PM / Hibernate: Separate block_io
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / rtc / rtc-mxc.c
blobd71fe61db1d655427e3d10b40113482ee2063a4e
1 /*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
20 #include <mach/hardware.h>
22 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
26 #define RTC_SW_BIT (1 << 0)
27 #define RTC_ALM_BIT (1 << 2)
28 #define RTC_1HZ_BIT (1 << 4)
29 #define RTC_2HZ_BIT (1 << 7)
30 #define RTC_SAM0_BIT (1 << 8)
31 #define RTC_SAM1_BIT (1 << 9)
32 #define RTC_SAM2_BIT (1 << 10)
33 #define RTC_SAM3_BIT (1 << 11)
34 #define RTC_SAM4_BIT (1 << 12)
35 #define RTC_SAM5_BIT (1 << 13)
36 #define RTC_SAM6_BIT (1 << 14)
37 #define RTC_SAM7_BIT (1 << 15)
38 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
42 #define RTC_ENABLE_BIT (1 << 7)
44 #define MAX_PIE_NUM 9
45 #define MAX_PIE_FREQ 512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 { 2, RTC_2HZ_BIT },
48 { 4, RTC_SAM0_BIT },
49 { 8, RTC_SAM1_BIT },
50 { 16, RTC_SAM2_BIT },
51 { 32, RTC_SAM3_BIT },
52 { 64, RTC_SAM4_BIT },
53 { 128, RTC_SAM5_BIT },
54 { 256, RTC_SAM6_BIT },
55 { MAX_PIE_FREQ, RTC_SAM7_BIT },
58 /* Those are the bits from a classic RTC we want to mimic */
59 #define RTC_IRQF 0x80 /* any of the following 3 is active */
60 #define RTC_PF 0x40 /* Periodic interrupt */
61 #define RTC_AF 0x20 /* Alarm interrupt */
62 #define RTC_UF 0x10 /* Update interrupt for 1Hz RTC */
64 #define MXC_RTC_TIME 0
65 #define MXC_RTC_ALARM 1
67 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
68 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
69 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
70 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
71 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
72 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
73 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
74 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
75 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
76 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
77 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
78 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
79 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
81 struct rtc_plat_data {
82 struct rtc_device *rtc;
83 void __iomem *ioaddr;
84 int irq;
85 struct clk *clk;
86 unsigned int irqen;
87 int alrm_sec;
88 int alrm_min;
89 int alrm_hour;
90 int alrm_mday;
91 struct timespec mxc_rtc_delta;
92 struct rtc_time g_rtc_alarm;
96 * This function is used to obtain the RTC time or the alarm value in
97 * second.
99 static u32 get_alarm_or_time(struct device *dev, int time_alarm)
101 struct platform_device *pdev = to_platform_device(dev);
102 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
103 void __iomem *ioaddr = pdata->ioaddr;
104 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
106 switch (time_alarm) {
107 case MXC_RTC_TIME:
108 day = readw(ioaddr + RTC_DAYR);
109 hr_min = readw(ioaddr + RTC_HOURMIN);
110 sec = readw(ioaddr + RTC_SECOND);
111 break;
112 case MXC_RTC_ALARM:
113 day = readw(ioaddr + RTC_DAYALARM);
114 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
115 sec = readw(ioaddr + RTC_ALRM_SEC);
116 break;
119 hr = hr_min >> 8;
120 min = hr_min & 0xff;
122 return (((day * 24 + hr) * 60) + min) * 60 + sec;
126 * This function sets the RTC alarm value or the time value.
128 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
130 u32 day, hr, min, sec, temp;
131 struct platform_device *pdev = to_platform_device(dev);
132 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
133 void __iomem *ioaddr = pdata->ioaddr;
135 day = time / 86400;
136 time -= day * 86400;
138 /* time is within a day now */
139 hr = time / 3600;
140 time -= hr * 3600;
142 /* time is within an hour now */
143 min = time / 60;
144 sec = time - min * 60;
146 temp = (hr << 8) + min;
148 switch (time_alarm) {
149 case MXC_RTC_TIME:
150 writew(day, ioaddr + RTC_DAYR);
151 writew(sec, ioaddr + RTC_SECOND);
152 writew(temp, ioaddr + RTC_HOURMIN);
153 break;
154 case MXC_RTC_ALARM:
155 writew(day, ioaddr + RTC_DAYALARM);
156 writew(sec, ioaddr + RTC_ALRM_SEC);
157 writew(temp, ioaddr + RTC_ALRM_HM);
158 break;
163 * This function updates the RTC alarm registers and then clears all the
164 * interrupt status bits.
