[PATCH] cciss: set default raid level when reading geometry fails
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / cciss.c
blob67a6d4a9343a660d038cfd4c0bf297a5cac82cf8
1 /*
2 * Disk Array driver for HP SA 5xxx and 6xxx Controllers
3 * Copyright 2000, 2006 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/init.h>
37 #include <linux/hdreg.h>
38 #include <linux/spinlock.h>
39 #include <linux/compat.h>
40 #include <linux/blktrace_api.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
49 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
50 #define DRIVER_NAME "HP CISS Driver (v 3.6.14)"
51 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3,6,14)
53 /* Embedded module documentation macros - see modules.h */
54 MODULE_AUTHOR("Hewlett-Packard Company");
55 MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 3.6.14");
56 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
57 " SA6i P600 P800 P400 P400i E200 E200i E500");
58 MODULE_VERSION("3.6.14");
59 MODULE_LICENSE("GPL");
61 #include "cciss_cmd.h"
62 #include "cciss.h"
63 #include <linux/cciss_ioctl.h>
65 /* define the PCI info for the cards we can control */
66 static const struct pci_device_id cciss_pci_device_id[] = {
67 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
68 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
69 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
70 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
71 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
72 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
73 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
76 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
77 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
78 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
79 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
86 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
87 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
88 {0,}
91 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
93 /* board_id = Subsystem Device ID & Vendor ID
94 * product = Marketing Name for the board
95 * access = Address of the struct of function pointers
96 * nr_cmds = Number of commands supported by controller
98 static struct board_type products[] = {
99 {0x40700E11, "Smart Array 5300", &SA5_access, 512},
100 {0x40800E11, "Smart Array 5i", &SA5B_access, 512},
101 {0x40820E11, "Smart Array 532", &SA5B_access, 512},
102 {0x40830E11, "Smart Array 5312", &SA5B_access, 512},
103 {0x409A0E11, "Smart Array 641", &SA5_access, 512},
104 {0x409B0E11, "Smart Array 642", &SA5_access, 512},
105 {0x409C0E11, "Smart Array 6400", &SA5_access, 512},
106 {0x409D0E11, "Smart Array 6400 EM", &SA5_access, 512},
107 {0x40910E11, "Smart Array 6i", &SA5_access, 512},
108 {0x3225103C, "Smart Array P600", &SA5_access, 512},
109 {0x3223103C, "Smart Array P800", &SA5_access, 512},
110 {0x3234103C, "Smart Array P400", &SA5_access, 512},
111 {0x3235103C, "Smart Array P400i", &SA5_access, 512},
112 {0x3211103C, "Smart Array E200i", &SA5_access, 120},
113 {0x3212103C, "Smart Array E200", &SA5_access, 120},
114 {0x3213103C, "Smart Array E200i", &SA5_access, 120},
115 {0x3214103C, "Smart Array E200i", &SA5_access, 120},
116 {0x3215103C, "Smart Array E200i", &SA5_access, 120},
117 {0x3237103C, "Smart Array E500", &SA5_access, 512},
118 {0xFFFF103C, "Unknown Smart Array", &SA5_access, 120},
121 /* How long to wait (in milliseconds) for board to go into simple mode */
122 #define MAX_CONFIG_WAIT 30000
123 #define MAX_IOCTL_CONFIG_WAIT 1000
125 /*define how many times we will try a command because of bus resets */
126 #define MAX_CMD_RETRIES 3
128 #define READ_AHEAD 1024
129 #define MAX_CTLR 32
131 /* Originally cciss driver only supports 8 major numbers */
132 #define MAX_CTLR_ORIG 8
134 static ctlr_info_t *hba[MAX_CTLR];
136 static void do_cciss_request(request_queue_t *q);
137 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
138 static int cciss_open(struct inode *inode, struct file *filep);
139 static int cciss_release(struct inode *inode, struct file *filep);
140 static int cciss_ioctl(struct inode *inode, struct file *filep,
141 unsigned int cmd, unsigned long arg);
142 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
144 static int cciss_revalidate(struct gendisk *disk);
145 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
146 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
147 int clear_all);
149 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
150 sector_t *total_size, unsigned int *block_size);
151 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
152 sector_t *total_size, unsigned int *block_size);
153 static void cciss_geometry_inquiry(int ctlr, int logvol,
154 int withirq, sector_t total_size,
155 unsigned int block_size, InquiryData_struct *inq_buff,
156 drive_info_struct *drv);
157 static void cciss_getgeometry(int cntl_num);
158 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
159 __u32);
160 static void start_io(ctlr_info_t *h);
161 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
162 unsigned int use_unit_num, unsigned int log_unit,
163 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
164 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
165 unsigned int use_unit_num, unsigned int log_unit,
166 __u8 page_code, int cmd_type);
168 static void fail_all_cmds(unsigned long ctlr);
170 #ifdef CONFIG_PROC_FS
171 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
172 int length, int *eof, void *data);
173 static void cciss_procinit(int i);
174 #else
175 static void cciss_procinit(int i)
178 #endif /* CONFIG_PROC_FS */
180 #ifdef CONFIG_COMPAT
181 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
182 #endif
184 static struct block_device_operations cciss_fops = {
185 .owner = THIS_MODULE,
186 .open = cciss_open,
187 .release = cciss_release,
188 .ioctl = cciss_ioctl,
189 .getgeo = cciss_getgeo,
190 #ifdef CONFIG_COMPAT
191 .compat_ioctl = cciss_compat_ioctl,
192 #endif
193 .revalidate_disk = cciss_revalidate,
197 * Enqueuing and dequeuing functions for cmdlists.
199 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
201 if (*Qptr == NULL) {
202 *Qptr = c;
203 c->next = c->prev = c;
204 } else {
205 c->prev = (*Qptr)->prev;
206 c->next = (*Qptr);
207 (*Qptr)->prev->next = c;
208 (*Qptr)->prev = c;
212 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
213 CommandList_struct *c)
215 if (c && c->next != c) {
216 if (*Qptr == c)
217 *Qptr = c->next;
218 c->prev->next = c->next;
219 c->next->prev = c->prev;
220 } else {
221 *Qptr = NULL;
223 return c;
226 #include "cciss_scsi.c" /* For SCSI tape support */
228 #ifdef CONFIG_PROC_FS
231 * Report information about this controller.
233 #define ENG_GIG 1000000000
234 #define ENG_GIG_FACTOR (ENG_GIG/512)
235 #define RAID_UNKNOWN 6
236 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
237 "UNKNOWN"
240 static struct proc_dir_entry *proc_cciss;
242 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
243 int length, int *eof, void *data)
245 off_t pos = 0;
246 off_t len = 0;
247 int size, i, ctlr;
248 ctlr_info_t *h = (ctlr_info_t *) data;
249 drive_info_struct *drv;
250 unsigned long flags;
251 sector_t vol_sz, vol_sz_frac;
253 ctlr = h->ctlr;
255 /* prevent displaying bogus info during configuration
256 * or deconfiguration of a logical volume
258 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
259 if (h->busy_configuring) {
260 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
261 return -EBUSY;
263 h->busy_configuring = 1;
264 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
266 size = sprintf(buffer, "%s: HP %s Controller\n"
267 "Board ID: 0x%08lx\n"
268 "Firmware Version: %c%c%c%c\n"
269 "IRQ: %d\n"
270 "Logical drives: %d\n"
271 "Max sectors: %d\n"
272 "Current Q depth: %d\n"
273 "Current # commands on controller: %d\n"
274 "Max Q depth since init: %d\n"
275 "Max # commands on controller since init: %d\n"
276 "Max SG entries since init: %d\n\n",
277 h->devname,
278 h->product_name,
279 (unsigned long)h->board_id,
280 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
281 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
282 h->num_luns,
283 h->cciss_max_sectors,
284 h->Qdepth, h->commands_outstanding,
285 h->maxQsinceinit, h->max_outstanding, h->maxSG);
287 pos += size;
288 len += size;
289 cciss_proc_tape_report(ctlr, buffer, &pos, &len);
290 for (i = 0; i <= h->highest_lun; i++) {
292 drv = &h->drv[i];
293 if (drv->heads == 0)
294 continue;
296 vol_sz = drv->nr_blocks;
297 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
298 vol_sz_frac *= 100;
299 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
301 if (drv->raid_level > 5)
302 drv->raid_level = RAID_UNKNOWN;
303 size = sprintf(buffer + len, "cciss/c%dd%d:"
304 "\t%4u.%02uGB\tRAID %s\n",
305 ctlr, i, (int)vol_sz, (int)vol_sz_frac,
306 raid_label[drv->raid_level]);
307 pos += size;
308 len += size;
311 *eof = 1;
312 *start = buffer + offset;
313 len -= offset;
314 if (len > length)
315 len = length;
316 h->busy_configuring = 0;
317 return len;
320 static int
321 cciss_proc_write(struct file *file, const char __user *buffer,
322 unsigned long count, void *data)
324 unsigned char cmd[80];
325 int len;
326 #ifdef CONFIG_CISS_SCSI_TAPE
327 ctlr_info_t *h = (ctlr_info_t *) data;
328 int rc;
329 #endif
331 if (count > sizeof(cmd) - 1)
332 return -EINVAL;
333 if (copy_from_user(cmd, buffer, count))
334 return -EFAULT;
335 cmd[count] = '\0';
336 len = strlen(cmd); // above 3 lines ensure safety
337 if (len && cmd[len - 1] == '\n')
338 cmd[--len] = '\0';
339 # ifdef CONFIG_CISS_SCSI_TAPE
340 if (strcmp("engage scsi", cmd) == 0) {
341 rc = cciss_engage_scsi(h->ctlr);
342 if (rc != 0)
343 return -rc;
344 return count;
346 /* might be nice to have "disengage" too, but it's not
347 safely possible. (only 1 module use count, lock issues.) */
348 # endif
349 return -EINVAL;
353 * Get us a file in /proc/cciss that says something about each controller.
354 * Create /proc/cciss if it doesn't exist yet.
356 static void __devinit cciss_procinit(int i)
358 struct proc_dir_entry *pde;
360 if (proc_cciss == NULL) {
361 proc_cciss = proc_mkdir("cciss", proc_root_driver);
362 if (!proc_cciss)
363 return;
366 pde = create_proc_read_entry(hba[i]->devname,
367 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
368 proc_cciss, cciss_proc_get_info, hba[i]);
369 pde->write_proc = cciss_proc_write;
371 #endif /* CONFIG_PROC_FS */
374 * For operations that cannot sleep, a command block is allocated at init,
375 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
376 * which ones are free or in use. For operations that can wait for kmalloc
377 * to possible sleep, this routine can be called with get_from_pool set to 0.
378 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
380 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
382 CommandList_struct *c;
383 int i;
384 u64bit temp64;
385 dma_addr_t cmd_dma_handle, err_dma_handle;
387 if (!get_from_pool) {
388 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
389 sizeof(CommandList_struct), &cmd_dma_handle);
390 if (c == NULL)
391 return NULL;
392 memset(c, 0, sizeof(CommandList_struct));
394 c->cmdindex = -1;
396 c->err_info = (ErrorInfo_struct *)
397 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
398 &err_dma_handle);
400 if (c->err_info == NULL) {
401 pci_free_consistent(h->pdev,
402 sizeof(CommandList_struct), c, cmd_dma_handle);
403 return NULL;
405 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
406 } else { /* get it out of the controllers pool */
408 do {
409 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
410 if (i == h->nr_cmds)
411 return NULL;
412 } while (test_and_set_bit
413 (i & (BITS_PER_LONG - 1),
414 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
415 #ifdef CCISS_DEBUG
416 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
417 #endif
418 c = h->cmd_pool + i;
419 memset(c, 0, sizeof(CommandList_struct));
420 cmd_dma_handle = h->cmd_pool_dhandle
421 + i * sizeof(CommandList_struct);
422 c->err_info = h->errinfo_pool + i;
423 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
424 err_dma_handle = h->errinfo_pool_dhandle
425 + i * sizeof(ErrorInfo_struct);
426 h->nr_allocs++;
428 c->cmdindex = i;
431 c->busaddr = (__u32) cmd_dma_handle;
432 temp64.val = (__u64) err_dma_handle;
433 c->ErrDesc.Addr.lower = temp64.val32.lower;
434 c->ErrDesc.Addr.upper = temp64.val32.upper;
435 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
437 c->ctlr = h->ctlr;
438 return c;
442 * Frees a command block that was previously allocated with cmd_alloc().
444 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
446 int i;
447 u64bit temp64;
449 if (!got_from_pool) {
450 temp64.val32.lower = c->ErrDesc.Addr.lower;
451 temp64.val32.upper = c->ErrDesc.Addr.upper;
452 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
453 c->err_info, (dma_addr_t) temp64.val);
454 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
455 c, (dma_addr_t) c->busaddr);
456 } else {
457 i = c - h->cmd_pool;
458 clear_bit(i & (BITS_PER_LONG - 1),
459 h->cmd_pool_bits + (i / BITS_PER_LONG));
460 h->nr_frees++;
464 static inline ctlr_info_t *get_host(struct gendisk *disk)
466 return disk->queue->queuedata;
469 static inline drive_info_struct *get_drv(struct gendisk *disk)
471 return disk->private_data;
475 * Open. Make sure the device is really there.
477 static int cciss_open(struct inode *inode, struct file *filep)
479 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
480 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
482 #ifdef CCISS_DEBUG
483 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
484 #endif /* CCISS_DEBUG */
486 if (host->busy_initializing || drv->busy_configuring)
487 return -EBUSY;
489 * Root is allowed to open raw volume zero even if it's not configured
490 * so array config can still work. Root is also allowed to open any
491 * volume that has a LUN ID, so it can issue IOCTL to reread the
492 * disk information. I don't think I really like this
493 * but I'm already using way to many device nodes to claim another one
494 * for "raw controller".
