[PATCH] bcm43xx: fix the remaining sparse warnings.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / bcm43xx / bcm43xx_phy.c
blob4ab17a7f7e915a06185f9e017c9e2d3650400275
1 /*
3 Broadcom BCM43xx wireless driver
5 Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
6 Stefano Brivio <st3@riseup.net>
7 Michael Buesch <mbuesch@freenet.de>
8 Danny van Dyk <kugelfang@gentoo.org>
9 Andreas Jaggi <andreas.jaggi@waterwave.ch>
11 Some parts of the code in this file are derived from the ipw2200
12 driver Copyright(c) 2003 - 2004 Intel Corporation.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; see the file COPYING. If not, write to
26 the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
27 Boston, MA 02110-1301, USA.
31 #include <linux/delay.h>
32 #include <linux/pci.h>
33 #include <linux/types.h>
35 #include "bcm43xx.h"
36 #include "bcm43xx_phy.h"
37 #include "bcm43xx_main.h"
38 #include "bcm43xx_radio.h"
39 #include "bcm43xx_ilt.h"
40 #include "bcm43xx_power.h"
43 static const s8 bcm43xx_tssi2dbm_b_table[] = {
44 0x4D, 0x4C, 0x4B, 0x4A,
45 0x4A, 0x49, 0x48, 0x47,
46 0x47, 0x46, 0x45, 0x45,
47 0x44, 0x43, 0x42, 0x42,
48 0x41, 0x40, 0x3F, 0x3E,
49 0x3D, 0x3C, 0x3B, 0x3A,
50 0x39, 0x38, 0x37, 0x36,
51 0x35, 0x34, 0x32, 0x31,
52 0x30, 0x2F, 0x2D, 0x2C,
53 0x2B, 0x29, 0x28, 0x26,
54 0x25, 0x23, 0x21, 0x1F,
55 0x1D, 0x1A, 0x17, 0x14,
56 0x10, 0x0C, 0x06, 0x00,
57 -7, -7, -7, -7,
58 -7, -7, -7, -7,
59 -7, -7, -7, -7,
62 static const s8 bcm43xx_tssi2dbm_g_table[] = {
63 77, 77, 77, 76,
64 76, 76, 75, 75,
65 74, 74, 73, 73,
66 73, 72, 72, 71,
67 71, 70, 70, 69,
68 68, 68, 67, 67,
69 66, 65, 65, 64,
70 63, 63, 62, 61,
71 60, 59, 58, 57,
72 56, 55, 54, 53,
73 52, 50, 49, 47,
74 45, 43, 40, 37,
75 33, 28, 22, 14,
76 5, -7, -20, -20,
77 -20, -20, -20, -20,
78 -20, -20, -20, -20,
81 static void bcm43xx_phy_initg(struct bcm43xx_private *bcm);
84 void bcm43xx_raw_phy_lock(struct bcm43xx_private *bcm)
86 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
88 assert(irqs_disabled());
89 if (bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD) == 0x00000000) {
90 phy->is_locked = 0;
91 return;
93 if (bcm->current_core->rev < 3) {
94 bcm43xx_mac_suspend(bcm);
95 spin_lock(&phy->lock);
96 } else {
97 if (bcm->ieee->iw_mode != IW_MODE_MASTER)
98 bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
100 phy->is_locked = 1;
103 void bcm43xx_raw_phy_unlock(struct bcm43xx_private *bcm)
105 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
107 assert(irqs_disabled());
108 if (bcm->current_core->rev < 3) {
109 if (phy->is_locked) {
110 spin_unlock(&phy->lock);
111 bcm43xx_mac_enable(bcm);
113 } else {
114 if (bcm->ieee->iw_mode != IW_MODE_MASTER)
115 bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
117 phy->is_locked = 0;
120 u16 bcm43xx_phy_read(struct bcm43xx_private *bcm, u16 offset)
122 bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_CONTROL, offset);
123 return bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_DATA);
126 void bcm43xx_phy_write(struct bcm43xx_private *bcm, u16 offset, u16 val)
128 bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_CONTROL, offset);
129 mmiowb();
130 bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_DATA, val);
133 void bcm43xx_phy_calibrate(struct bcm43xx_private *bcm)
135 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
136 unsigned long flags;
138 bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* Dummy read. */
139 if (phy->calibrated)
140 return;
141 if (phy->type == BCM43xx_PHYTYPE_G && phy->rev == 1) {
142 /* We do not want to be preempted while calibrating
143 * the hardware.
145 local_irq_save(flags);
147 bcm43xx_wireless_core_reset(bcm, 0);
148 bcm43xx_phy_initg(bcm);
149 bcm43xx_wireless_core_reset(bcm, 1);
151 local_irq_restore(flags);
153 phy->calibrated = 1;
156 /* Connect the PHY
157 * http://bcm-specs.sipsolutions.net/SetPHY
159 int bcm43xx_phy_connect(struct bcm43xx_private *bcm, int connect)
161 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
162 u32 flags;
164 if (bcm->current_core->rev < 5)
165 goto out;
167 flags = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
168 if (connect) {
169 if (!(flags & 0x00010000))
170 return -ENODEV;
171 flags = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
172 flags |= (0x800 << 18);
173 bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, flags);
174 } else {
175 if (!(flags & 0x00020000))
176 return -ENODEV;
177 flags = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
178 flags &= ~(0x800 << 18);
179 bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, flags);
181 out:
182 phy->connected = connect;
183 if (connect)
184 dprintk(KERN_INFO PFX "PHY connected\n");
185 else
186 dprintk(KERN_INFO PFX "PHY disconnected\n");
188 return 0;
191 /* intialize B PHY power control
192 * as described in http://bcm-specs.sipsolutions.net/InitPowerControl
194 static void bcm43xx_phy_init_pctl(struct bcm43xx_private *bcm)
196 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
197 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
198 u16 saved_batt = 0, saved_ratt = 0, saved_txctl1 = 0;
199 int must_reset_txpower = 0;
201 assert(phy->type != BCM43xx_PHYTYPE_A);
202 if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM) &&
203 (bcm->board_type == 0x0416))
204 return;
206 bcm43xx_write16(bcm, 0x03E6, bcm43xx_read16(bcm, 0x03E6) & 0xFFDF);
207 bcm43xx_phy_write(bcm, 0x0028, 0x8018);
209 if (phy->type == BCM43xx_PHYTYPE_G) {
210 if (!phy->connected)
211 return;
212 bcm43xx_phy_write(bcm, 0x047A, 0xC111);
214 if (phy->savedpctlreg != 0xFFFF)
215 return;
217 if (phy->type == BCM43xx_PHYTYPE_B &&
218 phy->rev >= 2 &&
219 radio->version == 0x2050) {
220 bcm43xx_radio_write16(bcm, 0x0076,
221 bcm43xx_radio_read16(bcm, 0x0076) | 0x0084);
222 } else {
223 saved_batt = radio->baseband_atten;
224 saved_ratt = radio->radio_atten;
225 saved_txctl1 = radio->txctl1;
226 if ((radio->revision >= 6) && (radio->revision <= 8)
227 && /*FIXME: incomplete specs for 5 < revision < 9 */ 0)
228 bcm43xx_radio_set_txpower_bg(bcm, 0xB, 0x1F, 0);
229 else
230 bcm43xx_radio_set_txpower_bg(bcm, 0xB, 9, 0);
231 must_reset_txpower = 1;
233 bcm43xx_dummy_transmission(bcm);
235 phy->savedpctlreg = bcm43xx_phy_read(bcm, BCM43xx_PHY_G_PCTL);
237 if (must_reset_txpower)
238 bcm43xx_radio_set_txpower_bg(bcm, saved_batt, saved_ratt, saved_txctl1);
239 else
240 bcm43xx_radio_write16(bcm, 0x0076, bcm43xx_radio_read16(bcm, 0x0076) & 0xFF7B);
241 bcm43xx_radio_clear_tssi(bcm);
244 static void bcm43xx_phy_agcsetup(struct bcm43xx_private *bcm)
246 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
247 u16 offset = 0x0000;
249 if (phy->rev == 1)
250 offset = 0x4C00;
252 bcm43xx_ilt_write(bcm, offset, 0x00FE);
253 bcm43xx_ilt_write(bcm, offset + 1, 0x000D);
254 bcm43xx_ilt_write(bcm, offset + 2, 0x0013);
255 bcm43xx_ilt_write(bcm, offset + 3, 0x0019);
257 if (phy->rev == 1) {
258 bcm43xx_ilt_write(bcm, 0x1800, 0x2710);
259 bcm43xx_ilt_write(bcm, 0x1801, 0x9B83);
260 bcm43xx_ilt_write(bcm, 0x1802, 0x9B83);
261 bcm43xx_ilt_write(bcm, 0x1803, 0x0F8D);
262 bcm43xx_phy_write(bcm, 0x0455, 0x0004);
265 bcm43xx_phy_write(bcm, 0x04A5, (bcm43xx_phy_read(bcm, 0x04A5) & 0x00FF) | 0x5700);
266 bcm43xx_phy_write(bcm, 0x041A, (bcm43xx_phy_read(bcm, 0x041A) & 0xFF80) | 0x000F);
267 bcm43xx_phy_write(bcm, 0x041A, (bcm43xx_phy_read(bcm, 0x041A) & 0xC07F) | 0x2B80);
268 bcm43xx_phy_write(bcm, 0x048C, (bcm43xx_phy_read(bcm, 0x048C) & 0xF0FF) | 0x0300);
270 bcm43xx_radio_write16(bcm, 0x007A, bcm43xx_radio_read16(bcm, 0x007A) | 0x0008);
272 bcm43xx_phy_write(bcm, 0x04A0, (bcm43xx_phy_read(bcm, 0x04A0) & 0xFFF0) | 0x0008);
273 bcm43xx_phy_write(bcm, 0x04A1, (bcm43xx_phy_read(bcm, 0x04A1) & 0xF0FF) | 0x0600);
274 bcm43xx_phy_write(bcm, 0x04A2, (bcm43xx_phy_read(bcm, 0x04A2) & 0xF0FF) | 0x0700);
275 bcm43xx_phy_write(bcm, 0x04A0, (bcm43xx_phy_read(bcm, 0x04A0) & 0xF0FF) | 0x0100);
277 if (phy->rev == 1)
278 bcm43xx_phy_write(bcm, 0x04A2, (bcm43xx_phy_read(bcm, 0x04A2) & 0xFFF0) | 0x0007);
280 bcm43xx_phy_write(bcm, 0x0488, (bcm43xx_phy_read(bcm, 0x0488) & 0xFF00) | 0x001C);
281 bcm43xx_phy_write(bcm, 0x0488, (bcm43xx_phy_read(bcm, 0x0488) & 0xC0FF) | 0x0200);
282 bcm43xx_phy_write(bcm, 0x0496, (bcm43xx_phy_read(bcm, 0x0496) & 0xFF00) | 0x001C);
283 bcm43xx_phy_write(bcm, 0x0489, (bcm43xx_phy_read(bcm, 0x0489) & 0xFF00) | 0x0020);
284 bcm43xx_phy_write(bcm, 0x0489, (bcm43xx_phy_read(bcm, 0x0489) & 0xC0FF) | 0x0200);
285 bcm43xx_phy_write(bcm, 0x0482, (bcm43xx_phy_read(bcm, 0x0482) & 0xFF00) | 0x002E);
