Linux 2.6.16.43
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / futex.c
blob94d7d77780dec9b4ef6bee19a445e73cfa3ba1ac
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
12 * enough at me, Linus for the original (flawed) idea, Matthew
13 * Kirkwood for proof-of-concept implementation.
15 * "The futexes are also cursed."
16 * "But they come in a choice of three flavours!"
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 #include <linux/slab.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/file.h>
36 #include <linux/jhash.h>
37 #include <linux/init.h>
38 #include <linux/futex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <asm/futex.h>
45 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
48 * Futexes are matched on equal values of this key.
49 * The key type depends on whether it's a shared or private mapping.
50 * Don't rearrange members without looking at hash_futex().
52 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
53 * We set bit 0 to indicate if it's an inode-based key.
55 union futex_key {
56 struct {
57 unsigned long pgoff;
58 struct inode *inode;
59 int offset;
60 } shared;
61 struct {
62 unsigned long uaddr;
63 struct mm_struct *mm;
64 int offset;
65 } private;
66 struct {
67 unsigned long word;
68 void *ptr;
69 int offset;
70 } both;
74 * We use this hashed waitqueue instead of a normal wait_queue_t, so
75 * we can wake only the relevant ones (hashed queues may be shared).
77 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
78 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
79 * The order of wakup is always to make the first condition true, then
80 * wake up q->waiters, then make the second condition true.
82 struct futex_q {
83 struct list_head list;
84 wait_queue_head_t waiters;
86 /* Which hash list lock to use. */
87 spinlock_t *lock_ptr;
89 /* Key which the futex is hashed on. */
90 union futex_key key;
92 /* For fd, sigio sent using these. */
93 int fd;
94 struct file *filp;
98 * Split the global futex_lock into every hash list lock.
100 struct futex_hash_bucket {
101 spinlock_t lock;
102 struct list_head chain;
105 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
107 /* Futex-fs vfsmount entry: */
108 static struct vfsmount *futex_mnt;
111 * We hash on the keys returned from get_futex_key (see below).
113 static struct futex_hash_bucket *hash_futex(union futex_key *key)
115 u32 hash = jhash2((u32*)&key->both.word,
116 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
117 key->both.offset);
118 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
122 * Return 1 if two futex_keys are equal, 0 otherwise.
124 static inline int match_futex(union futex_key *key1, union futex_key *key2)
126 return (key1->both.word == key2->both.word
127 && key1->both.ptr == key2->both.ptr
128 && key1->both.offset == key2->both.offset);
132 * Get parameters which are the keys for a futex.
134 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
135 * offset_within_page). For private mappings, it's (uaddr, current->mm).
136 * We can usually work out the index without swapping in the page.
138 * Returns: 0, or negative error code.
139 * The key words are stored in *key on success.
141 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
143 static int get_futex_key(unsigned long uaddr, union futex_key *key)
145 struct mm_struct *mm = current->mm;
146 struct vm_area_struct *vma;
147 struct page *page;
148 int err;
151 * The futex address must be "naturally" aligned.
153 key->both.offset = uaddr % PAGE_SIZE;
154 if (unlikely((key->both.offset % sizeof(u32)) != 0))
155 return -EINVAL;
156 uaddr -= key->both.offset;
159 * The futex is hashed differently depending on whether
160 * it's in a shared or private mapping. So check vma first.
162 vma = find_extend_vma(mm, uaddr);
163 if (unlikely(!vma))
164 return -EFAULT;
167 * Permissions.
169 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
170 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
173 * Private mappings are handled in a simple way.
175 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
176 * it's a read-only handle, it's expected that futexes attach to
177 * the object not the particular process. Therefore we use
178 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
179 * mappings of _writable_ handles.
181 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
182 key->private.mm = mm;
183 key->private.uaddr = uaddr;
184 return 0;
188 * Linear file mappings are also simple.