496 if (drv->heads == 0) {
497 if (iminor(inode) != 0) { /* not node 0? */
498 /* if not node 0 make sure it is a partition = 0 */
499 if (iminor(inode) & 0x0f) {
500 return -ENXIO;
501 /* if it is, make sure we have a LUN ID */
502 } else if (drv->LunID == 0) {
503 return -ENXIO;
506 if (!capable(CAP_SYS_ADMIN))
507 return -EPERM;
509 drv->usage_count++;
510 host->usage_count++;
511 return 0;
515 * Close. Sync first.
517 static int cciss_release(struct inode *inode, struct file *filep)
519 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
520 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
522 #ifdef CCISS_DEBUG
523 printk(KERN_DEBUG "cciss_release %s\n",
524 inode->i_bdev->bd_disk->disk_name);
525 #endif /* CCISS_DEBUG */
527 drv->usage_count--;
528 host->usage_count--;
529 return 0;
532 #ifdef CONFIG_COMPAT
534 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
536 int ret;
537 lock_kernel();
538 ret = cciss_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
539 unlock_kernel();
540 return ret;
543 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
544 unsigned long arg);
545 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
546 unsigned long arg);
548 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
550 switch (cmd) {
551 case CCISS_GETPCIINFO:
552 case CCISS_GETINTINFO:
553 case CCISS_SETINTINFO:
554 case CCISS_GETNODENAME:
555 case CCISS_SETNODENAME:
556 case CCISS_GETHEARTBEAT:
557 case CCISS_GETBUSTYPES:
558 case CCISS_GETFIRMVER:
559 case CCISS_GETDRIVVER:
560 case CCISS_REVALIDVOLS:
561 case CCISS_DEREGDISK:
562 case CCISS_REGNEWDISK:
563 case CCISS_REGNEWD:
564 case CCISS_RESCANDISK:
565 case CCISS_GETLUNINFO:
566 return do_ioctl(f, cmd, arg);
568 case CCISS_PASSTHRU32:
569 return cciss_ioctl32_passthru(f, cmd, arg);
570 case CCISS_BIG_PASSTHRU32:
571 return cciss_ioctl32_big_passthru(f, cmd, arg);
573 default:
574 return -ENOIOCTLCMD;
578 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
579 unsigned long arg)
581 IOCTL32_Command_struct __user *arg32 =
582 (IOCTL32_Command_struct __user *) arg;
583 IOCTL_Command_struct arg64;
584 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
585 int err;
586 u32 cp;
588 err = 0;
589 err |=
590 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
591 sizeof(arg64.LUN_info));
592 err |=
593 copy_from_user(&arg64.Request, &arg32->Request,
594 sizeof(arg64.Request));
595 err |=
596 copy_from_user(&arg64.error_info, &arg32->error_info,
597 sizeof(arg64.error_info));
598 err |= get_user(arg64.buf_size, &arg32->buf_size);
599 err |= get_user(cp, &arg32->buf);
600 arg64.buf = compat_ptr(cp);
601 err |= copy_to_user(p, &arg64, sizeof(arg64));
603 if (err)
604 return -EFAULT;
606 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
607 if (err)
608 return err;
609 err |=
610 copy_in_user(&arg32->error_info, &p->error_info,
611 sizeof(arg32->error_info));
612 if (err)
613 return -EFAULT;
614 return err;
617 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
618 unsigned long arg)
620 BIG_IOCTL32_Command_struct __user *arg32 =
621 (BIG_IOCTL32_Command_struct __user *) arg;
622 BIG_IOCTL_Command_struct arg64;
623 BIG_IOCTL_Command_struct __user *p =
624 compat_alloc_user_space(sizeof(arg64));
625 int err;
626 u32 cp;
628 err = 0;
629 err |=
630 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
631 sizeof(arg64.LUN_info));
632 err |=
633 copy_from_user(&arg64.Request, &arg32->Request,
634 sizeof(arg64.Request));
635 err |=
636 copy_from_user(&arg64.error_info, &arg32->error_info,
637 sizeof(arg64.error_info));
638 err |= get_user(arg64.buf_size, &arg32->buf_size);
639 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
640 err |= get_user(cp, &arg32->buf);
641 arg64.buf = compat_ptr(cp);
642 err |= copy_to_user(p, &arg64, sizeof(arg64));
644 if (err)
645 return -EFAULT;
647 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
648 if (err)
649 return err;
650 err |=
651 copy_in_user(&arg32->error_info, &p->error_info,
652 sizeof(arg32->error_info));
653 if (err)
654 return -EFAULT;
655 return err;
657 #endif
659 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
661 drive_info_struct *drv = get_drv(bdev->bd_disk);
663 if (!drv->cylinders)
664 return -ENXIO;
666 geo->heads = drv->heads;
667 geo->sectors = drv->sectors;
668 geo->cylinders = drv->cylinders;
669 return 0;
673 * ioctl
675 static int cciss_ioctl(struct inode *inode, struct file *filep,
676 unsigned int cmd, unsigned long arg)
678 struct block_device *bdev = inode->i_bdev;
679 struct gendisk *disk = bdev->bd_disk;
680 ctlr_info_t *host = get_host(disk);
681 drive_info_struct *drv = get_drv(disk);
682 int ctlr = host->ctlr;
683 void __user *argp = (void __user *)arg;
685 #ifdef CCISS_DEBUG
686 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
687 #endif /* CCISS_DEBUG */
689 switch (cmd) {
690 case CCISS_GETPCIINFO:
692 cciss_pci_info_struct pciinfo;
694 if (!arg)
695 return -EINVAL;
696 pciinfo.domain = pci_domain_nr(host->pdev->bus);
697 pciinfo.bus = host->pdev->bus->number;
698 pciinfo.dev_fn = host->pdev->devfn;
699 pciinfo.board_id = host->board_id;
700 if (copy_to_user
701 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
702 return -EFAULT;
703 return 0;
705 case CCISS_GETINTINFO:
707 cciss_coalint_struct intinfo;
708 if (!arg)
709 return -EINVAL;
710 intinfo.delay =
711 readl(&host->cfgtable->HostWrite.CoalIntDelay);
712 intinfo.count =
713 readl(&host->cfgtable->HostWrite.CoalIntCount);
714 if (copy_to_user
715 (argp, &intinfo, sizeof(cciss_coalint_struct)))
716 return -EFAULT;
717 return 0;
719 case CCISS_SETINTINFO:
721 cciss_coalint_struct intinfo;
722 unsigned long flags;
723 int i;
725 if (!arg)
726 return -EINVAL;
727 if (!capable(CAP_SYS_ADMIN))
728 return -EPERM;
729 if (copy_from_user
730 (&intinfo, argp, sizeof(cciss_coalint_struct)))
731 return -EFAULT;
732 if ((intinfo.delay == 0) && (intinfo.count == 0))
734 // printk("cciss_ioctl: delay and count cannot be 0\n");
735 return -EINVAL;
737 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
738 /* Update the field, and then ring the doorbell */
739 writel(intinfo.delay,
740 &(host->cfgtable->HostWrite.CoalIntDelay));
741 writel(intinfo.count,
742 &(host->cfgtable->HostWrite.CoalIntCount));
743 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
745 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
746 if (!(readl(host->vaddr + SA5_DOORBELL)
747 & CFGTBL_ChangeReq))
748 break;
749 /* delay and try again */
750 udelay(1000);
752 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
753 if (i >= MAX_IOCTL_CONFIG_WAIT)
754 return -EAGAIN;
755 return 0;
757 case CCISS_GETNODENAME:
759 NodeName_type NodeName;
760 int i;
762 if (!arg)
763 return -EINVAL;
764 for (i = 0; i < 16; i++)
765 NodeName[i] =
766 readb(&host->cfgtable->ServerName[i]);
767 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
768 return -EFAULT;
769 return 0;
771 case CCISS_SETNODENAME:
773 NodeName_type NodeName;
774 unsigned long flags;
775 int i;
777 if (!arg)
778 return -EINVAL;
779 if (!capable(CAP_SYS_ADMIN))
780 return -EPERM;
782 if (copy_from_user
783 (NodeName, argp, sizeof(NodeName_type)))
784 return -EFAULT;
786 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
788 /* Update the field, and then ring the doorbell */
789 for (i = 0; i < 16; i++)
790 writeb(NodeName[i],
791 &host->cfgtable->ServerName[i]);
793 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
795 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
796 if (!(readl(host->vaddr + SA5_DOORBELL)
797 & CFGTBL_ChangeReq))
798 break;
799 /* delay and try again */
800 udelay(1000);
802 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
803 if (i >= MAX_IOCTL_CONFIG_WAIT)
804 return -EAGAIN;
805 return 0;
808 case CCISS_GETHEARTBEAT:
810 Heartbeat_type heartbeat;
812 if (!arg)
813 return -EINVAL;
814 heartbeat = readl(&host->cfgtable->HeartBeat);
815 if (copy_to_user
816 (argp, &heartbeat, sizeof(Heartbeat_type)))
817 return -EFAULT;
818 return 0;
820 case CCISS_GETBUSTYPES:
822 BusTypes_type BusTypes;
824 if (!arg)
825 return -EINVAL;
826 BusTypes = readl(&host->cfgtable->BusTypes);
827 if (copy_to_user
828 (argp, &BusTypes, sizeof(BusTypes_type)))
829 return -EFAULT;
830 return 0;
832 case CCISS_GETFIRMVER:
834 FirmwareVer_type firmware;
836 if (!arg)
837 return -EINVAL;
838 memcpy(firmware, host->firm_ver, 4);
840 if (copy_to_user
841 (argp, firmware, sizeof(FirmwareVer_type)))
842 return -EFAULT;
843 return 0;
845 case CCISS_GETDRIVVER:
847 DriverVer_type DriverVer = DRIVER_VERSION;
849 if (!arg)
850 return -EINVAL;
852 if (copy_to_user
853 (argp, &DriverVer, sizeof(DriverVer_type)))
854 return -EFAULT;
855 return 0;
858 case CCISS_REVALIDVOLS:
859 return rebuild_lun_table(host, NULL);
861 case CCISS_GETLUNINFO:{
862 LogvolInfo_struct luninfo;
864 luninfo.LunID = drv->LunID;
865 luninfo.num_opens = drv->usage_count;
866 luninfo.num_parts = 0;
867 if (copy_to_user(argp, &luninfo,
868 sizeof(LogvolInfo_struct)))
869 return -EFAULT;
870 return 0;
872 case CCISS_DEREGDISK:
873 return rebuild_lun_table(host, disk);
875 case CCISS_REGNEWD:
876 return rebuild_lun_table(host, NULL);
878 case CCISS_PASSTHRU:
880 IOCTL_Command_struct iocommand;
881 CommandList_struct *c;
882 char *buff = NULL;
883 u64bit temp64;
884 unsigned long flags;
885 DECLARE_COMPLETION_ONSTACK(wait);
887 if (!arg)
888 return -EINVAL;
890 if (!capable(CAP_SYS_RAWIO))
891 return -EPERM;
893 if (copy_from_user
894 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
895 return -EFAULT;
896 if ((iocommand.buf_size < 1) &&
897 (iocommand.Request.Type.Direction != XFER_NONE)) {
898 return -EINVAL;
900 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
901 /* Check kmalloc limits */
902 if (iocommand.buf_size > 128000)
903 return -EINVAL;
904 #endif
905 if (iocommand.buf_size > 0) {
906 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
907 if (buff == NULL)
908 return -EFAULT;
910 if (iocommand.Request.Type.Direction == XFER_WRITE) {
911 /* Copy the data into the buffer we created */
912 if (copy_from_user
913 (buff, iocommand.buf, iocommand.buf_size)) {
914 kfree(buff);
915 return -EFAULT;
917 } else {
918 memset(buff, 0, iocommand.buf_size);
920 if ((c = cmd_alloc(host, 0)) == NULL) {
921 kfree(buff);
922 return -ENOMEM;
924 // Fill in the command type
925 c->cmd_type = CMD_IOCTL_PEND;
926 // Fill in Command Header
927 c->Header.ReplyQueue = 0; // unused in simple mode
928 if (iocommand.buf_size > 0) // buffer to fill
930 c->Header.SGList = 1;
931 c->Header.SGTotal = 1;
932 } else // no buffers to fill
934 c->Header.SGList = 0;
935 c->Header.SGTotal = 0;
937 c->Header.LUN = iocommand.LUN_info;
938 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
940 // Fill in Request block
941 c->Request = iocommand.Request;
943 // Fill in the scatter gather information
944 if (iocommand.buf_size > 0) {
945 temp64.val = pci_map_single(host->pdev, buff,
946 iocommand.buf_size,
947 PCI_DMA_BIDIRECTIONAL);
948 c->SG[0].Addr.lower = temp64.val32.lower;
949 c->SG[0].Addr.upper = temp64.val32.upper;
950 c->SG[0].Len = iocommand.buf_size;
951 c->SG[0].Ext = 0; // we are not chaining
953 c->waiting = &wait;
955 /* Put the request on the tail of the request queue */
956 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
957 addQ(&host->reqQ, c);
958 host->Qdepth++;
959 start_io(host);
960 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
962 wait_for_completion(&wait);
964 /* unlock the buffers from DMA */
965 temp64.val32.lower = c->SG[0].Addr.lower;
966 temp64.val32.upper = c->SG[0].Addr.upper;
967 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
968 iocommand.buf_size,
969 PCI_DMA_BIDIRECTIONAL);
971 /* Copy the error information out */
972 iocommand.error_info = *(c->err_info);
973 if (copy_to_user
974 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
975 kfree(buff);
976 cmd_free(host, c, 0);
977 return -EFAULT;
980 if (iocommand.Request.Type.Direction == XFER_READ) {
981 /* Copy the data out of the buffer we created */
982 if (copy_to_user
983 (iocommand.buf, buff, iocommand.buf_size)) {
984 kfree(buff);
985 cmd_free(host, c, 0);
986 return -EFAULT;
989 kfree(buff);
