*)b
;
2669 * find the appropriate pidlist for our purpose (given procs vs tasks)
2670 * returns with the lock on that pidlist already held, and takes care
2671 * of the use count, or returns NULL with no locks held if we're out of
2674 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
2675 enum cgroup_filetype type
)
2677 struct cgroup_pidlist
*l
;
2678 /* don't need task_nsproxy() if we're looking at ourself */
2679 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
2682 * We can't drop the pidlist_mutex before taking the l->mutex in case
2683 * the last ref-holder is trying to remove l from the list at the same
2684 * time. Holding the pidlist_mutex precludes somebody taking whichever
2685 * list we find out from under us - compare release_pid_array().
2687 mutex_lock(&cgrp
->pidlist_mutex
);
2688 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
2689 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
2690 /* make sure l doesn't vanish out from under us */
2691 down_write(&l
->mutex
);
2692 mutex_unlock(&cgrp
->pidlist_mutex
);
2696 /* entry not found; create a new one */
2697 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
2699 mutex_unlock(&cgrp
->pidlist_mutex
);
2702 init_rwsem(&l
->mutex
);
2703 down_write(&l
->mutex
);
2705 l
->key
.ns
= get_pid_ns(ns
);
2706 l
->use_count
= 0; /* don't increment here */
2709 list_add(&l
->links
, &cgrp
->pidlists
);
2710 mutex_unlock(&cgrp
->pidlist_mutex
);
2715 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2717 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
2718 struct cgroup_pidlist
**lp
)
2722 int pid
, n
= 0; /* used for populating the array */
2723 struct cgroup_iter it
;
2724 struct task_struct
*tsk
;
2725 struct cgroup_pidlist
*l
;
2728 * If cgroup gets more users after we read count, we won't have
2729 * enough space - tough. This race is indistinguishable to the
2730 * caller from the case that the additional cgroup users didn't
2731 * show up until sometime later on.
2733 length
= cgroup_task_count(cgrp
);
2734 array
= pidlist_allocate(length
);
2737 /* now, populate the array */
2738 cgroup_iter_start(cgrp
, &it
);
2739 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2740 if (unlikely(n
== length
))
2742 /* get tgid or pid for procs or tasks file respectively */
2743 if (type
== CGROUP_FILE_PROCS
)
2744 pid
= task_tgid_vnr(tsk
);
2746 pid
= task_pid_vnr(tsk
);
2747 if (pid
> 0) /* make sure to only use valid results */
2750 cgroup_iter_end(cgrp
, &it
);
2752 /* now sort & (if procs) strip out duplicates */
2753 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
2754 if (type
== CGROUP_FILE_PROCS
)
2755 length
= pidlist_uniq(&array
, length
);
2756 l
= cgroup_pidlist_find(cgrp
, type
);
2758 pidlist_free(array
);
2761 /* store array, freeing old if necessary - lock already held */
2762 pidlist_free(l
->list
);
2766 up_write(&l
->mutex
);
2772 * cgroupstats_build - build and fill cgroupstats
2773 * @stats: cgroupstats to fill information into
2774 * @dentry: A dentry entry belonging to the cgroup for which stats have
2777 * Build and fill cgroupstats so that taskstats can export it to user
2780 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2783 struct cgroup
*cgrp
;
2784 struct cgroup_iter it
;
2785 struct task_struct
*tsk
;
2788 * Validate dentry by checking the superblock operations,
2789 * and make sure it's a directory.
2791 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2792 !S_ISDIR(dentry
->d_inode
->i_mode
))
2796 cgrp
= dentry
->d_fsdata
;
2798 cgroup_iter_start(cgrp
, &it
);
2799 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2800 switch (tsk
->state
) {
2802 stats
->nr_running
++;
2804 case TASK_INTERRUPTIBLE
:
2805 stats
->nr_sleeping
++;
2807 case TASK_UNINTERRUPTIBLE
:
2808 stats
->nr_uninterruptible
++;
2811 stats
->nr_stopped
++;
2814 if (delayacct_is_task_waiting_on_io(tsk
))
2815 stats
->nr_io_wait
++;
2819 cgroup_iter_end(cgrp
, &it
);
2827 * seq_file methods for the tasks/procs files. The seq_file position is the
2828 * next pid to display; the seq_file iterator is a pointer to the pid
2829 * in the cgroup->l->list array.
2832 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
2835 * Initially we receive a position value that corresponds to
2836 * one more than the last pid shown (or 0 on the first call or
2837 * after a seek to the start). Use a binary-search to find the
2838 * next pid to display, if any
2840 struct cgroup_pidlist
*l
= s
->private;
2841 int index
= 0, pid
= *pos
;
2844 down_read(&l
->mutex
);
2846 int end
= l
->length
;
2848 while (index
< end
) {
2849 int mid
= (index
+ end
) / 2;
2850 if (l
->list
[mid
] == pid
) {
2853 } else if (l
->list
[mid
] <= pid
)
2859 /* If we're off the end of the array, we're done */
2860 if (index
>= l
->length
)
2862 /* Update the abstract position to be the actual pid that we found */
2863 iter
= l
->list
+ index
;
2868 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
2870 struct cgroup_pidlist
*l
= s
->private;
2874 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2876 struct cgroup_pidlist
*l
= s
->private;
2878 pid_t
*end
= l
->list
+ l
->length
;
2880 * Advance to the next pid in the array. If this goes off the
2892 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
2894 return seq_printf(s
, "%d\n", *(int *)v
);
2898 * seq_operations functions for iterating on pidlists through seq_file -
2899 * independent of whether it's tasks or procs
2901 static const struct seq_operations cgroup_pidlist_seq_operations
= {
2902 .start
= cgroup_pidlist_start
,
2903 .stop
= cgroup_pidlist_stop
,
2904 .next
= cgroup_pidlist_next
,
2905 .show
= cgroup_pidlist_show
,
2908 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
2911 * the case where we're the last user of this particular pidlist will
2912 * have us remove it from the cgroup's list, which entails taking the
2913 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2914 * pidlist_mutex, we have to take pidlist_mutex first.
2916 mutex_lock(&l
->owner
->pidlist_mutex
);
2917 down_write(&l
->mutex
);
2918 BUG_ON(!l
->use_count
);
2919 if (!--l
->use_count
) {
2920 /* we're the last user if refcount is 0; remove and free */
2921 list_del(&l
->links
);
2922 mutex_unlock(&l
->owner
->pidlist_mutex
);
2923 pidlist_free(l
->list
);
2924 put_pid_ns(l
->key
.ns
);
2925 up_write(&l
->mutex
);
2929 mutex_unlock(&l
->owner
->pidlist_mutex
);
2930 up_write(&l
->mutex
);
2933 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
2935 struct cgroup_pidlist
*l
;
2936 if (!(file
->f_mode
& FMODE_READ
))
2939 * the seq_file will only be initialized if the file was opened for
2940 * reading; hence we check if it's not null only in that case.
