2 * linux/arch/m68k/atari/time.c
4 * Atari time and real time clock stuff
6 * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License. See the file COPYING in the main directory of this archive
13 #include <linux/types.h>
14 #include <linux/mc146818rtc.h>
15 #include <linux/interrupt.h>
16 #include <linux/init.h>
17 #include <linux/rtc.h>
18 #include <linux/bcd.h>
19 #include <linux/delay.h>
21 #include <asm/atariints.h>
24 atari_sched_init(irq_handler_t timer_routine
)
26 /* set Timer C data Register */
27 mfp
.tim_dt_c
= INT_TICKS
;
28 /* start timer C, div = 1:100 */
29 mfp
.tim_ct_cd
= (mfp
.tim_ct_cd
& 15) | 0x60;
30 /* install interrupt service routine for MFP Timer C */
31 request_irq(IRQ_MFP_TIMC
, timer_routine
, IRQ_TYPE_SLOW
,
32 "timer", timer_routine
);
35 /* ++andreas: gettimeoffset fixed to check for pending interrupt */
37 #define TICK_SIZE 10000
39 /* This is always executed with interrupts disabled. */
40 unsigned long atari_gettimeoffset (void)
42 unsigned long ticks
, offset
= 0;
44 /* read MFP timer C current value */
46 /* The probability of underflow is less than 2% */
47 if (ticks
> INT_TICKS
- INT_TICKS
/ 50)
48 /* Check for pending timer interrupt */
49 if (mfp
.int_pn_b
& (1 << 5))
52 ticks
= INT_TICKS
- ticks
;
53 ticks
= ticks
* 10000L / INT_TICKS
;
55 return ticks
+ offset
;
59 static void mste_read(struct MSTE_RTC
*val
)
61 #define COPY(v) val->v=(mste_rtc.v & 0xf)
63 COPY(sec_ones
) ; COPY(sec_tens
) ; COPY(min_ones
) ;
64 COPY(min_tens
) ; COPY(hr_ones
) ; COPY(hr_tens
) ;
65 COPY(weekday
) ; COPY(day_ones
) ; COPY(day_tens
) ;
66 COPY(mon_ones
) ; COPY(mon_tens
) ; COPY(year_ones
) ;
68 /* prevent from reading the clock while it changed */
69 } while (val
->sec_ones
!= (mste_rtc
.sec_ones
& 0xf));
73 static void mste_write(struct MSTE_RTC
*val
)
75 #define COPY(v) mste_rtc.v=val->v
77 COPY(sec_ones
) ; COPY(sec_tens
) ; COPY(min_ones
) ;
78 COPY(min_tens
) ; COPY(hr_ones
) ; COPY(hr_tens
) ;
79 COPY(weekday
) ; COPY(day_ones
) ; COPY(day_tens
) ;
80 COPY(mon_ones
) ; COPY(mon_tens
) ; COPY(year_ones
) ;
82 /* prevent from writing the clock while it changed */
83 } while (val
->sec_ones
!= (mste_rtc
.sec_ones
& 0xf));
87 #define RTC_READ(reg) \
88 ({ unsigned char __val; \
89 (void) atari_writeb(reg,&tt_rtc.regsel); \
90 __val = tt_rtc.data; \
94 #define RTC_WRITE(reg,val) \
96 atari_writeb(reg,&tt_rtc.regsel); \
97 tt_rtc.data = (val); \
101 #define HWCLK_POLL_INTERVAL 5
103 int atari_mste_hwclk( int op
, struct rtc_time
*t
)
109 mste_rtc
.mode
=(mste_rtc
.mode
| 1);
110 hr24
=mste_rtc
.mon_tens
& 1;
111 mste_rtc
.mode
=(mste_rtc
.mode
& ~1);
114 /* write: prepare values */
116 val
.sec_ones
= t
->tm_sec
% 10;
117 val
.sec_tens
= t
->tm_sec
/ 10;
118 val
.min_ones
= t
->tm_min
% 10;
119 val
.min_tens
= t
->tm_min
/ 10;
124 if (hour
== 0 || hour
== 20)
127 val
.hr_ones
= hour
% 10;
128 val
.hr_tens
= hour
/ 10;
129 val
.day_ones
= t
->tm_mday
% 10;
130 val
.day_tens
= t
->tm_mday
/ 10;
131 val
.mon_ones
= (t
->tm_mon
+1) % 10;
132 val
.mon_tens
= (t
->tm_mon
+1) / 10;
133 year
= t
->tm_year
- 80;
134 val
.year_ones
= year
% 10;
135 val
.year_tens
= year
/ 10;
136 val
.weekday
= t
->tm_wday
;
138 mste_rtc
.mode
=(mste_rtc
.mode
| 1);
139 val
.year_ones
= (year
% 4); /* leap year register */
140 mste_rtc
.mode
=(mste_rtc
.mode
& ~1);
144 t
->tm_sec
= val
.sec_ones
+ val
.sec_tens
* 10;
145 t
->tm_min
= val
.min_ones
+ val
.min_tens
* 10;
146 hour
= val
.hr_ones
+ val
.hr_tens
* 10;
148 if (hour
== 12 || hour
== 12 + 20)
154 t
->tm_mday
= val
.day_ones
+ val
.day_tens
* 10;
155 t
->tm_mon
= val
.mon_ones
+ val
.mon_tens
* 10 - 1;
156 t
->tm_year
= val
.year_ones
+ val
.year_tens
* 10 + 80;
157 t
->tm_wday
= val
.weekday
;
162 int atari_tt_hwclk( int op
, struct rtc_time
*t
)
164 int sec
=0, min
=0, hour
=0, day
=0, mon
=0, year
=0, wday
=0;
169 ctrl
= RTC_READ(RTC_CONTROL
); /* control registers are
170 * independent from the UIP */
173 /* write: prepare values */
180 year
= t
->tm_year
- atari_rtc_year_offset
;
181 wday
= t
->tm_wday
+ (t
->tm_wday
>= 0);
183 if (!(ctrl
& RTC_24H
)) {
193 if (!(ctrl
& RTC_DM_BINARY
)) {
200 if (wday
>= 0) BIN_TO_BCD(wday
);
204 /* Reading/writing the clock registers is a bit critical due to
205 * the regular update cycle of the RTC. While an update is in
206 * progress, registers 0..9 shouldn't be touched.