990 cmd_free(host, c, 0);
991 return 0;
993 case CCISS_BIG_PASSTHRU:{
994 BIG_IOCTL_Command_struct *ioc;
995 CommandList_struct *c;
996 unsigned char **buff = NULL;
997 int *buff_size = NULL;
998 u64bit temp64;
999 unsigned long flags;
1000 BYTE sg_used = 0;
1001 int status = 0;
1002 int i;
1003 DECLARE_COMPLETION_ONSTACK(wait);
1004 __u32 left;
1005 __u32 sz;
1006 BYTE __user *data_ptr;
1008 if (!arg)
1009 return -EINVAL;
1010 if (!capable(CAP_SYS_RAWIO))
1011 return -EPERM;
1012 ioc = (BIG_IOCTL_Command_struct *)
1013 kmalloc(sizeof(*ioc), GFP_KERNEL);
1014 if (!ioc) {
1015 status = -ENOMEM;
1016 goto cleanup1;
1018 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1019 status = -EFAULT;
1020 goto cleanup1;
1022 if ((ioc->buf_size < 1) &&
1023 (ioc->Request.Type.Direction != XFER_NONE)) {
1024 status = -EINVAL;
1025 goto cleanup1;
1027 /* Check kmalloc limits using all SGs */
1028 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1029 status = -EINVAL;
1030 goto cleanup1;
1032 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1033 status = -EINVAL;
1034 goto cleanup1;
1036 buff =
1037 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1038 if (!buff) {
1039 status = -ENOMEM;
1040 goto cleanup1;
1042 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1043 GFP_KERNEL);
1044 if (!buff_size) {
1045 status = -ENOMEM;
1046 goto cleanup1;
1048 left = ioc->buf_size;
1049 data_ptr = ioc->buf;
1050 while (left) {
1051 sz = (left >
1052 ioc->malloc_size) ? ioc->
1053 malloc_size : left;
1054 buff_size[sg_used] = sz;
1055 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1056 if (buff[sg_used] == NULL) {
1057 status = -ENOMEM;
1058 goto cleanup1;
1060 if (ioc->Request.Type.Direction == XFER_WRITE) {
1061 if (copy_from_user
1062 (buff[sg_used], data_ptr, sz)) {
1063 status = -ENOMEM;
1064 goto cleanup1;
1066 } else {
1067 memset(buff[sg_used], 0, sz);
1069 left -= sz;
1070 data_ptr += sz;
1071 sg_used++;
1073 if ((c = cmd_alloc(host, 0)) == NULL) {
1074 status = -ENOMEM;
1075 goto cleanup1;
1077 c->cmd_type = CMD_IOCTL_PEND;
1078 c->Header.ReplyQueue = 0;
1080 if (ioc->buf_size > 0) {
1081 c->Header.SGList = sg_used;
1082 c->Header.SGTotal = sg_used;
1083 } else {
1084 c->Header.SGList = 0;
1085 c->Header.SGTotal = 0;
1087 c->Header.LUN = ioc->LUN_info;
1088 c->Header.Tag.lower = c->busaddr;
1090 c->Request = ioc->Request;
1091 if (ioc->buf_size > 0) {
1092 int i;
1093 for (i = 0; i < sg_used; i++) {
1094 temp64.val =
1095 pci_map_single(host->pdev, buff[i],
1096 buff_size[i],
1097 PCI_DMA_BIDIRECTIONAL);
1098 c->SG[i].Addr.lower =
1099 temp64.val32.lower;
1100 c->SG[i].Addr.upper =
1101 temp64.val32.upper;
1102 c->SG[i].Len = buff_size[i];
1103 c->SG[i].Ext = 0; /* we are not chaining */
1106 c->waiting = &wait;
1107 /* Put the request on the tail of the request queue */
1108 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1109 addQ(&host->reqQ, c);
1110 host->Qdepth++;
1111 start_io(host);
1112 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1113 wait_for_completion(&wait);
1114 /* unlock the buffers from DMA */
1115 for (i = 0; i < sg_used; i++) {
1116 temp64.val32.lower = c->SG[i].Addr.lower;
1117 temp64.val32.upper = c->SG[i].Addr.upper;
1118 pci_unmap_single(host->pdev,
1119 (dma_addr_t) temp64.val, buff_size[i],
1120 PCI_DMA_BIDIRECTIONAL);
1122 /* Copy the error information out */
1123 ioc->error_info = *(c->err_info);
1124 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1125 cmd_free(host, c, 0);
1126 status = -EFAULT;
1127 goto cleanup1;
1129 if (ioc->Request.Type.Direction == XFER_READ) {
1130 /* Copy the data out of the buffer we created */
1131 BYTE __user *ptr = ioc->buf;
1132 for (i = 0; i < sg_used; i++) {
1133 if (copy_to_user
1134 (ptr, buff[i], buff_size[i])) {
1135 cmd_free(host, c, 0);
1136 status = -EFAULT;
1137 goto cleanup1;
1139 ptr += buff_size[i];
1142 cmd_free(host, c, 0);
1143 status = 0;
1144 cleanup1:
1145 if (buff) {
1146 for (i = 0; i < sg_used; i++)
1147 kfree(buff[i]);
1148 kfree(buff);
1150 kfree(buff_size);
1151 kfree(ioc);
1152 return status;
1154 default:
1155 return -ENOTTY;
1159 static inline void complete_buffers(struct bio *bio, int status)
1161 while (bio) {
1162 struct bio *xbh = bio->bi_next;
1163 int nr_sectors = bio_sectors(bio);
1165 bio->bi_next = NULL;
1166 bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
1167 bio = xbh;
1171 static void cciss_check_queues(ctlr_info_t *h)
1173 int start_queue = h->next_to_run;
1174 int i;
1176 /* check to see if we have maxed out the number of commands that can
1177 * be placed on the queue. If so then exit. We do this check here
1178 * in case the interrupt we serviced was from an ioctl and did not
1179 * free any new commands.
1181 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1182 return;
1184 /* We have room on the queue for more commands. Now we need to queue
1185 * them up. We will also keep track of the next queue to run so
1186 * that every queue gets a chance to be started first.
1188 for (i = 0; i < h->highest_lun + 1; i++) {
1189 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1190 /* make sure the disk has been added and the drive is real
1191 * because this can be called from the middle of init_one.
1193 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1194 continue;
1195 blk_start_queue(h->gendisk[curr_queue]->queue);
1197 /* check to see if we have maxed out the number of commands
1198 * that can be placed on the queue.
1200 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1201 if (curr_queue == start_queue) {
1202 h->next_to_run =
1203 (start_queue + 1) % (h->highest_lun + 1);
1204 break;
1205 } else {
1206 h->next_to_run = curr_queue;
1207 break;
1209 } else {
1210 curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
1215 static void cciss_softirq_done(struct request *rq)
1217 CommandList_struct *cmd = rq->completion_data;
1218 ctlr_info_t *h = hba[cmd->ctlr];
1219 unsigned long flags;
1220 u64bit temp64;
1221 int i, ddir;
1223 if (cmd->Request.Type.Direction == XFER_READ)
1224 ddir = PCI_DMA_FROMDEVICE;
1225 else
1226 ddir = PCI_DMA_TODEVICE;
1228 /* command did not need to be retried */
1229 /* unmap the DMA mapping for all the scatter gather elements */
1230 for (i = 0; i < cmd->Header.SGList; i++) {
1231 temp64.val32.lower = cmd->SG[i].Addr.lower;
1232 temp64.val32.upper = cmd->SG[i].Addr.upper;
1233 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1236 complete_buffers(rq->bio, rq->errors);
1238 if (blk_fs_request(rq)) {
1239 const int rw = rq_data_dir(rq);
1241 disk_stat_add(rq->rq_disk, sectors[rw], rq->nr_sectors);
1244 #ifdef CCISS_DEBUG
1245 printk("Done with %p\n", rq);
1246 #endif /* CCISS_DEBUG */
1248 add_disk_randomness(rq->rq_disk);
1249 spin_lock_irqsave(&h->lock, flags);
1250 end_that_request_last(rq, rq->errors);
1251 cmd_free(h, cmd, 1);
1252 cciss_check_queues(h);
1253 spin_unlock_irqrestore(&h->lock, flags);
1256 /* This function will check the usage_count of the drive to be updated/added.
1257 * If the usage_count is zero then the drive information will be updated and
1258 * the disk will be re-registered with the kernel. If not then it will be
1259 * left alone for the next reboot. The exception to this is disk 0 which
1260 * will always be left registered with the kernel since it is also the
1261 * controller node. Any changes to disk 0 will show up on the next
1262 * reboot.
1264 static void cciss_update_drive_info(int ctlr, int drv_index)
1266 ctlr_info_t *h = hba[ctlr];
1267 struct gendisk *disk;
1268 InquiryData_struct *inq_buff = NULL;
1269 unsigned int block_size;
1270 sector_t total_size;
1271 unsigned long flags = 0;
1272 int ret = 0;
1274 /* if the disk already exists then deregister it before proceeding */
1275 if (h->drv[drv_index].raid_level != -1) {
1276 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1277 h->drv[drv_index].busy_configuring = 1;
1278 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1279 ret = deregister_disk(h->gendisk[drv_index],
1280 &h->drv[drv_index], 0);
1281 h->drv[drv_index].busy_configuring = 0;
1284 /* If the disk is in use return */
1285 if (ret)
1286 return;
1288 /* Get information about the disk and modify the driver structure */
1289 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1290 if (inq_buff == NULL)
1291 goto mem_msg;
1293 cciss_read_capacity(ctlr, drv_index, 1,
1294 &total_size, &block_size);
1296 /* total size = last LBA + 1 */
1297 /* FFFFFFFF + 1 = 0, cannot have a logical volume of size 0 */
1298 /* so we assume this volume this must be >2TB in size */
1299 if (total_size == (__u32) 0) {
1300 cciss_read_capacity_16(ctlr, drv_index, 1,
1301 &total_size, &block_size);
1302 h->cciss_read = CCISS_READ_16;
1303 h->cciss_write = CCISS_WRITE_16;
1304 } else {
1305 h->cciss_read = CCISS_READ_10;
1306 h->cciss_write = CCISS_WRITE_10;
1308 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1309 inq_buff, &h->drv[drv_index]);
1311 ++h->num_luns;
1312 disk = h->gendisk[drv_index];
1313 set_capacity(disk, h->drv[drv_index].nr_blocks);
1315 /* if it's the controller it's already added */
1316 if (drv_index) {
1317 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1318 sprintf(disk->disk_name, "cciss/c%dd%d", ctlr, drv_index);
1319 disk->major = h->major;
1320 disk->first_minor = drv_index << NWD_SHIFT;
1321 disk->fops = &cciss_fops;
1322 disk->private_data = &h->drv[drv_index];
1324 /* Set up queue information */
1325 disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1326 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1328 /* This is a hardware imposed limit. */
1329 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1331 /* This is a limit in the driver and could be eliminated. */
1332 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1334 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1336 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1338 disk->queue->queuedata = hba[ctlr];
1340 blk_queue_hardsect_size(disk->queue,
1341 hba[ctlr]->drv[drv_index].block_size);
1343 h->drv[drv_index].queue = disk->queue;
1344 add_disk(disk);
1347 freeret:
1348 kfree(inq_buff);
1349 return;
1350 mem_msg:
1351 printk(KERN_ERR "cciss: out of memory\n");
1352 goto freeret;
1355 /* This function will find the first index of the controllers drive array
1356 * that has a -1 for the raid_level and will return that index. This is
1357 * where new drives will be added. If the index to be returned is greater
1358 * than the highest_lun index for the controller then highest_lun is set
1359 * to this new index. If there are no available indexes then -1 is returned.
1361 static int cciss_find_free_drive_index(int ctlr)
1363 int i;
1365 for (i = 0; i < CISS_MAX_LUN; i++) {
1366 if (hba[ctlr]->drv[i].raid_level == -1) {
1367 if (i > hba[ctlr]->highest_lun)
1368 hba[ctlr]->highest_lun = i;
1369 return i;
1372 return -1;
1375 /* This function will add and remove logical drives from the Logical
1376 * drive array of the controller and maintain persistency of ordering
1377 * so that mount points are preserved until the next reboot. This allows
1378 * for the removal of logical drives in the middle of the drive array
1379 * without a re-ordering of those drives.
1380 * INPUT
1381 * h = The controller to perform the operations on
1382 * del_disk = The disk to remove if specified. If the value given
1383 * is NULL then no disk is removed.
1385 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1387 int ctlr = h->ctlr;
1388 int num_luns;
1389 ReportLunData_struct *ld_buff = NULL;
1390 drive_info_struct *drv = NULL;
1391 int return_code;
1392 int listlength = 0;
1393 int i;
1394 int drv_found;
1395 int drv_index = 0;
1396 __u32 lunid = 0;
1397 unsigned long flags;
1399 /* Set busy_configuring flag for this operation */
1400 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1401 if (h->busy_configuring) {
1402 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1403 return -EBUSY;
1405 h->busy_configuring = 1;
1407 /* if del_disk is NULL then we are being called to add a new disk
1408 * and update the logical drive table. If it is not NULL then
1409 * we will check if the disk is in use or not.