2942 l
= ((struct seq_file
*)file
->private_data
)->private;
2943 cgroup_release_pid_array(l
);
2944 return seq_release(inode
, file
);
2947 static const struct file_operations cgroup_pidlist_operations
= {
2949 .llseek
= seq_lseek
,
2950 .write
= cgroup_file_write
,
2951 .release
= cgroup_pidlist_release
,
2955 * The following functions handle opens on a file that displays a pidlist
2956 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2959 /* helper function for the two below it */
2960 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
2962 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2963 struct cgroup_pidlist
*l
;
2966 /* Nothing to do for write-only files */
2967 if (!(file
->f_mode
& FMODE_READ
))
2970 /* have the array populated */
2971 retval
= pidlist_array_load(cgrp
, type
, &l
);
2974 /* configure file information */
2975 file
->f_op
= &cgroup_pidlist_operations
;
2977 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
2979 cgroup_release_pid_array(l
);
2982 ((struct seq_file
*)file
->private_data
)->private = l
;
2985 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2987 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
2989 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
2991 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
2994 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2997 return notify_on_release(cgrp
);
3000 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
3004 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3006 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3008 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3013 * Unregister event and free resources.
3015 * Gets called from workqueue.
3017 static void cgroup_event_remove(struct work_struct
*work
)
3019 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3021 struct cgroup
*cgrp
= event
->cgrp
;
3023 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3025 eventfd_ctx_put(event
->eventfd
);
3031 * Gets called on POLLHUP on eventfd when user closes it.
3033 * Called with wqh->lock held and interrupts disabled.
3035 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3036 int sync
, void *key
)
3038 struct cgroup_event
*event
= container_of(wait
,
3039 struct cgroup_event
, wait
);
3040 struct cgroup
*cgrp
= event
->cgrp
;
3041 unsigned long flags
= (unsigned long)key
;
3043 if (flags
& POLLHUP
) {
3044 __remove_wait_queue(event
->wqh
, &event
->wait
);
3045 spin_lock(&cgrp
->event_list_lock
);
3046 list_del(&event
->list
);
3047 spin_unlock(&cgrp
->event_list_lock
);
3049 * We are in atomic context, but cgroup_event_remove() may
3050 * sleep, so we have to call it in workqueue.
3052 schedule_work(&event
->remove
);
3058 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3059 wait_queue_head_t
*wqh
, poll_table
*pt
)
3061 struct cgroup_event
*event
= container_of(pt
,
3062 struct cgroup_event
, pt
);
3065 add_wait_queue(wqh
, &event
->wait
);
3069 * Parse input and register new cgroup event handler.
3071 * Input must be in format '<event_fd> <control_fd> <args>'.
3072 * Interpretation of args is defined by control file implementation.
3074 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3077 struct cgroup_event
*event
= NULL
;
3078 unsigned int efd
, cfd
;
3079 struct file
*efile
= NULL
;
3080 struct file
*cfile
= NULL
;
3084 efd
= simple_strtoul(buffer
, &endp
, 10);
3089 cfd
= simple_strtoul(buffer
, &endp
, 10);
3090 if ((*endp
!= ' ') && (*endp
!= '\0'))
3094 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3098 INIT_LIST_HEAD(&event
->list
);
3099 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3100 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3101 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3103 efile
= eventfd_fget(efd
);
3104 if (IS_ERR(efile
)) {
3105 ret
= PTR_ERR(efile
);
3109 event
->eventfd
= eventfd_ctx_fileget(efile
);
3110 if (IS_ERR(event
->eventfd
)) {
3111 ret
= PTR_ERR(event
->eventfd
);
3121 /* the process need read permission on control file */
3122 ret
= file_permission(cfile
, MAY_READ
);
3126 event
->cft
= __file_cft(cfile
);
3127 if (IS_ERR(event
->cft
)) {
3128 ret
= PTR_ERR(event
->cft
);
3132 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3137 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3138 event
->eventfd
, buffer
);
3142 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3143 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3149 * Events should be removed after rmdir of cgroup directory, but before
3150 * destroying subsystem state objects. Let's take reference to cgroup
3151 * directory dentry to do that.
3155 spin_lock(&cgrp
->event_list_lock
);
3156 list_add(&event
->list
, &cgrp
->event_list
);
3157 spin_unlock(&cgrp
->event_list_lock
);
3168 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3169 eventfd_ctx_put(event
->eventfd
);
3171 if (!IS_ERR_OR_NULL(efile
))
3180 * for the common functions, 'private' gives the type of file
3182 /* for hysterical raisins, we can't put this on the older files */
3183 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3184 static struct cftype files
[] = {
3187 .open
= cgroup_tasks_open
,
3188 .write_u64
= cgroup_tasks_write
,
3189 .release
= cgroup_pidlist_release
,
3190 .mode
= S_IRUGO
| S_IWUSR
,
3193 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3194 .open
= cgroup_procs_open
,
3195 /* .write_u64 = cgroup_procs_write, TODO */
3196 .release
= cgroup_pidlist_release
,
3200 .name
= "notify_on_release",
3201 .read_u64
= cgroup_read_notify_on_release
,
3202 .write_u64
= cgroup_write_notify_on_release
,
3205 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3206 .write_string
= cgroup_write_event_control
,
3211 static struct cftype cft_release_agent
= {
3212 .name
= "release_agent",
3213 .read_seq_string
= cgroup_release_agent_show
,
3214 .write_string
= cgroup_release_agent_write
,
3215 .max_write_len
= PATH_MAX
,
3218 static int cgroup_populate_dir(struct cgroup
*cgrp
)
3221 struct cgroup_subsys
*ss
;
3223 /* First clear out any existing files */
3224 cgroup_clear_directory(cgrp
->dentry
);
3226 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
3230 if (cgrp
== cgrp
->top_cgroup
) {
3231 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
3235 for_each_subsys(cgrp
->root
, ss
) {
3236 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
3239 /* This cgroup is ready now */
3240 for_each_subsys(cgrp
->root
, ss
) {
3241 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3243 * Update id->css pointer and make this css visible from
3244 * CSS ID functions. This pointer will be dereferened
3245 * from RCU-read-side without locks.
3248 rcu_assign_pointer(css
->id
->css
, css
);
3254 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
3255 struct cgroup_subsys
*ss
,
3256 struct cgroup
*cgrp
)
3259 atomic_set(&css
->refcnt
, 1);
3262 if (cgrp
== dummytop
)
3263 set_bit(CSS_ROOT
, &css
->flags
);
3264 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
3265 cgrp
->subsys
[ss
->subsys_id
] = css
;
3268 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
3270 /* We need to take each hierarchy_mutex in a consistent order */
3274 * No worry about a race with rebind_subsystems that might mess up the
3275 * locking order, since both parties are under cgroup_mutex.