190 key->shared.inode = vma->vm_file->f_dentry->d_inode;
191 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
192 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
193 key->shared.pgoff = (((uaddr - vma->vm_start) >> PAGE_SHIFT)
194 + vma->vm_pgoff);
195 return 0;
199 * We could walk the page table to read the non-linear
200 * pte, and get the page index without fetching the page
201 * from swap. But that's a lot of code to duplicate here
202 * for a rare case, so we simply fetch the page.
204 err = get_user_pages(current, mm, uaddr, 1, 0, 0, &page, NULL);
205 if (err >= 0) {
206 key->shared.pgoff =
207 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
208 put_page(page);
209 return 0;
211 return err;
215 * Take a reference to the resource addressed by a key.
216 * Can be called while holding spinlocks.
218 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
219 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
221 static inline void get_key_refs(union futex_key *key)
223 if (key->both.ptr != 0) {
224 if (key->both.offset & 1)
225 atomic_inc(&key->shared.inode->i_count);
226 else
227 atomic_inc(&key->private.mm->mm_count);
232 * Drop a reference to the resource addressed by a key.
233 * The hash bucket spinlock must not be held.
235 static void drop_key_refs(union futex_key *key)
237 if (key->both.ptr != 0) {
238 if (key->both.offset & 1)
239 iput(key->shared.inode);
240 else
241 mmdrop(key->private.mm);
245 static inline int get_futex_value_locked(int *dest, int __user *from)
247 int ret;
249 inc_preempt_count();
250 ret = __copy_from_user_inatomic(dest, from, sizeof(int));
251 dec_preempt_count();
253 return ret ? -EFAULT : 0;
257 * The hash bucket lock must be held when this is called.
258 * Afterwards, the futex_q must not be accessed.
260 static void wake_futex(struct futex_q *q)
262 list_del_init(&q->list);
263 if (q->filp)
264 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
266 * The lock in wake_up_all() is a crucial memory barrier after the
267 * list_del_init() and also before assigning to q->lock_ptr.
269 wake_up_all(&q->waiters);
271 * The waiting task can free the futex_q as soon as this is written,
272 * without taking any locks. This must come last.
274 * A memory barrier is required here to prevent the following store
275 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
276 * at the end of wake_up_all() does not prevent this store from
277 * moving.
279 wmb();
280 q->lock_ptr = NULL;
284 * Wake up all waiters hashed on the physical page that is mapped
285 * to this virtual address:
287 static int futex_wake(unsigned long uaddr, int nr_wake)
289 union futex_key key;
290 struct futex_hash_bucket *bh;
291 struct list_head *head;
292 struct futex_q *this, *next;
293 int ret;
295 down_read(&current->mm->mmap_sem);
297 ret = get_futex_key(uaddr, &key);
298 if (unlikely(ret != 0))
299 goto out;
301 bh = hash_futex(&key);
302 spin_lock(&bh->lock);
303 head = &bh->chain;
305 list_for_each_entry_safe(this, next, head, list) {
306 if (match_futex (&this->key, &key)) {
307 wake_futex(this);
308 if (++ret >= nr_wake)
309 break;
313 spin_unlock(&bh->lock);
314 out:
315 up_read(&current->mm->mmap_sem);
316 return ret;
320 * Wake up all waiters hashed on the physical page that is mapped
321 * to this virtual address:
323 static int futex_wake_op(unsigned long uaddr1, unsigned long uaddr2, int nr_wake, int nr_wake2, int op)
325 union futex_key key1, key2;
326 struct futex_hash_bucket *bh1, *bh2;
327 struct list_head *head;