166 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
168 struct rtc_time alarm_tm, now_tm;
169 unsigned long now, time;
170 int ret;
171 struct platform_device *pdev = to_platform_device(dev);
172 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
173 void __iomem *ioaddr = pdata->ioaddr;
175 now = get_alarm_or_time(dev, MXC_RTC_TIME);
176 rtc_time_to_tm(now, &now_tm);
177 alarm_tm.tm_year = now_tm.tm_year;
178 alarm_tm.tm_mon = now_tm.tm_mon;
179 alarm_tm.tm_mday = now_tm.tm_mday;
180 alarm_tm.tm_hour = alrm->tm_hour;
181 alarm_tm.tm_min = alrm->tm_min;
182 alarm_tm.tm_sec = alrm->tm_sec;
183 rtc_tm_to_time(&now_tm, &now);
184 rtc_tm_to_time(&alarm_tm, &time);
186 if (time < now) {
187 time += 60 * 60 * 24;
188 rtc_time_to_tm(time, &alarm_tm);
191 ret = rtc_tm_to_time(&alarm_tm, &time);
193 /* clear all the interrupt status bits */
194 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
195 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
197 return ret;
200 /* This function is the RTC interrupt service routine. */
201 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
203 struct platform_device *pdev = dev_id;
204 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
205 void __iomem *ioaddr = pdata->ioaddr;
206 u32 status;
207 u32 events = 0;
209 spin_lock_irq(&pdata->rtc->irq_lock);
210 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
211 /* clear interrupt sources */
212 writew(status, ioaddr + RTC_RTCISR);
214 /* clear alarm interrupt if it has occurred */
215 if (status & RTC_ALM_BIT)
216 status &= ~RTC_ALM_BIT;
218 /* update irq data & counter */
219 if (status & RTC_ALM_BIT)
220 events |= (RTC_AF | RTC_IRQF);
222 if (status & RTC_1HZ_BIT)
223 events |= (RTC_UF | RTC_IRQF);
225 if (status & PIT_ALL_ON)
226 events |= (RTC_PF | RTC_IRQF);
228 if ((status & RTC_ALM_BIT) && rtc_valid_tm(&pdata->g_rtc_alarm))
229 rtc_update_alarm(&pdev->dev, &pdata->g_rtc_alarm);
231 rtc_update_irq(pdata->rtc, 1, events);
232 spin_unlock_irq(&pdata->rtc->irq_lock);
234 return IRQ_HANDLED;
238 * Clear all interrupts and release the IRQ
240 static void mxc_rtc_release(struct device *dev)
242 struct platform_device *pdev = to_platform_device(dev);
243 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
244 void __iomem *ioaddr = pdata->ioaddr;
246 spin_lock_irq(&pdata->rtc->irq_lock);
248 /* Disable all rtc interrupts */
249 writew(0, ioaddr + RTC_RTCIENR);
251 /* Clear all interrupt status */
252 writew(0xffffffff, ioaddr + RTC_RTCISR);
254 spin_unlock_irq(&pdata->rtc->irq_lock);
257 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
258 unsigned int enabled)
260 struct platform_device *pdev = to_platform_device(dev);
261 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
262 void __iomem *ioaddr = pdata->ioaddr;
263 u32 reg;
265 spin_lock_irq(&pdata->rtc->irq_lock);
266 reg = readw(ioaddr + RTC_RTCIENR);
268 if (enabled)
269 reg |= bit;
270 else
271 reg &= ~bit;
273 writew(reg, ioaddr + RTC_RTCIENR);
274 spin_unlock_irq(&pdata->rtc->irq_lock);
277 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
279 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
280 return 0;
283 static int mxc_rtc_update_irq_enable(struct device *dev, unsigned int enabled)
285 mxc_rtc_irq_enable(dev, RTC_1HZ_BIT, enabled);
286 return 0;
290 * This function reads the current RTC time into tm in Gregorian date.
292 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
294 u32 val;
296 /* Avoid roll-over from reading the different registers */
297 do {
298 val = get_alarm_or_time(dev, MXC_RTC_TIME);
299 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
301 rtc_time_to_tm(val, tm);
303 return 0;
307 * This function sets the internal RTC time based on tm in Gregorian date.
309 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
311 /* Avoid roll-over from reading the different registers */
312 do {
313 set_alarm_or_time(dev, MXC_RTC_TIME, time);
314 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
316 return 0;
320 * This function reads the current alarm value into the passed in 'alrm'
321 * argument. It updates the alrm's pending field value based on the whether
322 * an alarm interrupt occurs or not.