1411 if (del_disk != NULL) {
1412 drv = get_drv(del_disk);
1413 drv->busy_configuring = 1;
1414 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1415 return_code = deregister_disk(del_disk, drv, 1);
1416 drv->busy_configuring = 0;
1417 h->busy_configuring = 0;
1418 return return_code;
1419 } else {
1420 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1421 if (!capable(CAP_SYS_RAWIO))
1422 return -EPERM;
1424 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1425 if (ld_buff == NULL)
1426 goto mem_msg;
1428 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1429 sizeof(ReportLunData_struct), 0,
1430 0, 0, TYPE_CMD);
1432 if (return_code == IO_OK) {
1433 listlength =
1434 be32_to_cpu(*(__u32 *) ld_buff->LUNListLength);
1435 } else { /* reading number of logical volumes failed */
1436 printk(KERN_WARNING "cciss: report logical volume"
1437 " command failed\n");
1438 listlength = 0;
1439 goto freeret;
1442 num_luns = listlength / 8; /* 8 bytes per entry */
1443 if (num_luns > CISS_MAX_LUN) {
1444 num_luns = CISS_MAX_LUN;
1445 printk(KERN_WARNING "cciss: more luns configured"
1446 " on controller than can be handled by"
1447 " this driver.\n");
1450 /* Compare controller drive array to drivers drive array.
1451 * Check for updates in the drive information and any new drives
1452 * on the controller.
1454 for (i = 0; i < num_luns; i++) {
1455 int j;
1457 drv_found = 0;
1459 lunid = (0xff &
1460 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1461 lunid |= (0xff &
1462 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1463 lunid |= (0xff &
1464 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1465 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1467 /* Find if the LUN is already in the drive array
1468 * of the controller. If so then update its info
1469 * if not is use. If it does not exist then find
1470 * the first free index and add it.
1472 for (j = 0; j <= h->highest_lun; j++) {
1473 if (h->drv[j].LunID == lunid) {
1474 drv_index = j;
1475 drv_found = 1;
1479 /* check if the drive was found already in the array */
1480 if (!drv_found) {
1481 drv_index = cciss_find_free_drive_index(ctlr);
1482 if (drv_index == -1)
1483 goto freeret;
1485 /*Check if the gendisk needs to be allocated */
1486 if (!h->gendisk[drv_index]){
1487 h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT);
1488 if (!h->gendisk[drv_index]){
1489 printk(KERN_ERR "cciss: could not allocate new disk %d\n", drv_index);
1490 goto mem_msg;
1494 h->drv[drv_index].LunID = lunid;
1495 cciss_update_drive_info(ctlr, drv_index);
1496 } /* end for */
1497 } /* end else */
1499 freeret:
1500 kfree(ld_buff);
1501 h->busy_configuring = 0;
1502 /* We return -1 here to tell the ACU that we have registered/updated
1503 * all of the drives that we can and to keep it from calling us
1504 * additional times.
1506 return -1;
1507 mem_msg:
1508 printk(KERN_ERR "cciss: out of memory\n");
1509 goto freeret;
1512 /* This function will deregister the disk and it's queue from the
1513 * kernel. It must be called with the controller lock held and the
1514 * drv structures busy_configuring flag set. It's parameters are:
1516 * disk = This is the disk to be deregistered
1517 * drv = This is the drive_info_struct associated with the disk to be
1518 * deregistered. It contains information about the disk used
1519 * by the driver.
1520 * clear_all = This flag determines whether or not the disk information
1521 * is going to be completely cleared out and the highest_lun
1522 * reset. Sometimes we want to clear out information about
1523 * the disk in preparation for re-adding it. In this case
1524 * the highest_lun should be left unchanged and the LunID
1525 * should not be cleared.
1527 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1528 int clear_all)
1530 int i;
1531 ctlr_info_t *h = get_host(disk);
1533 if (!capable(CAP_SYS_RAWIO))
1534 return -EPERM;
1536 /* make sure logical volume is NOT is use */
1537 if (clear_all || (h->gendisk[0] == disk)) {
1538 if (drv->usage_count > 1)
1539 return -EBUSY;
1540 } else if (drv->usage_count > 0)
1541 return -EBUSY;
1543 /* invalidate the devices and deregister the disk. If it is disk
1544 * zero do not deregister it but just zero out it's values. This
1545 * allows us to delete disk zero but keep the controller registered.
1547 if (h->gendisk[0] != disk) {
1548 if (disk) {
1549 request_queue_t *q = disk->queue;
1550 if (disk->flags & GENHD_FL_UP)
1551 del_gendisk(disk);
1552 if (q) {
1553 blk_cleanup_queue(q);
1554 /* Set drv->queue to NULL so that we do not try
1555 * to call blk_start_queue on this queue in the
1556 * interrupt handler
1558 drv->queue = NULL;
1560 /* If clear_all is set then we are deleting the logical
1561 * drive, not just refreshing its info. For drives
1562 * other than disk 0 we will call put_disk. We do not
1563 * do this for disk 0 as we need it to be able to
1564 * configure the controller.
1566 if (clear_all){
1567 /* This isn't pretty, but we need to find the
1568 * disk in our array and NULL our the pointer.
1569 * This is so that we will call alloc_disk if
1570 * this index is used again later.
1572 for (i=0; i < CISS_MAX_LUN; i++){
1573 if(h->gendisk[i] == disk){
1574 h->gendisk[i] = NULL;
1575 break;
1578 put_disk(disk);
1581 } else {
1582 set_capacity(disk, 0);
1585 --h->num_luns;
1586 /* zero out the disk size info */
1587 drv->nr_blocks = 0;
1588 drv->block_size = 0;
1589 drv->heads = 0;
1590 drv->sectors = 0;
1591 drv->cylinders = 0;
1592 drv->raid_level = -1; /* This can be used as a flag variable to
1593 * indicate that this element of the drive
1594 * array is free.
1597 if (clear_all) {
1598 /* check to see if it was the last disk */
1599 if (drv == h->drv + h->highest_lun) {
1600 /* if so, find the new hightest lun */
1601 int i, newhighest = -1;
1602 for (i = 0; i < h->highest_lun; i++) {
1603 /* if the disk has size > 0, it is available */
1604 if (h->drv[i].heads)
1605 newhighest = i;
1607 h->highest_lun = newhighest;
1610 drv->LunID = 0;
1612 return 0;
1615 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1616 1: address logical volume log_unit,
1617 2: periph device address is scsi3addr */
1618 unsigned int log_unit, __u8 page_code,
1619 unsigned char *scsi3addr, int cmd_type)
1621 ctlr_info_t *h = hba[ctlr];
1622 u64bit buff_dma_handle;
1623 int status = IO_OK;
1625 c->cmd_type = CMD_IOCTL_PEND;
1626 c->Header.ReplyQueue = 0;
1627 if (buff != NULL) {
1628 c->Header.SGList = 1;
1629 c->Header.SGTotal = 1;
1630 } else {
1631 c->Header.SGList = 0;
1632 c->Header.SGTotal = 0;
1634 c->Header.Tag.lower = c->busaddr;
1636 c->Request.Type.Type = cmd_type;
1637 if (cmd_type == TYPE_CMD) {
1638 switch (cmd) {
1639 case CISS_INQUIRY:
1640 /* If the logical unit number is 0 then, this is going
1641 to controller so It's a physical command
1642 mode = 0 target = 0. So we have nothing to write.
1643 otherwise, if use_unit_num == 1,
1644 mode = 1(volume set addressing) target = LUNID
1645 otherwise, if use_unit_num == 2,
1646 mode = 0(periph dev addr) target = scsi3addr */
1647 if (use_unit_num == 1) {
1648 c->Header.LUN.LogDev.VolId =
1649 h->drv[log_unit].LunID;
1650 c->Header.LUN.LogDev.Mode = 1;
1651 } else if (use_unit_num == 2) {
1652 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1654 c->Header.LUN.LogDev.Mode = 0;
1656 /* are we trying to read a vital product page */
1657 if (page_code != 0) {
1658 c->Request.CDB[1] = 0x01;
1659 c->Request.CDB[2] = page_code;
1661 c->Request.CDBLen = 6;
1662 c->Request.Type.Attribute = ATTR_SIMPLE;
1663 c->Request.Type.Direction = XFER_READ;
1664 c->Request.Timeout = 0;
1665 c->Request.CDB[0] = CISS_INQUIRY;
1666 c->Request.CDB[4] = size & 0xFF;
1667 break;
1668 case CISS_REPORT_LOG:
1669 case CISS_REPORT_PHYS:
1670 /* Talking to controller so It's a physical command
1671 mode = 00 target = 0. Nothing to write.
1673 c->Request.CDBLen = 12;
1674 c->Request.Type.Attribute = ATTR_SIMPLE;
1675 c->Request.Type.Direction = XFER_READ;
1676 c->Request.Timeout = 0;
1677 c->Request.CDB[0] = cmd;
1678 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1679 c->Request.CDB[7] = (size >> 16) & 0xFF;
1680 c->Request.CDB[8] = (size >> 8) & 0xFF;
1681 c->Request.CDB[9] = size & 0xFF;
1682 break;
1684 case CCISS_READ_CAPACITY:
1685 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1686 c->Header.LUN.LogDev.Mode = 1;
1687 c->Request.CDBLen = 10;
1688 c->Request.Type.Attribute = ATTR_SIMPLE;
1689 c->Request.Type.Direction = XFER_READ;
1690 c->Request.Timeout = 0;
1691 c->Request.CDB[0] = cmd;
1692 break;
1693 case CCISS_READ_CAPACITY_16:
1694 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1695 c->Header.LUN.LogDev.Mode = 1;
1696 c->Request.CDBLen = 16;
1697 c->Request.Type.Attribute = ATTR_SIMPLE;
1698 c->Request.Type.Direction = XFER_READ;
1699 c->Request.Timeout = 0;
1700 c->Request.CDB[0] = cmd;
1701 c->Request.CDB[1] = 0x10;
1702 c->Request.CDB[10] = (size >> 24) & 0xFF;
1703 c->Request.CDB[11] = (size >> 16) & 0xFF;
1704 c->Request.CDB[12] = (size >> 8) & 0xFF;
1705 c->Request.CDB[13] = size & 0xFF;
1706 c->Request.Timeout = 0;
1707 c->Request.CDB[0] = cmd;
1708 break;
1709 case CCISS_CACHE_FLUSH:
1710 c->Request.CDBLen = 12;
1711 c->Request.Type.Attribute = ATTR_SIMPLE;
1712 c->Request.Type.Direction = XFER_WRITE;
1713 c->Request.Timeout = 0;
1714 c->Request.CDB[0] = BMIC_WRITE;
1715 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1716 break;
1717 default:
1718 printk(KERN_WARNING
1719 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1720 return IO_ERROR;
1722 } else if (cmd_type == TYPE_MSG) {
1723 switch (cmd) {
1724 case 0: /* ABORT message */
1725 c->Request.CDBLen = 12;
1726 c->Request.Type.Attribute = ATTR_SIMPLE;
1727 c->Request.Type.Direction = XFER_WRITE;
1728 c->Request.Timeout = 0;
1729 c->Request.CDB[0] = cmd; /* abort */
1730 c->Request.CDB[1] = 0; /* abort a command */
1731 /* buff contains the tag of the command to abort */
1732 memcpy(&c->Request.CDB[4], buff, 8);
1733 break;
1734 case 1: /* RESET message */
1735 c->Request.CDBLen = 12;
1736 c->Request.Type.Attribute = ATTR_SIMPLE;
1737 c->Request.Type.Direction = XFER_WRITE;
1738 c->Request.Timeout = 0;
1739 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1740 c->Request.CDB[0] = cmd; /* reset */
1741 c->Request.CDB[1] = 0x04; /* reset a LUN */
1742 break;
1743 case 3: /* No-Op message */
1744 c->Request.CDBLen = 1;
1745 c->Request.Type.Attribute = ATTR_SIMPLE;
1746 c->Request.Type.Direction = XFER_WRITE;
1747 c->Request.Timeout = 0;
1748 c->Request.CDB[0] = cmd;
1749 break;
1750 default:
1751 printk(KERN_WARNING
1752 "cciss%d: unknown message type %d\n", ctlr, cmd);
1753 return IO_ERROR;
1755 } else {
1756 printk(KERN_WARNING
1757 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1758 return IO_ERROR;
1760 /* Fill in the scatter gather information */
1761 if (size > 0) {
1762 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1763 buff, size,
1764 PCI_DMA_BIDIRECTIONAL);
1765 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1766 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1767 c->SG[0].Len = size;
1768 c->SG[0].Ext = 0; /* we are not chaining */
1770 return status;
1773 static int sendcmd_withirq(__u8 cmd,
1774 int ctlr,
1775 void *buff,
1776 size_t size,
1777 unsigned int use_unit_num,
1778 unsigned int log_unit, __u8 page_code, int cmd_type)
1780 ctlr_info_t *h = hba[ctlr];
1781 CommandList_struct *c;
1782 u64bit buff_dma_handle;
1783 unsigned long flags;
1784 int return_status;
1785 DECLARE_COMPLETION_ONSTACK(wait);
1787 if ((c = cmd_alloc(h, 0)) == NULL)
1788 return -ENOMEM;
1789 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1790 log_unit, page_code, NULL, cmd_type);
1791 if (return_status != IO_OK) {
1792 cmd_free(h, c, 0);
1793 return return_status;
1795 resend_cmd2:
1796 c->waiting = &wait;
1798 /* Put the request on the tail of the queue and send it */
1799 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1800 addQ(&h->reqQ, c);
1801 h->Qdepth++;
1802 start_io(h);
1803 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1805 wait_for_completion(&wait);
1807 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
1808 switch (c->err_info->CommandStatus) {
1809 case CMD_TARGET_STATUS:
1810 printk(KERN_WARNING "cciss: cmd %p has "
1811 " completed with errors\n", c);
1812 if (c->err_info->ScsiStatus) {
1813 printk(KERN_WARNING "cciss: cmd %p "
1814 "has SCSI Status = %x\n",
1815 c, c->err_info->ScsiStatus);
1818 break;
1819 case CMD_DATA_UNDERRUN:
1820 case CMD_DATA_OVERRUN:
