dm: rename __split_bio
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm.c
blob75d710493b7b957f52ec7f058365e8a713f232c9
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <trace/block.h>
26 #define DM_MSG_PREFIX "core"
28 static const char *_name = DM_NAME;
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
33 static DEFINE_SPINLOCK(_minor_lock);
35 * For bio-based dm.
36 * One of these is allocated per bio.
38 struct dm_io {
39 struct mapped_device *md;
40 int error;
41 atomic_t io_count;
42 struct bio *bio;
43 unsigned long start_time;
47 * For bio-based dm.
48 * One of these is allocated per target within a bio. Hopefully
49 * this will be simplified out one day.
51 struct dm_target_io {
52 struct dm_io *io;
53 struct dm_target *ti;
54 union map_info info;
57 DEFINE_TRACE(block_bio_complete);
60 * For request-based dm.
61 * One of these is allocated per request.
63 struct dm_rq_target_io {
64 struct mapped_device *md;
65 struct dm_target *ti;
66 struct request *orig, clone;
67 int error;
68 union map_info info;
72 * For request-based dm.
73 * One of these is allocated per bio.
75 struct dm_rq_clone_bio_info {
76 struct bio *orig;
77 struct request *rq;
80 union map_info *dm_get_mapinfo(struct bio *bio)
82 if (bio && bio->bi_private)
83 return &((struct dm_target_io *)bio->bi_private)->info;
84 return NULL;
87 #define MINOR_ALLOCED ((void *)-1)
90 * Bits for the md->flags field.
92 #define DMF_BLOCK_IO 0
93 #define DMF_SUSPENDED 1
94 #define DMF_FROZEN 2
95 #define DMF_FREEING 3
96 #define DMF_DELETING 4
97 #define DMF_NOFLUSH_SUSPENDING 5
100 * Work processed by per-device workqueue.
102 struct mapped_device {
103 struct rw_semaphore io_lock;
104 struct mutex suspend_lock;
105 spinlock_t pushback_lock;
106 rwlock_t map_lock;
107 atomic_t holders;
108 atomic_t open_count;
110 unsigned long flags;
112 struct request_queue *queue;
113 struct gendisk *disk;
114 char name[16];
116 void *interface_ptr;
119 * A list of ios that arrived while we were suspended.
121 atomic_t pending;
122 wait_queue_head_t wait;
123 struct work_struct work;
124 struct bio_list deferred;
125 struct bio_list pushback;
128 * Processing queue (flush/barriers)
130 struct workqueue_struct *wq;
133 * The current mapping.
135 struct dm_table *map;
138 * io objects are allocated from here.
140 mempool_t *io_pool;
141 mempool_t *tio_pool;
143 struct bio_set *bs;
146 * Event handling.
148 atomic_t event_nr;
149 wait_queue_head_t eventq;
150 atomic_t uevent_seq;
151 struct list_head uevent_list;
152 spinlock_t uevent_lock; /* Protect access to uevent_list */
155 * freeze/thaw support require holding onto a super block
157 struct super_block *frozen_sb;
158 struct block_device *suspended_bdev;
160 /* forced geometry settings */
161 struct hd_geometry geometry;
163 /* sysfs handle */
164 struct kobject kobj;
167 #define MIN_IOS 256
168 static struct kmem_cache *_io_cache;
169 static struct kmem_cache *_tio_cache;
170 static struct kmem_cache *_rq_tio_cache;
171 static struct kmem_cache *_rq_bio_info_cache;
173 static int __init local_init(void)
175 int r = -ENOMEM;
177 /* allocate a slab for the dm_ios */
178 _io_cache = KMEM_CACHE(dm_io, 0);
179 if (!_io_cache)
180 return r;
182 /* allocate a slab for the target ios */
183 _tio_cache = KMEM_CACHE(dm_target_io, 0);
184 if (!_tio_cache)
185 goto out_free_io_cache;
187 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
188 if (!_rq_tio_cache)
189 goto out_free_tio_cache;
191 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
192 if (!_rq_bio_info_cache)
193 goto out_free_rq_tio_cache;
195 r = dm_uevent_init();
196 if (r)
197 goto out_free_rq_bio_info_cache;
199 _major = major;
200 r = register_blkdev(_major, _name);
201 if (r < 0)
202 goto out_uevent_exit;
204 if (!_major)
205 _major = r;
207 return 0;
209 out_uevent_exit:
210 dm_uevent_exit();
211 out_free_rq_bio_info_cache:
212 kmem_cache_destroy(_rq_bio_info_cache);
213 out_free_rq_tio_cache:
214 kmem_cache_destroy(_rq_tio_cache);
215 out_free_tio_cache:
216 kmem_cache_destroy(_tio_cache);
217 out_free_io_cache:
218 kmem_cache_destroy(_io_cache);
220 return r;
223 static void local_exit(void)
225 kmem_cache_destroy(_rq_bio_info_cache);
226 kmem_cache_destroy(_rq_tio_cache);
227 kmem_cache_destroy(_tio_cache);
228 kmem_cache_destroy(_io_cache);
229 unregister_blkdev(_major, _name);
230 dm_uevent_exit();
232 _major = 0;
234 DMINFO("cleaned up");
237 static int (*_inits[])(void) __initdata = {
238 local_init,
239 dm_target_init,
240 dm_linear_init,
241 dm_stripe_init,