324 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
326 struct platform_device *pdev = to_platform_device(dev);
327 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
328 void __iomem *ioaddr = pdata->ioaddr;
330 rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
331 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
333 return 0;
337 * This function sets the RTC alarm based on passed in alrm.
339 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
341 struct platform_device *pdev = to_platform_device(dev);
342 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
343 int ret;
345 if (rtc_valid_tm(&alrm->time)) {
346 if (alrm->time.tm_sec > 59 ||
347 alrm->time.tm_hour > 23 ||
348 alrm->time.tm_min > 59)
349 return -EINVAL;
351 ret = rtc_update_alarm(dev, &alrm->time);
352 } else {
353 ret = rtc_valid_tm(&alrm->time);
354 if (ret)
355 return ret;
357 ret = rtc_update_alarm(dev, &alrm->time);
360 if (ret)
361 return ret;
363 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
364 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
366 return 0;
369 /* RTC layer */
370 static struct rtc_class_ops mxc_rtc_ops = {
371 .release = mxc_rtc_release,
372 .read_time = mxc_rtc_read_time,
373 .set_mmss = mxc_rtc_set_mmss,
374 .read_alarm = mxc_rtc_read_alarm,
375 .set_alarm = mxc_rtc_set_alarm,
376 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
377 .update_irq_enable = mxc_rtc_update_irq_enable,
380 static int __init mxc_rtc_probe(struct platform_device *pdev)
382 struct clk *clk;
383 struct resource *res;
384 struct rtc_device *rtc;
385 struct rtc_plat_data *pdata = NULL;
386 u32 reg;
387 unsigned long rate;
388 int ret;
390 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
391 if (!res)
392 return -ENODEV;
394 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
395 if (!pdata)
396 return -ENOMEM;
398 if (!devm_request_mem_region(&pdev->dev, res->start,
399 resource_size(res), pdev->name))
400 return -EBUSY;
402 pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
403 resource_size(res));
405 clk = clk_get(&pdev->dev, "ckil");
406 if (IS_ERR(clk)) {
407 ret = PTR_ERR(clk);
408 goto exit_free_pdata;
411 rate = clk_get_rate(clk);
412 clk_put(clk);
414 if (rate == 32768)
415 reg = RTC_INPUT_CLK_32768HZ;
416 else if (rate == 32000)
417 reg = RTC_INPUT_CLK_32000HZ;
418 else if (rate == 38400)
419 reg = RTC_INPUT_CLK_38400HZ;
420 else {
421 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
422 ret = -EINVAL;
423 goto exit_free_pdata;
426 reg |= RTC_ENABLE_BIT;
427 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
428 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
429 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
430 ret = -EIO;
431 goto exit_free_pdata;
434 pdata->clk = clk_get(&pdev->dev, "rtc");
435 if (IS_ERR(pdata->clk)) {
436 dev_err(&pdev->dev, "unable to get clock!\n");
437 ret = PTR_ERR(pdata->clk);
438 goto exit_free_pdata;
441 clk_enable(pdata->clk);
443 rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
444 THIS_MODULE);
445 if (IS_ERR(rtc)) {
446 ret = PTR_ERR(rtc);
447 goto exit_put_clk;
450 pdata->rtc = rtc;
451 platform_set_drvdata(pdev, pdata);
453 /* Configure and enable the RTC */
454 pdata->irq = platform_get_irq(pdev, 0);
456 if (pdata->irq >= 0 &&
457 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
458 IRQF_SHARED, pdev->name, pdev) < 0) {
459 dev_warn(&pdev->dev, "interrupt not available.\n");
460 pdata->irq = -1;
463 return 0;
465 exit_put_clk:
466 clk_disable(pdata->clk);
467 clk_put(pdata->clk);
469 exit_free_pdata:
471 return ret;
474 static int __exit mxc_rtc_remove(struct platform_device *pdev)
476 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
478 rtc_device_unregister(pdata->rtc);
480 clk_disable(pdata->clk);
481 clk_put(pdata->clk);
482 platform_set_drvdata(pdev, NULL);
484 return 0;
487 static struct platform_driver mxc_rtc_driver = {
488 .driver = {
489 .name = "mxc_rtc",
490 .owner = THIS_MODULE,
492 .remove = __exit_p(mxc_rtc_remove),
495 static int __init mxc_rtc_init(void)
497 return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
500 static void __exit mxc_rtc_exit(void)
502 platform_driver_unregister(&mxc_rtc_driver);
505 module_init(mxc_rtc_init);
506 module_exit(mxc_rtc_exit);
508 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
509 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
510 MODULE_LICENSE("GPL");