286 bcm43xx_phy_write(bcm, 0x0496, (bcm43xx_phy_read(bcm, 0x0496) & 0x00FF) | 0x1A00);
287 bcm43xx_phy_write(bcm, 0x0481, (bcm43xx_phy_read(bcm, 0x0481) & 0xFF00) | 0x0028);
288 bcm43xx_phy_write(bcm, 0x0481, (bcm43xx_phy_read(bcm, 0x0481) & 0x00FF) | 0x2C00);
290 if (phy->rev == 1) {
291 bcm43xx_phy_write(bcm, 0x0430, 0x092B);
292 bcm43xx_phy_write(bcm, 0x041B, (bcm43xx_phy_read(bcm, 0x041B) & 0xFFE1) | 0x0002);
293 } else {
294 bcm43xx_phy_write(bcm, 0x041B, bcm43xx_phy_read(bcm, 0x041B) & 0xFFE1);
295 bcm43xx_phy_write(bcm, 0x041F, 0x287A);
296 bcm43xx_phy_write(bcm, 0x0420, (bcm43xx_phy_read(bcm, 0x0420) & 0xFFF0) | 0x0004);
299 if (phy->rev > 2) {
300 bcm43xx_phy_write(bcm, 0x0422, 0x287A);
301 bcm43xx_phy_write(bcm, 0x0420, (bcm43xx_phy_read(bcm, 0x0420) & 0x0FFF) | 0x3000);
304 bcm43xx_phy_write(bcm, 0x04A8, (bcm43xx_phy_read(bcm, 0x04A8) & 0x8080) | 0x7874);
305 bcm43xx_phy_write(bcm, 0x048E, 0x1C00);
307 if (phy->rev == 1) {
308 bcm43xx_phy_write(bcm, 0x04AB, (bcm43xx_phy_read(bcm, 0x04AB) & 0xF0FF) | 0x0600);
309 bcm43xx_phy_write(bcm, 0x048B, 0x005E);
310 bcm43xx_phy_write(bcm, 0x048C, (bcm43xx_phy_read(bcm, 0x048C) & 0xFF00) | 0x001E);
311 bcm43xx_phy_write(bcm, 0x048D, 0x0002);
314 bcm43xx_ilt_write(bcm, offset + 0x0800, 0);
315 bcm43xx_ilt_write(bcm, offset + 0x0801, 7);
316 bcm43xx_ilt_write(bcm, offset + 0x0802, 16);
317 bcm43xx_ilt_write(bcm, offset + 0x0803, 28);
320 static void bcm43xx_phy_setupg(struct bcm43xx_private *bcm)
322 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
323 u16 i;
325 assert(phy->type == BCM43xx_PHYTYPE_G);
326 if (phy->rev == 1) {
327 bcm43xx_phy_write(bcm, 0x0406, 0x4F19);
328 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS,
329 (bcm43xx_phy_read(bcm, BCM43xx_PHY_G_CRS) & 0xFC3F) | 0x0340);
330 bcm43xx_phy_write(bcm, 0x042C, 0x005A);
331 bcm43xx_phy_write(bcm, 0x0427, 0x001A);
333 for (i = 0; i < BCM43xx_ILT_FINEFREQG_SIZE; i++)
334 bcm43xx_ilt_write(bcm, 0x5800 + i, bcm43xx_ilt_finefreqg[i]);
335 for (i = 0; i < BCM43xx_ILT_NOISEG1_SIZE; i++)
336 bcm43xx_ilt_write(bcm, 0x1800 + i, bcm43xx_ilt_noiseg1[i]);
337 for (i = 0; i < BCM43xx_ILT_ROTOR_SIZE; i++)
338 bcm43xx_ilt_write(bcm, 0x2000 + i, bcm43xx_ilt_rotor[i]);
339 } else {
340 /* nrssi values are signed 6-bit values. Not sure why we write 0x7654 here... */
341 bcm43xx_nrssi_hw_write(bcm, 0xBA98, (s16)0x7654);
343 if (phy->rev == 2) {
344 bcm43xx_phy_write(bcm, 0x04C0, 0x1861);
345 bcm43xx_phy_write(bcm, 0x04C1, 0x0271);
346 } else if (phy->rev > 2) {
347 bcm43xx_phy_write(bcm, 0x04C0, 0x0098);
348 bcm43xx_phy_write(bcm, 0x04C1, 0x0070);
349 bcm43xx_phy_write(bcm, 0x04C9, 0x0080);
351 bcm43xx_phy_write(bcm, 0x042B, bcm43xx_phy_read(bcm, 0x042B) | 0x800);
353 for (i = 0; i < 64; i++)
354 bcm43xx_ilt_write(bcm, 0x4000 + i, i);
355 for (i = 0; i < BCM43xx_ILT_NOISEG2_SIZE; i++)
356 bcm43xx_ilt_write(bcm, 0x1800 + i, bcm43xx_ilt_noiseg2[i]);
359 if (phy->rev <= 2)
360 for (i = 0; i < BCM43xx_ILT_NOISESCALEG_SIZE; i++)
361 bcm43xx_ilt_write(bcm, 0x1400 + i, bcm43xx_ilt_noisescaleg1[i]);
362 else if ((phy->rev == 7) && (bcm43xx_phy_read(bcm, 0x0449) & 0x0200))
363 for (i = 0; i < BCM43xx_ILT_NOISESCALEG_SIZE; i++)
364 bcm43xx_ilt_write(bcm, 0x1400 + i, bcm43xx_ilt_noisescaleg3[i]);
365 else
366 for (i = 0; i < BCM43xx_ILT_NOISESCALEG_SIZE; i++)
367 bcm43xx_ilt_write(bcm, 0x1400 + i, bcm43xx_ilt_noisescaleg2[i]);
369 if (phy->rev == 2)
370 for (i = 0; i < BCM43xx_ILT_SIGMASQR_SIZE; i++)
371 bcm43xx_ilt_write(bcm, 0x5000 + i, bcm43xx_ilt_sigmasqr1[i]);
372 else if ((phy->rev > 2) && (phy->rev <= 7))
373 for (i = 0; i < BCM43xx_ILT_SIGMASQR_SIZE; i++)
374 bcm43xx_ilt_write(bcm, 0x5000 + i, bcm43xx_ilt_sigmasqr2[i]);
376 if (phy->rev == 1) {
377 for (i = 0; i < BCM43xx_ILT_RETARD_SIZE; i++)
378 bcm43xx_ilt_write(bcm, 0x2400 + i, bcm43xx_ilt_retard[i]);
379 for (i = 0; i < 4; i++) {
380 bcm43xx_ilt_write(bcm, 0x5404 + i, 0x0020);
381 bcm43xx_ilt_write(bcm, 0x5408 + i, 0x0020);
382 bcm43xx_ilt_write(bcm, 0x540C + i, 0x0020);
383 bcm43xx_ilt_write(bcm, 0x5410 + i, 0x0020);
385 bcm43xx_phy_agcsetup(bcm);
387 if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM) &&
388 (bcm->board_type == 0x0416) &&
389 (bcm->board_revision == 0x0017))
390 return;
392 bcm43xx_ilt_write(bcm, 0x5001, 0x0002);
393 bcm43xx_ilt_write(bcm, 0x5002, 0x0001);
394 } else {
395 for (i = 0; i <= 0x2F; i++)
396 bcm43xx_ilt_write(bcm, 0x1000 + i, 0x0820);
397 bcm43xx_phy_agcsetup(bcm);
398 bcm43xx_phy_read(bcm, 0x0400); /* dummy read */
399 bcm43xx_phy_write(bcm, 0x0403, 0x1000);
400 bcm43xx_ilt_write(bcm, 0x3C02, 0x000F);
401 bcm43xx_ilt_write(bcm, 0x3C03, 0x0014);
403 if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM) &&
404 (bcm->board_type == 0x0416) &&
405 (bcm->board_revision == 0x0017))
406 return;
408 bcm43xx_ilt_write(bcm, 0x0401, 0x0002);
409 bcm43xx_ilt_write(bcm, 0x0402, 0x0001);
413 /* Initialize the noisescaletable for APHY */
414 static void bcm43xx_phy_init_noisescaletbl(struct bcm43xx_private *bcm)
416 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
417 int i;
419 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_CTRL, 0x1400);
420 for (i = 0; i < 12; i++) {
421 if (phy->rev == 2)
422 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x6767);
423 else
424 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x2323);
426 if (phy->rev == 2)
427 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x6700);
428 else
429 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x2300);
430 for (i = 0; i < 11; i++) {
431 if (phy->rev == 2)
432 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x6767);
433 else
434 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x2323);
436 if (phy->rev == 2)
437 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x0067);
438 else
439 bcm43xx_phy_write(bcm, BCM43xx_PHY_ILT_A_DATA1, 0x0023);
442 static void bcm43xx_phy_setupa(struct bcm43xx_private *bcm)
444 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
445 u16 i;
447 assert(phy->type == BCM43xx_PHYTYPE_A);
448 switch (phy->rev) {
449 case 2:
450 bcm43xx_phy_write(bcm, 0x008E, 0x3800);
451 bcm43xx_phy_write(bcm, 0x0035, 0x03FF);
452 bcm43xx_phy_write(bcm, 0x0036, 0x0400);
454 bcm43xx_ilt_write(bcm, 0x3807, 0x0051);
456 bcm43xx_phy_write(bcm, 0x001C, 0x0FF9);
457 bcm43xx_phy_write(bcm, 0x0020, bcm43xx_phy_read(bcm, 0x0020) & 0xFF0F);
458 bcm43xx_ilt_write(bcm, 0x3C0C, 0x07BF);
459 bcm43xx_radio_write16(bcm, 0x0002, 0x07BF);
461 bcm43xx_phy_write(bcm, 0x0024, 0x4680);
462 bcm43xx_phy_write(bcm, 0x0020, 0x0003);
463 bcm43xx_phy_write(bcm, 0x001D, 0x0F40);
464 bcm43xx_phy_write(bcm, 0x001F, 0x1C00);
466 bcm43xx_phy_write(bcm, 0x002A, (bcm43xx_phy_read(bcm, 0x002A) & 0x00FF) | 0x0400);
467 bcm43xx_phy_write(bcm, 0x002B, bcm43xx_phy_read(bcm, 0x002B) & 0xFBFF);
468 bcm43xx_phy_write(bcm, 0x008E, 0x58C1);
470 bcm43xx_ilt_write(bcm, 0x0803, 0x000F);
471 bcm43xx_ilt_write(bcm, 0x0804, 0x001F);
472 bcm43xx_ilt_write(bcm, 0x0805, 0x002A);
473 bcm43xx_ilt_write(bcm, 0x0805, 0x0030);
474 bcm43xx_ilt_write(bcm, 0x0807, 0x003A);
476 bcm43xx_ilt_write(bcm, 0x0000, 0x0013);
477 bcm43xx_ilt_write(bcm, 0x0001, 0x0013);
478 bcm43xx_ilt_write(bcm, 0x0002, 0x0013);
479 bcm43xx_ilt_write(bcm, 0x0003, 0x0013);
480 bcm43xx_ilt_write(bcm, 0x0004, 0x0015);
481 bcm43xx_ilt_write(bcm, 0x0005, 0x0015);
482 bcm43xx_ilt_write(bcm, 0x0006, 0x0019);
484 bcm43xx_ilt_write(bcm, 0x0404, 0x0003);
485 bcm43xx_ilt_write(bcm, 0x0405, 0x0003);
486 bcm43xx_ilt_write(bcm, 0x0406, 0x0007);
488 for (i = 0; i < 16; i++)
489 bcm43xx_ilt_write(bcm, 0x4000 + i, (0x8 + i) & 0x000F);
491 bcm43xx_ilt_write(bcm, 0x3003, 0x1044);
492 bcm43xx_ilt_write(bcm, 0x3004, 0x7201);
493 bcm43xx_ilt_write(bcm, 0x3006, 0x0040);
494 bcm43xx_ilt_write(bcm, 0x3001, (bcm43xx_ilt_read(bcm, 0x3001) & 0x0010) | 0x0008);
496 for (i = 0; i < BCM43xx_ILT_FINEFREQA_SIZE; i++)
497 bcm43xx_ilt_write(bcm, 0x5800 + i, bcm43xx_ilt_finefreqa[i]);
498 for (i = 0; i < BCM43xx_ILT_NOISEA2_SIZE; i++)
499 bcm43xx_ilt_write(bcm, 0x1800 + i, bcm43xx_ilt_noisea2[i]);
500 for (i = 0; i < BCM43xx_ILT_ROTOR_SIZE; i++)
501 bcm43xx_ilt_write(bcm, 0x2000 + i, bcm43xx_ilt_rotor[i]);
502 bcm43xx_phy_init_noisescaletbl(bcm);
503 for (i = 0; i < BCM43xx_ILT_RETARD_SIZE; i++)
504 bcm43xx_ilt_write(bcm, 0x2400 + i, bcm43xx_ilt_retard[i]);
505 break;
506 case 3:
507 for (i = 0; i < 64; i++)
508 bcm43xx_ilt_write(bcm, 0x4000 + i, i);
510 bcm43xx_ilt_write(bcm, 0x3807, 0x0051);
512 bcm43xx_phy_write(bcm, 0x001C, 0x0FF9);
513 bcm43xx_phy_write(bcm, 0x0020, bcm43xx_phy_read(bcm, 0x0020) & 0xFF0F);