242 dm_kcopyd_init,
243 dm_interface_init,
246 static void (*_exits[])(void) = {
247 local_exit,
248 dm_target_exit,
249 dm_linear_exit,
250 dm_stripe_exit,
251 dm_kcopyd_exit,
252 dm_interface_exit,
255 static int __init dm_init(void)
257 const int count = ARRAY_SIZE(_inits);
259 int r, i;
261 for (i = 0; i < count; i++) {
262 r = _inits[i]();
263 if (r)
264 goto bad;
267 return 0;
269 bad:
270 while (i--)
271 _exits[i]();
273 return r;
276 static void __exit dm_exit(void)
278 int i = ARRAY_SIZE(_exits);
280 while (i--)
281 _exits[i]();
285 * Block device functions
287 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
289 struct mapped_device *md;
291 spin_lock(&_minor_lock);
293 md = bdev->bd_disk->private_data;
294 if (!md)
295 goto out;
297 if (test_bit(DMF_FREEING, &md->flags) ||
298 test_bit(DMF_DELETING, &md->flags)) {
299 md = NULL;
300 goto out;
303 dm_get(md);
304 atomic_inc(&md->open_count);
306 out:
307 spin_unlock(&_minor_lock);
309 return md ? 0 : -ENXIO;
312 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
314 struct mapped_device *md = disk->private_data;
315 atomic_dec(&md->open_count);
316 dm_put(md);
317 return 0;
320 int dm_open_count(struct mapped_device *md)
322 return atomic_read(&md->open_count);
326 * Guarantees nothing is using the device before it's deleted.
328 int dm_lock_for_deletion(struct mapped_device *md)
330 int r = 0;
332 spin_lock(&_minor_lock);
334 if (dm_open_count(md))
335 r = -EBUSY;
336 else
337 set_bit(DMF_DELETING, &md->flags);
339 spin_unlock(&_minor_lock);
341 return r;
344 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
346 struct mapped_device *md = bdev->bd_disk->private_data;
348 return dm_get_geometry(md, geo);
351 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
352 unsigned int cmd, unsigned long arg)
354 struct mapped_device *md = bdev->bd_disk->private_data;
355 struct dm_table *map = dm_get_table(md);
356 struct dm_target *tgt;
357 int r = -ENOTTY;
359 if (!map || !dm_table_get_size(map))
360 goto out;
362 /* We only support devices that have a single target */
363 if (dm_table_get_num_targets(map) != 1)
364 goto out;
366 tgt = dm_table_get_target(map, 0);
368 if (dm_suspended(md)) {
369 r = -EAGAIN;
370 goto out;
373 if (tgt->type->ioctl)
374 r = tgt->type->ioctl(tgt, cmd, arg);
376 out:
377 dm_table_put(map);
379 return r;
382 static struct dm_io *alloc_io(struct mapped_device *md)
384 return mempool_alloc(md->io_pool, GFP_NOIO);
387 static void free_io(struct mapped_device *md, struct dm_io *io)
389 mempool_free(io, md->io_pool);
392 static struct dm_target_io *alloc_tio(struct mapped_device *md)
394 return mempool_alloc(md->tio_pool, GFP_NOIO);
397 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
399 mempool_free(tio, md->tio_pool);
402 static void start_io_acct(struct dm_io *io)
404 struct mapped_device *md = io->md;
405 int cpu;
407 io->start_time = jiffies;
409 cpu = part_stat_lock();
410 part_round_stats(cpu, &dm_disk(md)->part0);
411 part_stat_unlock();
412 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
415 static void end_io_acct(struct dm_io *io)
417 struct mapped_device *md = io->md;
418 struct bio *bio = io->bio;
419 unsigned long duration = jiffies - io->start_time;
420 int pending, cpu;
421 int rw = bio_data_dir(bio);
423 cpu = part_stat_lock();
424 part_round_stats(cpu, &dm_disk(md)->part0);
425 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
426 part_stat_unlock();
428 dm_disk(md)->part0.in_flight = pending =
429 atomic_dec_return(&md->pending);
431 /* nudge anyone waiting on suspend queue */
432 if (!pending)
433 wake_up(&md->wait);
437 * Add the bio to the list of deferred io.
439 static int queue_io(struct mapped_device *md, struct bio *bio)
441 down_write(&md->io_lock);
443 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
444 up_write(&md->io_lock);
445 return 1;
448 bio_list_add(&md->deferred, bio);
450 up_write(&md->io_lock);
451 return 0; /* deferred successfully */
455 * Everyone (including functions in this file), should use this
456 * function to access the md->map field, and make sure they call
457 * dm_table_put() when finished.
459 struct dm_table *dm_get_table(struct mapped_device *md)
461 struct dm_table *t;
463 read_lock(&md->map_lock);
464 t = md->map;
465 if (t)
466 dm_table_get(t);
467 read_unlock(&md->map_lock);
469 return t;
473 * Get the geometry associated with a dm device
475 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
477 *geo = md->geometry;
479 return 0;
483 * Set the geometry of a device.