1821 /* expected for inquire and report lun commands */
1822 break;
1823 case CMD_INVALID:
1824 printk(KERN_WARNING "cciss: Cmd %p is "
1825 "reported invalid\n", c);
1826 return_status = IO_ERROR;
1827 break;
1828 case CMD_PROTOCOL_ERR:
1829 printk(KERN_WARNING "cciss: cmd %p has "
1830 "protocol error \n", c);
1831 return_status = IO_ERROR;
1832 break;
1833 case CMD_HARDWARE_ERR:
1834 printk(KERN_WARNING "cciss: cmd %p had "
1835 " hardware error\n", c);
1836 return_status = IO_ERROR;
1837 break;
1838 case CMD_CONNECTION_LOST:
1839 printk(KERN_WARNING "cciss: cmd %p had "
1840 "connection lost\n", c);
1841 return_status = IO_ERROR;
1842 break;
1843 case CMD_ABORTED:
1844 printk(KERN_WARNING "cciss: cmd %p was "
1845 "aborted\n", c);
1846 return_status = IO_ERROR;
1847 break;
1848 case CMD_ABORT_FAILED:
1849 printk(KERN_WARNING "cciss: cmd %p reports "
1850 "abort failed\n", c);
1851 return_status = IO_ERROR;
1852 break;
1853 case CMD_UNSOLICITED_ABORT:
1854 printk(KERN_WARNING
1855 "cciss%d: unsolicited abort %p\n", ctlr, c);
1856 if (c->retry_count < MAX_CMD_RETRIES) {
1857 printk(KERN_WARNING
1858 "cciss%d: retrying %p\n", ctlr, c);
1859 c->retry_count++;
1860 /* erase the old error information */
1861 memset(c->err_info, 0,
1862 sizeof(ErrorInfo_struct));
1863 return_status = IO_OK;
1864 INIT_COMPLETION(wait);
1865 goto resend_cmd2;
1867 return_status = IO_ERROR;
1868 break;
1869 default:
1870 printk(KERN_WARNING "cciss: cmd %p returned "
1871 "unknown status %x\n", c,
1872 c->err_info->CommandStatus);
1873 return_status = IO_ERROR;
1876 /* unlock the buffers from DMA */
1877 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1878 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1879 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
1880 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1881 cmd_free(h, c, 0);
1882 return return_status;
1885 static void cciss_geometry_inquiry(int ctlr, int logvol,
1886 int withirq, sector_t total_size,
1887 unsigned int block_size,
1888 InquiryData_struct *inq_buff,
1889 drive_info_struct *drv)
1891 int return_code;
1892 unsigned long t;
1894 memset(inq_buff, 0, sizeof(InquiryData_struct));
1895 if (withirq)
1896 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1897 inq_buff, sizeof(*inq_buff), 1,
1898 logvol, 0xC1, TYPE_CMD);
1899 else
1900 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1901 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
1902 TYPE_CMD);
1903 if (return_code == IO_OK) {
1904 if (inq_buff->data_byte[8] == 0xFF) {
1905 printk(KERN_WARNING
1906 "cciss: reading geometry failed, volume "
1907 "does not support reading geometry\n");
1908 drv->heads = 255;
1909 drv->sectors = 32; // Sectors per track
1910 drv->raid_level = RAID_UNKNOWN;
1911 } else {
1912 drv->heads = inq_buff->data_byte[6];
1913 drv->sectors = inq_buff->data_byte[7];
1914 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1915 drv->cylinders += inq_buff->data_byte[5];
1916 drv->raid_level = inq_buff->data_byte[8];
1918 drv->block_size = block_size;
1919 drv->nr_blocks = total_size;
1920 t = drv->heads * drv->sectors;
1921 if (t > 1) {
1922 unsigned rem = sector_div(total_size, t);
1923 if (rem)
1924 total_size++;
1925 drv->cylinders = total_size;
1927 } else { /* Get geometry failed */
1928 printk(KERN_WARNING "cciss: reading geometry failed\n");
1930 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
1931 drv->heads, drv->sectors, drv->cylinders);
1934 static void
1935 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
1936 unsigned int *block_size)
1938 ReadCapdata_struct *buf;
1939 int return_code;
1940 buf = kmalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
1941 if (buf == NULL) {
1942 printk(KERN_WARNING "cciss: out of memory\n");
1943 return;
1945 memset(buf, 0, sizeof(ReadCapdata_struct));
1946 if (withirq)
1947 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1948 ctlr, buf, sizeof(ReadCapdata_struct),
1949 1, logvol, 0, TYPE_CMD);
1950 else
1951 return_code = sendcmd(CCISS_READ_CAPACITY,
1952 ctlr, buf, sizeof(ReadCapdata_struct),
1953 1, logvol, 0, NULL, TYPE_CMD);
1954 if (return_code == IO_OK) {
1955 *total_size = be32_to_cpu(*(__u32 *) buf->total_size)+1;
1956 *block_size = be32_to_cpu(*(__u32 *) buf->block_size);
1957 } else { /* read capacity command failed */
1958 printk(KERN_WARNING "cciss: read capacity failed\n");
1959 *total_size = 0;
1960 *block_size = BLOCK_SIZE;
1962 if (*total_size != (__u32) 0)
1963 printk(KERN_INFO " blocks= %llu block_size= %d\n",
1964 (unsigned long long)*total_size, *block_size);
1965 kfree(buf);
1966 return;
1969 static void
1970 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
1972 ReadCapdata_struct_16 *buf;
1973 int return_code;
1974 buf = kmalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
1975 if (buf == NULL) {
1976 printk(KERN_WARNING "cciss: out of memory\n");
1977 return;
1979 memset(buf, 0, sizeof(ReadCapdata_struct_16));
1980 if (withirq) {
1981 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
1982 ctlr, buf, sizeof(ReadCapdata_struct_16),
1983 1, logvol, 0, TYPE_CMD);
1985 else {
1986 return_code = sendcmd(CCISS_READ_CAPACITY_16,
1987 ctlr, buf, sizeof(ReadCapdata_struct_16),
1988 1, logvol, 0, NULL, TYPE_CMD);
1990 if (return_code == IO_OK) {
1991 *total_size = be64_to_cpu(*(__u64 *) buf->total_size)+1;
1992 *block_size = be32_to_cpu(*(__u32 *) buf->block_size);
1993 } else { /* read capacity command failed */
1994 printk(KERN_WARNING "cciss: read capacity failed\n");
1995 *total_size = 0;
1996 *block_size = BLOCK_SIZE;
1998 printk(KERN_INFO " blocks= %llu block_size= %d\n",
1999 (unsigned long long)*total_size, *block_size);
2000 kfree(buf);
2001 return;
2004 static int cciss_revalidate(struct gendisk *disk)
2006 ctlr_info_t *h = get_host(disk);
2007 drive_info_struct *drv = get_drv(disk);
2008 int logvol;
2009 int FOUND = 0;
2010 unsigned int block_size;
2011 sector_t total_size;
2012 InquiryData_struct *inq_buff = NULL;
2014 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2015 if (h->drv[logvol].LunID == drv->LunID) {
2016 FOUND = 1;
2017 break;
2021 if (!FOUND)
2022 return 1;
2024 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2025 if (inq_buff == NULL) {
2026 printk(KERN_WARNING "cciss: out of memory\n");
2027 return 1;
2029 if (h->cciss_read == CCISS_READ_10) {
2030 cciss_read_capacity(h->ctlr, logvol, 1,
2031 &total_size, &block_size);
2032 } else {
2033 cciss_read_capacity_16(h->ctlr, logvol, 1,
2034 &total_size, &block_size);
2036 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2037 inq_buff, drv);
2039 blk_queue_hardsect_size(drv->queue, drv->block_size);
2040 set_capacity(disk, drv->nr_blocks);
2042 kfree(inq_buff);
2043 return 0;
2047 * Wait polling for a command to complete.
2048 * The memory mapped FIFO is polled for the completion.
2049 * Used only at init time, interrupts from the HBA are disabled.
2051 static unsigned long pollcomplete(int ctlr)
2053 unsigned long done;
2054 int i;
2056 /* Wait (up to 20 seconds) for a command to complete */
2058 for (i = 20 * HZ; i > 0; i--) {
2059 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2060 if (done == FIFO_EMPTY)
2061 schedule_timeout_uninterruptible(1);
2062 else
2063 return done;
2065 /* Invalid address to tell caller we ran out of time */
2066 return 1;
2069 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2071 /* We get in here if sendcmd() is polling for completions
2072 and gets some command back that it wasn't expecting --
2073 something other than that which it just sent down.
2074 Ordinarily, that shouldn't happen, but it can happen when
2075 the scsi tape stuff gets into error handling mode, and
2076 starts using sendcmd() to try to abort commands and
2077 reset tape drives. In that case, sendcmd may pick up
2078 completions of commands that were sent to logical drives
2079 through the block i/o system, or cciss ioctls completing, etc.
2080 In that case, we need to save those completions for later
2081 processing by the interrupt handler.
2084 #ifdef CONFIG_CISS_SCSI_TAPE
2085 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2087 /* If it's not the scsi tape stuff doing error handling, (abort */
2088 /* or reset) then we don't expect anything weird. */
2089 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2090 #endif
2091 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2092 "Invalid command list address returned! (%lx)\n",
2093 ctlr, complete);
2094 /* not much we can do. */
2095 #ifdef CONFIG_CISS_SCSI_TAPE
2096 return 1;
2099 /* We've sent down an abort or reset, but something else
2100 has completed */
2101 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2102 /* Uh oh. No room to save it for later... */
2103 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2104 "reject list overflow, command lost!\n", ctlr);
2105 return 1;
2107 /* Save it for later */
2108 srl->complete[srl->ncompletions] = complete;
2109 srl->ncompletions++;
2110 #endif
2111 return 0;
2115 * Send a command to the controller, and wait for it to complete.
2116 * Only used at init time.
2118 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2119 1: address logical volume log_unit,
2120 2: periph device address is scsi3addr */
2121 unsigned int log_unit,
2122 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2124 CommandList_struct *c;
2125 int i;
2126 unsigned long complete;
2127 ctlr_info_t *info_p = hba[ctlr];
2128 u64bit buff_dma_handle;
2129 int status, done = 0;
2131 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2132 printk(KERN_WARNING "cciss: unable to get memory");
2133 return IO_ERROR;
2135 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2136 log_unit, page_code, scsi3addr, cmd_type);
2137 if (status != IO_OK) {
2138 cmd_free(info_p, c, 1);
2139 return status;
2141 resend_cmd1:
2143 * Disable interrupt
2145 #ifdef CCISS_DEBUG
2146 printk(KERN_DEBUG "cciss: turning intr off\n");
2147 #endif /* CCISS_DEBUG */
2148 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2150 /* Make sure there is room in the command FIFO */
2151 /* Actually it should be completely empty at this time */
2152 /* unless we are in here doing error handling for the scsi */
2153 /* tape side of the driver. */
2154 for (i = 200000; i > 0; i--) {
2155 /* if fifo isn't full go */
2156 if (!(info_p->access.fifo_full(info_p))) {
2158 break;
2160 udelay(10);
2161 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2162 " waiting!\n", ctlr);
2165 * Send the cmd
2167 info_p->access.submit_command(info_p, c);
2168 done = 0;
2169 do {
2170 complete = pollcomplete(ctlr);
2172 #ifdef CCISS_DEBUG
2173 printk(KERN_DEBUG "cciss: command completed\n");
2174 #endif /* CCISS_DEBUG */
2176 if (complete == 1) {
2177 printk(KERN_WARNING
2178 "cciss cciss%d: SendCmd Timeout out, "
2179 "No command list address returned!\n", ctlr);
2180 status = IO_ERROR;
2181 done = 1;
2182 break;
2185 /* This will need to change for direct lookup completions */
2186 if ((complete & CISS_ERROR_BIT)
2187 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2188 /* if data overrun or underun on Report command
2189 ignore it
2191 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2192 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2193 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2194 ((c->err_info->CommandStatus ==
2195 CMD_DATA_OVERRUN) ||
2196 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2197 )) {
2198 complete = c->busaddr;
2199 } else {
2200 if (c->err_info->CommandStatus ==
2201 CMD_UNSOLICITED_ABORT) {
2202 printk(KERN_WARNING "cciss%d: "
2203 "unsolicited abort %p\n",
2204 ctlr, c);
2205 if (c->retry_count < MAX_CMD_RETRIES) {
2206 printk(KERN_WARNING
2207 "cciss%d: retrying %p\n",
2208 ctlr, c);
2209 c->retry_count++;
2210 /* erase the old error */
2211 /* information */
2212 memset(c->err_info, 0,
2213 sizeof
2214 (ErrorInfo_struct));
2215 goto resend_cmd1;
2216 } else {
2217 printk(KERN_WARNING
2218 "cciss%d: retried %p too "
2219 "many times\n", ctlr, c);
2220 status = IO_ERROR;
2221 goto cleanup1;
2223 } else if (c->err_info->CommandStatus ==
2224 CMD_UNABORTABLE) {
2225 printk(KERN_WARNING
2226 "cciss%d: command could not be aborted.\n",
2227 ctlr);
2228 status = IO_ERROR;
2229 goto cleanup1;
2231 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2232 " Error %x \n", ctlr,
2233 c->err_info->CommandStatus);
2234 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2235 " offensive info\n"
2236 " size %x\n num %x value %x\n",
2237 ctlr,
2238 c->err_info->MoreErrInfo.Invalid_Cmd.