514 bcm43xx_radio_write16(bcm, 0x0002, 0x07BF);
516 bcm43xx_phy_write(bcm, 0x0024, 0x4680);
517 bcm43xx_phy_write(bcm, 0x0020, 0x0003);
518 bcm43xx_phy_write(bcm, 0x001D, 0x0F40);
519 bcm43xx_phy_write(bcm, 0x001F, 0x1C00);
520 bcm43xx_phy_write(bcm, 0x002A, (bcm43xx_phy_read(bcm, 0x002A) & 0x00FF) | 0x0400);
522 bcm43xx_ilt_write(bcm, 0x3001, (bcm43xx_ilt_read(bcm, 0x3001) & 0x0010) | 0x0008);
523 for (i = 0; i < BCM43xx_ILT_NOISEA3_SIZE; i++)
524 bcm43xx_ilt_write(bcm, 0x1800 + i, bcm43xx_ilt_noisea3[i]);
525 bcm43xx_phy_init_noisescaletbl(bcm);
526 for (i = 0; i < BCM43xx_ILT_SIGMASQR_SIZE; i++)
527 bcm43xx_ilt_write(bcm, 0x5000 + i, bcm43xx_ilt_sigmasqr1[i]);
529 bcm43xx_phy_write(bcm, 0x0003, 0x1808);
531 bcm43xx_ilt_write(bcm, 0x0803, 0x000F);
532 bcm43xx_ilt_write(bcm, 0x0804, 0x001F);
533 bcm43xx_ilt_write(bcm, 0x0805, 0x002A);
534 bcm43xx_ilt_write(bcm, 0x0805, 0x0030);
535 bcm43xx_ilt_write(bcm, 0x0807, 0x003A);
537 bcm43xx_ilt_write(bcm, 0x0000, 0x0013);
538 bcm43xx_ilt_write(bcm, 0x0001, 0x0013);
539 bcm43xx_ilt_write(bcm, 0x0002, 0x0013);
540 bcm43xx_ilt_write(bcm, 0x0003, 0x0013);
541 bcm43xx_ilt_write(bcm, 0x0004, 0x0015);
542 bcm43xx_ilt_write(bcm, 0x0005, 0x0015);
543 bcm43xx_ilt_write(bcm, 0x0006, 0x0019);
545 bcm43xx_ilt_write(bcm, 0x0404, 0x0003);
546 bcm43xx_ilt_write(bcm, 0x0405, 0x0003);
547 bcm43xx_ilt_write(bcm, 0x0406, 0x0007);
549 bcm43xx_ilt_write(bcm, 0x3C02, 0x000F);
550 bcm43xx_ilt_write(bcm, 0x3C03, 0x0014);
551 break;
552 default:
553 assert(0);
557 /* Initialize APHY. This is also called for the GPHY in some cases. */
558 static void bcm43xx_phy_inita(struct bcm43xx_private *bcm)
560 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
561 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
562 u16 tval;
564 if (phy->type == BCM43xx_PHYTYPE_A) {
565 bcm43xx_phy_setupa(bcm);
566 } else {
567 bcm43xx_phy_setupg(bcm);
568 if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
569 bcm43xx_phy_write(bcm, 0x046E, 0x03CF);
570 return;
573 bcm43xx_phy_write(bcm, BCM43xx_PHY_A_CRS,
574 (bcm43xx_phy_read(bcm, BCM43xx_PHY_A_CRS) & 0xF83C) | 0x0340);
575 bcm43xx_phy_write(bcm, 0x0034, 0x0001);
577 TODO();//TODO: RSSI AGC
578 bcm43xx_phy_write(bcm, BCM43xx_PHY_A_CRS,
579 bcm43xx_phy_read(bcm, BCM43xx_PHY_A_CRS) | (1 << 14));
580 bcm43xx_radio_init2060(bcm);
582 if ((bcm->board_vendor == PCI_VENDOR_ID_BROADCOM)
583 && ((bcm->board_type == 0x0416) || (bcm->board_type == 0x040A))) {
584 if (radio->lofcal == 0xFFFF) {
585 TODO();//TODO: LOF Cal
586 bcm43xx_radio_set_tx_iq(bcm);
587 } else
588 bcm43xx_radio_write16(bcm, 0x001E, radio->lofcal);
591 bcm43xx_phy_write(bcm, 0x007A, 0xF111);
593 if (phy->savedpctlreg == 0xFFFF) {
594 bcm43xx_radio_write16(bcm, 0x0019, 0x0000);
595 bcm43xx_radio_write16(bcm, 0x0017, 0x0020);
597 tval = bcm43xx_ilt_read(bcm, 0x3001);
598 if (phy->rev == 1) {
599 bcm43xx_ilt_write(bcm, 0x3001,
600 (bcm43xx_ilt_read(bcm, 0x3001) & 0xFF87)
601 | 0x0058);
602 } else {
603 bcm43xx_ilt_write(bcm, 0x3001,
604 (bcm43xx_ilt_read(bcm, 0x3001) & 0xFFC3)
605 | 0x002C);
607 bcm43xx_dummy_transmission(bcm);
608 phy->savedpctlreg = bcm43xx_phy_read(bcm, BCM43xx_PHY_A_PCTL);
609 bcm43xx_ilt_write(bcm, 0x3001, tval);
611 bcm43xx_radio_set_txpower_a(bcm, 0x0018);
613 bcm43xx_radio_clear_tssi(bcm);
616 static void bcm43xx_phy_initb2(struct bcm43xx_private *bcm)
618 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
619 u16 offset, val;
621 bcm43xx_write16(bcm, 0x03EC, 0x3F22);
622 bcm43xx_phy_write(bcm, 0x0020, 0x301C);
623 bcm43xx_phy_write(bcm, 0x0026, 0x0000);
624 bcm43xx_phy_write(bcm, 0x0030, 0x00C6);
625 bcm43xx_phy_write(bcm, 0x0088, 0x3E00);
626 val = 0x3C3D;
627 for (offset = 0x0089; offset < 0x00A7; offset++) {
628 bcm43xx_phy_write(bcm, offset, val);
629 val -= 0x0202;
631 bcm43xx_phy_write(bcm, 0x03E4, 0x3000);
632 if (radio->channel == 0xFF)
633 bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
634 else
635 bcm43xx_radio_selectchannel(bcm, radio->channel, 0);
636 if (radio->version != 0x2050) {
637 bcm43xx_radio_write16(bcm, 0x0075, 0x0080);
638 bcm43xx_radio_write16(bcm, 0x0079, 0x0081);
640 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
641 bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
642 if (radio->version == 0x2050) {
643 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
644 bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
645 bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
646 bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
647 bcm43xx_radio_write16(bcm, 0x007A, 0x000F);
648 bcm43xx_phy_write(bcm, 0x0038, 0x0677);
649 bcm43xx_radio_init2050(bcm);
651 bcm43xx_phy_write(bcm, 0x0014, 0x0080);
652 bcm43xx_phy_write(bcm, 0x0032, 0x00CA);
653 bcm43xx_phy_write(bcm, 0x0032, 0x00CC);
654 bcm43xx_phy_write(bcm, 0x0035, 0x07C2);
655 bcm43xx_phy_lo_b_measure(bcm);
656 bcm43xx_phy_write(bcm, 0x0026, 0xCC00);
657 if (radio->version != 0x2050)
658 bcm43xx_phy_write(bcm, 0x0026, 0xCE00);
659 bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x1000);
660 bcm43xx_phy_write(bcm, 0x002A, 0x88A3);
661 if (radio->version != 0x2050)
662 bcm43xx_phy_write(bcm, 0x002A, 0x88C2);
663 bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
664 bcm43xx_phy_init_pctl(bcm);
667 static void bcm43xx_phy_initb4(struct bcm43xx_private *bcm)
669 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
670 u16 offset, val;
672 bcm43xx_write16(bcm, 0x03EC, 0x3F22);
673 bcm43xx_phy_write(bcm, 0x0020, 0x301C);
674 bcm43xx_phy_write(bcm, 0x0026, 0x0000);
675 bcm43xx_phy_write(bcm, 0x0030, 0x00C6);
676 bcm43xx_phy_write(bcm, 0x0088, 0x3E00);
677 val = 0x3C3D;
678 for (offset = 0x0089; offset < 0x00A7; offset++) {
679 bcm43xx_phy_write(bcm, offset, val);
680 val -= 0x0202;
682 bcm43xx_phy_write(bcm, 0x03E4, 0x3000);
683 if (radio->channel == 0xFF)
684 bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
685 else
686 bcm43xx_radio_selectchannel(bcm, radio->channel, 0);
687 if (radio->version != 0x2050) {
688 bcm43xx_radio_write16(bcm, 0x0075, 0x0080);
689 bcm43xx_radio_write16(bcm, 0x0079, 0x0081);
691 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
692 bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
693 if (radio->version == 0x2050) {
694 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
695 bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
696 bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
697 bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
698 bcm43xx_radio_write16(bcm, 0x007A, 0x000F);
699 bcm43xx_phy_write(bcm, 0x0038, 0x0677);
700 bcm43xx_radio_init2050(bcm);
702 bcm43xx_phy_write(bcm, 0x0014, 0x0080);
703 bcm43xx_phy_write(bcm, 0x0032, 0x00CA);
704 if (radio->version == 0x2050)
705 bcm43xx_phy_write(bcm, 0x0032, 0x00E0);
706 bcm43xx_phy_write(bcm, 0x0035, 0x07C2);
708 bcm43xx_phy_lo_b_measure(bcm);
710 bcm43xx_phy_write(bcm, 0x0026, 0xCC00);
711 if (radio->version == 0x2050)
712 bcm43xx_phy_write(bcm, 0x0026, 0xCE00);
713 bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x1100);
714 bcm43xx_phy_write(bcm, 0x002A, 0x88A3);
715 if (radio->version == 0x2050)
716 bcm43xx_phy_write(bcm, 0x002A, 0x88C2);
717 bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
718 if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
719 bcm43xx_calc_nrssi_slope(bcm);
720 bcm43xx_calc_nrssi_threshold(bcm);
722 bcm43xx_phy_init_pctl(bcm);
725 static void bcm43xx_phy_initb5(struct bcm43xx_private *bcm)
727 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
728 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
729 u16 offset;
731 if (phy->version == 1 &&
732 radio->version == 0x2050) {
733 bcm43xx_radio_write16(bcm, 0x007A,
734 bcm43xx_radio_read16(bcm, 0x007A)
735 | 0x0050);
737 if ((bcm->board_vendor != PCI_VENDOR_ID_BROADCOM) &&
738 (bcm->board_type != 0x0416)) {
739 for (offset = 0x00A8 ; offset < 0x00C7; offset++) {
740 bcm43xx_phy_write(bcm, offset,
741 (bcm43xx_phy_read(bcm, offset) + 0x2020)
742 & 0x3F3F);
745 bcm43xx_phy_write(bcm, 0x0035,
746 (bcm43xx_phy_read(bcm, 0x0035) & 0xF0FF)
747 | 0x0700);
748 if (radio->version == 0x2050)
749 bcm43xx_phy_write(bcm, 0x0038, 0x0667);
751 if (phy->connected) {
752 if (radio->version == 0x2050) {
753 bcm43xx_radio_write16(bcm, 0x007A,
754 bcm43xx_radio_read16(bcm, 0x007A)
755 | 0x0020);
756 bcm43xx_radio_write16(bcm, 0x0051,
757 bcm43xx_radio_read16(bcm, 0x0051)
758 | 0x0004);
760 bcm43xx_write16(bcm, BCM43xx_MMIO_PHY_RADIO, 0x0000);
762 bcm43xx_phy_write(bcm, 0x0802, bcm43xx_phy_read(bcm, 0x0802) | 0x0100);