485 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
487 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
489 if (geo->start > sz) {
490 DMWARN("Start sector is beyond the geometry limits.");
491 return -EINVAL;
494 md->geometry = *geo;
496 return 0;
499 /*-----------------------------------------------------------------
500 * CRUD START:
501 * A more elegant soln is in the works that uses the queue
502 * merge fn, unfortunately there are a couple of changes to
503 * the block layer that I want to make for this. So in the
504 * interests of getting something for people to use I give
505 * you this clearly demarcated crap.
506 *---------------------------------------------------------------*/
508 static int __noflush_suspending(struct mapped_device *md)
510 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
514 * Decrements the number of outstanding ios that a bio has been
515 * cloned into, completing the original io if necc.
517 static void dec_pending(struct dm_io *io, int error)
519 unsigned long flags;
520 int io_error;
521 struct bio *bio;
522 struct mapped_device *md = io->md;
524 /* Push-back supersedes any I/O errors */
525 if (error && !(io->error > 0 && __noflush_suspending(md)))
526 io->error = error;
528 if (atomic_dec_and_test(&io->io_count)) {
529 if (io->error == DM_ENDIO_REQUEUE) {
531 * Target requested pushing back the I/O.
532 * This must be handled before the sleeper on
533 * suspend queue merges the pushback list.
535 spin_lock_irqsave(&md->pushback_lock, flags);
536 if (__noflush_suspending(md))
537 bio_list_add(&md->pushback, io->bio);
538 else
539 /* noflush suspend was interrupted. */
540 io->error = -EIO;
541 spin_unlock_irqrestore(&md->pushback_lock, flags);
544 end_io_acct(io);
546 io_error = io->error;
547 bio = io->bio;
549 free_io(md, io);
551 if (io_error != DM_ENDIO_REQUEUE) {
552 trace_block_bio_complete(md->queue, bio);
554 bio_endio(bio, io_error);
559 static void clone_endio(struct bio *bio, int error)
561 int r = 0;
562 struct dm_target_io *tio = bio->bi_private;
563 struct dm_io *io = tio->io;
564 struct mapped_device *md = tio->io->md;
565 dm_endio_fn endio = tio->ti->type->end_io;
567 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
568 error = -EIO;
570 if (endio) {
571 r = endio(tio->ti, bio, error, &tio->info);
572 if (r < 0 || r == DM_ENDIO_REQUEUE)
574 * error and requeue request are handled
575 * in dec_pending().
577 error = r;
578 else if (r == DM_ENDIO_INCOMPLETE)
579 /* The target will handle the io */
580 return;
581 else if (r) {
582 DMWARN("unimplemented target endio return value: %d", r);
583 BUG();
588 * Store md for cleanup instead of tio which is about to get freed.
590 bio->bi_private = md->bs;
592 free_tio(md, tio);
593 bio_put(bio);
594 dec_pending(io, error);
597 static sector_t max_io_len(struct mapped_device *md,
598 sector_t sector, struct dm_target *ti)
600 sector_t offset = sector - ti->begin;
601 sector_t len = ti->len - offset;
604 * Does the target need to split even further ?
606 if (ti->split_io) {
607 sector_t boundary;
608 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
609 - offset;
610 if (len > boundary)
611 len = boundary;
614 return len;
617 static void __map_bio(struct dm_target *ti, struct bio *clone,
618 struct dm_target_io *tio)
620 int r;
621 sector_t sector;
622 struct mapped_device *md;
625 * Sanity checks.
627 BUG_ON(!clone->bi_size);
629 clone->bi_end_io = clone_endio;
630 clone->bi_private = tio;
633 * Map the clone. If r == 0 we don't need to do
634 * anything, the target has assumed ownership of
635 * this io.
637 atomic_inc(&tio->io->io_count);
638 sector = clone->bi_sector;
639 r = ti->type->map(ti, clone, &tio->info);
640 if (r == DM_MAPIO_REMAPPED) {
641 /* the bio has been remapped so dispatch it */
643 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
644 tio->io->bio->bi_bdev->bd_dev,
645 clone->bi_sector, sector);
647 generic_make_request(clone);
648 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
649 /* error the io and bail out, or requeue it if needed */
650 md = tio->io->md;
651 dec_pending(tio->io, r);
653 * Store bio_set for cleanup.
655 clone->bi_private = md->bs;
656 bio_put(clone);
657 free_tio(md, tio);
658 } else if (r) {
659 DMWARN("unimplemented target map return value: %d", r);
660 BUG();
664 struct clone_info {
665 struct mapped_device *md;
666 struct dm_table *map;
667 struct bio *bio;
668 struct dm_io *io;
669 sector_t sector;
670 sector_t sector_count;
671 unsigned short idx;
674 static void dm_bio_destructor(struct bio *bio)
676 struct bio_set *bs = bio->bi_private;
678 bio_free(bio, bs);
682 * Creates a little bio that is just does part of a bvec.
684 static struct bio *split_bvec(struct bio *bio, sector_t sector,
685 unsigned short idx, unsigned int offset,
686 unsigned int len, struct bio_set *bs)
688 struct bio *clone;
689 struct bio_vec *bv = bio->bi_io_vec + idx;
691 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
692 clone->bi_destructor = dm_bio_destructor;
693 *clone->bi_io_vec = *bv;
695 clone->bi_sector = sector;
696 clone->bi_bdev = bio->bi_bdev;
697 clone->bi_rw = bio->bi_rw;
698 clone->bi_vcnt = 1;
699 clone->bi_size = to_bytes(len);
700 clone->bi_io_vec->bv_offset = offset;
701 clone->bi_io_vec->bv_len = clone->bi_size;
702 clone->bi_flags |= 1 << BIO_CLONED;
704 return clone;
708 * Creates a bio that consists of range of complete bvecs.