2239 offense_size,
2240 c->err_info->MoreErrInfo.Invalid_Cmd.
2241 offense_num,
2242 c->err_info->MoreErrInfo.Invalid_Cmd.
2243 offense_value);
2244 status = IO_ERROR;
2245 goto cleanup1;
2248 /* This will need changing for direct lookup completions */
2249 if (complete != c->busaddr) {
2250 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2251 BUG(); /* we are pretty much hosed if we get here. */
2253 continue;
2254 } else
2255 done = 1;
2256 } while (!done);
2258 cleanup1:
2259 /* unlock the data buffer from DMA */
2260 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2261 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2262 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2263 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2264 #ifdef CONFIG_CISS_SCSI_TAPE
2265 /* if we saved some commands for later, process them now. */
2266 if (info_p->scsi_rejects.ncompletions > 0)
2267 do_cciss_intr(0, info_p);
2268 #endif
2269 cmd_free(info_p, c, 1);
2270 return status;
2274 * Map (physical) PCI mem into (virtual) kernel space
2276 static void __iomem *remap_pci_mem(ulong base, ulong size)
2278 ulong page_base = ((ulong) base) & PAGE_MASK;
2279 ulong page_offs = ((ulong) base) - page_base;
2280 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2282 return page_remapped ? (page_remapped + page_offs) : NULL;
2286 * Takes jobs of the Q and sends them to the hardware, then puts it on
2287 * the Q to wait for completion.
2289 static void start_io(ctlr_info_t *h)
2291 CommandList_struct *c;
2293 while ((c = h->reqQ) != NULL) {
2294 /* can't do anything if fifo is full */
2295 if ((h->access.fifo_full(h))) {
2296 printk(KERN_WARNING "cciss: fifo full\n");
2297 break;
2300 /* Get the first entry from the Request Q */
2301 removeQ(&(h->reqQ), c);
2302 h->Qdepth--;
2304 /* Tell the controller execute command */
2305 h->access.submit_command(h, c);
2307 /* Put job onto the completed Q */
2308 addQ(&(h->cmpQ), c);
2312 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2313 /* Zeros out the error record and then resends the command back */
2314 /* to the controller */
2315 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2317 /* erase the old error information */
2318 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2320 /* add it to software queue and then send it to the controller */
2321 addQ(&(h->reqQ), c);
2322 h->Qdepth++;
2323 if (h->Qdepth > h->maxQsinceinit)
2324 h->maxQsinceinit = h->Qdepth;
2326 start_io(h);
2329 /* checks the status of the job and calls complete buffers to mark all
2330 * buffers for the completed job. Note that this function does not need
2331 * to hold the hba/queue lock.
2333 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2334 int timeout)
2336 int status = 1;
2337 int retry_cmd = 0;
2339 if (timeout)
2340 status = 0;
2342 if (cmd->err_info->CommandStatus != 0) { /* an error has occurred */
2343 switch (cmd->err_info->CommandStatus) {
2344 unsigned char sense_key;
2345 case CMD_TARGET_STATUS:
2346 status = 0;
2348 if (cmd->err_info->ScsiStatus == 0x02) {
2349 printk(KERN_WARNING "cciss: cmd %p "
2350 "has CHECK CONDITION "
2351 " byte 2 = 0x%x\n", cmd,
2352 cmd->err_info->SenseInfo[2]
2354 /* check the sense key */
2355 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2356 /* no status or recovered error */
2357 if ((sense_key == 0x0) || (sense_key == 0x1)) {
2358 status = 1;
2360 } else {
2361 printk(KERN_WARNING "cciss: cmd %p "
2362 "has SCSI Status 0x%x\n",
2363 cmd, cmd->err_info->ScsiStatus);
2365 break;
2366 case CMD_DATA_UNDERRUN:
2367 printk(KERN_WARNING "cciss: cmd %p has"
2368 " completed with data underrun "
2369 "reported\n", cmd);
2370 break;
2371 case CMD_DATA_OVERRUN:
2372 printk(KERN_WARNING "cciss: cmd %p has"
2373 " completed with data overrun "
2374 "reported\n", cmd);
2375 break;
2376 case CMD_INVALID:
2377 printk(KERN_WARNING "cciss: cmd %p is "
2378 "reported invalid\n", cmd);
2379 status = 0;
2380 break;
2381 case CMD_PROTOCOL_ERR:
2382 printk(KERN_WARNING "cciss: cmd %p has "
2383 "protocol error \n", cmd);
2384 status = 0;
2385 break;
2386 case CMD_HARDWARE_ERR:
2387 printk(KERN_WARNING "cciss: cmd %p had "
2388 " hardware error\n", cmd);
2389 status = 0;
2390 break;
2391 case CMD_CONNECTION_LOST:
2392 printk(KERN_WARNING "cciss: cmd %p had "
2393 "connection lost\n", cmd);
2394 status = 0;
2395 break;
2396 case CMD_ABORTED:
2397 printk(KERN_WARNING "cciss: cmd %p was "
2398 "aborted\n", cmd);
2399 status = 0;
2400 break;
2401 case CMD_ABORT_FAILED:
2402 printk(KERN_WARNING "cciss: cmd %p reports "
2403 "abort failed\n", cmd);
2404 status = 0;
2405 break;
2406 case CMD_UNSOLICITED_ABORT:
2407 printk(KERN_WARNING "cciss%d: unsolicited "
2408 "abort %p\n", h->ctlr, cmd);
2409 if (cmd->retry_count < MAX_CMD_RETRIES) {
2410 retry_cmd = 1;
2411 printk(KERN_WARNING
2412 "cciss%d: retrying %p\n", h->ctlr, cmd);
2413 cmd->retry_count++;
2414 } else
2415 printk(KERN_WARNING
2416 "cciss%d: %p retried too "
2417 "many times\n", h->ctlr, cmd);
2418 status = 0;
2419 break;
2420 case CMD_TIMEOUT:
2421 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2422 status = 0;
2423 break;
2424 default:
2425 printk(KERN_WARNING "cciss: cmd %p returned "
2426 "unknown status %x\n", cmd,
2427 cmd->err_info->CommandStatus);
2428 status = 0;
2431 /* We need to return this command */
2432 if (retry_cmd) {
2433 resend_cciss_cmd(h, cmd);
2434 return;
2437 cmd->rq->completion_data = cmd;
2438 cmd->rq->errors = status;
2439 blk_add_trace_rq(cmd->rq->q, cmd->rq, BLK_TA_COMPLETE);
2440 blk_complete_request(cmd->rq);
2444 * Get a request and submit it to the controller.
2446 static void do_cciss_request(request_queue_t *q)
2448 ctlr_info_t *h = q->queuedata;
2449 CommandList_struct *c;
2450 sector_t start_blk;
2451 int seg;
2452 struct request *creq;
2453 u64bit temp64;
2454 struct scatterlist tmp_sg[MAXSGENTRIES];
2455 drive_info_struct *drv;
2456 int i, dir;
2458 /* We call start_io here in case there is a command waiting on the
2459 * queue that has not been sent.
2461 if (blk_queue_plugged(q))
2462 goto startio;
2464 queue:
2465 creq = elv_next_request(q);
2466 if (!creq)
2467 goto startio;
2469 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2471 if ((c = cmd_alloc(h, 1)) == NULL)
2472 goto full;
2474 blkdev_dequeue_request(creq);
2476 spin_unlock_irq(q->queue_lock);
2478 c->cmd_type = CMD_RWREQ;
2479 c->rq = creq;
2481 /* fill in the request */
2482 drv = creq->rq_disk->private_data;
2483 c->Header.ReplyQueue = 0; // unused in simple mode
2484 /* got command from pool, so use the command block index instead */
2485 /* for direct lookups. */
2486 /* The first 2 bits are reserved for controller error reporting. */
2487 c->Header.Tag.lower = (c->cmdindex << 3);
2488 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2489 c->Header.LUN.LogDev.VolId = drv->LunID;
2490 c->Header.LUN.LogDev.Mode = 1;
2491 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2492 c->Request.Type.Type = TYPE_CMD; // It is a command.
2493 c->Request.Type.Attribute = ATTR_SIMPLE;
2494 c->Request.Type.Direction =
2495 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2496 c->Request.Timeout = 0; // Don't time out
2497 c->Request.CDB[0] =
2498 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2499 start_blk = creq->sector;
2500 #ifdef CCISS_DEBUG
2501 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2502 (int)creq->nr_sectors);
2503 #endif /* CCISS_DEBUG */
2505 seg = blk_rq_map_sg(q, creq, tmp_sg);
2507 /* get the DMA records for the setup */
2508 if (c->Request.Type.Direction == XFER_READ)
2509 dir = PCI_DMA_FROMDEVICE;
2510 else
2511 dir = PCI_DMA_TODEVICE;
2513 for (i = 0; i < seg; i++) {
2514 c->SG[i].Len = tmp_sg[i].length;
2515 temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
2516 tmp_sg[i].offset,
2517 tmp_sg[i].length, dir);
2518 c->SG[i].Addr.lower = temp64.val32.lower;
2519 c->SG[i].Addr.upper = temp64.val32.upper;
2520 c->SG[i].Ext = 0; // we are not chaining
2522 /* track how many SG entries we are using */
2523 if (seg > h->maxSG)
2524 h->maxSG = seg;
2526 #ifdef CCISS_DEBUG
2527 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2528 creq->nr_sectors, seg);
2529 #endif /* CCISS_DEBUG */
2531 c->Header.SGList = c->Header.SGTotal = seg;
2532 if(h->cciss_read == CCISS_READ_10) {
2533 c->Request.CDB[1] = 0;
2534 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2535 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2536 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2537 c->Request.CDB[5] = start_blk & 0xff;
2538 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2539 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2540 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2541 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2542 } else {
2543 c->Request.CDBLen = 16;
2544 c->Request.CDB[1]= 0;
2545 c->Request.CDB[2]= (start_blk >> 56) & 0xff; //MSB
2546 c->Request.CDB[3]= (start_blk >> 48) & 0xff;
2547 c->Request.CDB[4]= (start_blk >> 40) & 0xff;
2548 c->Request.CDB[5]= (start_blk >> 32) & 0xff;
2549 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2550 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2551 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2552 c->Request.CDB[9]= start_blk & 0xff;
2553 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2554 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2555 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2556 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2557 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2560 spin_lock_irq(q->queue_lock);
2562 addQ(&(h->reqQ), c);
2563 h->Qdepth++;
2564 if (h->Qdepth > h->maxQsinceinit)
2565 h->maxQsinceinit = h->Qdepth;
2567 goto queue;
2568 full:
2569 blk_stop_queue(q);
2570 startio:
2571 /* We will already have the driver lock here so not need
2572 * to lock it.
2574 start_io(h);
2577 static inline unsigned long get_next_completion(ctlr_info_t *h)
2579 #ifdef CONFIG_CISS_SCSI_TAPE
2580 /* Any rejects from sendcmd() lying around? Process them first */
2581 if (h->scsi_rejects.ncompletions == 0)
2582 return h->access.command_completed(h);
2583 else {
2584 struct sendcmd_reject_list *srl;
2585 int n;
2586 srl = &h->scsi_rejects;
2587 n = --srl->ncompletions;
2588 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2589 printk("p");
2590 return srl->complete[n];
2592 #else
2593 return h->access.command_completed(h);
2594 #endif
2597 static inline int interrupt_pending(ctlr_info_t *h)
2599 #ifdef CONFIG_CISS_SCSI_TAPE
2600 return (h->access.intr_pending(h)
2601 || (h->scsi_rejects.ncompletions > 0));
2602 #else
2603 return h->access.intr_pending(h);
2604 #endif
2607 static inline long interrupt_not_for_us(ctlr_info_t *h)
2609 #ifdef CONFIG_CISS_SCSI_TAPE
2610 return (((h->access.intr_pending(h) == 0) ||
2611 (h->interrupts_enabled == 0))
2612 && (h->scsi_rejects.ncompletions == 0));
2613 #else
2614 return (((h->access.intr_pending(h) == 0) ||
2615 (h->interrupts_enabled == 0)));
2616 #endif
2619 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2621 ctlr_info_t *h = dev_id;
2622 CommandList_struct *c;
2623 unsigned long flags;
2624 __u32 a, a1, a2;
2626 if (interrupt_not_for_us(h))
2627 return IRQ_NONE;
2629 * If there are completed commands in the completion queue,
2630 * we had better do something about it.
2632 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2633 while (interrupt_pending(h)) {
2634 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2635 a1 = a;
2636 if ((a & 0x04)) {
2637 a2 = (a >> 3);
2638 if (a2 >= h->nr_cmds) {
2639 printk(KERN_WARNING
2640 "cciss: controller cciss%d failed, stopping.\n",
2641 h->ctlr);
2642 fail_all_cmds(h->ctlr);
2643 return IRQ_HANDLED;
2646 c = h->cmd_pool + a2;
2647 a = c->busaddr;
2649 } else {
2650 a &= ~3;
2651 if ((c = h->cmpQ) == NULL) {
2652 printk(KERN_WARNING
2653 "cciss: Completion of %08x ignored\n",
2654 a1);
2655 continue;
2657 while (c->busaddr != a) {
2658 c = c->next;
2659 if (c == h->cmpQ)
2660 break;
2664 * If we've found the command, take it off the
2665 * completion Q and free it
2667 if (c->busaddr == a) {
2668 removeQ(&h->cmpQ, c);
2669 if (c->cmd_type == CMD_RWREQ) {
2670 complete_command(h, c, 0);
2671 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2672 complete(c->waiting);
2674 # ifdef CONFIG_CISS_SCSI_TAPE
2675 else if (c->cmd_type == CMD_SCSI)
2676 complete_scsi_command(c, 0, a1);
2677 # endif
2678 continue;
2683 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2684 return IRQ_HANDLED;
2688 * We cannot read the structure directly, for portability we must use
2689 * the io functions.