3277 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3278 struct cgroup_subsys
*ss
= subsys
[i
];
3281 if (ss
->root
== root
)
3282 mutex_lock(&ss
->hierarchy_mutex
);
3286 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
3290 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3291 struct cgroup_subsys
*ss
= subsys
[i
];
3294 if (ss
->root
== root
)
3295 mutex_unlock(&ss
->hierarchy_mutex
);
3300 * cgroup_create - create a cgroup
3301 * @parent: cgroup that will be parent of the new cgroup
3302 * @dentry: dentry of the new cgroup
3303 * @mode: mode to set on new inode
3305 * Must be called with the mutex on the parent inode held
3307 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
3310 struct cgroup
*cgrp
;
3311 struct cgroupfs_root
*root
= parent
->root
;
3313 struct cgroup_subsys
*ss
;
3314 struct super_block
*sb
= root
->sb
;
3316 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
3320 /* Grab a reference on the superblock so the hierarchy doesn't
3321 * get deleted on unmount if there are child cgroups. This
3322 * can be done outside cgroup_mutex, since the sb can't
3323 * disappear while someone has an open control file on the
3325 atomic_inc(&sb
->s_active
);
3327 mutex_lock(&cgroup_mutex
);
3329 init_cgroup_housekeeping(cgrp
);
3331 cgrp
->parent
= parent
;
3332 cgrp
->root
= parent
->root
;
3333 cgrp
->top_cgroup
= parent
->top_cgroup
;
3335 if (notify_on_release(parent
))
3336 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3338 for_each_subsys(root
, ss
) {
3339 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
3345 init_cgroup_css(css
, ss
, cgrp
);
3347 err
= alloc_css_id(ss
, parent
, cgrp
);
3351 /* At error, ->destroy() callback has to free assigned ID. */
3354 cgroup_lock_hierarchy(root
);
3355 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
3356 cgroup_unlock_hierarchy(root
);
3357 root
->number_of_cgroups
++;
3359 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
3363 /* The cgroup directory was pre-locked for us */
3364 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
3366 err
= cgroup_populate_dir(cgrp
);
3367 /* If err < 0, we have a half-filled directory - oh well ;) */
3369 mutex_unlock(&cgroup_mutex
);
3370 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
3376 cgroup_lock_hierarchy(root
);
3377 list_del(&cgrp
->sibling
);
3378 cgroup_unlock_hierarchy(root
);
3379 root
->number_of_cgroups
--;
3383 for_each_subsys(root
, ss
) {
3384 if (cgrp
->subsys
[ss
->subsys_id
])
3385 ss
->destroy(ss
, cgrp
);
3388 mutex_unlock(&cgroup_mutex
);
3390 /* Release the reference count that we took on the superblock */
3391 deactivate_super(sb
);
3397 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3399 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
3401 /* the vfs holds inode->i_mutex already */
3402 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
3405 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
3407 /* Check the reference count on each subsystem. Since we
3408 * already established that there are no tasks in the
3409 * cgroup, if the css refcount is also 1, then there should
3410 * be no outstanding references, so the subsystem is safe to
3411 * destroy. We scan across all subsystems rather than using
3412 * the per-hierarchy linked list of mounted subsystems since
3413 * we can be called via check_for_release() with no
3414 * synchronization other than RCU, and the subsystem linked
3415 * list isn't RCU-safe */
3418 * We won't need to lock the subsys array, because the subsystems
3419 * we're concerned about aren't going anywhere since our cgroup root
3420 * has a reference on them.
3422 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3423 struct cgroup_subsys
*ss
= subsys
[i
];
3424 struct cgroup_subsys_state
*css
;
3425 /* Skip subsystems not present or not in this hierarchy */
3426 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
3428 css
= cgrp
->subsys
[ss
->subsys_id
];
3429 /* When called from check_for_release() it's possible
3430 * that by this point the cgroup has been removed
3431 * and the css deleted. But a false-positive doesn't
3432 * matter, since it can only happen if the cgroup
3433 * has been deleted and hence no longer needs the
3434 * release agent to be called anyway. */
3435 if (css
&& (atomic_read(&css
->refcnt
) > 1))
3442 * Atomically mark all (or else none) of the cgroup's CSS objects as
3443 * CSS_REMOVED. Return true on success, or false if the cgroup has
3444 * busy subsystems. Call with cgroup_mutex held
3447 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
3449 struct cgroup_subsys
*ss
;
3450 unsigned long flags
;
3451 bool failed
= false;
3452 local_irq_save(flags
);
3453 for_each_subsys(cgrp
->root
, ss
) {
3454 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3457 /* We can only remove a CSS with a refcnt==1 */
3458 refcnt
= atomic_read(&css
->refcnt
);
3465 * Drop the refcnt to 0 while we check other
3466 * subsystems. This will cause any racing
3467 * css_tryget() to spin until we set the
3468 * CSS_REMOVED bits or abort
3470 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
3476 for_each_subsys(cgrp
->root
, ss
) {
3477 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3480 * Restore old refcnt if we previously managed
3481 * to clear it from 1 to 0
3483 if (!atomic_read(&css
->refcnt
))
3484 atomic_set(&css
->refcnt
, 1);
3486 /* Commit the fact that the CSS is removed */
3487 set_bit(CSS_REMOVED
, &css
->flags
);
3490 local_irq_restore(flags
);
3494 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
3496 struct cgroup
*cgrp
= dentry
->d_fsdata
;
3498 struct cgroup
*parent
;
3500 struct cgroup_event
*event
, *tmp
;
3503 /* the vfs holds both inode->i_mutex already */
3505 mutex_lock(&cgroup_mutex
);
3506 if (atomic_read(&cgrp
->count
) != 0) {
3507 mutex_unlock(&cgroup_mutex
);
3510 if (!list_empty(&cgrp
->children
)) {
3511 mutex_unlock(&cgroup_mutex
);
3514 mutex_unlock(&cgroup_mutex
);
3517 * In general, subsystem has no css->refcnt after pre_destroy(). But
3518 * in racy cases, subsystem may have to get css->refcnt after
3519 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3520 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3521 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3522 * and subsystem's reference count handling. Please see css_get/put
3523 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3525 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3528 * Call pre_destroy handlers of subsys. Notify subsystems
3529 * that rmdir() request comes.
3531 ret
= cgroup_call_pre_destroy(cgrp
);
3533 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3537 mutex_lock(&cgroup_mutex
);
3538 parent
= cgrp
->parent
;
3539 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
3540 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3541 mutex_unlock(&cgroup_mutex
);
3544 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
3545 if (!cgroup_clear_css_refs(cgrp
)) {
3546 mutex_unlock(&cgroup_mutex
);
3548 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3549 * prepare_to_wait(), we need to check this flag.