710 static struct bio *clone_bio(struct bio *bio, sector_t sector,
711 unsigned short idx, unsigned short bv_count,
712 unsigned int len, struct bio_set *bs)
714 struct bio *clone;
716 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
717 __bio_clone(clone, bio);
718 clone->bi_destructor = dm_bio_destructor;
719 clone->bi_sector = sector;
720 clone->bi_idx = idx;
721 clone->bi_vcnt = idx + bv_count;
722 clone->bi_size = to_bytes(len);
723 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
725 return clone;
728 static int __clone_and_map(struct clone_info *ci)
730 struct bio *clone, *bio = ci->bio;
731 struct dm_target *ti;
732 sector_t len = 0, max;
733 struct dm_target_io *tio;
735 ti = dm_table_find_target(ci->map, ci->sector);
736 if (!dm_target_is_valid(ti))
737 return -EIO;
739 max = max_io_len(ci->md, ci->sector, ti);
742 * Allocate a target io object.
744 tio = alloc_tio(ci->md);
745 tio->io = ci->io;
746 tio->ti = ti;
747 memset(&tio->info, 0, sizeof(tio->info));
749 if (ci->sector_count <= max) {
751 * Optimise for the simple case where we can do all of
752 * the remaining io with a single clone.
754 clone = clone_bio(bio, ci->sector, ci->idx,
755 bio->bi_vcnt - ci->idx, ci->sector_count,
756 ci->md->bs);
757 __map_bio(ti, clone, tio);
758 ci->sector_count = 0;
760 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
762 * There are some bvecs that don't span targets.
763 * Do as many of these as possible.
765 int i;
766 sector_t remaining = max;
767 sector_t bv_len;
769 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
770 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
772 if (bv_len > remaining)
773 break;
775 remaining -= bv_len;
776 len += bv_len;
779 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
780 ci->md->bs);
781 __map_bio(ti, clone, tio);
783 ci->sector += len;
784 ci->sector_count -= len;
785 ci->idx = i;
787 } else {
789 * Handle a bvec that must be split between two or more targets.
791 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
792 sector_t remaining = to_sector(bv->bv_len);
793 unsigned int offset = 0;
795 do {
796 if (offset) {
797 ti = dm_table_find_target(ci->map, ci->sector);
798 if (!dm_target_is_valid(ti))
799 return -EIO;
801 max = max_io_len(ci->md, ci->sector, ti);
803 tio = alloc_tio(ci->md);
804 tio->io = ci->io;
805 tio->ti = ti;
806 memset(&tio->info, 0, sizeof(tio->info));
809 len = min(remaining, max);
811 clone = split_bvec(bio, ci->sector, ci->idx,
812 bv->bv_offset + offset, len,
813 ci->md->bs);
815 __map_bio(ti, clone, tio);
817 ci->sector += len;
818 ci->sector_count -= len;
819 offset += to_bytes(len);
820 } while (remaining -= len);
822 ci->idx++;
825 return 0;
829 * Split the bio into several clones and submit it to targets.
831 static int __split_and_process_bio(struct mapped_device *md, struct bio *bio)
833 struct clone_info ci;
834 int error = 0;
836 ci.map = dm_get_table(md);
837 if (unlikely(!ci.map))
838 return -EIO;
839 if (unlikely(bio_barrier(bio) && !dm_table_barrier_ok(ci.map))) {
840 dm_table_put(ci.map);
841 bio_endio(bio, -EOPNOTSUPP);
842 return 0;
844 ci.md = md;
845 ci.bio = bio;
846 ci.io = alloc_io(md);
847 ci.io->error = 0;
848 atomic_set(&ci.io->io_count, 1);
849 ci.io->bio = bio;
850 ci.io->md = md;
851 ci.sector = bio->bi_sector;
852 ci.sector_count = bio_sectors(bio);
853 ci.idx = bio->bi_idx;
855 start_io_acct(ci.io);
856 while (ci.sector_count && !error)
857 error = __clone_and_map(&ci);
859 /* drop the extra reference count */
860 dec_pending(ci.io, error);
861 dm_table_put(ci.map);
863 return 0;
865 /*-----------------------------------------------------------------
866 * CRUD END
867 *---------------------------------------------------------------*/
869 static int dm_merge_bvec(struct request_queue *q,
870 struct bvec_merge_data *bvm,
871 struct bio_vec *biovec)
873 struct mapped_device *md = q->queuedata;
874 struct dm_table *map = dm_get_table(md);
875 struct dm_target *ti;
876 sector_t max_sectors;
877 int max_size = 0;
879 if (unlikely(!map))
880 goto out;
882 ti = dm_table_find_target(map, bvm->bi_sector);
883 if (!dm_target_is_valid(ti))
884 goto out_table;
887 * Find maximum amount of I/O that won't need splitting
889 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
890 (sector_t) BIO_MAX_SECTORS);
891 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
892 if (max_size < 0)
893 max_size = 0;
896 * merge_bvec_fn() returns number of bytes
897 * it can accept at this offset
898 * max is precomputed maximal io size
900 if (max_size && ti->type->merge)
901 max_size = ti->type->merge(ti, bvm, biovec, max_size);
903 out_table:
904 dm_table_put(map);
906 out:
908 * Always allow an entire first page
910 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
911 max_size = biovec->bv_len;
913 return max_size;
917 * The request function that just remaps the bio built up by
918 * dm_merge_bvec.