763 bcm43xx_phy_write(bcm, 0x042B, bcm43xx_phy_read(bcm, 0x042B) | 0x2000);
765 bcm43xx_phy_write(bcm, 0x001C, 0x186A);
767 bcm43xx_phy_write(bcm, 0x0013, (bcm43xx_phy_read(bcm, 0x0013) & 0x00FF) | 0x1900);
768 bcm43xx_phy_write(bcm, 0x0035, (bcm43xx_phy_read(bcm, 0x0035) & 0xFFC0) | 0x0064);
769 bcm43xx_phy_write(bcm, 0x005D, (bcm43xx_phy_read(bcm, 0x005D) & 0xFF80) | 0x000A);
772 if (bcm->bad_frames_preempt) {
773 bcm43xx_phy_write(bcm, BCM43xx_PHY_RADIO_BITFIELD,
774 bcm43xx_phy_read(bcm, BCM43xx_PHY_RADIO_BITFIELD) | (1 << 11));
777 if (phy->version == 1 && radio->version == 0x2050) {
778 bcm43xx_phy_write(bcm, 0x0026, 0xCE00);
779 bcm43xx_phy_write(bcm, 0x0021, 0x3763);
780 bcm43xx_phy_write(bcm, 0x0022, 0x1BC3);
781 bcm43xx_phy_write(bcm, 0x0023, 0x06F9);
782 bcm43xx_phy_write(bcm, 0x0024, 0x037E);
783 } else
784 bcm43xx_phy_write(bcm, 0x0026, 0xCC00);
785 bcm43xx_phy_write(bcm, 0x0030, 0x00C6);
786 bcm43xx_write16(bcm, 0x03EC, 0x3F22);
788 if (phy->version == 1 && radio->version == 0x2050)
789 bcm43xx_phy_write(bcm, 0x0020, 0x3E1C);
790 else
791 bcm43xx_phy_write(bcm, 0x0020, 0x301C);
793 if (phy->version == 0)
794 bcm43xx_write16(bcm, 0x03E4, 0x3000);
796 /* Force to channel 7, even if not supported. */
797 bcm43xx_radio_selectchannel(bcm, 7, 0);
799 if (radio->version != 0x2050) {
800 bcm43xx_radio_write16(bcm, 0x0075, 0x0080);
801 bcm43xx_radio_write16(bcm, 0x0079, 0x0081);
804 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
805 bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
807 if (radio->version == 0x2050) {
808 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
809 bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
812 bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
813 bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
815 bcm43xx_radio_write16(bcm, 0x007A, bcm43xx_radio_read16(bcm, 0x007A) | 0x0007);
817 bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
819 bcm43xx_phy_write(bcm, 0x0014, 0x0080);
820 bcm43xx_phy_write(bcm, 0x0032, 0x00CA);
821 bcm43xx_phy_write(bcm, 0x88A3, 0x002A);
823 bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
825 if (radio->version == 0x2050)
826 bcm43xx_radio_write16(bcm, 0x005D, 0x000D);
828 bcm43xx_write16(bcm, 0x03E4, (bcm43xx_read16(bcm, 0x03E4) & 0xFFC0) | 0x0004);
831 static void bcm43xx_phy_initb6(struct bcm43xx_private *bcm)
833 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
834 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
835 u16 offset, val;
837 bcm43xx_phy_write(bcm, 0x003E, 0x817A);
838 bcm43xx_radio_write16(bcm, 0x007A,
839 (bcm43xx_radio_read16(bcm, 0x007A) | 0x0058));
840 if ((radio->manufact == 0x17F) &&
841 (radio->version == 0x2050) &&
842 (radio->revision == 3 ||
843 radio->revision == 4 ||
844 radio->revision == 5)) {
845 bcm43xx_radio_write16(bcm, 0x0051, 0x001F);
846 bcm43xx_radio_write16(bcm, 0x0052, 0x0040);
847 bcm43xx_radio_write16(bcm, 0x0053, 0x005B);
848 bcm43xx_radio_write16(bcm, 0x0054, 0x0098);
849 bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
850 bcm43xx_radio_write16(bcm, 0x005B, 0x0088);
851 bcm43xx_radio_write16(bcm, 0x005D, 0x0088);
852 bcm43xx_radio_write16(bcm, 0x005E, 0x0088);
853 bcm43xx_radio_write16(bcm, 0x007D, 0x0088);
855 if ((radio->manufact == 0x17F) &&
856 (radio->version == 0x2050) &&
857 (radio->revision == 6)) {
858 bcm43xx_radio_write16(bcm, 0x0051, 0x0000);
859 bcm43xx_radio_write16(bcm, 0x0052, 0x0040);
860 bcm43xx_radio_write16(bcm, 0x0053, 0x00B7);
861 bcm43xx_radio_write16(bcm, 0x0054, 0x0098);
862 bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
863 bcm43xx_radio_write16(bcm, 0x005B, 0x008B);
864 bcm43xx_radio_write16(bcm, 0x005C, 0x00B5);
865 bcm43xx_radio_write16(bcm, 0x005D, 0x0088);
866 bcm43xx_radio_write16(bcm, 0x005E, 0x0088);
867 bcm43xx_radio_write16(bcm, 0x007D, 0x0088);
868 bcm43xx_radio_write16(bcm, 0x007C, 0x0001);
869 bcm43xx_radio_write16(bcm, 0x007E, 0x0008);
871 if ((radio->manufact == 0x17F) &&
872 (radio->version == 0x2050) &&
873 (radio->revision == 7)) {
874 bcm43xx_radio_write16(bcm, 0x0051, 0x0000);
875 bcm43xx_radio_write16(bcm, 0x0052, 0x0040);
876 bcm43xx_radio_write16(bcm, 0x0053, 0x00B7);
877 bcm43xx_radio_write16(bcm, 0x0054, 0x0098);
878 bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
879 bcm43xx_radio_write16(bcm, 0x005B, 0x00A8);
880 bcm43xx_radio_write16(bcm, 0x005C, 0x0075);
881 bcm43xx_radio_write16(bcm, 0x005D, 0x00F5);
882 bcm43xx_radio_write16(bcm, 0x005E, 0x00B8);
883 bcm43xx_radio_write16(bcm, 0x007D, 0x00E8);
884 bcm43xx_radio_write16(bcm, 0x007C, 0x0001);
885 bcm43xx_radio_write16(bcm, 0x007E, 0x0008);
886 bcm43xx_radio_write16(bcm, 0x007B, 0x0000);
888 if ((radio->manufact == 0x17F) &&
889 (radio->version == 0x2050) &&
890 (radio->revision == 8)) {
891 bcm43xx_radio_write16(bcm, 0x0051, 0x0000);
892 bcm43xx_radio_write16(bcm, 0x0052, 0x0040);
893 bcm43xx_radio_write16(bcm, 0x0053, 0x00B7);
894 bcm43xx_radio_write16(bcm, 0x0054, 0x0098);
895 bcm43xx_radio_write16(bcm, 0x005A, 0x0088);
896 bcm43xx_radio_write16(bcm, 0x005B, 0x006B);
897 bcm43xx_radio_write16(bcm, 0x005C, 0x000F);
898 if (bcm->sprom.boardflags & 0x8000) {
899 bcm43xx_radio_write16(bcm, 0x005D, 0x00FA);
900 bcm43xx_radio_write16(bcm, 0x005E, 0x00D8);
901 } else {
902 bcm43xx_radio_write16(bcm, 0x005D, 0x00F5);
903 bcm43xx_radio_write16(bcm, 0x005E, 0x00B8);
905 bcm43xx_radio_write16(bcm, 0x0073, 0x0003);
906 bcm43xx_radio_write16(bcm, 0x007D, 0x00A8);
907 bcm43xx_radio_write16(bcm, 0x007C, 0x0001);
908 bcm43xx_radio_write16(bcm, 0x007E, 0x0008);
910 val = 0x1E1F;
911 for (offset = 0x0088; offset < 0x0098; offset++) {
912 bcm43xx_phy_write(bcm, offset, val);
913 val -= 0x0202;
915 val = 0x3E3F;
916 for (offset = 0x0098; offset < 0x00A8; offset++) {
917 bcm43xx_phy_write(bcm, offset, val);
918 val -= 0x0202;
920 val = 0x2120;
921 for (offset = 0x00A8; offset < 0x00C8; offset++) {
922 bcm43xx_phy_write(bcm, offset, (val & 0x3F3F));
923 val += 0x0202;
925 if (phy->type == BCM43xx_PHYTYPE_G) {
926 bcm43xx_radio_write16(bcm, 0x007A,
927 bcm43xx_radio_read16(bcm, 0x007A) | 0x0020);
928 bcm43xx_radio_write16(bcm, 0x0051,
929 bcm43xx_radio_read16(bcm, 0x0051) | 0x0004);
930 bcm43xx_phy_write(bcm, 0x0802,
931 bcm43xx_phy_read(bcm, 0x0802) | 0x0100);
932 bcm43xx_phy_write(bcm, 0x042B,
933 bcm43xx_phy_read(bcm, 0x042B) | 0x2000);
936 /* Force to channel 7, even if not supported. */
937 bcm43xx_radio_selectchannel(bcm, 7, 0);
939 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
940 bcm43xx_radio_write16(bcm, 0x0050, 0x0023);
941 udelay(40);
942 bcm43xx_radio_write16(bcm, 0x007C, (bcm43xx_radio_read16(bcm, 0x007C) | 0x0002));
943 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
944 if (radio->manufact == 0x17F &&
945 radio->version == 0x2050 &&
946 radio->revision <= 2) {
947 bcm43xx_radio_write16(bcm, 0x0050, 0x0020);
948 bcm43xx_radio_write16(bcm, 0x005A, 0x0070);
949 bcm43xx_radio_write16(bcm, 0x005B, 0x007B);
950 bcm43xx_radio_write16(bcm, 0x005C, 0x00B0);
952 bcm43xx_radio_write16(bcm, 0x007A,
953 (bcm43xx_radio_read16(bcm, 0x007A) & 0x00F8) | 0x0007);
955 bcm43xx_radio_selectchannel(bcm, BCM43xx_RADIO_DEFAULT_CHANNEL_BG, 0);
957 bcm43xx_phy_write(bcm, 0x0014, 0x0200);
958 if (radio->version == 0x2050){
959 if (radio->revision == 3 ||
960 radio->revision == 4 ||
961 radio->revision == 5)
962 bcm43xx_phy_write(bcm, 0x002A, 0x8AC0);
963 else
964 bcm43xx_phy_write(bcm, 0x002A, 0x88C2);
966 bcm43xx_phy_write(bcm, 0x0038, 0x0668);
967 bcm43xx_radio_set_txpower_bg(bcm, 0xFFFF, 0xFFFF, 0xFFFF);
968 if (radio->version == 0x2050) {
969 if (radio->revision == 3 ||
970 radio->revision == 4 ||
971 radio->revision == 5)
972 bcm43xx_phy_write(bcm, 0x005D, bcm43xx_phy_read(bcm, 0x005D) | 0x0003);
973 else if (radio->revision <= 2)
974 bcm43xx_radio_write16(bcm, 0x005D, 0x000D);
977 if (phy->rev == 4)
978 bcm43xx_phy_write(bcm, 0x0002, (bcm43xx_phy_read(bcm, 0x0002) & 0xFFC0) | 0x0004);
979 else
980 bcm43xx_write16(bcm, 0x03E4, 0x0009);
981 if (phy->type == BCM43xx_PHYTYPE_B) {
982 bcm43xx_write16(bcm, 0x03E6, 0x8140);
983 bcm43xx_phy_write(bcm, 0x0016, 0x0410);
984 bcm43xx_phy_write(bcm, 0x0017, 0x0820);
985 bcm43xx_phy_write(bcm, 0x0062, 0x0007);
986 (void) bcm43xx_radio_calibrationvalue(bcm);
987 bcm43xx_phy_lo_b_measure(bcm);
988 if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
989 bcm43xx_calc_nrssi_slope(bcm);
990 bcm43xx_calc_nrssi_threshold(bcm);
992 bcm43xx_phy_init_pctl(bcm);
993 } else
994 bcm43xx_write16(bcm, 0x03E6, 0x0);