3551 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
3553 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3554 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3555 if (signal_pending(current
))
3559 /* NO css_tryget() can success after here. */
3560 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3561 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3563 spin_lock(&release_list_lock
);
3564 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
3565 if (!list_empty(&cgrp
->release_list
))
3566 list_del(&cgrp
->release_list
);
3567 spin_unlock(&release_list_lock
);
3569 cgroup_lock_hierarchy(cgrp
->root
);
3570 /* delete this cgroup from parent->children */
3571 list_del(&cgrp
->sibling
);
3572 cgroup_unlock_hierarchy(cgrp
->root
);
3574 spin_lock(&cgrp
->dentry
->d_lock
);
3575 d
= dget(cgrp
->dentry
);
3576 spin_unlock(&d
->d_lock
);
3578 cgroup_d_remove_dir(d
);
3581 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
3582 check_for_release(parent
);
3585 * Unregister events and notify userspace.
3586 * Notify userspace about cgroup removing only after rmdir of cgroup
3587 * directory to avoid race between userspace and kernelspace
3589 spin_lock(&cgrp
->event_list_lock
);
3590 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
3591 list_del(&event
->list
);
3592 remove_wait_queue(event
->wqh
, &event
->wait
);
3593 eventfd_signal(event
->eventfd
, 1);
3594 schedule_work(&event
->remove
);
3596 spin_unlock(&cgrp
->event_list_lock
);
3598 mutex_unlock(&cgroup_mutex
);
3602 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
3604 struct cgroup_subsys_state
*css
;
3606 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
3608 /* Create the top cgroup state for this subsystem */
3609 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3610 ss
->root
= &rootnode
;
3611 css
= ss
->create(ss
, dummytop
);
3612 /* We don't handle early failures gracefully */
3613 BUG_ON(IS_ERR(css
));
3614 init_cgroup_css(css
, ss
, dummytop
);
3616 /* Update the init_css_set to contain a subsys
3617 * pointer to this state - since the subsystem is
3618 * newly registered, all tasks and hence the
3619 * init_css_set is in the subsystem's top cgroup. */
3620 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
3622 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
3624 /* At system boot, before all subsystems have been
3625 * registered, no tasks have been forked, so we don't
3626 * need to invoke fork callbacks here. */
3627 BUG_ON(!list_empty(&init_task
.tasks
));
3629 mutex_init(&ss
->hierarchy_mutex
);
3630 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3633 /* this function shouldn't be used with modular subsystems, since they
3634 * need to register a subsys_id, among other things */
3639 * cgroup_load_subsys: load and register a modular subsystem at runtime
3640 * @ss: the subsystem to load
3642 * This function should be called in a modular subsystem's initcall. If the
3643 * subsystem is built as a module, it will be assigned a new subsys_id and set
3644 * up for use. If the subsystem is built-in anyway, work is delegated to the
3645 * simpler cgroup_init_subsys.
3647 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
3650 struct cgroup_subsys_state
*css
;
3652 /* check name and function validity */
3653 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
3654 ss
->create
== NULL
|| ss
->destroy
== NULL
)
3658 * we don't support callbacks in modular subsystems. this check is
3659 * before the ss->module check for consistency; a subsystem that could
3660 * be a module should still have no callbacks even if the user isn't
3661 * compiling it as one.
3663 if (ss
->fork
|| ss
->exit
)
3667 * an optionally modular subsystem is built-in: we want to do nothing,
3668 * since cgroup_init_subsys will have already taken care of it.
3670 if (ss
->module
== NULL
) {
3671 /* a few sanity checks */
3672 BUG_ON(ss
->subsys_id
>= CGROUP_BUILTIN_SUBSYS_COUNT
);
3673 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
3678 * need to register a subsys id before anything else - for example,
3679 * init_cgroup_css needs it.
3681 mutex_lock(&cgroup_mutex
);
3682 /* find the first empty slot in the array */
3683 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3684 if (subsys
[i
] == NULL
)
3687 if (i
== CGROUP_SUBSYS_COUNT
) {
3688 /* maximum number of subsystems already registered! */
3689 mutex_unlock(&cgroup_mutex
);
3692 /* assign ourselves the subsys_id */
3697 * no ss->create seems to need anything important in the ss struct, so
3698 * this can happen first (i.e. before the rootnode attachment).
3700 css
= ss
->create(ss
, dummytop
);
3702 /* failure case - need to deassign the subsys[] slot. */
3704 mutex_unlock(&cgroup_mutex
);
3705 return PTR_ERR(css
);
3708 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3709 ss
->root
= &rootnode
;
3711 /* our new subsystem will be attached to the dummy hierarchy. */
3712 init_cgroup_css(css
, ss
, dummytop
);
3713 /* init_idr must be after init_cgroup_css because it sets css->id. */
3715 int ret
= cgroup_init_idr(ss
, css
);
3717 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3718 ss
->destroy(ss
, dummytop
);
3720 mutex_unlock(&cgroup_mutex
);
3726 * Now we need to entangle the css into the existing css_sets. unlike
3727 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3728 * will need a new pointer to it; done by iterating the css_set_table.
3729 * furthermore, modifying the existing css_sets will corrupt the hash
3730 * table state, so each changed css_set will need its hash recomputed.
3731 * this is all done under the css_set_lock.
3733 write_lock(&css_set_lock
);
3734 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
3736 struct hlist_node
*node
, *tmp
;
3737 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
3739 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
3740 /* skip entries that we already rehashed */
3741 if (cg
->subsys
[ss
->subsys_id
])
3743 /* remove existing entry */
3744 hlist_del(&cg
->hlist
);
3746 cg
->subsys
[ss
->subsys_id
] = css
;
3747 /* recompute hash and restore entry */
3748 new_bucket
= css_set_hash(cg
->subsys
);
3749 hlist_add_head(&cg
->hlist
, new_bucket
);
3752 write_unlock(&css_set_lock
);
3754 mutex_init(&ss
->hierarchy_mutex
);
3755 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3759 mutex_unlock(&cgroup_mutex
);
3762 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
3765 * cgroup_unload_subsys: unload a modular subsystem
3766 * @ss: the subsystem to unload
3768 * This function should be called in a modular subsystem's exitcall. When this
3769 * function is invoked, the refcount on the subsystem's module will be 0, so
3770 * the subsystem will not be attached to any hierarchy.
3772 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
3774 struct cg_cgroup_link
*link
;
3775 struct hlist_head
*hhead
;
3777 BUG_ON(ss
->module
== NULL
);
3780 * we shouldn't be called if the subsystem is in use, and the use of
3781 * try_module_get in parse_cgroupfs_options should ensure that it
3782 * doesn't start being used while we're killing it off.