2690 * This is for debug only.
2692 #ifdef CCISS_DEBUG
2693 static void print_cfg_table(CfgTable_struct *tb)
2695 int i;
2696 char temp_name[17];
2698 printk("Controller Configuration information\n");
2699 printk("------------------------------------\n");
2700 for (i = 0; i < 4; i++)
2701 temp_name[i] = readb(&(tb->Signature[i]));
2702 temp_name[4] = '\0';
2703 printk(" Signature = %s\n", temp_name);
2704 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2705 printk(" Transport methods supported = 0x%x\n",
2706 readl(&(tb->TransportSupport)));
2707 printk(" Transport methods active = 0x%x\n",
2708 readl(&(tb->TransportActive)));
2709 printk(" Requested transport Method = 0x%x\n",
2710 readl(&(tb->HostWrite.TransportRequest)));
2711 printk(" Coalesce Interrupt Delay = 0x%x\n",
2712 readl(&(tb->HostWrite.CoalIntDelay)));
2713 printk(" Coalesce Interrupt Count = 0x%x\n",
2714 readl(&(tb->HostWrite.CoalIntCount)));
2715 printk(" Max outstanding commands = 0x%d\n",
2716 readl(&(tb->CmdsOutMax)));
2717 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
2718 for (i = 0; i < 16; i++)
2719 temp_name[i] = readb(&(tb->ServerName[i]));
2720 temp_name[16] = '\0';
2721 printk(" Server Name = %s\n", temp_name);
2722 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
2724 #endif /* CCISS_DEBUG */
2726 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
2728 int i, offset, mem_type, bar_type;
2729 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2730 return 0;
2731 offset = 0;
2732 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2733 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
2734 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2735 offset += 4;
2736 else {
2737 mem_type = pci_resource_flags(pdev, i) &
2738 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2739 switch (mem_type) {
2740 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2741 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2742 offset += 4; /* 32 bit */
2743 break;
2744 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2745 offset += 8;
2746 break;
2747 default: /* reserved in PCI 2.2 */
2748 printk(KERN_WARNING
2749 "Base address is invalid\n");
2750 return -1;
2751 break;
2754 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2755 return i + 1;
2757 return -1;
2760 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
2761 * controllers that are capable. If not, we use IO-APIC mode.
2764 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
2765 struct pci_dev *pdev, __u32 board_id)
2767 #ifdef CONFIG_PCI_MSI
2768 int err;
2769 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
2770 {0, 2}, {0, 3}
2773 /* Some boards advertise MSI but don't really support it */
2774 if ((board_id == 0x40700E11) ||
2775 (board_id == 0x40800E11) ||
2776 (board_id == 0x40820E11) || (board_id == 0x40830E11))
2777 goto default_int_mode;
2779 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
2780 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
2781 if (!err) {
2782 c->intr[0] = cciss_msix_entries[0].vector;
2783 c->intr[1] = cciss_msix_entries[1].vector;
2784 c->intr[2] = cciss_msix_entries[2].vector;
2785 c->intr[3] = cciss_msix_entries[3].vector;
2786 c->msix_vector = 1;
2787 return;
2789 if (err > 0) {
2790 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
2791 "available\n", err);
2792 goto default_int_mode;
2793 } else {
2794 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
2795 err);
2796 goto default_int_mode;
2799 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
2800 if (!pci_enable_msi(pdev)) {
2801 c->msi_vector = 1;
2802 } else {
2803 printk(KERN_WARNING "cciss: MSI init failed\n");
2806 default_int_mode:
2807 #endif /* CONFIG_PCI_MSI */
2808 /* if we get here we're going to use the default interrupt mode */
2809 c->intr[SIMPLE_MODE_INT] = pdev->irq;
2810 return;
2813 static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2815 ushort subsystem_vendor_id, subsystem_device_id, command;
2816 __u32 board_id, scratchpad = 0;
2817 __u64 cfg_offset;
2818 __u32 cfg_base_addr;
2819 __u64 cfg_base_addr_index;
2820 int i, err;
2822 /* check to see if controller has been disabled */
2823 /* BEFORE trying to enable it */
2824 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
2825 if (!(command & 0x02)) {
2826 printk(KERN_WARNING
2827 "cciss: controller appears to be disabled\n");
2828 return -ENODEV;
2831 err = pci_enable_device(pdev);
2832 if (err) {
2833 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2834 return err;
2837 err = pci_request_regions(pdev, "cciss");
2838 if (err) {
2839 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
2840 "aborting\n");
2841 return err;
2844 subsystem_vendor_id = pdev->subsystem_vendor;
2845 subsystem_device_id = pdev->subsystem_device;
2846 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2847 subsystem_vendor_id);
2849 #ifdef CCISS_DEBUG
2850 printk("command = %x\n", command);
2851 printk("irq = %x\n", pdev->irq);
2852 printk("board_id = %x\n", board_id);
2853 #endif /* CCISS_DEBUG */
2855 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
2856 * else we use the IO-APIC interrupt assigned to us by system ROM.
2858 cciss_interrupt_mode(c, pdev, board_id);
2861 * Memory base addr is first addr , the second points to the config
2862 * table
2865 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
2866 #ifdef CCISS_DEBUG
2867 printk("address 0 = %x\n", c->paddr);
2868 #endif /* CCISS_DEBUG */
2869 c->vaddr = remap_pci_mem(c->paddr, 0x250);
2871 /* Wait for the board to become ready. (PCI hotplug needs this.)
2872 * We poll for up to 120 secs, once per 100ms. */
2873 for (i = 0; i < 1200; i++) {
2874 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2875 if (scratchpad == CCISS_FIRMWARE_READY)
2876 break;
2877 set_current_state(TASK_INTERRUPTIBLE);
2878 schedule_timeout(HZ / 10); /* wait 100ms */
2880 if (scratchpad != CCISS_FIRMWARE_READY) {
2881 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
2882 err = -ENODEV;
2883 goto err_out_free_res;
2886 /* get the address index number */
2887 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2888 cfg_base_addr &= (__u32) 0x0000ffff;
2889 #ifdef CCISS_DEBUG
2890 printk("cfg base address = %x\n", cfg_base_addr);
2891 #endif /* CCISS_DEBUG */
2892 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
2893 #ifdef CCISS_DEBUG
2894 printk("cfg base address index = %x\n", cfg_base_addr_index);
2895 #endif /* CCISS_DEBUG */
2896 if (cfg_base_addr_index == -1) {
2897 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2898 err = -ENODEV;
2899 goto err_out_free_res;
2902 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
2903 #ifdef CCISS_DEBUG
2904 printk("cfg offset = %x\n", cfg_offset);
2905 #endif /* CCISS_DEBUG */
2906 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
2907 cfg_base_addr_index) +
2908 cfg_offset, sizeof(CfgTable_struct));
2909 c->board_id = board_id;
2911 #ifdef CCISS_DEBUG
2912 print_cfg_table(c->cfgtable);
2913 #endif /* CCISS_DEBUG */
2915 for (i = 0; i < ARRAY_SIZE(products); i++) {
2916 if (board_id == products[i].board_id) {
2917 c->product_name = products[i].product_name;
2918 c->access = *(products[i].access);
2919 c->nr_cmds = products[i].nr_cmds;
2920 break;
2923 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
2924 (readb(&c->cfgtable->Signature[1]) != 'I') ||
2925 (readb(&c->cfgtable->Signature[2]) != 'S') ||
2926 (readb(&c->cfgtable->Signature[3]) != 'S')) {
2927 printk("Does not appear to be a valid CISS config table\n");
2928 err = -ENODEV;
2929 goto err_out_free_res;
2931 /* We didn't find the controller in our list. We know the
2932 * signature is valid. If it's an HP device let's try to
2933 * bind to the device and fire it up. Otherwise we bail.
2935 if (i == ARRAY_SIZE(products)) {
2936 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
2937 c->product_name = products[i-1].product_name;
2938 c->access = *(products[i-1].access);
2939 c->nr_cmds = products[i-1].nr_cmds;
2940 printk(KERN_WARNING "cciss: This is an unknown "
2941 "Smart Array controller.\n"
2942 "cciss: Please update to the latest driver "
2943 "available from www.hp.com.\n");
2944 } else {
2945 printk(KERN_WARNING "cciss: Sorry, I don't know how"
2946 " to access the Smart Array controller %08lx\n"
2947 , (unsigned long)board_id);
2948 err = -ENODEV;
2949 goto err_out_free_res;
2952 #ifdef CONFIG_X86
2954 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
2955 __u32 prefetch;
2956 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
2957 prefetch |= 0x100;
2958 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
2960 #endif
2962 /* Disabling DMA prefetch for the P600
2963 * An ASIC bug may result in a prefetch beyond
2964 * physical memory.
2966 if(board_id == 0x3225103C) {
2967 __u32 dma_prefetch;
2968 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
2969 dma_prefetch |= 0x8000;
2970 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
2973 #ifdef CCISS_DEBUG
2974 printk("Trying to put board into Simple mode\n");
2975 #endif /* CCISS_DEBUG */
2976 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
2977 /* Update the field, and then ring the doorbell */
2978 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
2979 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
2981 /* under certain very rare conditions, this can take awhile.
2982 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
2983 * as we enter this code.) */
2984 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
2985 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
2986 break;
2987 /* delay and try again */
2988 set_current_state(TASK_INTERRUPTIBLE);
2989 schedule_timeout(10);
2992 #ifdef CCISS_DEBUG
2993 printk(KERN_DEBUG "I counter got to %d %x\n", i,
2994 readl(c->vaddr + SA5_DOORBELL));
2995 #endif /* CCISS_DEBUG */
2996 #ifdef CCISS_DEBUG
2997 print_cfg_table(c->cfgtable);
2998 #endif /* CCISS_DEBUG */
3000 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3001 printk(KERN_WARNING "cciss: unable to get board into"
3002 " simple mode\n");
3003 err = -ENODEV;
3004 goto err_out_free_res;
3006 return 0;
3008 err_out_free_res:
3010 * Deliberately omit pci_disable_device(): it does something nasty to
3011 * Smart Array controllers that pci_enable_device does not undo
3013 pci_release_regions(pdev);
3014 return err;
3018 * Gets information about the local volumes attached to the controller.
3020 static void cciss_getgeometry(int cntl_num)
3022 ReportLunData_struct *ld_buff;
3023 InquiryData_struct *inq_buff;
3024 int return_code;
3025 int i;
3026 int listlength = 0;
3027 __u32 lunid = 0;
3028 int block_size;
3029 sector_t total_size;
3031 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
3032 if (ld_buff == NULL) {
3033 printk(KERN_ERR "cciss: out of memory\n");
3034 return;
3036 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3037 if (inq_buff == NULL) {
3038 printk(KERN_ERR "cciss: out of memory\n");
3039 kfree(ld_buff);
3040 return;
3042 /* Get the firmware version */
3043 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
3044 sizeof(InquiryData_struct), 0, 0, 0, NULL,
3045 TYPE_CMD);
3046 if (return_code == IO_OK) {
3047 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
3048 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
3049 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
3050 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
3051 } else { /* send command failed */
3053 printk(KERN_WARNING "cciss: unable to determine firmware"
3054 " version of controller\n");
3056 /* Get the number of logical volumes */
3057 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
3058 sizeof(ReportLunData_struct), 0, 0, 0, NULL,
3059 TYPE_CMD);
3061 if (return_code == IO_OK) {
3062 #ifdef CCISS_DEBUG
3063 printk("LUN Data\n--------------------------\n");
3064 #endif /* CCISS_DEBUG */
3066 listlength |=
3067 (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
3068 listlength |=
3069 (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
3070 listlength |=
3071 (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
3072 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
3073 } else { /* reading number of logical volumes failed */
3075 printk(KERN_WARNING "cciss: report logical volume"
3076 " command failed\n");
3077 listlength = 0;
3079 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
3080 if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
3081 printk(KERN_ERR
3082 "ciss: only %d number of logical volumes supported\n",
3083 CISS_MAX_LUN);
3084 hba[cntl_num]->num_luns = CISS_MAX_LUN;
3086 #ifdef CCISS_DEBUG
3087 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
3088 ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
3089 ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
3090 hba[cntl_num]->num_luns);
3091 #endif /* CCISS_DEBUG */
3093 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
3094 for (i = 0; i < CISS_MAX_LUN; i++) {
3095 if (i < hba[cntl_num]->num_luns) {
3096 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
3097 << 24;
3098 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
3099 << 16;
3100 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
3101 << 8;
3102 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
3104 hba[cntl_num]->drv[i].LunID = lunid;
3106 #ifdef CCISS_DEBUG
3107 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
3108 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
3109 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
3110 hba[cntl_num]->drv[i].LunID);
3111 #endif /* CCISS_DEBUG */
3113 /* testing to see if 16-byte CDBs are already being used */
3114 if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
3115 cciss_read_capacity_16(cntl_num, i, 0,
3116 &total_size, &block_size);
3117 goto geo_inq;
3119 cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
3121 /* total_size = last LBA + 1 */
3122 if(total_size == (__u32) 0) {
3123 cciss_read_capacity_16(cntl_num, i, 0,
3124 &total_size, &block_size);
3125 hba[cntl_num]->cciss_read = CCISS_READ_16;
3126 hba[cntl_num]->cciss_write = CCISS_WRITE_16;
3127 } else {
3128 hba[cntl_num]->cciss_read = CCISS_READ_10;
3129 hba[cntl_num]->cciss_write = CCISS_WRITE_10;
3131 geo_inq:
3132 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
3133 block_size, inq_buff,
3134 &hba[cntl_num]->drv[i]);
3135 } else {
3136 /* initialize raid_level to indicate a free space */
3137 hba[cntl_num]->drv[i].raid_level = -1;
3140 kfree(ld_buff);
3141 kfree(inq_buff);
3144 /* Function to find the first free pointer into our hba[] array */
3145 /* Returns -1 if no free entries are left. */
3146 static int alloc_cciss_hba(void)
3148 int i;
3150 for (i = 0; i < MAX_CTLR; i++) {
3151 if (!hba[i]) {
3152 ctlr_info_t *p;
3153 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3154 if (!p)
3155 goto Enomem;
3156 p->gendisk[0] = alloc_disk(1 << NWD_SHIFT);
3157 if (!p->gendisk[0])
3158 goto Enomem;
3159 hba[i] = p;
3160 return i;
3163 printk(KERN_WARNING "cciss: This driver supports a maximum"
3164 " of %d controllers.\n", MAX_CTLR);
3165 return -1;
3166 Enomem:
3167 printk(KERN_ERR "cciss: out of memory.\n");
3168 return -1;
3171 static void free_hba(int i)
3173 ctlr_info_t *p = hba[i];
3174 int n;
3176 hba[i] = NULL;
3177 for (n = 0; n < CISS_MAX_LUN; n++)
3178 put_disk(p->gendisk[n]);
3179 kfree(p);
3183 * This is it. Find all the controllers and register them. I really hate
3184 * stealing all these major device numbers.