207 * The problem is solved like that: If an update is currently in
208 * progress (the UIP bit is set), the process sleeps for a while
209 * (50ms). This really should be enough, since the update cycle
210 * normally needs 2 ms.
211 * If the UIP bit reads as 0, we have at least 244 usecs until the
212 * update starts. This should be enough... But to be sure,
213 * additionally the RTC_SET bit is set to prevent an update cycle.
216 while( RTC_READ(RTC_FREQ_SELECT
) & RTC_UIP
) {
217 if (in_atomic() || irqs_disabled())
220 schedule_timeout_interruptible(HWCLK_POLL_INTERVAL
);
223 local_irq_save(flags
);
224 RTC_WRITE( RTC_CONTROL
, ctrl
| RTC_SET
);
226 sec
= RTC_READ( RTC_SECONDS
);
227 min
= RTC_READ( RTC_MINUTES
);
228 hour
= RTC_READ( RTC_HOURS
);
229 day
= RTC_READ( RTC_DAY_OF_MONTH
);
230 mon
= RTC_READ( RTC_MONTH
);
231 year
= RTC_READ( RTC_YEAR
);
232 wday
= RTC_READ( RTC_DAY_OF_WEEK
);
235 RTC_WRITE( RTC_SECONDS
, sec
);
236 RTC_WRITE( RTC_MINUTES
, min
);
237 RTC_WRITE( RTC_HOURS
, hour
+ pm
);
238 RTC_WRITE( RTC_DAY_OF_MONTH
, day
);
239 RTC_WRITE( RTC_MONTH
, mon
);
240 RTC_WRITE( RTC_YEAR
, year
);
241 if (wday
>= 0) RTC_WRITE( RTC_DAY_OF_WEEK
, wday
);
243 RTC_WRITE( RTC_CONTROL
, ctrl
& ~RTC_SET
);
244 local_irq_restore(flags
);
247 /* read: adjust values */
254 if (!(ctrl
& RTC_DM_BINARY
)) {
264 if (!(ctrl
& RTC_24H
)) {
265 if (!pm
&& hour
== 12)
267 else if (pm
&& hour
!= 12)
276 t
->tm_year
= year
+ atari_rtc_year_offset
;
277 t
->tm_wday
= wday
- 1;
284 int atari_mste_set_clock_mmss (unsigned long nowtime
)
286 short real_seconds
= nowtime
% 60, real_minutes
= (nowtime
/ 60) % 60;
288 unsigned char rtc_minutes
;
291 rtc_minutes
= val
.min_ones
+ val
.min_tens
* 10;
292 if ((rtc_minutes
< real_minutes
293 ? real_minutes
- rtc_minutes
294 : rtc_minutes
- real_minutes
) < 30)
296 val
.sec_ones
= real_seconds
% 10;
297 val
.sec_tens
= real_seconds
/ 10;
298 val
.min_ones
= real_minutes
% 10;
299 val
.min_tens
= real_minutes
/ 10;
307 int atari_tt_set_clock_mmss (unsigned long nowtime
)
310 short real_seconds
= nowtime
% 60, real_minutes
= (nowtime
/ 60) % 60;
311 unsigned char save_control
, save_freq_select
, rtc_minutes
;
313 save_control
= RTC_READ (RTC_CONTROL
); /* tell the clock it's being set */
314 RTC_WRITE (RTC_CONTROL
, save_control
| RTC_SET
);
316 save_freq_select
= RTC_READ (RTC_FREQ_SELECT
); /* stop and reset prescaler */
317 RTC_WRITE (RTC_FREQ_SELECT
, save_freq_select
| RTC_DIV_RESET2
);
319 rtc_minutes
= RTC_READ (RTC_MINUTES
);
320 if (!(save_control
& RTC_DM_BINARY
))
321 BCD_TO_BIN (rtc_minutes
);
323 /* Since we're only adjusting minutes and seconds, don't interfere
324 with hour overflow. This avoids messing with unknown time zones
325 but requires your RTC not to be off by more than 30 minutes. */
326 if ((rtc_minutes
< real_minutes
327 ? real_minutes
- rtc_minutes
328 : rtc_minutes
- real_minutes
) < 30)
330 if (!(save_control
& RTC_DM_BINARY
))
332 BIN_TO_BCD (real_seconds
);
333 BIN_TO_BCD (real_minutes
);
335 RTC_WRITE (RTC_SECONDS
, real_seconds
);
336 RTC_WRITE (RTC_MINUTES
, real_minutes
);
341 RTC_WRITE (RTC_FREQ_SELECT
, save_freq_select
);
342 RTC_WRITE (RTC_CONTROL
, save_control
);