997 static void bcm43xx_phy_initg(struct bcm43xx_private *bcm)
999 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1000 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1001 u16 tmp;
1003 if (phy->rev == 1)
1004 bcm43xx_phy_initb5(bcm);
1005 else if (phy->rev >= 2 && phy->rev <= 7)
1006 bcm43xx_phy_initb6(bcm);
1007 if (phy->rev >= 2 || phy->connected)
1008 bcm43xx_phy_inita(bcm);
1010 if (phy->rev >= 2) {
1011 bcm43xx_phy_write(bcm, 0x0814, 0x0000);
1012 bcm43xx_phy_write(bcm, 0x0815, 0x0000);
1013 if (phy->rev == 2)
1014 bcm43xx_phy_write(bcm, 0x0811, 0x0000);
1015 else if (phy->rev >= 3)
1016 bcm43xx_phy_write(bcm, 0x0811, 0x0400);
1017 bcm43xx_phy_write(bcm, 0x0015, 0x00C0);
1018 tmp = bcm43xx_phy_read(bcm, 0x0400) & 0xFF;
1019 if (tmp == 3) {
1020 bcm43xx_phy_write(bcm, 0x04C2, 0x1816);
1021 bcm43xx_phy_write(bcm, 0x04C3, 0x8606);
1022 } else if (tmp == 4 || tmp == 5) {
1023 bcm43xx_phy_write(bcm, 0x04C2, 0x1816);
1024 bcm43xx_phy_write(bcm, 0x04C3, 0x8006);
1025 bcm43xx_phy_write(bcm, 0x04CC, (bcm43xx_phy_read(bcm, 0x04CC)
1026 & 0x00FF) | 0x1F00);
1029 if (radio->revision <= 3 && phy->connected)
1030 bcm43xx_phy_write(bcm, 0x047E, 0x0078);
1031 if (radio->revision >= 6 && radio->revision <= 8) {
1032 bcm43xx_phy_write(bcm, 0x0801, bcm43xx_phy_read(bcm, 0x0801) | 0x0080);
1033 bcm43xx_phy_write(bcm, 0x043E, bcm43xx_phy_read(bcm, 0x043E) | 0x0004);
1035 if (radio->initval == 0xFFFF) {
1036 radio->initval = bcm43xx_radio_init2050(bcm);
1037 bcm43xx_phy_lo_g_measure(bcm);
1038 } else {
1039 bcm43xx_radio_write16(bcm, 0x0078, radio->initval);
1040 bcm43xx_radio_write16(bcm, 0x0052,
1041 (bcm43xx_radio_read16(bcm, 0x0052) & 0xFFF0)
1042 | radio->txctl2);
1045 if (phy->connected) {
1046 bcm43xx_phy_lo_adjust(bcm, 0);
1047 bcm43xx_phy_write(bcm, 0x080F, 0x8078);
1049 if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
1050 bcm43xx_phy_write(bcm, 0x002E, 0x807F);
1051 else
1052 bcm43xx_phy_write(bcm, 0x002E, 0x8075);
1054 if (phy->rev < 2)
1055 bcm43xx_phy_write(bcm, 0x002F, 0x0101);
1056 else
1057 bcm43xx_phy_write(bcm, 0x002F, 0x0202);
1060 if (!(bcm->sprom.boardflags & BCM43xx_BFL_RSSI)) {
1061 /* The specs state to update the NRSSI LT with
1062 * the value 0x7FFFFFFF here. I think that is some weird
1063 * compiler optimization in the original driver.
1064 * Essentially, what we do here is resetting all NRSSI LT
1065 * entries to -32 (see the limit_value() in nrssi_hw_update())
1067 bcm43xx_nrssi_hw_update(bcm, 0xFFFF);
1068 bcm43xx_calc_nrssi_threshold(bcm);
1069 } else if (phy->connected) {
1070 if (radio->nrssi[0] == -1000) {
1071 assert(radio->nrssi[1] == -1000);
1072 bcm43xx_calc_nrssi_slope(bcm);
1073 } else
1074 bcm43xx_calc_nrssi_threshold(bcm);
1076 bcm43xx_phy_init_pctl(bcm);
1079 static u16 bcm43xx_phy_lo_b_r15_loop(struct bcm43xx_private *bcm)
1081 int i;
1082 u16 ret = 0;
1084 for (i = 0; i < 10; i++){
1085 bcm43xx_phy_write(bcm, 0x0015, 0xAFA0);
1086 udelay(1);
1087 bcm43xx_phy_write(bcm, 0x0015, 0xEFA0);
1088 udelay(10);
1089 bcm43xx_phy_write(bcm, 0x0015, 0xFFA0);
1090 udelay(40);
1091 ret += bcm43xx_phy_read(bcm, 0x002C);
1094 return ret;
1097 void bcm43xx_phy_lo_b_measure(struct bcm43xx_private *bcm)
1099 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1100 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1101 u16 regstack[12] = { 0 };
1102 u16 mls;
1103 u16 fval;
1104 int i, j;
1106 regstack[0] = bcm43xx_phy_read(bcm, 0x0015);
1107 regstack[1] = bcm43xx_radio_read16(bcm, 0x0052) & 0xFFF0;
1109 if (radio->version == 0x2053) {
1110 regstack[2] = bcm43xx_phy_read(bcm, 0x000A);
1111 regstack[3] = bcm43xx_phy_read(bcm, 0x002A);
1112 regstack[4] = bcm43xx_phy_read(bcm, 0x0035);
1113 regstack[5] = bcm43xx_phy_read(bcm, 0x0003);
1114 regstack[6] = bcm43xx_phy_read(bcm, 0x0001);
1115 regstack[7] = bcm43xx_phy_read(bcm, 0x0030);
1117 regstack[8] = bcm43xx_radio_read16(bcm, 0x0043);
1118 regstack[9] = bcm43xx_radio_read16(bcm, 0x007A);
1119 regstack[10] = bcm43xx_read16(bcm, 0x03EC);
1120 regstack[11] = bcm43xx_radio_read16(bcm, 0x0052) & 0x00F0;
1122 bcm43xx_phy_write(bcm, 0x0030, 0x00FF);
1123 bcm43xx_write16(bcm, 0x03EC, 0x3F3F);
1124 bcm43xx_phy_write(bcm, 0x0035, regstack[4] & 0xFF7F);
1125 bcm43xx_radio_write16(bcm, 0x007A, regstack[9] & 0xFFF0);
1127 bcm43xx_phy_write(bcm, 0x0015, 0xB000);
1128 bcm43xx_phy_write(bcm, 0x002B, 0x0004);
1130 if (radio->version == 0x2053) {
1131 bcm43xx_phy_write(bcm, 0x002B, 0x0203);
1132 bcm43xx_phy_write(bcm, 0x002A, 0x08A3);
1135 phy->minlowsig[0] = 0xFFFF;
1137 for (i = 0; i < 4; i++) {
1138 bcm43xx_radio_write16(bcm, 0x0052, regstack[1] | i);
1139 bcm43xx_phy_lo_b_r15_loop(bcm);
1141 for (i = 0; i < 10; i++) {
1142 bcm43xx_radio_write16(bcm, 0x0052, regstack[1] | i);
1143 mls = bcm43xx_phy_lo_b_r15_loop(bcm) / 10;
1144 if (mls < phy->minlowsig[0]) {
1145 phy->minlowsig[0] = mls;
1146 phy->minlowsigpos[0] = i;
1149 bcm43xx_radio_write16(bcm, 0x0052, regstack[1] | phy->minlowsigpos[0]);
1151 phy->minlowsig[1] = 0xFFFF;
1153 for (i = -4; i < 5; i += 2) {
1154 for (j = -4; j < 5; j += 2) {
1155 if (j < 0)
1156 fval = (0x0100 * i) + j + 0x0100;
1157 else
1158 fval = (0x0100 * i) + j;
1159 bcm43xx_phy_write(bcm, 0x002F, fval);
1160 mls = bcm43xx_phy_lo_b_r15_loop(bcm) / 10;
1161 if (mls < phy->minlowsig[1]) {
1162 phy->minlowsig[1] = mls;
1163 phy->minlowsigpos[1] = fval;
1167 phy->minlowsigpos[1] += 0x0101;
1169 bcm43xx_phy_write(bcm, 0x002F, phy->minlowsigpos[1]);
1170 if (radio->version == 0x2053) {
1171 bcm43xx_phy_write(bcm, 0x000A, regstack[2]);
1172 bcm43xx_phy_write(bcm, 0x002A, regstack[3]);
1173 bcm43xx_phy_write(bcm, 0x0035, regstack[4]);
1174 bcm43xx_phy_write(bcm, 0x0003, regstack[5]);
1175 bcm43xx_phy_write(bcm, 0x0001, regstack[6]);
1176 bcm43xx_phy_write(bcm, 0x0030, regstack[7]);
1178 bcm43xx_radio_write16(bcm, 0x0043, regstack[8]);
1179 bcm43xx_radio_write16(bcm, 0x007A, regstack[9]);
1181 bcm43xx_radio_write16(bcm, 0x0052,
1182 (bcm43xx_radio_read16(bcm, 0x0052) & 0x000F)
1183 | regstack[11]);
1185 bcm43xx_write16(bcm, 0x03EC, regstack[10]);
1187 bcm43xx_phy_write(bcm, 0x0015, regstack[0]);
1190 static inline
1191 u16 bcm43xx_phy_lo_g_deviation_subval(struct bcm43xx_private *bcm, u16 control)
1193 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1195 if (phy->connected) {
1196 bcm43xx_phy_write(bcm, 0x15, 0xE300);
1197 control <<= 8;
1198 bcm43xx_phy_write(bcm, 0x0812, control | 0x00B0);
1199 udelay(5);
1200 bcm43xx_phy_write(bcm, 0x0812, control | 0x00B2);
1201 udelay(2);
1202 bcm43xx_phy_write(bcm, 0x0812, control | 0x00B3);
1203 udelay(4);
1204 bcm43xx_phy_write(bcm, 0x0015, 0xF300);
1205 udelay(8);
1206 } else {
1207 bcm43xx_phy_write(bcm, 0x0015, control | 0xEFA0);
1208 udelay(2);
1209 bcm43xx_phy_write(bcm, 0x0015, control | 0xEFE0);
1210 udelay(4);
1211 bcm43xx_phy_write(bcm, 0x0015, control | 0xFFE0);
1212 udelay(8);
1215 return bcm43xx_phy_read(bcm, 0x002D);
1218 static u32 bcm43xx_phy_lo_g_singledeviation(struct bcm43xx_private *bcm, u16 control)
1220 int i;
1221 u32 ret = 0;
1223 for (i = 0; i < 8; i++)
1224 ret += bcm43xx_phy_lo_g_deviation_subval(bcm, control);
1226 return ret;
1229 /* Write the LocalOscillator CONTROL */
1230 static inline
1231 void bcm43xx_lo_write(struct bcm43xx_private *bcm,
1232 struct bcm43xx_lopair *pair)
1234 u16 value;
1236 value = (u8)(pair->low);
1237 value |= ((u8)(pair->high)) << 8;
1239 #ifdef CONFIG_BCM43XX_DEBUG
1240 /* Sanity check. */
1241 if (pair->low < -8 || pair->low > 8 ||
1242 pair->high < -8 || pair->high > 8) {
1243 printk(KERN_WARNING PFX
1244 "WARNING: Writing invalid LOpair "
1245 "(low: %d, high: %d, index: %lu)\n",
1246 pair->low, pair->high,
1247 (unsigned long)(pair - bcm43xx_current_phy(bcm)->_lo_pairs));
1248 dump_stack();
1250 #endif
1252 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_LO_CONTROL, value);
1255 static inline
1256 struct bcm43xx_lopair * bcm43xx_find_lopair(struct bcm43xx_private *bcm,
1257 u16 baseband_attenuation,
1258 u16 radio_attenuation,
1259 u16 tx)
1261 static const u8 dict[10] = { 11, 10, 11, 12, 13, 12, 13, 12, 13, 12 };
1262 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1264 if (baseband_attenuation > 6)
1265 baseband_attenuation = 6;
1266 assert(radio_attenuation < 10);
1268 if (tx == 3) {
1269 return bcm43xx_get_lopair(phy,
1270 radio_attenuation,
1271 baseband_attenuation);
1273 return bcm43xx_get_lopair(phy, dict[radio_attenuation], baseband_attenuation);
1276 static inline
1277 struct bcm43xx_lopair * bcm43xx_current_lopair(struct bcm43xx_private *bcm)