328 struct futex_q *this, *next;
329 int ret, op_ret, attempt = 0;
331 retryfull:
332 down_read(&current->mm->mmap_sem);
334 ret = get_futex_key(uaddr1, &key1);
335 if (unlikely(ret != 0))
336 goto out;
337 ret = get_futex_key(uaddr2, &key2);
338 if (unlikely(ret != 0))
339 goto out;
341 bh1 = hash_futex(&key1);
342 bh2 = hash_futex(&key2);
344 retry:
345 if (bh1 < bh2)
346 spin_lock(&bh1->lock);
347 spin_lock(&bh2->lock);
348 if (bh1 > bh2)
349 spin_lock(&bh1->lock);
351 op_ret = futex_atomic_op_inuser(op, (int __user *)uaddr2);
352 if (unlikely(op_ret < 0)) {
353 int dummy;
355 spin_unlock(&bh1->lock);
356 if (bh1 != bh2)
357 spin_unlock(&bh2->lock);
359 #ifndef CONFIG_MMU
360 /* we don't get EFAULT from MMU faults if we don't have an MMU,
361 * but we might get them from range checking */
362 ret = op_ret;
363 goto out;
364 #endif
366 if (unlikely(op_ret != -EFAULT)) {
367 ret = op_ret;
368 goto out;
371 /* futex_atomic_op_inuser needs to both read and write
372 * *(int __user *)uaddr2, but we can't modify it
373 * non-atomically. Therefore, if get_user below is not
374 * enough, we need to handle the fault ourselves, while
375 * still holding the mmap_sem. */
376 if (attempt++) {
377 struct vm_area_struct * vma;
378 struct mm_struct *mm = current->mm;
380 ret = -EFAULT;
381 if (attempt >= 2 ||
382 !(vma = find_vma(mm, uaddr2)) ||
383 vma->vm_start > uaddr2 ||
384 !(vma->vm_flags & VM_WRITE))
385 goto out;
387 switch (handle_mm_fault(mm, vma, uaddr2, 1)) {
388 case VM_FAULT_MINOR:
389 current->min_flt++;
390 break;
391 case VM_FAULT_MAJOR:
392 current->maj_flt++;
393 break;
394 default:
395 goto out;
397 goto retry;
400 /* If we would have faulted, release mmap_sem,
401 * fault it in and start all over again. */
402 up_read(&current->mm->mmap_sem);
404 ret = get_user(dummy, (int __user *)uaddr2);
405 if (ret)
406 return ret;
408 goto retryfull;
411 head = &bh1->chain;
413 list_for_each_entry_safe(this, next, head, list) {
414 if (match_futex (&this->key, &key1)) {
415 wake_futex(this);
416 if (++ret >= nr_wake)
417 break;
421 if (op_ret > 0) {
422 head = &bh2->chain;
424 op_ret = 0;
425 list_for_each_entry_safe(this, next, head, list) {
426 if (match_futex (&this->key, &key2)) {
427 wake_futex(this);
428 if (++op_ret >= nr_wake2)
429 break;
432 ret += op_ret;
435 spin_unlock(&bh1->lock);
436 if (bh1 != bh2)
437 spin_unlock(&bh2->lock);
438 out:
439 up_read(&current->mm->mmap_sem);
440 return ret;
444 * Requeue all waiters hashed on one physical page to another
445 * physical page.
447 static int futex_requeue(unsigned long uaddr1, unsigned long uaddr2,
448 int nr_wake, int nr_requeue, int *valp)
450 union futex_key key1, key2;
451 struct futex_hash_bucket *bh1, *bh2;
452 struct list_head *head1;
453 struct futex_q *this, *next;
454 int ret, drop_count = 0;
456 retry:
457 down_read(&current->mm->mmap_sem);
459 ret = get_futex_key(uaddr1, &key1);
460 if (unlikely(ret != 0))
461 goto out;
462 ret = get_futex_key(uaddr2, &key2);
463 if (unlikely(ret != 0))
464 goto out;
466 bh1 = hash_futex(&key1);
467 bh2 = hash_futex(&key2);
469 if (bh1 < bh2)
470 spin_lock(&bh1->lock);
471 spin_lock(&bh2->lock);
472 if (bh1 > bh2)
473 spin_lock(&bh1->lock);
475 if (likely(valp != NULL)) {
476 int curval;
478 ret = get_futex_value_locked(&curval, (int __user *)uaddr1);
480 if (unlikely(ret)) {
481 spin_unlock(&bh1->lock);
482 if (bh1 != bh2)
483 spin_unlock(&bh2->lock);
485 /* If we would have faulted, release mmap_sem, fault
486 * it in and start all over again.