920 static int dm_request(struct request_queue *q, struct bio *bio)
922 int r = -EIO;
923 int rw = bio_data_dir(bio);
924 struct mapped_device *md = q->queuedata;
925 int cpu;
927 down_read(&md->io_lock);
929 cpu = part_stat_lock();
930 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
931 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
932 part_stat_unlock();
935 * If we're suspended we have to queue
936 * this io for later.
938 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
939 up_read(&md->io_lock);
941 if (bio_rw(bio) != READA)
942 r = queue_io(md, bio);
944 if (r <= 0)
945 goto out_req;
948 * We're in a while loop, because someone could suspend
949 * before we get to the following read lock.
951 down_read(&md->io_lock);
954 r = __split_and_process_bio(md, bio);
955 up_read(&md->io_lock);
957 out_req:
958 if (r < 0)
959 bio_io_error(bio);
961 return 0;
964 static void dm_unplug_all(struct request_queue *q)
966 struct mapped_device *md = q->queuedata;
967 struct dm_table *map = dm_get_table(md);
969 if (map) {
970 dm_table_unplug_all(map);
971 dm_table_put(map);
975 static int dm_any_congested(void *congested_data, int bdi_bits)
977 int r = bdi_bits;
978 struct mapped_device *md = congested_data;
979 struct dm_table *map;
981 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
982 map = dm_get_table(md);
983 if (map) {
984 r = dm_table_any_congested(map, bdi_bits);
985 dm_table_put(map);
989 return r;
992 /*-----------------------------------------------------------------
993 * An IDR is used to keep track of allocated minor numbers.
994 *---------------------------------------------------------------*/
995 static DEFINE_IDR(_minor_idr);
997 static void free_minor(int minor)
999 spin_lock(&_minor_lock);
1000 idr_remove(&_minor_idr, minor);
1001 spin_unlock(&_minor_lock);
1005 * See if the device with a specific minor # is free.
1007 static int specific_minor(int minor)
1009 int r, m;
1011 if (minor >= (1 << MINORBITS))
1012 return -EINVAL;
1014 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1015 if (!r)
1016 return -ENOMEM;
1018 spin_lock(&_minor_lock);
1020 if (idr_find(&_minor_idr, minor)) {
1021 r = -EBUSY;
1022 goto out;
1025 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1026 if (r)
1027 goto out;
1029 if (m != minor) {
1030 idr_remove(&_minor_idr, m);
1031 r = -EBUSY;
1032 goto out;
1035 out:
1036 spin_unlock(&_minor_lock);
1037 return r;
1040 static int next_free_minor(int *minor)
1042 int r, m;
1044 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1045 if (!r)
1046 return -ENOMEM;
1048 spin_lock(&_minor_lock);
1050 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1051 if (r)
1052 goto out;
1054 if (m >= (1 << MINORBITS)) {
1055 idr_remove(&_minor_idr, m);
1056 r = -ENOSPC;
1057 goto out;
1060 *minor = m;
1062 out:
1063 spin_unlock(&_minor_lock);
1064 return r;
1067 static struct block_device_operations dm_blk_dops;
1069 static void dm_wq_work(struct work_struct *work);
1072 * Allocate and initialise a blank device with a given minor.