1279 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1281 return bcm43xx_find_lopair(bcm,
1282 radio->baseband_atten,
1283 radio->radio_atten,
1284 radio->txctl1);
1287 /* Adjust B/G LO */
1288 void bcm43xx_phy_lo_adjust(struct bcm43xx_private *bcm, int fixed)
1290 struct bcm43xx_lopair *pair;
1292 if (fixed) {
1293 /* Use fixed values. Only for initialization. */
1294 pair = bcm43xx_find_lopair(bcm, 2, 3, 0);
1295 } else
1296 pair = bcm43xx_current_lopair(bcm);
1297 bcm43xx_lo_write(bcm, pair);
1300 static void bcm43xx_phy_lo_g_measure_txctl2(struct bcm43xx_private *bcm)
1302 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1303 u16 txctl2 = 0, i;
1304 u32 smallest, tmp;
1306 bcm43xx_radio_write16(bcm, 0x0052, 0x0000);
1307 udelay(10);
1308 smallest = bcm43xx_phy_lo_g_singledeviation(bcm, 0);
1309 for (i = 0; i < 16; i++) {
1310 bcm43xx_radio_write16(bcm, 0x0052, i);
1311 udelay(10);
1312 tmp = bcm43xx_phy_lo_g_singledeviation(bcm, 0);
1313 if (tmp < smallest) {
1314 smallest = tmp;
1315 txctl2 = i;
1318 radio->txctl2 = txctl2;
1321 static
1322 void bcm43xx_phy_lo_g_state(struct bcm43xx_private *bcm,
1323 const struct bcm43xx_lopair *in_pair,
1324 struct bcm43xx_lopair *out_pair,
1325 u16 r27)
1327 static const struct bcm43xx_lopair transitions[8] = {
1328 { .high = 1, .low = 1, },
1329 { .high = 1, .low = 0, },
1330 { .high = 1, .low = -1, },
1331 { .high = 0, .low = -1, },
1332 { .high = -1, .low = -1, },
1333 { .high = -1, .low = 0, },
1334 { .high = -1, .low = 1, },
1335 { .high = 0, .low = 1, },
1337 struct bcm43xx_lopair lowest_transition = {
1338 .high = in_pair->high,
1339 .low = in_pair->low,
1341 struct bcm43xx_lopair tmp_pair;
1342 struct bcm43xx_lopair transition;
1343 int i = 12;
1344 int state = 0;
1345 int found_lower;
1346 int j, begin, end;
1347 u32 lowest_deviation;
1348 u32 tmp;
1350 /* Note that in_pair and out_pair can point to the same pair. Be careful. */
1352 bcm43xx_lo_write(bcm, &lowest_transition);
1353 lowest_deviation = bcm43xx_phy_lo_g_singledeviation(bcm, r27);
1354 do {
1355 found_lower = 0;
1356 assert(state >= 0 && state <= 8);
1357 if (state == 0) {
1358 begin = 1;
1359 end = 8;
1360 } else if (state % 2 == 0) {
1361 begin = state - 1;
1362 end = state + 1;
1363 } else {
1364 begin = state - 2;
1365 end = state + 2;
1367 if (begin < 1)
1368 begin += 8;
1369 if (end > 8)
1370 end -= 8;
1372 j = begin;
1373 tmp_pair.high = lowest_transition.high;
1374 tmp_pair.low = lowest_transition.low;
1375 while (1) {
1376 assert(j >= 1 && j <= 8);
1377 transition.high = tmp_pair.high + transitions[j - 1].high;
1378 transition.low = tmp_pair.low + transitions[j - 1].low;
1379 if ((abs(transition.low) < 9) && (abs(transition.high) < 9)) {
1380 bcm43xx_lo_write(bcm, &transition);
1381 tmp = bcm43xx_phy_lo_g_singledeviation(bcm, r27);
1382 if (tmp < lowest_deviation) {
1383 lowest_deviation = tmp;
1384 state = j;
1385 found_lower = 1;
1387 lowest_transition.high = transition.high;
1388 lowest_transition.low = transition.low;
1391 if (j == end)
1392 break;
1393 if (j == 8)
1394 j = 1;
1395 else
1396 j++;
1398 } while (i-- && found_lower);
1400 out_pair->high = lowest_transition.high;
1401 out_pair->low = lowest_transition.low;
1404 /* Set the baseband attenuation value on chip. */
1405 void bcm43xx_phy_set_baseband_attenuation(struct bcm43xx_private *bcm,
1406 u16 baseband_attenuation)
1408 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1409 u16 value;
1411 if (phy->version == 0) {
1412 value = (bcm43xx_read16(bcm, 0x03E6) & 0xFFF0);
1413 value |= (baseband_attenuation & 0x000F);
1414 bcm43xx_write16(bcm, 0x03E6, value);
1415 return;
1418 if (phy->version > 1) {
1419 value = bcm43xx_phy_read(bcm, 0x0060) & ~0x003C;
1420 value |= (baseband_attenuation << 2) & 0x003C;
1421 } else {
1422 value = bcm43xx_phy_read(bcm, 0x0060) & ~0x0078;
1423 value |= (baseband_attenuation << 3) & 0x0078;
1425 bcm43xx_phy_write(bcm, 0x0060, value);
1428 /* http://bcm-specs.sipsolutions.net/LocalOscillator/Measure */
1429 void bcm43xx_phy_lo_g_measure(struct bcm43xx_private *bcm)
1431 static const u8 pairorder[10] = { 3, 1, 5, 7, 9, 2, 0, 4, 6, 8 };
1432 const int is_initializing = bcm43xx_is_initializing(bcm);
1433 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1434 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1435 u16 h, i, oldi = 0, j;
1436 struct bcm43xx_lopair control;
1437 struct bcm43xx_lopair *tmp_control;
1438 u16 tmp;
1439 u16 regstack[16] = { 0 };
1440 u8 oldchannel;
1442 //XXX: What are these?
1443 u8 r27 = 0, r31;
1445 oldchannel = radio->channel;
1446 /* Setup */
1447 if (phy->connected) {
1448 regstack[0] = bcm43xx_phy_read(bcm, BCM43xx_PHY_G_CRS);
1449 regstack[1] = bcm43xx_phy_read(bcm, 0x0802);
1450 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0] & 0x7FFF);
1451 bcm43xx_phy_write(bcm, 0x0802, regstack[1] & 0xFFFC);
1453 regstack[3] = bcm43xx_read16(bcm, 0x03E2);
1454 bcm43xx_write16(bcm, 0x03E2, regstack[3] | 0x8000);
1455 regstack[4] = bcm43xx_read16(bcm, BCM43xx_MMIO_CHANNEL_EXT);
1456 regstack[5] = bcm43xx_phy_read(bcm, 0x15);
1457 regstack[6] = bcm43xx_phy_read(bcm, 0x2A);
1458 regstack[7] = bcm43xx_phy_read(bcm, 0x35);
1459 regstack[8] = bcm43xx_phy_read(bcm, 0x60);
1460 regstack[9] = bcm43xx_radio_read16(bcm, 0x43);
1461 regstack[10] = bcm43xx_radio_read16(bcm, 0x7A);
1462 regstack[11] = bcm43xx_radio_read16(bcm, 0x52);
1463 if (phy->connected) {
1464 regstack[12] = bcm43xx_phy_read(bcm, 0x0811);
1465 regstack[13] = bcm43xx_phy_read(bcm, 0x0812);
1466 regstack[14] = bcm43xx_phy_read(bcm, 0x0814);
1467 regstack[15] = bcm43xx_phy_read(bcm, 0x0815);
1469 bcm43xx_radio_selectchannel(bcm, 6, 0);
1470 if (phy->connected) {
1471 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0] & 0x7FFF);
1472 bcm43xx_phy_write(bcm, 0x0802, regstack[1] & 0xFFFC);
1473 bcm43xx_dummy_transmission(bcm);
1475 bcm43xx_radio_write16(bcm, 0x0043, 0x0006);
1477 bcm43xx_phy_set_baseband_attenuation(bcm, 2);
1479 bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x0000);
1480 bcm43xx_phy_write(bcm, 0x002E, 0x007F);
1481 bcm43xx_phy_write(bcm, 0x080F, 0x0078);
1482 bcm43xx_phy_write(bcm, 0x0035, regstack[7] & ~(1 << 7));
1483 bcm43xx_radio_write16(bcm, 0x007A, regstack[10] & 0xFFF0);
1484 bcm43xx_phy_write(bcm, 0x002B, 0x0203);
1485 bcm43xx_phy_write(bcm, 0x002A, 0x08A3);
1486 if (phy->connected) {
1487 bcm43xx_phy_write(bcm, 0x0814, regstack[14] | 0x0003);
1488 bcm43xx_phy_write(bcm, 0x0815, regstack[15] & 0xFFFC);
1489 bcm43xx_phy_write(bcm, 0x0811, 0x01B3);
1490 bcm43xx_phy_write(bcm, 0x0812, 0x00B2);
1492 if (is_initializing)
1493 bcm43xx_phy_lo_g_measure_txctl2(bcm);
1494 bcm43xx_phy_write(bcm, 0x080F, 0x8078);
1496 /* Measure */
1497 control.low = 0;
1498 control.high = 0;
1499 for (h = 0; h < 10; h++) {
1500 /* Loop over each possible RadioAttenuation (0-9) */
1501 i = pairorder[h];
1502 if (is_initializing) {
1503 if (i == 3) {
1504 control.low = 0;
1505 control.high = 0;
1506 } else if (((i % 2 == 1) && (oldi % 2 == 1)) ||
1507 ((i % 2 == 0) && (oldi % 2 == 0))) {
1508 tmp_control = bcm43xx_get_lopair(phy, oldi, 0);
1509 memcpy(&control, tmp_control, sizeof(control));
1510 } else {
1511 tmp_control = bcm43xx_get_lopair(phy, 3, 0);
1512 memcpy(&control, tmp_control, sizeof(control));
1515 /* Loop over each possible BasebandAttenuation/2 */
1516 for (j = 0; j < 4; j++) {
1517 if (is_initializing) {
1518 tmp = i * 2 + j;
1519 r27 = 0;
1520 r31 = 0;
1521 if (tmp > 14) {
1522 r31 = 1;
1523 if (tmp > 17)
1524 r27 = 1;
1525 if (tmp > 19)
1526 r27 = 2;
1528 } else {
1529 tmp_control = bcm43xx_get_lopair(phy, i, j * 2);
1530 if (!tmp_control->used)
1531 continue;
1532 memcpy(&control, tmp_control, sizeof(control));
1533 r27 = 3;
1534 r31 = 0;
1536 bcm43xx_radio_write16(bcm, 0x43, i);
1537 bcm43xx_radio_write16(bcm, 0x52, radio->txctl2);
1538 udelay(10);
1540 bcm43xx_phy_set_baseband_attenuation(bcm, j * 2);
1542 tmp = (regstack[10] & 0xFFF0);
1543 if (r31)
1544 tmp |= 0x0008;
1545 bcm43xx_radio_write16(bcm, 0x007A, tmp);
1547 tmp_control = bcm43xx_get_lopair(phy, i, j * 2);
1548 bcm43xx_phy_lo_g_state(bcm, &control, tmp_control, r27);
1550 oldi = i;
1552 /* Loop over each possible RadioAttenuation (10-13) */
1553 for (i = 10; i < 14; i++) {
1554 /* Loop over each possible BasebandAttenuation/2 */
1555 for (j = 0; j < 4; j++) {
1556 if (is_initializing) {
1557 tmp_control = bcm43xx_get_lopair(phy, i - 9, j * 2);
1558 memcpy(&control, tmp_control, sizeof(control));
1559 tmp = (i - 9) * 2 + j - 5;//FIXME: This is wrong, as the following if statement can never trigger.