488 up_read(&current->mm->mmap_sem);
490 ret = get_user(curval, (int __user *)uaddr1);
492 if (!ret)
493 goto retry;
495 return ret;
497 if (curval != *valp) {
498 ret = -EAGAIN;
499 goto out_unlock;
503 head1 = &bh1->chain;
504 list_for_each_entry_safe(this, next, head1, list) {
505 if (!match_futex (&this->key, &key1))
506 continue;
507 if (++ret <= nr_wake) {
508 wake_futex(this);
509 } else {
510 list_move_tail(&this->list, &bh2->chain);
511 this->lock_ptr = &bh2->lock;
512 this->key = key2;
513 get_key_refs(&key2);
514 drop_count++;
516 if (ret - nr_wake >= nr_requeue)
517 break;
518 /* Make sure to stop if key1 == key2 */
519 if (head1 == &bh2->chain && head1 != &next->list)
520 head1 = &this->list;
524 out_unlock:
525 spin_unlock(&bh1->lock);
526 if (bh1 != bh2)
527 spin_unlock(&bh2->lock);
529 /* drop_key_refs() must be called outside the spinlocks. */
530 while (--drop_count >= 0)
531 drop_key_refs(&key1);
533 out:
534 up_read(&current->mm->mmap_sem);
535 return ret;
538 /* The key must be already stored in q->key. */
539 static inline struct futex_hash_bucket *
540 queue_lock(struct futex_q *q, int fd, struct file *filp)
542 struct futex_hash_bucket *bh;
544 q->fd = fd;
545 q->filp = filp;
547 init_waitqueue_head(&q->waiters);
549 get_key_refs(&q->key);
550 bh = hash_futex(&q->key);
551 q->lock_ptr = &bh->lock;
553 spin_lock(&bh->lock);
554 return bh;
557 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *bh)
559 list_add_tail(&q->list, &bh->chain);
560 spin_unlock(&bh->lock);
563 static inline void
564 queue_unlock(struct futex_q *q, struct futex_hash_bucket *bh)
566 spin_unlock(&bh->lock);
567 drop_key_refs(&q->key);
571 * queue_me and unqueue_me must be called as a pair, each
572 * exactly once. They are called with the hashed spinlock held.
575 /* The key must be already stored in q->key. */
576 static void queue_me(struct futex_q *q, int fd, struct file *filp)
578 struct futex_hash_bucket *bh;
579 bh = queue_lock(q, fd, filp);
580 __queue_me(q, bh);
583 /* Return 1 if we were still queued (ie. 0 means we were woken) */
584 static int unqueue_me(struct futex_q *q)
586 int ret = 0;
587 spinlock_t *lock_ptr;
589 /* In the common case we don't take the spinlock, which is nice. */
590 retry:
591 lock_ptr = q->lock_ptr;
592 barrier();
593 if (lock_ptr != 0) {
594 spin_lock(lock_ptr);
596 * q->lock_ptr can change between reading it and
597 * spin_lock(), causing us to take the wrong lock. This
598 * corrects the race condition.
600 * Reasoning goes like this: if we have the wrong lock,
601 * q->lock_ptr must have changed (maybe several times)
602 * between reading it and the spin_lock(). It can
603 * change again after the spin_lock() but only if it was
604 * already changed before the spin_lock(). It cannot,
605 * however, change back to the original value. Therefore
606 * we can detect whether we acquired the correct lock.