3784 BUG_ON(ss
->root
!= &rootnode
);
3786 mutex_lock(&cgroup_mutex
);
3787 /* deassign the subsys_id */
3788 BUG_ON(ss
->subsys_id
< CGROUP_BUILTIN_SUBSYS_COUNT
);
3789 subsys
[ss
->subsys_id
] = NULL
;
3791 /* remove subsystem from rootnode's list of subsystems */
3792 list_del(&ss
->sibling
);
3795 * disentangle the css from all css_sets attached to the dummytop. as
3796 * in loading, we need to pay our respects to the hashtable gods.
3798 write_lock(&css_set_lock
);
3799 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
3800 struct css_set
*cg
= link
->cg
;
3802 hlist_del(&cg
->hlist
);
3803 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
3804 cg
->subsys
[ss
->subsys_id
] = NULL
;
3805 hhead
= css_set_hash(cg
->subsys
);
3806 hlist_add_head(&cg
->hlist
, hhead
);
3808 write_unlock(&css_set_lock
);
3811 * remove subsystem's css from the dummytop and free it - need to free
3812 * before marking as null because ss->destroy needs the cgrp->subsys
3813 * pointer to find their state. note that this also takes care of
3814 * freeing the css_id.
3816 ss
->destroy(ss
, dummytop
);
3817 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3819 mutex_unlock(&cgroup_mutex
);
3821 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
3824 * cgroup_init_early - cgroup initialization at system boot
3826 * Initialize cgroups at system boot, and initialize any
3827 * subsystems that request early init.
3829 int __init
cgroup_init_early(void)
3832 atomic_set(&init_css_set
.refcount
, 1);
3833 INIT_LIST_HEAD(&init_css_set
.cg_links
);
3834 INIT_LIST_HEAD(&init_css_set
.tasks
);
3835 INIT_HLIST_NODE(&init_css_set
.hlist
);
3837 init_cgroup_root(&rootnode
);
3839 init_task
.cgroups
= &init_css_set
;
3841 init_css_set_link
.cg
= &init_css_set
;
3842 init_css_set_link
.cgrp
= dummytop
;
3843 list_add(&init_css_set_link
.cgrp_link_list
,
3844 &rootnode
.top_cgroup
.css_sets
);
3845 list_add(&init_css_set_link
.cg_link_list
,
3846 &init_css_set
.cg_links
);
3848 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
3849 INIT_HLIST_HEAD(&css_set_table
[i
]);
3851 /* at bootup time, we don't worry about modular subsystems */
3852 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3853 struct cgroup_subsys
*ss
= subsys
[i
];
3856 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
3857 BUG_ON(!ss
->create
);
3858 BUG_ON(!ss
->destroy
);
3859 if (ss
->subsys_id
!= i
) {
3860 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
3861 ss
->name
, ss
->subsys_id
);
3866 cgroup_init_subsys(ss
);
3872 * cgroup_init - cgroup initialization
3874 * Register cgroup filesystem and /proc file, and initialize
3875 * any subsystems that didn't request early init.
3877 int __init
cgroup_init(void)
3881 struct hlist_head
*hhead
;
3883 err
= bdi_init(&cgroup_backing_dev_info
);
3887 /* at bootup time, we don't worry about modular subsystems */
3888 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3889 struct cgroup_subsys
*ss
= subsys
[i
];
3890 if (!ss
->early_init
)
3891 cgroup_init_subsys(ss
);
3893 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
3896 /* Add init_css_set to the hash table */
3897 hhead
= css_set_hash(init_css_set
.subsys
);
3898 hlist_add_head(&init_css_set
.hlist
, hhead
);
3899 BUG_ON(!init_root_id(&rootnode
));
3901 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
3907 err
= register_filesystem(&cgroup_fs_type
);
3909 kobject_put(cgroup_kobj
);
3913 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
3917 bdi_destroy(&cgroup_backing_dev_info
);
3923 * proc_cgroup_show()
3924 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3925 * - Used for /proc/<pid>/cgroup.
3926 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3927 * doesn't really matter if tsk->cgroup changes after we read it,
3928 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3929 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3930 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3931 * cgroup to top_cgroup.
3934 /* TODO: Use a proper seq_file iterator */
3935 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
3938 struct task_struct
*tsk
;
3941 struct cgroupfs_root
*root
;
3944 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3950 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
3956 mutex_lock(&cgroup_mutex
);
3958 for_each_active_root(root
) {
3959 struct cgroup_subsys
*ss
;
3960 struct cgroup
*cgrp
;
3963 seq_printf(m
, "%d:", root
->hierarchy_id
);
3964 for_each_subsys(root
, ss
)
3965 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
3966 if (strlen(root
->name
))
3967 seq_printf(m
, "%sname=%s", count
? "," : "",
3970 cgrp
= task_cgroup_from_root(tsk
, root
);
3971 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
3979 mutex_unlock(&cgroup_mutex
);
3980 put_task_struct(tsk
);
3987 static int cgroup_open(struct inode
*inode
, struct file
*file
)
3989 struct pid
*pid
= PROC_I(inode
)->pid
;
3990 return single_open(file
, proc_cgroup_show
, pid
);
3993 const struct file_operations proc_cgroup_operations
= {
3994 .open
= cgroup_open
,
3996 .llseek
= seq_lseek
,
3997 .release
= single_release
,
4000 /* Display information about each subsystem and each hierarchy */
4001 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4005 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4007 * ideally we don't want subsystems moving around while we do this.
4008 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4009 * subsys/hierarchy state.
4011 mutex_lock(&cgroup_mutex
);
4012 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4013 struct cgroup_subsys
*ss
= subsys
[i
];
4016 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4017 ss
->name
, ss
->root
->hierarchy_id
,
4018 ss
->root
->number_of_cgroups
, !ss
->disabled
);
4020 mutex_unlock(&cgroup_mutex
);
4024 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4026 return single_open(file
, proc_cgroupstats_show
, NULL
);
4029 static const struct file_operations proc_cgroupstats_operations
= {
4030 .open
= cgroupstats_open
,
4032 .llseek
= seq_lseek
,
4033 .release
= single_release
,
4037 * cgroup_fork - attach newly forked task to its parents cgroup.
4038 * @child: pointer to task_struct of forking parent process.
4040 * Description: A task inherits its parent's cgroup at fork().
4042 * A pointer to the shared css_set was automatically copied in
4043 * fork.c by dup_task_struct(). However, we ignore that copy, since
4044 * it was not made under the protection of RCU or cgroup_mutex, so
4045 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4046 * have already changed current->cgroups, allowing the previously
4047 * referenced cgroup group to be removed and freed.
4049 * At the point that cgroup_fork() is called, 'current' is the parent
4050 * task, and the passed argument 'child' points to the child task.