3185 * returns the number of block devices registered.
3187 static int __devinit cciss_init_one(struct pci_dev *pdev,
3188 const struct pci_device_id *ent)
3190 int i;
3191 int j = 0;
3192 int rc;
3193 int dac;
3195 i = alloc_cciss_hba();
3196 if (i < 0)
3197 return -1;
3199 hba[i]->busy_initializing = 1;
3201 if (cciss_pci_init(hba[i], pdev) != 0)
3202 goto clean1;
3204 sprintf(hba[i]->devname, "cciss%d", i);
3205 hba[i]->ctlr = i;
3206 hba[i]->pdev = pdev;
3208 /* configure PCI DMA stuff */
3209 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3210 dac = 1;
3211 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3212 dac = 0;
3213 else {
3214 printk(KERN_ERR "cciss: no suitable DMA available\n");
3215 goto clean1;
3219 * register with the major number, or get a dynamic major number
3220 * by passing 0 as argument. This is done for greater than
3221 * 8 controller support.
3223 if (i < MAX_CTLR_ORIG)
3224 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3225 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3226 if (rc == -EBUSY || rc == -EINVAL) {
3227 printk(KERN_ERR
3228 "cciss: Unable to get major number %d for %s "
3229 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3230 goto clean1;
3231 } else {
3232 if (i >= MAX_CTLR_ORIG)
3233 hba[i]->major = rc;
3236 /* make sure the board interrupts are off */
3237 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3238 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3239 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3240 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3241 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3242 goto clean2;
3245 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3246 hba[i]->devname, pdev->device, pci_name(pdev),
3247 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3249 hba[i]->cmd_pool_bits =
3250 kmalloc(((hba[i]->nr_cmds + BITS_PER_LONG -
3251 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3252 hba[i]->cmd_pool = (CommandList_struct *)
3253 pci_alloc_consistent(hba[i]->pdev,
3254 hba[i]->nr_cmds * sizeof(CommandList_struct),
3255 &(hba[i]->cmd_pool_dhandle));
3256 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3257 pci_alloc_consistent(hba[i]->pdev,
3258 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3259 &(hba[i]->errinfo_pool_dhandle));
3260 if ((hba[i]->cmd_pool_bits == NULL)
3261 || (hba[i]->cmd_pool == NULL)
3262 || (hba[i]->errinfo_pool == NULL)) {
3263 printk(KERN_ERR "cciss: out of memory");
3264 goto clean4;
3266 #ifdef CONFIG_CISS_SCSI_TAPE
3267 hba[i]->scsi_rejects.complete =
3268 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3269 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3270 if (hba[i]->scsi_rejects.complete == NULL) {
3271 printk(KERN_ERR "cciss: out of memory");
3272 goto clean4;
3274 #endif
3275 spin_lock_init(&hba[i]->lock);
3277 /* Initialize the pdev driver private data.
3278 have it point to hba[i]. */
3279 pci_set_drvdata(pdev, hba[i]);
3280 /* command and error info recs zeroed out before
3281 they are used */
3282 memset(hba[i]->cmd_pool_bits, 0,
3283 ((hba[i]->nr_cmds + BITS_PER_LONG -
3284 1) / BITS_PER_LONG) * sizeof(unsigned long));
3286 #ifdef CCISS_DEBUG
3287 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
3288 #endif /* CCISS_DEBUG */
3290 cciss_getgeometry(i);
3292 cciss_scsi_setup(i);
3294 /* Turn the interrupts on so we can service requests */
3295 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3297 cciss_procinit(i);
3299 hba[i]->cciss_max_sectors = 2048;
3301 hba[i]->busy_initializing = 0;
3303 do {
3304 drive_info_struct *drv = &(hba[i]->drv[j]);
3305 struct gendisk *disk = hba[i]->gendisk[j];
3306 request_queue_t *q;
3308 /* Check if the disk was allocated already */
3309 if (!disk){
3310 hba[i]->gendisk[j] = alloc_disk(1 << NWD_SHIFT);
3311 disk = hba[i]->gendisk[j];
3314 /* Check that the disk was able to be allocated */
3315 if (!disk) {
3316 printk(KERN_ERR "cciss: unable to allocate memory for disk %d\n", j);
3317 goto clean4;
3320 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
3321 if (!q) {
3322 printk(KERN_ERR
3323 "cciss: unable to allocate queue for disk %d\n",
3325 goto clean4;
3327 drv->queue = q;
3329 q->backing_dev_info.ra_pages = READ_AHEAD;
3330 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3332 /* This is a hardware imposed limit. */
3333 blk_queue_max_hw_segments(q, MAXSGENTRIES);
3335 /* This is a limit in the driver and could be eliminated. */
3336 blk_queue_max_phys_segments(q, MAXSGENTRIES);
3338 blk_queue_max_sectors(q, hba[i]->cciss_max_sectors);
3340 blk_queue_softirq_done(q, cciss_softirq_done);
3342 q->queuedata = hba[i];
3343 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3344 disk->major = hba[i]->major;
3345 disk->first_minor = j << NWD_SHIFT;
3346 disk->fops = &cciss_fops;
3347 disk->queue = q;
3348 disk->private_data = drv;
3349 disk->driverfs_dev = &pdev->dev;
3350 /* we must register the controller even if no disks exist */
3351 /* this is for the online array utilities */
3352 if (!drv->heads && j)
3353 continue;
3354 blk_queue_hardsect_size(q, drv->block_size);
3355 set_capacity(disk, drv->nr_blocks);
3356 add_disk(disk);
3357 j++;
3358 } while (j <= hba[i]->highest_lun);
3360 return 1;
3362 clean4:
3363 #ifdef CONFIG_CISS_SCSI_TAPE
3364 kfree(hba[i]->scsi_rejects.complete);
3365 #endif
3366 kfree(hba[i]->cmd_pool_bits);
3367 if (hba[i]->cmd_pool)
3368 pci_free_consistent(hba[i]->pdev,
3369 hba[i]->nr_cmds * sizeof(CommandList_struct),
3370 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3371 if (hba[i]->errinfo_pool)
3372 pci_free_consistent(hba[i]->pdev,
3373 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3374 hba[i]->errinfo_pool,
3375 hba[i]->errinfo_pool_dhandle);
3376 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3377 clean2:
3378 unregister_blkdev(hba[i]->major, hba[i]->devname);
3379 clean1:
3380 hba[i]->busy_initializing = 0;
3381 /* cleanup any queues that may have been initialized */
3382 for (j=0; j <= hba[i]->highest_lun; j++){
3383 drive_info_struct *drv = &(hba[i]->drv[j]);
3384 if (drv->queue)
3385 blk_cleanup_queue(drv->queue);
3388 * Deliberately omit pci_disable_device(): it does something nasty to
3389 * Smart Array controllers that pci_enable_device does not undo
3391 pci_release_regions(pdev);
3392 pci_set_drvdata(pdev, NULL);
3393 free_hba(i);
3394 return -1;
3397 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3399 ctlr_info_t *tmp_ptr;
3400 int i, j;
3401 char flush_buf[4];
3402 int return_code;
3404 if (pci_get_drvdata(pdev) == NULL) {
3405 printk(KERN_ERR "cciss: Unable to remove device \n");
3406 return;
3408 tmp_ptr = pci_get_drvdata(pdev);
3409 i = tmp_ptr->ctlr;
3410 if (hba[i] == NULL) {
3411 printk(KERN_ERR "cciss: device appears to "
3412 "already be removed \n");
3413 return;
3415 /* Turn board interrupts off and send the flush cache command */
3416 /* sendcmd will turn off interrupt, and send the flush...
3417 * To write all data in the battery backed cache to disks */
3418 memset(flush_buf, 0, 4);
3419 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3420 TYPE_CMD);
3421 if (return_code != IO_OK) {
3422 printk(KERN_WARNING "Error Flushing cache on controller %d\n",
3425 free_irq(hba[i]->intr[2], hba[i]);
3427 #ifdef CONFIG_PCI_MSI
3428 if (hba[i]->msix_vector)
3429 pci_disable_msix(hba[i]->pdev);
3430 else if (hba[i]->msi_vector)
3431 pci_disable_msi(hba[i]->pdev);
3432 #endif /* CONFIG_PCI_MSI */
3434 iounmap(hba[i]->vaddr);
3435 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3436 unregister_blkdev(hba[i]->major, hba[i]->devname);
3437 remove_proc_entry(hba[i]->devname, proc_cciss);
3439 /* remove it from the disk list */
3440 for (j = 0; j < CISS_MAX_LUN; j++) {
3441 struct gendisk *disk = hba[i]->gendisk[j];
3442 if (disk) {
3443 request_queue_t *q = disk->queue;
3445 if (disk->flags & GENHD_FL_UP)
3446 del_gendisk(disk);
3447 if (q)
3448 blk_cleanup_queue(q);
3452 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3453 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3454 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3455 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3456 kfree(hba[i]->cmd_pool_bits);
3457 #ifdef CONFIG_CISS_SCSI_TAPE
3458 kfree(hba[i]->scsi_rejects.complete);
3459 #endif
3461 * Deliberately omit pci_disable_device(): it does something nasty to
3462 * Smart Array controllers that pci_enable_device does not undo
3464 pci_release_regions(pdev);
3465 pci_set_drvdata(pdev, NULL);
3466 free_hba(i);
3469 static struct pci_driver cciss_pci_driver = {
3470 .name = "cciss",
3471 .probe = cciss_init_one,
3472 .remove = __devexit_p(cciss_remove_one),
3473 .id_table = cciss_pci_device_id, /* id_table */
3477 * This is it. Register the PCI driver information for the cards we control
3478 * the OS will call our registered routines when it finds one of our cards.
3480 static int __init cciss_init(void)
3482 printk(KERN_INFO DRIVER_NAME "\n");
3484 /* Register for our PCI devices */
3485 return pci_register_driver(&cciss_pci_driver);
3488 static void __exit cciss_cleanup(void)
3490 int i;
3492 pci_unregister_driver(&cciss_pci_driver);
3493 /* double check that all controller entrys have been removed */
3494 for (i = 0; i < MAX_CTLR; i++) {
3495 if (hba[i] != NULL) {
3496 printk(KERN_WARNING "cciss: had to remove"
3497 " controller %d\n", i);
3498 cciss_remove_one(hba[i]->pdev);
3501 remove_proc_entry("cciss", proc_root_driver);
3504 static void fail_all_cmds(unsigned long ctlr)
3506 /* If we get here, the board is apparently dead. */
3507 ctlr_info_t *h = hba[ctlr];
3508 CommandList_struct *c;
3509 unsigned long flags;
3511 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3512 h->alive = 0; /* the controller apparently died... */
3514 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3516 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3518 /* move everything off the request queue onto the completed queue */
3519 while ((c = h->reqQ) != NULL) {
3520 removeQ(&(h->reqQ), c);
3521 h->Qdepth--;
3522 addQ(&(h->cmpQ), c);
3525 /* Now, fail everything on the completed queue with a HW error */
3526 while ((c = h->cmpQ) != NULL) {
3527 removeQ(&h->cmpQ, c);
3528 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3529 if (c->cmd_type == CMD_RWREQ) {
3530 complete_command(h, c, 0);
3531 } else if (c->cmd_type == CMD_IOCTL_PEND)
3532 complete(c->waiting);
3533 #ifdef CONFIG_CISS_SCSI_TAPE
3534 else if (c->cmd_type == CMD_SCSI)
3535 complete_scsi_command(c, 0, 0);
3536 #endif
3538 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3539 return;
3542 module_init(cciss_init);
3543 module_exit(cciss_cleanup);