1560 r27 = 0;
1561 r31 = 0;
1562 if (tmp > 14) {
1563 r31 = 1;
1564 if (tmp > 17)
1565 r27 = 1;
1566 if (tmp > 19)
1567 r27 = 2;
1569 } else {
1570 tmp_control = bcm43xx_get_lopair(phy, i - 9, j * 2);
1571 if (!tmp_control->used)
1572 continue;
1573 memcpy(&control, tmp_control, sizeof(control));
1574 r27 = 3;
1575 r31 = 0;
1577 bcm43xx_radio_write16(bcm, 0x43, i - 9);
1578 bcm43xx_radio_write16(bcm, 0x52,
1579 radio->txctl2
1580 | (3/*txctl1*/ << 4));//FIXME: shouldn't txctl1 be zero here and 3 in the loop above?
1581 udelay(10);
1583 bcm43xx_phy_set_baseband_attenuation(bcm, j * 2);
1585 tmp = (regstack[10] & 0xFFF0);
1586 if (r31)
1587 tmp |= 0x0008;
1588 bcm43xx_radio_write16(bcm, 0x7A, tmp);
1590 tmp_control = bcm43xx_get_lopair(phy, i, j * 2);
1591 bcm43xx_phy_lo_g_state(bcm, &control, tmp_control, r27);
1595 /* Restoration */
1596 if (phy->connected) {
1597 bcm43xx_phy_write(bcm, 0x0015, 0xE300);
1598 bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA0);
1599 udelay(5);
1600 bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA2);
1601 udelay(2);
1602 bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA3);
1603 } else
1604 bcm43xx_phy_write(bcm, 0x0015, r27 | 0xEFA0);
1605 bcm43xx_phy_lo_adjust(bcm, is_initializing);
1606 bcm43xx_phy_write(bcm, 0x002E, 0x807F);
1607 if (phy->connected)
1608 bcm43xx_phy_write(bcm, 0x002F, 0x0202);
1609 else
1610 bcm43xx_phy_write(bcm, 0x002F, 0x0101);
1611 bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, regstack[4]);
1612 bcm43xx_phy_write(bcm, 0x0015, regstack[5]);
1613 bcm43xx_phy_write(bcm, 0x002A, regstack[6]);
1614 bcm43xx_phy_write(bcm, 0x0035, regstack[7]);
1615 bcm43xx_phy_write(bcm, 0x0060, regstack[8]);
1616 bcm43xx_radio_write16(bcm, 0x0043, regstack[9]);
1617 bcm43xx_radio_write16(bcm, 0x007A, regstack[10]);
1618 regstack[11] &= 0x00F0;
1619 regstack[11] |= (bcm43xx_radio_read16(bcm, 0x52) & 0x000F);
1620 bcm43xx_radio_write16(bcm, 0x52, regstack[11]);
1621 bcm43xx_write16(bcm, 0x03E2, regstack[3]);
1622 if (phy->connected) {
1623 bcm43xx_phy_write(bcm, 0x0811, regstack[12]);
1624 bcm43xx_phy_write(bcm, 0x0812, regstack[13]);
1625 bcm43xx_phy_write(bcm, 0x0814, regstack[14]);
1626 bcm43xx_phy_write(bcm, 0x0815, regstack[15]);
1627 bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0]);
1628 bcm43xx_phy_write(bcm, 0x0802, regstack[1]);
1630 bcm43xx_radio_selectchannel(bcm, oldchannel, 1);
1632 #ifdef CONFIG_BCM43XX_DEBUG
1634 /* Sanity check for all lopairs. */
1635 for (i = 0; i < BCM43xx_LO_COUNT; i++) {
1636 tmp_control = phy->_lo_pairs + i;
1637 if (tmp_control->low < -8 || tmp_control->low > 8 ||
1638 tmp_control->high < -8 || tmp_control->high > 8) {
1639 printk(KERN_WARNING PFX
1640 "WARNING: Invalid LOpair (low: %d, high: %d, index: %d)\n",
1641 tmp_control->low, tmp_control->high, i);
1645 #endif /* CONFIG_BCM43XX_DEBUG */
1648 static
1649 void bcm43xx_phy_lo_mark_current_used(struct bcm43xx_private *bcm)
1651 struct bcm43xx_lopair *pair;
1653 pair = bcm43xx_current_lopair(bcm);
1654 pair->used = 1;
1657 void bcm43xx_phy_lo_mark_all_unused(struct bcm43xx_private *bcm)
1659 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1660 struct bcm43xx_lopair *pair;
1661 int i;
1663 for (i = 0; i < BCM43xx_LO_COUNT; i++) {
1664 pair = phy->_lo_pairs + i;
1665 pair->used = 0;
1669 /* http://bcm-specs.sipsolutions.net/EstimatePowerOut
1670 * This function converts a TSSI value to dBm in Q5.2
1672 static s8 bcm43xx_phy_estimate_power_out(struct bcm43xx_private *bcm, s8 tssi)
1674 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1675 s8 dbm = 0;
1676 s32 tmp;
1678 tmp = phy->idle_tssi;
1679 tmp += tssi;
1680 tmp -= phy->savedpctlreg;
1682 switch (phy->type) {
1683 case BCM43xx_PHYTYPE_A:
1684 tmp += 0x80;
1685 tmp = limit_value(tmp, 0x00, 0xFF);
1686 dbm = phy->tssi2dbm[tmp];
1687 TODO(); //TODO: There's a FIXME on the specs
1688 break;
1689 case BCM43xx_PHYTYPE_B:
1690 case BCM43xx_PHYTYPE_G:
1691 tmp = limit_value(tmp, 0x00, 0x3F);
1692 dbm = phy->tssi2dbm[tmp];
1693 break;
1694 default:
1695 assert(0);
1698 return dbm;
1701 /* http://bcm-specs.sipsolutions.net/RecalculateTransmissionPower */
1702 void bcm43xx_phy_xmitpower(struct bcm43xx_private *bcm)
1704 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1705 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1707 if (phy->savedpctlreg == 0xFFFF)
1708 return;
1709 if ((bcm->board_type == 0x0416) &&
1710 (bcm->board_vendor == PCI_VENDOR_ID_BROADCOM))
1711 return;
1713 switch (phy->type) {
1714 case BCM43xx_PHYTYPE_A: {
1716 TODO(); //TODO: Nothing for A PHYs yet :-/
1718 break;
1720 case BCM43xx_PHYTYPE_B:
1721 case BCM43xx_PHYTYPE_G: {
1722 u16 tmp;
1723 u16 txpower;
1724 s8 v0, v1, v2, v3;
1725 s8 average;
1726 u8 max_pwr;
1727 s16 desired_pwr, estimated_pwr, pwr_adjust;
1728 s16 radio_att_delta, baseband_att_delta;
1729 s16 radio_attenuation, baseband_attenuation;
1730 unsigned long phylock_flags;
1732 tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0058);
1733 v0 = (s8)(tmp & 0x00FF);
1734 v1 = (s8)((tmp & 0xFF00) >> 8);
1735 tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x005A);
1736 v2 = (s8)(tmp & 0x00FF);
1737 v3 = (s8)((tmp & 0xFF00) >> 8);
1738 tmp = 0;
1740 if (v0 == 0x7F || v1 == 0x7F || v2 == 0x7F || v3 == 0x7F) {
1741 tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0070);
1742 v0 = (s8)(tmp & 0x00FF);
1743 v1 = (s8)((tmp & 0xFF00) >> 8);
1744 tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x0072);
1745 v2 = (s8)(tmp & 0x00FF);
1746 v3 = (s8)((tmp & 0xFF00) >> 8);
1747 if (v0 == 0x7F || v1 == 0x7F || v2 == 0x7F || v3 == 0x7F)
1748 return;
1749 v0 = (v0 + 0x20) & 0x3F;
1750 v1 = (v1 + 0x20) & 0x3F;
1751 v2 = (v2 + 0x20) & 0x3F;
1752 v3 = (v3 + 0x20) & 0x3F;
1753 tmp = 1;
1755 bcm43xx_radio_clear_tssi(bcm);
1757 average = (v0 + v1 + v2 + v3 + 2) / 4;
1759 if (tmp && (bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x005E) & 0x8))
1760 average -= 13;
1762 estimated_pwr = bcm43xx_phy_estimate_power_out(bcm, average);
1764 max_pwr = bcm->sprom.maxpower_bgphy;
1766 if ((bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) &&
1767 (phy->type == BCM43xx_PHYTYPE_G))
1768 max_pwr -= 0x3;
1770 /*TODO:
1771 max_pwr = min(REG - bcm->sprom.antennagain_bgphy - 0x6, max_pwr)
1772 where REG is the max power as per the regulatory domain
1775 desired_pwr = limit_value(radio->txpower_desired, 0, max_pwr);
1776 /* Check if we need to adjust the current power. */
1777 pwr_adjust = desired_pwr - estimated_pwr;
1778 radio_att_delta = -(pwr_adjust + 7) >> 3;
1779 baseband_att_delta = -(pwr_adjust >> 1) - (4 * radio_att_delta);
1780 if ((radio_att_delta == 0) && (baseband_att_delta == 0)) {
1781 bcm43xx_phy_lo_mark_current_used(bcm);
1782 return;
1785 /* Calculate the new attenuation values. */
1786 baseband_attenuation = radio->baseband_atten;
1787 baseband_attenuation += baseband_att_delta;
1788 radio_attenuation = radio->radio_atten;
1789 radio_attenuation += radio_att_delta;
1791 /* Get baseband and radio attenuation values into their permitted ranges.
1792 * baseband 0-11, radio 0-9.
1793 * Radio attenuation affects power level 4 times as much as baseband.