4052 void cgroup_fork(struct task_struct
*child
)
4055 child
->cgroups
= current
->cgroups
;
4056 get_css_set(child
->cgroups
);
4057 task_unlock(current
);
4058 INIT_LIST_HEAD(&child
->cg_list
);
4062 * cgroup_fork_callbacks - run fork callbacks
4063 * @child: the new task
4065 * Called on a new task very soon before adding it to the
4066 * tasklist. No need to take any locks since no-one can
4067 * be operating on this task.
4069 void cgroup_fork_callbacks(struct task_struct
*child
)
4071 if (need_forkexit_callback
) {
4074 * forkexit callbacks are only supported for builtin
4075 * subsystems, and the builtin section of the subsys array is
4076 * immutable, so we don't need to lock the subsys array here.
4078 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4079 struct cgroup_subsys
*ss
= subsys
[i
];
4081 ss
->fork(ss
, child
);
4087 * cgroup_post_fork - called on a new task after adding it to the task list
4088 * @child: the task in question
4090 * Adds the task to the list running through its css_set if necessary.
4091 * Has to be after the task is visible on the task list in case we race
4092 * with the first call to cgroup_iter_start() - to guarantee that the
4093 * new task ends up on its list.
4095 void cgroup_post_fork(struct task_struct
*child
)
4097 if (use_task_css_set_links
) {
4098 write_lock(&css_set_lock
);
4100 if (list_empty(&child
->cg_list
))
4101 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4103 write_unlock(&css_set_lock
);
4107 * cgroup_exit - detach cgroup from exiting task
4108 * @tsk: pointer to task_struct of exiting process
4109 * @run_callback: run exit callbacks?
4111 * Description: Detach cgroup from @tsk and release it.
4113 * Note that cgroups marked notify_on_release force every task in
4114 * them to take the global cgroup_mutex mutex when exiting.
4115 * This could impact scaling on very large systems. Be reluctant to
4116 * use notify_on_release cgroups where very high task exit scaling
4117 * is required on large systems.
4119 * the_top_cgroup_hack:
4121 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4123 * We call cgroup_exit() while the task is still competent to
4124 * handle notify_on_release(), then leave the task attached to the
4125 * root cgroup in each hierarchy for the remainder of its exit.
4127 * To do this properly, we would increment the reference count on
4128 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4129 * code we would add a second cgroup function call, to drop that
4130 * reference. This would just create an unnecessary hot spot on
4131 * the top_cgroup reference count, to no avail.
4133 * Normally, holding a reference to a cgroup without bumping its
4134 * count is unsafe. The cgroup could go away, or someone could
4135 * attach us to a different cgroup, decrementing the count on
4136 * the first cgroup that we never incremented. But in this case,
4137 * top_cgroup isn't going away, and either task has PF_EXITING set,
4138 * which wards off any cgroup_attach_task() attempts, or task is a failed
4139 * fork, never visible to cgroup_attach_task.
4141 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4146 if (run_callbacks
&& need_forkexit_callback
) {
4148 * modular subsystems can't use callbacks, so no need to lock
4151 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4152 struct cgroup_subsys
*ss
= subsys
[i
];
4159 * Unlink from the css_set task list if necessary.
4160 * Optimistically check cg_list before taking
4163 if (!list_empty(&tsk
->cg_list
)) {
4164 write_lock(&css_set_lock
);
4165 if (!list_empty(&tsk
->cg_list
))
4166 list_del(&tsk
->cg_list
);
4167 write_unlock(&css_set_lock
);
4170 /* Reassign the task to the init_css_set. */
4173 tsk
->cgroups
= &init_css_set
;
4176 put_css_set_taskexit(cg
);
4180 * cgroup_clone - clone the cgroup the given subsystem is attached to
4181 * @tsk: the task to be moved
4182 * @subsys: the given subsystem
4183 * @nodename: the name for the new cgroup
4185 * Duplicate the current cgroup in the hierarchy that the given
4186 * subsystem is attached to, and move this task into the new
4189 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
4192 struct dentry
*dentry
;
4194 struct cgroup
*parent
, *child
;
4195 struct inode
*inode
;
4197 struct cgroupfs_root
*root
;
4198 struct cgroup_subsys
*ss
;
4200 /* We shouldn't be called by an unregistered subsystem */
4201 BUG_ON(!subsys
->active
);
4203 /* First figure out what hierarchy and cgroup we're dealing
4204 * with, and pin them so we can drop cgroup_mutex */
4205 mutex_lock(&cgroup_mutex
);
4207 root
= subsys
->root
;
4208 if (root
== &rootnode
) {
4209 mutex_unlock(&cgroup_mutex
);
4213 /* Pin the hierarchy */
4214 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
4215 /* We race with the final deactivate_super() */
4216 mutex_unlock(&cgroup_mutex
);
4220 /* Keep the cgroup alive */
4222 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
4227 mutex_unlock(&cgroup_mutex
);
4229 /* Now do the VFS work to create a cgroup */
4230 inode
= parent
->dentry
->d_inode
;
4232 /* Hold the parent directory mutex across this operation to
4233 * stop anyone else deleting the new cgroup */
4234 mutex_lock(&inode
->i_mutex
);
4235 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
4236 if (IS_ERR(dentry
)) {
4238 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
4240 ret
= PTR_ERR(dentry
);
4244 /* Create the cgroup directory, which also creates the cgroup */
4245 ret
= vfs_mkdir(inode
, dentry
, 0755);
4246 child
= __d_cgrp(dentry
);
4250 "Failed to create cgroup %s: %d\n", nodename
,
4255 /* The cgroup now exists. Retake cgroup_mutex and check
4256 * that we're still in the same state that we thought we
4258 mutex_lock(&cgroup_mutex
);
4259 if ((root
!= subsys
->root
) ||
4260 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
4261 /* Aargh, we raced ... */
4262 mutex_unlock(&inode
->i_mutex
);
4265 deactivate_super(root
->sb
);
4266 /* The cgroup is still accessible in the VFS, but
4267 * we're not going to try to rmdir() it at this
4270 "Race in cgroup_clone() - leaking cgroup %s\n",
4275 /* do any required auto-setup */
4276 for_each_subsys(root
, ss
) {
4278 ss
->post_clone(ss
, child
);
4281 /* All seems fine. Finish by moving the task into the new cgroup */
4282 ret
= cgroup_attach_task(child
, tsk
);
4283 mutex_unlock(&cgroup_mutex
);
4286 mutex_unlock(&inode
->i_mutex
);
4288 mutex_lock(&cgroup_mutex
);
4290 mutex_unlock(&cgroup_mutex
);
4291 deactivate_super(root
->sb
);
4296 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4297 * @cgrp: the cgroup in question
4298 * @task: the task in question
4300 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4303 * If we are sending in dummytop, then presumably we are creating
4304 * the top cgroup in the subsystem.
4306 * Called only by the ns (nsproxy) cgroup.