608 if (unlikely(lock_ptr != q->lock_ptr)) {
609 spin_unlock(lock_ptr);
610 goto retry;
612 WARN_ON(list_empty(&q->list));
613 list_del(&q->list);
614 spin_unlock(lock_ptr);
615 ret = 1;
618 drop_key_refs(&q->key);
619 return ret;
622 static int futex_wait(unsigned long uaddr, int val, unsigned long time)
624 DECLARE_WAITQUEUE(wait, current);
625 int ret, curval;
626 struct futex_q q;
627 struct futex_hash_bucket *bh;
629 retry:
630 down_read(&current->mm->mmap_sem);
632 ret = get_futex_key(uaddr, &q.key);
633 if (unlikely(ret != 0))
634 goto out_release_sem;
636 bh = queue_lock(&q, -1, NULL);
639 * Access the page AFTER the futex is queued.
640 * Order is important:
642 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
643 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
645 * The basic logical guarantee of a futex is that it blocks ONLY
646 * if cond(var) is known to be true at the time of blocking, for
647 * any cond. If we queued after testing *uaddr, that would open
648 * a race condition where we could block indefinitely with
649 * cond(var) false, which would violate the guarantee.
651 * A consequence is that futex_wait() can return zero and absorb
652 * a wakeup when *uaddr != val on entry to the syscall. This is
653 * rare, but normal.
655 * We hold the mmap semaphore, so the mapping cannot have changed
656 * since we looked it up in get_futex_key.
659 ret = get_futex_value_locked(&curval, (int __user *)uaddr);
661 if (unlikely(ret)) {
662 queue_unlock(&q, bh);
664 /* If we would have faulted, release mmap_sem, fault it in and
665 * start all over again.
667 up_read(&current->mm->mmap_sem);
669 ret = get_user(curval, (int __user *)uaddr);
671 if (!ret)
672 goto retry;
673 return ret;
675 if (curval != val) {
676 ret = -EWOULDBLOCK;
677 queue_unlock(&q, bh);
678 goto out_release_sem;
681 /* Only actually queue if *uaddr contained val. */
682 __queue_me(&q, bh);
685 * Now the futex is queued and we have checked the data, we
686 * don't want to hold mmap_sem while we sleep.
688 up_read(&current->mm->mmap_sem);
691 * There might have been scheduling since the queue_me(), as we
692 * cannot hold a spinlock across the get_user() in case it
693 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
694 * queueing ourselves into the futex hash. This code thus has to
695 * rely on the futex_wake() code removing us from hash when it
696 * wakes us up.
699 /* add_wait_queue is the barrier after __set_current_state. */
700 __set_current_state(TASK_INTERRUPTIBLE);
701 add_wait_queue(&q.waiters, &wait);
703 * !list_empty() is safe here without any lock.
704 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
706 if (likely(!list_empty(&q.list)))
707 time = schedule_timeout(time);
708 __set_current_state(TASK_RUNNING);
711 * NOTE: we don't remove ourselves from the waitqueue because
712 * we are the only user of it.
715 /* If we were woken (and unqueued), we succeeded, whatever. */
716 if (!unqueue_me(&q))
717 return 0;
718 if (time == 0)
719 return -ETIMEDOUT;
720 /* We expect signal_pending(current), but another thread may
721 * have handled it for us already. */
722 return -EINTR;
724 out_release_sem:
725 up_read(&current->mm->mmap_sem);
726 return ret;
729 static int futex_close(struct inode *inode, struct file *filp)
731 struct futex_q *q = filp->private_data;
733 unqueue_me(q);
734 kfree(q);
735 return 0;
738 /* This is one-shot: once it's gone off you need a new fd */
739 static unsigned int futex_poll(struct file *filp,
740 struct poll_table_struct *wait)
742 struct futex_q *q = filp->private_data;
743 int ret = 0;
745 poll_wait(filp, &q->waiters, wait);
748 * list_empty() is safe here without any lock.
749 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
751 if (list_empty(&q->list))
752 ret = POLLIN | POLLRDNORM;
754 return ret;
757 static struct file_operations futex_fops = {
758 .release = futex_close,
759 .poll = futex_poll,
763 * Signal allows caller to avoid the race which would occur if they
764 * set the sigio stuff up afterwards.