1074 static struct mapped_device *alloc_dev(int minor)
1076 int r;
1077 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1078 void *old_md;
1080 if (!md) {
1081 DMWARN("unable to allocate device, out of memory.");
1082 return NULL;
1085 if (!try_module_get(THIS_MODULE))
1086 goto bad_module_get;
1088 /* get a minor number for the dev */
1089 if (minor == DM_ANY_MINOR)
1090 r = next_free_minor(&minor);
1091 else
1092 r = specific_minor(minor);
1093 if (r < 0)
1094 goto bad_minor;
1096 init_rwsem(&md->io_lock);
1097 mutex_init(&md->suspend_lock);
1098 spin_lock_init(&md->pushback_lock);
1099 rwlock_init(&md->map_lock);
1100 atomic_set(&md->holders, 1);
1101 atomic_set(&md->open_count, 0);
1102 atomic_set(&md->event_nr, 0);
1103 atomic_set(&md->uevent_seq, 0);
1104 INIT_LIST_HEAD(&md->uevent_list);
1105 spin_lock_init(&md->uevent_lock);
1107 md->queue = blk_alloc_queue(GFP_KERNEL);
1108 if (!md->queue)
1109 goto bad_queue;
1111 md->queue->queuedata = md;
1112 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1113 md->queue->backing_dev_info.congested_data = md;
1114 blk_queue_make_request(md->queue, dm_request);
1115 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1116 md->queue->unplug_fn = dm_unplug_all;
1117 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1119 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1120 if (!md->io_pool)
1121 goto bad_io_pool;
1123 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1124 if (!md->tio_pool)
1125 goto bad_tio_pool;
1127 md->bs = bioset_create(16, 0);
1128 if (!md->bs)
1129 goto bad_no_bioset;
1131 md->disk = alloc_disk(1);
1132 if (!md->disk)
1133 goto bad_disk;
1135 atomic_set(&md->pending, 0);
1136 init_waitqueue_head(&md->wait);
1137 INIT_WORK(&md->work, dm_wq_work);
1138 init_waitqueue_head(&md->eventq);
1140 md->disk->major = _major;
1141 md->disk->first_minor = minor;
1142 md->disk->fops = &dm_blk_dops;
1143 md->disk->queue = md->queue;
1144 md->disk->private_data = md;
1145 sprintf(md->disk->disk_name, "dm-%d", minor);
1146 add_disk(md->disk);
1147 format_dev_t(md->name, MKDEV(_major, minor));
1149 md->wq = create_singlethread_workqueue("kdmflush");
1150 if (!md->wq)
1151 goto bad_thread;
1153 /* Populate the mapping, nobody knows we exist yet */
1154 spin_lock(&_minor_lock);
1155 old_md = idr_replace(&_minor_idr, md, minor);
1156 spin_unlock(&_minor_lock);
1158 BUG_ON(old_md != MINOR_ALLOCED);
1160 return md;
1162 bad_thread:
1163 put_disk(md->disk);
1164 bad_disk:
1165 bioset_free(md->bs);
1166 bad_no_bioset:
1167 mempool_destroy(md->tio_pool);
1168 bad_tio_pool:
1169 mempool_destroy(md->io_pool);
1170 bad_io_pool:
1171 blk_cleanup_queue(md->queue);
1172 bad_queue:
1173 free_minor(minor);
1174 bad_minor:
1175 module_put(THIS_MODULE);
1176 bad_module_get:
1177 kfree(md);
1178 return NULL;
1181 static void unlock_fs(struct mapped_device *md);
1183 static void free_dev(struct mapped_device *md)
1185 int minor = MINOR(disk_devt(md->disk));
1187 if (md->suspended_bdev) {
1188 unlock_fs(md);
1189 bdput(md->suspended_bdev);
1191 destroy_workqueue(md->wq);
1192 mempool_destroy(md->tio_pool);
1193 mempool_destroy(md->io_pool);
1194 bioset_free(md->bs);
1195 del_gendisk(md->disk);
1196 free_minor(minor);
1198 spin_lock(&_minor_lock);
1199 md->disk->private_data = NULL;
1200 spin_unlock(&_minor_lock);
1202 put_disk(md->disk);
1203 blk_cleanup_queue(md->queue);
1204 module_put(THIS_MODULE);
1205 kfree(md);
1209 * Bind a table to the device.
1211 static void event_callback(void *context)
1213 unsigned long flags;
1214 LIST_HEAD(uevents);
1215 struct mapped_device *md = (struct mapped_device *) context;
1217 spin_lock_irqsave(&md->uevent_lock, flags);
1218 list_splice_init(&md->uevent_list, &uevents);
1219 spin_unlock_irqrestore(&md->uevent_lock, flags);
1221 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1223 atomic_inc(&md->event_nr);
1224 wake_up(&md->eventq);
1227 static void __set_size(struct mapped_device *md, sector_t size)
1229 set_capacity(md->disk, size);
1231 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1232 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1233 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1236 static int __bind(struct mapped_device *md, struct dm_table *t)
1238 struct request_queue *q = md->queue;
1239 sector_t size;
1241 size = dm_table_get_size(t);
1244 * Wipe any geometry if the size of the table changed.
1246 if (size != get_capacity(md->disk))
1247 memset(&md->geometry, 0, sizeof(md->geometry));
1249 if (md->suspended_bdev)
1250 __set_size(md, size);
1252 if (!size) {
1253 dm_table_destroy(t);
1254 return 0;
1257 dm_table_event_callback(t, event_callback, md);
1259 write_lock(&md->map_lock);
1260 md->map = t;
1261 dm_table_set_restrictions(t, q);
1262 write_unlock(&md->map_lock);
1264 return 0;
1267 static void __unbind(struct mapped_device *md)
1269 struct dm_table *map = md->map;
1271 if (!map)
1272 return;
1274 dm_table_event_callback(map, NULL, NULL);
1275 write_lock(&md->map_lock);
1276 md->map = NULL;
1277 write_unlock(&md->map_lock);
1278 dm_table_destroy(map);
1282 * Constructor for a new device.