4308 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
4311 struct cgroup
*target
;
4313 if (cgrp
== dummytop
)
4316 target
= task_cgroup_from_root(task
, cgrp
->root
);
4317 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
4318 cgrp
= cgrp
->parent
;
4319 ret
= (cgrp
== target
);
4323 static void check_for_release(struct cgroup
*cgrp
)
4325 /* All of these checks rely on RCU to keep the cgroup
4326 * structure alive */
4327 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
4328 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
4329 /* Control Group is currently removeable. If it's not
4330 * already queued for a userspace notification, queue
4332 int need_schedule_work
= 0;
4333 spin_lock(&release_list_lock
);
4334 if (!cgroup_is_removed(cgrp
) &&
4335 list_empty(&cgrp
->release_list
)) {
4336 list_add(&cgrp
->release_list
, &release_list
);
4337 need_schedule_work
= 1;
4339 spin_unlock(&release_list_lock
);
4340 if (need_schedule_work
)
4341 schedule_work(&release_agent_work
);
4345 /* Caller must verify that the css is not for root cgroup */
4346 void __css_put(struct cgroup_subsys_state
*css
, int count
)
4348 struct cgroup
*cgrp
= css
->cgroup
;
4351 val
= atomic_sub_return(count
, &css
->refcnt
);
4353 if (notify_on_release(cgrp
)) {
4354 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4355 check_for_release(cgrp
);
4357 cgroup_wakeup_rmdir_waiter(cgrp
);
4360 WARN_ON_ONCE(val
< 1);
4362 EXPORT_SYMBOL_GPL(__css_put
);
4365 * Notify userspace when a cgroup is released, by running the
4366 * configured release agent with the name of the cgroup (path
4367 * relative to the root of cgroup file system) as the argument.
4369 * Most likely, this user command will try to rmdir this cgroup.
4371 * This races with the possibility that some other task will be
4372 * attached to this cgroup before it is removed, or that some other
4373 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4374 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4375 * unused, and this cgroup will be reprieved from its death sentence,
4376 * to continue to serve a useful existence. Next time it's released,
4377 * we will get notified again, if it still has 'notify_on_release' set.
4379 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4380 * means only wait until the task is successfully execve()'d. The
4381 * separate release agent task is forked by call_usermodehelper(),
4382 * then control in this thread returns here, without waiting for the
4383 * release agent task. We don't bother to wait because the caller of
4384 * this routine has no use for the exit status of the release agent
4385 * task, so no sense holding our caller up for that.
4387 static void cgroup_release_agent(struct work_struct
*work
)
4389 BUG_ON(work
!= &release_agent_work
);
4390 mutex_lock(&cgroup_mutex
);
4391 spin_lock(&release_list_lock
);
4392 while (!list_empty(&release_list
)) {
4393 char *argv
[3], *envp
[3];
4395 char *pathbuf
= NULL
, *agentbuf
= NULL
;
4396 struct cgroup
*cgrp
= list_entry(release_list
.next
,
4399 list_del_init(&cgrp
->release_list
);
4400 spin_unlock(&release_list_lock
);
4401 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4404 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
4406 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
4411 argv
[i
++] = agentbuf
;
4412 argv
[i
++] = pathbuf
;
4416 /* minimal command environment */
4417 envp
[i
++] = "HOME=/";
4418 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4421 /* Drop the lock while we invoke the usermode helper,
4422 * since the exec could involve hitting disk and hence
4423 * be a slow process */
4424 mutex_unlock(&cgroup_mutex
);
4425 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
4426 mutex_lock(&cgroup_mutex
);
4430 spin_lock(&release_list_lock
);
4432 spin_unlock(&release_list_lock
);
4433 mutex_unlock(&cgroup_mutex
);
4436 static int __init
cgroup_disable(char *str
)
4441 while ((token
= strsep(&str
, ",")) != NULL
) {
4445 * cgroup_disable, being at boot time, can't know about module
4446 * subsystems, so we don't worry about them.
4448 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4449 struct cgroup_subsys
*ss
= subsys
[i
];
4451 if (!strcmp(token
, ss
->name
)) {
4453 printk(KERN_INFO
"Disabling %s control group"
4454 " subsystem\n", ss
->name
);
4461 __setup("cgroup_disable=", cgroup_disable
);
4464 * Functons for CSS ID.
4468 *To get ID other than 0, this should be called when !cgroup_is_removed().
4470 unsigned short css_id(struct cgroup_subsys_state
*css
)
4472 struct css_id
*cssid
;
4475 * This css_id() can return correct value when somone has refcnt
4476 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4477 * it's unchanged until freed.
4479 cssid
= rcu_dereference_check(css
->id
,
4480 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4486 EXPORT_SYMBOL_GPL(css_id
);
4488 unsigned short css_depth(struct cgroup_subsys_state
*css
)
4490 struct css_id
*cssid
;
4492 cssid
= rcu_dereference_check(css
->id
,
4493 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4496 return cssid
->depth
;
4499 EXPORT_SYMBOL_GPL(css_depth
);
4502 * css_is_ancestor - test "root" css is an ancestor of "child"
4503 * @child: the css to be tested.
4504 * @root: the css supporsed to be an ancestor of the child.
4506 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4507 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4508 * But, considering usual usage, the csses should be valid objects after test.
4509 * Assuming that the caller will do some action to the child if this returns
4510 * returns true, the caller must take "child";s reference count.
4511 * If "child" is valid object and this returns true, "root" is valid, too.
4514 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
4515 const struct cgroup_subsys_state
*root
)
4517 struct css_id
*child_id
;
4518 struct css_id
*root_id
;
4522 child_id
= rcu_dereference(child
->id
);
4523 root_id
= rcu_dereference(root
->id
);
4526 || (child_id
->depth
< root_id
->depth
)
4527 || (child_id
->stack
[root_id
->depth
] != root_id
->id
))
4533 static void __free_css_id_cb(struct rcu_head
*head
)
4537 id
= container_of(head
, struct css_id
, rcu_head
);
4541 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
4543 struct css_id
*id
= css
->id
;
4544 /* When this is called before css_id initialization, id can be NULL */
4548 BUG_ON(!ss
->use_id
);
4550 rcu_assign_pointer(id
->css
, NULL
);
4551 rcu_assign_pointer(css
->id
, NULL
);
4552 spin_lock(&ss
->id_lock
);
4553 idr_remove(&ss
->idr
, id
->id
);
4554 spin_unlock(&ss
->id_lock
);
4555 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
4557 EXPORT_SYMBOL_GPL(free_css_id
);
4560 * This is called by init or create(). Then, calls to this function are
4561 * always serialized (By cgroup_mutex() at create()).