766 static int futex_fd(unsigned long uaddr, int signal)
768 struct futex_q *q;
769 struct file *filp;
770 int ret, err;
772 ret = -EINVAL;
773 if (!valid_signal(signal))
774 goto out;
776 ret = get_unused_fd();
777 if (ret < 0)
778 goto out;
779 filp = get_empty_filp();
780 if (!filp) {
781 put_unused_fd(ret);
782 ret = -ENFILE;
783 goto out;
785 filp->f_op = &futex_fops;
786 filp->f_vfsmnt = mntget(futex_mnt);
787 filp->f_dentry = dget(futex_mnt->mnt_root);
788 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
790 if (signal) {
791 err = f_setown(filp, current->pid, 1);
792 if (err < 0) {
793 goto error;
795 filp->f_owner.signum = signal;
798 q = kmalloc(sizeof(*q), GFP_KERNEL);
799 if (!q) {
800 err = -ENOMEM;
801 goto error;
804 down_read(&current->mm->mmap_sem);
805 err = get_futex_key(uaddr, &q->key);
807 if (unlikely(err != 0)) {
808 up_read(&current->mm->mmap_sem);
809 kfree(q);
810 goto error;
814 * queue_me() must be called before releasing mmap_sem, because
815 * key->shared.inode needs to be referenced while holding it.
817 filp->private_data = q;
819 queue_me(q, ret, filp);
820 up_read(&current->mm->mmap_sem);
822 /* Now we map fd to filp, so userspace can access it */
823 fd_install(ret, filp);
824 out:
825 return ret;
826 error:
827 put_unused_fd(ret);
828 put_filp(filp);
829 ret = err;
830 goto out;
833 long do_futex(unsigned long uaddr, int op, int val, unsigned long timeout,
834 unsigned long uaddr2, int val2, int val3)
836 int ret;
838 switch (op) {
839 case FUTEX_WAIT:
840 ret = futex_wait(uaddr, val, timeout);
841 break;
842 case FUTEX_WAKE:
843 ret = futex_wake(uaddr, val);
844 break;
845 case FUTEX_FD:
846 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
847 ret = futex_fd(uaddr, val);
848 break;
849 case FUTEX_REQUEUE:
850 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
851 break;
852 case FUTEX_CMP_REQUEUE:
853 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
854 break;
855 case FUTEX_WAKE_OP:
856 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
857 break;
858 default:
859 ret = -ENOSYS;
861 return ret;
865 asmlinkage long sys_futex(u32 __user *uaddr, int op, int val,
866 struct timespec __user *utime, u32 __user *uaddr2,
867 int val3)
869 struct timespec t;
870 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
871 int val2 = 0;
873 if ((op == FUTEX_WAIT) && utime) {
874 if (copy_from_user(&t, utime, sizeof(t)) != 0)
875 return -EFAULT;
876 timeout = timespec_to_jiffies(&t) + 1;
879 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
881 if (op >= FUTEX_REQUEUE)
882 val2 = (int) (unsigned long) utime;
884 return do_futex((unsigned long)uaddr, op, val, timeout,
885 (unsigned long)uaddr2, val2, val3);
888 static struct super_block *
889 futexfs_get_sb(struct file_system_type *fs_type,
890 int flags, const char *dev_name, void *data)
892 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA);
895 static struct file_system_type futex_fs_type = {
896 .name = "futexfs",
897 .get_sb = futexfs_get_sb,
898 .kill_sb = kill_anon_super,
901 static int __init init(void)
903 unsigned int i;
905 register_filesystem(&futex_fs_type);
906 futex_mnt = kern_mount(&futex_fs_type);
908 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
909 INIT_LIST_HEAD(&futex_queues[i].chain);
910 spin_lock_init(&futex_queues[i].lock);
912 return 0;
914 __initcall(init);