1284 int dm_create(int minor, struct mapped_device **result)
1286 struct mapped_device *md;
1288 md = alloc_dev(minor);
1289 if (!md)
1290 return -ENXIO;
1292 dm_sysfs_init(md);
1294 *result = md;
1295 return 0;
1298 static struct mapped_device *dm_find_md(dev_t dev)
1300 struct mapped_device *md;
1301 unsigned minor = MINOR(dev);
1303 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1304 return NULL;
1306 spin_lock(&_minor_lock);
1308 md = idr_find(&_minor_idr, minor);
1309 if (md && (md == MINOR_ALLOCED ||
1310 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1311 test_bit(DMF_FREEING, &md->flags))) {
1312 md = NULL;
1313 goto out;
1316 out:
1317 spin_unlock(&_minor_lock);
1319 return md;
1322 struct mapped_device *dm_get_md(dev_t dev)
1324 struct mapped_device *md = dm_find_md(dev);
1326 if (md)
1327 dm_get(md);
1329 return md;
1332 void *dm_get_mdptr(struct mapped_device *md)
1334 return md->interface_ptr;
1337 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1339 md->interface_ptr = ptr;
1342 void dm_get(struct mapped_device *md)
1344 atomic_inc(&md->holders);
1347 const char *dm_device_name(struct mapped_device *md)
1349 return md->name;
1351 EXPORT_SYMBOL_GPL(dm_device_name);
1353 void dm_put(struct mapped_device *md)
1355 struct dm_table *map;
1357 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1359 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1360 map = dm_get_table(md);
1361 idr_replace(&_minor_idr, MINOR_ALLOCED,
1362 MINOR(disk_devt(dm_disk(md))));
1363 set_bit(DMF_FREEING, &md->flags);
1364 spin_unlock(&_minor_lock);
1365 if (!dm_suspended(md)) {
1366 dm_table_presuspend_targets(map);
1367 dm_table_postsuspend_targets(map);
1369 dm_sysfs_exit(md);
1370 dm_table_put(map);
1371 __unbind(md);
1372 free_dev(md);
1375 EXPORT_SYMBOL_GPL(dm_put);
1377 static int dm_wait_for_completion(struct mapped_device *md)
1379 int r = 0;
1381 while (1) {
1382 set_current_state(TASK_INTERRUPTIBLE);
1384 smp_mb();
1385 if (!atomic_read(&md->pending))
1386 break;
1388 if (signal_pending(current)) {
1389 r = -EINTR;
1390 break;
1393 io_schedule();
1395 set_current_state(TASK_RUNNING);
1397 return r;
1401 * Process the deferred bios
1403 static void __flush_deferred_io(struct mapped_device *md)
1405 struct bio *c;
1407 while ((c = bio_list_pop(&md->deferred))) {
1408 if (__split_and_process_bio(md, c))
1409 bio_io_error(c);
1412 clear_bit(DMF_BLOCK_IO, &md->flags);
1415 static void __merge_pushback_list(struct mapped_device *md)
1417 unsigned long flags;
1419 spin_lock_irqsave(&md->pushback_lock, flags);
1420 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1421 bio_list_merge_head(&md->deferred, &md->pushback);
1422 bio_list_init(&md->pushback);
1423 spin_unlock_irqrestore(&md->pushback_lock, flags);
1426 static void dm_wq_work(struct work_struct *work)
1428 struct mapped_device *md = container_of(work, struct mapped_device,
1429 work);
1431 down_write(&md->io_lock);
1432 __flush_deferred_io(md);
1433 up_write(&md->io_lock);
1436 static void dm_queue_flush(struct mapped_device *md)
1438 queue_work(md->wq, &md->work);
1439 flush_workqueue(md->wq);
1443 * Swap in a new table (destroying old one).
1445 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1447 int r = -EINVAL;
1449 mutex_lock(&md->suspend_lock);
1451 /* device must be suspended */
1452 if (!dm_suspended(md))
1453 goto out;
1455 /* without bdev, the device size cannot be changed */
1456 if (!md->suspended_bdev)
1457 if (get_capacity(md->disk) != dm_table_get_size(table))
1458 goto out;
1460 __unbind(md);
1461 r = __bind(md, table);
1463 out:
1464 mutex_unlock(&md->suspend_lock);
1465 return r;
1469 * Functions to lock and unlock any filesystem running on the
1470 * device.
1472 static int lock_fs(struct mapped_device *md)
1474 int r;
1476 WARN_ON(md->frozen_sb);
1478 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1479 if (IS_ERR(md->frozen_sb)) {
1480 r = PTR_ERR(md->frozen_sb);
1481 md->frozen_sb = NULL;
1482 return r;
1485 set_bit(DMF_FROZEN, &md->flags);
1487 /* don't bdput right now, we don't want the bdev
1488 * to go away while it is locked.
1490 return 0;
1493 static void unlock_fs(struct mapped_device *md)
1495 if (!test_bit(DMF_FROZEN, &md->flags))
1496 return;
1498 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1499 md->frozen_sb = NULL;
1500 clear_bit(DMF_FROZEN, &md->flags);
1504 * We need to be able to change a mapping table under a mounted
1505 * filesystem. For example we might want to move some data in
1506 * the background. Before the table can be swapped with
1507 * dm_bind_table, dm_suspend must be called to flush any in
1508 * flight bios and ensure that any further io gets deferred.
1510 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1512 struct dm_table *map = NULL;
1513 DECLARE_WAITQUEUE(wait, current);
1514 int r = 0;
1515 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1516 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1518 mutex_lock(&md->suspend_lock);
1520 if (dm_suspended(md)) {
1521 r = -EINVAL;
1522 goto out_unlock;
1525 map = dm_get_table(md);
1528 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1529 * This flag is cleared before dm_suspend returns.