1795 if (radio_attenuation < 0) {
1796 baseband_attenuation -= (4 * -radio_attenuation);
1797 radio_attenuation = 0;
1798 } else if (radio_attenuation > 9) {
1799 baseband_attenuation += (4 * (radio_attenuation - 9));
1800 radio_attenuation = 9;
1801 } else {
1802 while (baseband_attenuation < 0 && radio_attenuation > 0) {
1803 baseband_attenuation += 4;
1804 radio_attenuation--;
1806 while (baseband_attenuation > 11 && radio_attenuation < 9) {
1807 baseband_attenuation -= 4;
1808 radio_attenuation++;
1811 baseband_attenuation = limit_value(baseband_attenuation, 0, 11);
1813 txpower = radio->txctl1;
1814 if ((radio->version == 0x2050) && (radio->revision == 2)) {
1815 if (radio_attenuation <= 1) {
1816 if (txpower == 0) {
1817 txpower = 3;
1818 radio_attenuation += 2;
1819 baseband_attenuation += 2;
1820 } else if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
1821 baseband_attenuation += 4 * (radio_attenuation - 2);
1822 radio_attenuation = 2;
1824 } else if (radio_attenuation > 4 && txpower != 0) {
1825 txpower = 0;
1826 if (baseband_attenuation < 3) {
1827 radio_attenuation -= 3;
1828 baseband_attenuation += 2;
1829 } else {
1830 radio_attenuation -= 2;
1831 baseband_attenuation -= 2;
1835 radio->txctl1 = txpower;
1836 baseband_attenuation = limit_value(baseband_attenuation, 0, 11);
1837 radio_attenuation = limit_value(radio_attenuation, 0, 9);
1839 bcm43xx_phy_lock(bcm, phylock_flags);
1840 bcm43xx_radio_lock(bcm);
1841 bcm43xx_radio_set_txpower_bg(bcm, baseband_attenuation,
1842 radio_attenuation, txpower);
1843 bcm43xx_phy_lo_mark_current_used(bcm);
1844 bcm43xx_radio_unlock(bcm);
1845 bcm43xx_phy_unlock(bcm, phylock_flags);
1846 break;
1848 default:
1849 assert(0);
1853 static inline
1854 s32 bcm43xx_tssi2dbm_ad(s32 num, s32 den)
1856 if (num < 0)
1857 return num/den;
1858 else
1859 return (num+den/2)/den;
1862 static inline
1863 s8 bcm43xx_tssi2dbm_entry(s8 entry [], u8 index, s16 pab0, s16 pab1, s16 pab2)
1865 s32 m1, m2, f = 256, q, delta;
1866 s8 i = 0;
1868 m1 = bcm43xx_tssi2dbm_ad(16 * pab0 + index * pab1, 32);
1869 m2 = max(bcm43xx_tssi2dbm_ad(32768 + index * pab2, 256), 1);
1870 do {
1871 if (i > 15)
1872 return -EINVAL;
1873 q = bcm43xx_tssi2dbm_ad(f * 4096 -
1874 bcm43xx_tssi2dbm_ad(m2 * f, 16) * f, 2048);
1875 delta = abs(q - f);
1876 f = q;
1877 i++;
1878 } while (delta >= 2);
1879 entry[index] = limit_value(bcm43xx_tssi2dbm_ad(m1 * f, 8192), -127, 128);
1880 return 0;
1883 /* http://bcm-specs.sipsolutions.net/TSSI_to_DBM_Table */
1884 int bcm43xx_phy_init_tssi2dbm_table(struct bcm43xx_private *bcm)
1886 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1887 struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1888 s16 pab0, pab1, pab2;
1889 u8 idx;
1890 s8 *dyn_tssi2dbm;
1892 if (phy->type == BCM43xx_PHYTYPE_A) {
1893 pab0 = (s16)(bcm->sprom.pa1b0);
1894 pab1 = (s16)(bcm->sprom.pa1b1);
1895 pab2 = (s16)(bcm->sprom.pa1b2);
1896 } else {
1897 pab0 = (s16)(bcm->sprom.pa0b0);
1898 pab1 = (s16)(bcm->sprom.pa0b1);
1899 pab2 = (s16)(bcm->sprom.pa0b2);
1902 if ((bcm->chip_id == 0x4301) && (radio->version != 0x2050)) {
1903 phy->idle_tssi = 0x34;
1904 phy->tssi2dbm = bcm43xx_tssi2dbm_b_table;
1905 return 0;
1908 if (pab0 != 0 && pab1 != 0 && pab2 != 0 &&
1909 pab0 != -1 && pab1 != -1 && pab2 != -1) {
1910 /* The pabX values are set in SPROM. Use them. */
1911 if (phy->type == BCM43xx_PHYTYPE_A) {
1912 if ((s8)bcm->sprom.idle_tssi_tgt_aphy != 0 &&
1913 (s8)bcm->sprom.idle_tssi_tgt_aphy != -1)
1914 phy->idle_tssi = (s8)(bcm->sprom.idle_tssi_tgt_aphy);
1915 else
1916 phy->idle_tssi = 62;
1917 } else {
1918 if ((s8)bcm->sprom.idle_tssi_tgt_bgphy != 0 &&
1919 (s8)bcm->sprom.idle_tssi_tgt_bgphy != -1)
1920 phy->idle_tssi = (s8)(bcm->sprom.idle_tssi_tgt_bgphy);
1921 else
1922 phy->idle_tssi = 62;
1924 dyn_tssi2dbm = kmalloc(64, GFP_KERNEL);
1925 if (dyn_tssi2dbm == NULL) {
1926 printk(KERN_ERR PFX "Could not allocate memory"
1927 "for tssi2dbm table\n");
1928 return -ENOMEM;
1930 for (idx = 0; idx < 64; idx++)
1931 if (bcm43xx_tssi2dbm_entry(dyn_tssi2dbm, idx, pab0, pab1, pab2)) {
1932 phy->tssi2dbm = NULL;
1933 printk(KERN_ERR PFX "Could not generate "
1934 "tssi2dBm table\n");
1935 return -ENODEV;
1937 phy->tssi2dbm = dyn_tssi2dbm;
1938 phy->dyn_tssi_tbl = 1;
1939 } else {
1940 /* pabX values not set in SPROM. */
1941 switch (phy->type) {
1942 case BCM43xx_PHYTYPE_A:
1943 /* APHY needs a generated table. */
1944 phy->tssi2dbm = NULL;
1945 printk(KERN_ERR PFX "Could not generate tssi2dBm "
1946 "table (wrong SPROM info)!\n");
1947 return -ENODEV;
1948 case BCM43xx_PHYTYPE_B:
1949 phy->idle_tssi = 0x34;
1950 phy->tssi2dbm = bcm43xx_tssi2dbm_b_table;
1951 break;
1952 case BCM43xx_PHYTYPE_G:
1953 phy->idle_tssi = 0x34;
1954 phy->tssi2dbm = bcm43xx_tssi2dbm_g_table;
1955 break;
1959 return 0;
1962 int bcm43xx_phy_init(struct bcm43xx_private *bcm)
1964 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1965 int err = -ENODEV;
1966 unsigned long flags;
1968 /* We do not want to be preempted while calibrating
1969 * the hardware.
1971 local_irq_save(flags);
1973 switch (phy->type) {
1974 case BCM43xx_PHYTYPE_A:
1975 if (phy->rev == 2 || phy->rev == 3) {
1976 bcm43xx_phy_inita(bcm);
1977 err = 0;
1979 break;
1980 case BCM43xx_PHYTYPE_B:
1981 switch (phy->rev) {
1982 case 2:
1983 bcm43xx_phy_initb2(bcm);
1984 err = 0;
1985 break;
1986 case 4:
1987 bcm43xx_phy_initb4(bcm);
1988 err = 0;
1989 break;
1990 case 5:
1991 bcm43xx_phy_initb5(bcm);
1992 err = 0;
1993 break;
1994 case 6:
1995 bcm43xx_phy_initb6(bcm);
1996 err = 0;
1997 break;
1999 break;
2000 case BCM43xx_PHYTYPE_G:
2001 bcm43xx_phy_initg(bcm);
2002 err = 0;
2003 break;
2005 local_irq_restore(flags);
2006 if (err)
2007 printk(KERN_WARNING PFX "Unknown PHYTYPE found!\n");
2009 return err;
2012 void bcm43xx_phy_set_antenna_diversity(struct bcm43xx_private *bcm)
2014 struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
2015 u16 antennadiv;
2016 u16 offset;
2017 u16 value;
2018 u32 ucodeflags;
2020 antennadiv = phy->antenna_diversity;
2022 if (antennadiv == 0xFFFF)
2023 antennadiv = 3;
2024 assert(antennadiv <= 3);
2026 ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
2027 BCM43xx_UCODEFLAGS_OFFSET);
2028 bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
2029 BCM43xx_UCODEFLAGS_OFFSET,
2030 ucodeflags & ~BCM43xx_UCODEFLAG_AUTODIV);
2032 switch (phy->type) {
2033 case BCM43xx_PHYTYPE_A:
2034 case BCM43xx_PHYTYPE_G:
2035 if (phy->type == BCM43xx_PHYTYPE_A)
2036 offset = 0x0000;
2037 else
2038 offset = 0x0400;
2040 if (antennadiv == 2)
2041 value = (3/*automatic*/ << 7);
2042 else
2043 value = (antennadiv << 7);
2044 bcm43xx_phy_write(bcm, offset + 1,
2045 (bcm43xx_phy_read(bcm, offset + 1)
2046 & 0x7E7F) | value);
2048 if (antennadiv >= 2) {
2049 if (antennadiv == 2)
2050 value = (antennadiv << 7);
2051 else
2052 value = (0/*force0*/ << 7);
2053 bcm43xx_phy_write(bcm, offset + 0x2B,
2054 (bcm43xx_phy_read(bcm, offset + 0x2B)
2055 & 0xFEFF) | value);
2058 if (phy->type == BCM43xx_PHYTYPE_G) {
2059 if (antennadiv >= 2)
2060 bcm43xx_phy_write(bcm, 0x048C,
2061 bcm43xx_phy_read(bcm, 0x048C)
2062 | 0x2000);
2063 else
2064 bcm43xx_phy_write(bcm, 0x048C,
2065 bcm43xx_phy_read(bcm, 0x048C)
2066 & ~0x2000);
2067 if (phy->rev >= 2) {
2068 bcm43xx_phy_write(bcm, 0x0461,
2069 bcm43xx_phy_read(bcm, 0x0461)
2070 | 0x0010);
2071 bcm43xx_phy_write(bcm, 0x04AD,
2072 (bcm43xx_phy_read(bcm, 0x04AD)
2073 & 0x00FF) | 0x0015);
2074 if (phy->rev == 2)
2075 bcm43xx_phy_write(bcm, 0x0427, 0x0008);
2076 else
2077 bcm43xx_phy_write(bcm, 0x0427,
2078 (bcm43xx_phy_read(bcm, 0x0427)
2079 & 0x00FF) | 0x0008);
2081 else if (phy->rev >= 6)
2082 bcm43xx_phy_write(bcm, 0x049B, 0x00DC);
2083 } else {
2084 if (phy->rev < 3)
2085 bcm43xx_phy_write(bcm, 0x002B,
2086 (bcm43xx_phy_read(bcm, 0x002B)
2087 & 0x00FF) | 0x0024);
2088 else {
2089 bcm43xx_phy_write(bcm, 0x0061,
2090 bcm43xx_phy_read(bcm, 0x0061)
2091 | 0x0010);
2092 if (phy->rev == 3) {
2093 bcm43xx_phy_write(bcm, 0x0093, 0x001D);
2094 bcm43xx_phy_write(bcm, 0x0027, 0x0008);
2095 } else {
2096 bcm43xx_phy_write(bcm, 0x0093, 0x003A);
2097 bcm43xx_phy_write(bcm, 0x0027,
2098 (bcm43xx_phy_read(bcm, 0x0027)
2099 & 0x00FF) | 0x0008);
2103 break;
2104 case BCM43xx_PHYTYPE_B:
2105 if (bcm->current_core->rev == 2)
2106 value = (3/*automatic*/ << 7);
2107 else
2108 value = (antennadiv << 7);
2109 bcm43xx_phy_write(bcm, 0x03E2,
2110 (bcm43xx_phy_read(bcm, 0x03E2)
2111 & 0xFE7F) | value);
2112 break;
2113 default:
2114 assert(0);
2117 if (antennadiv >= 2) {
2118 ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
2119 BCM43xx_UCODEFLAGS_OFFSET);
2120 bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
2121 BCM43xx_UCODEFLAGS_OFFSET,
2122 ucodeflags | BCM43xx_UCODEFLAG_AUTODIV);
2125 phy->antenna_diversity = antennadiv;