4564 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
4566 struct css_id
*newid
;
4567 int myid
, error
, size
;
4569 BUG_ON(!ss
->use_id
);
4571 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
4572 newid
= kzalloc(size
, GFP_KERNEL
);
4574 return ERR_PTR(-ENOMEM
);
4576 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
4580 spin_lock(&ss
->id_lock
);
4581 /* Don't use 0. allocates an ID of 1-65535 */
4582 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
4583 spin_unlock(&ss
->id_lock
);
4585 /* Returns error when there are no free spaces for new ID.*/
4590 if (myid
> CSS_ID_MAX
)
4594 newid
->depth
= depth
;
4598 spin_lock(&ss
->id_lock
);
4599 idr_remove(&ss
->idr
, myid
);
4600 spin_unlock(&ss
->id_lock
);
4603 return ERR_PTR(error
);
4607 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
4608 struct cgroup_subsys_state
*rootcss
)
4610 struct css_id
*newid
;
4612 spin_lock_init(&ss
->id_lock
);
4615 newid
= get_new_cssid(ss
, 0);
4617 return PTR_ERR(newid
);
4619 newid
->stack
[0] = newid
->id
;
4620 newid
->css
= rootcss
;
4621 rootcss
->id
= newid
;
4625 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
4626 struct cgroup
*child
)
4628 int subsys_id
, i
, depth
= 0;
4629 struct cgroup_subsys_state
*parent_css
, *child_css
;
4630 struct css_id
*child_id
, *parent_id
;
4632 subsys_id
= ss
->subsys_id
;
4633 parent_css
= parent
->subsys
[subsys_id
];
4634 child_css
= child
->subsys
[subsys_id
];
4635 parent_id
= parent_css
->id
;
4636 depth
= parent_id
->depth
+ 1;
4638 child_id
= get_new_cssid(ss
, depth
);
4639 if (IS_ERR(child_id
))
4640 return PTR_ERR(child_id
);
4642 for (i
= 0; i
< depth
; i
++)
4643 child_id
->stack
[i
] = parent_id
->stack
[i
];
4644 child_id
->stack
[depth
] = child_id
->id
;
4646 * child_id->css pointer will be set after this cgroup is available
4647 * see cgroup_populate_dir()
4649 rcu_assign_pointer(child_css
->id
, child_id
);
4655 * css_lookup - lookup css by id
4656 * @ss: cgroup subsys to be looked into.
4659 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4660 * NULL if not. Should be called under rcu_read_lock()
4662 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
4664 struct css_id
*cssid
= NULL
;
4666 BUG_ON(!ss
->use_id
);
4667 cssid
= idr_find(&ss
->idr
, id
);
4669 if (unlikely(!cssid
))
4672 return rcu_dereference(cssid
->css
);
4674 EXPORT_SYMBOL_GPL(css_lookup
);
4677 * css_get_next - lookup next cgroup under specified hierarchy.
4678 * @ss: pointer to subsystem
4679 * @id: current position of iteration.
4680 * @root: pointer to css. search tree under this.
4681 * @foundid: position of found object.
4683 * Search next css under the specified hierarchy of rootid. Calling under
4684 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4686 struct cgroup_subsys_state
*
4687 css_get_next(struct cgroup_subsys
*ss
, int id
,
4688 struct cgroup_subsys_state
*root
, int *foundid
)
4690 struct cgroup_subsys_state
*ret
= NULL
;
4693 int rootid
= css_id(root
);
4694 int depth
= css_depth(root
);
4699 BUG_ON(!ss
->use_id
);
4700 /* fill start point for scan */
4704 * scan next entry from bitmap(tree), tmpid is updated after
4707 spin_lock(&ss
->id_lock
);
4708 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
4709 spin_unlock(&ss
->id_lock
);
4713 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
4714 ret
= rcu_dereference(tmp
->css
);
4720 /* continue to scan from next id */
4726 #ifdef CONFIG_CGROUP_DEBUG
4727 static struct cgroup_subsys_state
*debug_create(struct cgroup_subsys
*ss
,
4728 struct cgroup
*cont
)
4730 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
4733 return ERR_PTR(-ENOMEM
);
4738 static void debug_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4740 kfree(cont
->subsys
[debug_subsys_id
]);
4743 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4745 return atomic_read(&cont
->count
);
4748 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4750 return cgroup_task_count(cont
);
4753 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
4755 return (u64
)(unsigned long)current
->cgroups
;
4758 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
4764 count
= atomic_read(¤t
->cgroups
->refcount
);
4769 static int current_css_set_cg_links_read(struct cgroup
*cont
,
4771 struct seq_file
*seq
)
4773 struct cg_cgroup_link
*link
;
4776 read_lock(&css_set_lock
);
4778 cg
= rcu_dereference(current
->cgroups
);
4779 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
4780 struct cgroup
*c
= link
->cgrp
;
4784 name
= c
->dentry
->d_name
.name
;
4787 seq_printf(seq
, "Root %d group %s\n",
4788 c
->root
->hierarchy_id
, name
);
4791 read_unlock(&css_set_lock
);
4795 #define MAX_TASKS_SHOWN_PER_CSS 25
4796 static int cgroup_css_links_read(struct cgroup
*cont
,
4798 struct seq_file
*seq
)
4800 struct cg_cgroup_link
*link
;
4802 read_lock(&css_set_lock
);
4803 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
4804 struct css_set
*cg
= link
->cg
;
4805 struct task_struct
*task
;
4807 seq_printf(seq
, "css_set %p\n", cg
);
4808 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
4809 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
4810 seq_puts(seq
, " ...\n");
4813 seq_printf(seq
, " task %d\n",
4814 task_pid_vnr(task
));
4818 read_unlock(&css_set_lock
);
4822 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4824 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4827 static struct cftype debug_files
[] = {
4829 .name
= "cgroup_refcount",
4830 .read_u64
= cgroup_refcount_read
,
4833 .name
= "taskcount",
4834 .read_u64
= debug_taskcount_read
,
4838 .name
= "current_css_set",
4839 .read_u64
= current_css_set_read
,
4843 .name
= "current_css_set_refcount",
4844 .read_u64
= current_css_set_refcount_read
,
4848 .name
= "current_css_set_cg_links",
4849 .read_seq_string
= current_css_set_cg_links_read
,
4853 .name
= "cgroup_css_links",
4854 .read_seq_string
= cgroup_css_links_read
,
4858 .name
= "releasable",
4859 .read_u64
= releasable_read
,
4863 static int debug_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4865 return cgroup_add_files(cont
, ss
, debug_files
,
4866 ARRAY_SIZE(debug_files
));
4869 struct cgroup_subsys debug_subsys
= {
4871 .create
= debug_create
,
4872 .destroy
= debug_destroy
,
4873 .populate
= debug_populate
,
4874 .subsys_id
= debug_subsys_id
,
4876 #endif /* CONFIG_CGROUP_DEBUG */