1531 if (noflush)
1532 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1534 /* This does not get reverted if there's an error later. */
1535 dm_table_presuspend_targets(map);
1537 /* bdget() can stall if the pending I/Os are not flushed */
1538 if (!noflush) {
1539 md->suspended_bdev = bdget_disk(md->disk, 0);
1540 if (!md->suspended_bdev) {
1541 DMWARN("bdget failed in dm_suspend");
1542 r = -ENOMEM;
1543 goto out;
1547 * Flush I/O to the device. noflush supersedes do_lockfs,
1548 * because lock_fs() needs to flush I/Os.
1550 if (do_lockfs) {
1551 r = lock_fs(md);
1552 if (r)
1553 goto out;
1558 * First we set the BLOCK_IO flag so no more ios will be mapped.
1560 down_write(&md->io_lock);
1561 set_bit(DMF_BLOCK_IO, &md->flags);
1563 add_wait_queue(&md->wait, &wait);
1564 up_write(&md->io_lock);
1566 /* unplug */
1567 if (map)
1568 dm_table_unplug_all(map);
1571 * Wait for the already-mapped ios to complete.
1573 r = dm_wait_for_completion(md);
1575 down_write(&md->io_lock);
1576 remove_wait_queue(&md->wait, &wait);
1578 if (noflush)
1579 __merge_pushback_list(md);
1580 up_write(&md->io_lock);
1582 /* were we interrupted ? */
1583 if (r < 0) {
1584 dm_queue_flush(md);
1586 unlock_fs(md);
1587 goto out; /* pushback list is already flushed, so skip flush */
1590 dm_table_postsuspend_targets(map);
1592 set_bit(DMF_SUSPENDED, &md->flags);
1594 out:
1595 if (r && md->suspended_bdev) {
1596 bdput(md->suspended_bdev);
1597 md->suspended_bdev = NULL;
1600 dm_table_put(map);
1602 out_unlock:
1603 mutex_unlock(&md->suspend_lock);
1604 return r;
1607 int dm_resume(struct mapped_device *md)
1609 int r = -EINVAL;
1610 struct dm_table *map = NULL;
1612 mutex_lock(&md->suspend_lock);
1613 if (!dm_suspended(md))
1614 goto out;
1616 map = dm_get_table(md);
1617 if (!map || !dm_table_get_size(map))
1618 goto out;
1620 r = dm_table_resume_targets(map);
1621 if (r)
1622 goto out;
1624 dm_queue_flush(md);
1626 unlock_fs(md);
1628 if (md->suspended_bdev) {
1629 bdput(md->suspended_bdev);
1630 md->suspended_bdev = NULL;
1633 clear_bit(DMF_SUSPENDED, &md->flags);
1635 dm_table_unplug_all(map);
1637 dm_kobject_uevent(md);
1639 r = 0;
1641 out:
1642 dm_table_put(map);
1643 mutex_unlock(&md->suspend_lock);
1645 return r;
1648 /*-----------------------------------------------------------------
1649 * Event notification.
1650 *---------------------------------------------------------------*/
1651 void dm_kobject_uevent(struct mapped_device *md)
1653 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1656 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1658 return atomic_add_return(1, &md->uevent_seq);
1661 uint32_t dm_get_event_nr(struct mapped_device *md)
1663 return atomic_read(&md->event_nr);
1666 int dm_wait_event(struct mapped_device *md, int event_nr)
1668 return wait_event_interruptible(md->eventq,
1669 (event_nr != atomic_read(&md->event_nr)));
1672 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1674 unsigned long flags;
1676 spin_lock_irqsave(&md->uevent_lock, flags);
1677 list_add(elist, &md->uevent_list);
1678 spin_unlock_irqrestore(&md->uevent_lock, flags);
1682 * The gendisk is only valid as long as you have a reference
1683 * count on 'md'.
1685 struct gendisk *dm_disk(struct mapped_device *md)
1687 return md->disk;
1690 struct kobject *dm_kobject(struct mapped_device *md)
1692 return &md->kobj;
1696 * struct mapped_device should not be exported outside of dm.c
1697 * so use this check to verify that kobj is part of md structure
1699 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1701 struct mapped_device *md;
1703 md = container_of(kobj, struct mapped_device, kobj);
1704 if (&md->kobj != kobj)
1705 return NULL;
1707 dm_get(md);
1708 return md;
1711 int dm_suspended(struct mapped_device *md)
1713 return test_bit(DMF_SUSPENDED, &md->flags);
1716 int dm_noflush_suspending(struct dm_target *ti)
1718 struct mapped_device *md = dm_table_get_md(ti->table);
1719 int r = __noflush_suspending(md);
1721 dm_put(md);
1723 return r;
1725 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1727 static struct block_device_operations dm_blk_dops = {
1728 .open = dm_blk_open,
1729 .release = dm_blk_close,
1730 .ioctl = dm_blk_ioctl,
1731 .getgeo = dm_blk_getgeo,
1732 .owner = THIS_MODULE
1735 EXPORT_SYMBOL(dm_get_mapinfo);
1738 * module hooks
1740 module_init(dm_init);
1741 module_exit(dm_exit);
1743 module_param(major, uint, 0);
1744 MODULE_PARM_DESC(major, "The major number of the device mapper");
1745 MODULE_DESCRIPTION(DM_NAME " driver");
1746 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1747 MODULE_LICENSE("GPL");