Linux 2.6.20.7
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sunrpc / svcsock.c
blobcd296a5451681d9b66dbc0f6c255e733e7ef9a4c
1 /*
2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <asm/uaccess.h>
41 #include <asm/ioctls.h>
43 #include <linux/sunrpc/types.h>
44 #include <linux/sunrpc/xdr.h>
45 #include <linux/sunrpc/svcsock.h>
46 #include <linux/sunrpc/stats.h>
48 /* SMP locking strategy:
50 * svc_pool->sp_lock protects most of the fields of that pool.
51 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
52 * when both need to be taken (rare), svc_serv->sv_lock is first.
53 * BKL protects svc_serv->sv_nrthread.
54 * svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
55 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
57 * Some flags can be set to certain values at any time
58 * providing that certain rules are followed:
60 * SK_CONN, SK_DATA, can be set or cleared at any time.
61 * after a set, svc_sock_enqueue must be called.
62 * after a clear, the socket must be read/accepted
63 * if this succeeds, it must be set again.
64 * SK_CLOSE can set at any time. It is never cleared.
65 * sk_inuse contains a bias of '1' until SK_DEAD is set.
66 * so when sk_inuse hits zero, we know the socket is dead
67 * and no-one is using it.
68 * SK_DEAD can only be set while SK_BUSY is held which ensures
69 * no other thread will be using the socket or will try to
70 * set SK_DEAD.
74 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
77 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
78 int *errp, int pmap_reg);
79 static void svc_delete_socket(struct svc_sock *svsk);
80 static void svc_udp_data_ready(struct sock *, int);
81 static int svc_udp_recvfrom(struct svc_rqst *);
82 static int svc_udp_sendto(struct svc_rqst *);
83 static void svc_close_socket(struct svc_sock *svsk);
85 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
86 static int svc_deferred_recv(struct svc_rqst *rqstp);
87 static struct cache_deferred_req *svc_defer(struct cache_req *req);
89 /* apparently the "standard" is that clients close
90 * idle connections after 5 minutes, servers after
91 * 6 minutes
92 * http://www.connectathon.org/talks96/nfstcp.pdf
94 static int svc_conn_age_period = 6*60;
96 #ifdef CONFIG_DEBUG_LOCK_ALLOC
97 static struct lock_class_key svc_key[2];
98 static struct lock_class_key svc_slock_key[2];
100 static inline void svc_reclassify_socket(struct socket *sock)
102 struct sock *sk = sock->sk;
103 BUG_ON(sk->sk_lock.owner != NULL);
104 switch (sk->sk_family) {
105 case AF_INET:
106 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
107 &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
108 break;
110 case AF_INET6:
111 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
112 &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
113 break;
115 default:
116 BUG();
119 #else
120 static inline void svc_reclassify_socket(struct socket *sock)
123 #endif
126 * Queue up an idle server thread. Must have pool->sp_lock held.
127 * Note: this is really a stack rather than a queue, so that we only
128 * use as many different threads as we need, and the rest don't pollute
129 * the cache.
131 static inline void
132 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
134 list_add(&rqstp->rq_list, &pool->sp_threads);
138 * Dequeue an nfsd thread. Must have pool->sp_lock held.
140 static inline void
141 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
143 list_del(&rqstp->rq_list);
147 * Release an skbuff after use
149 static inline void
150 svc_release_skb(struct svc_rqst *rqstp)
152 struct sk_buff *skb = rqstp->rq_skbuff;
153 struct svc_deferred_req *dr = rqstp->rq_deferred;
155 if (skb) {
156 rqstp->rq_skbuff = NULL;
158 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
159 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
161 if (dr) {
162 rqstp->rq_deferred = NULL;
163 kfree(dr);
168 * Any space to write?
170 static inline unsigned long
171 svc_sock_wspace(struct svc_sock *svsk)
173 int wspace;
175 if (svsk->sk_sock->type == SOCK_STREAM)
176 wspace = sk_stream_wspace(svsk->sk_sk);
177 else
178 wspace = sock_wspace(svsk->sk_sk);
180 return wspace;
184 * Queue up a socket with data pending. If there are idle nfsd
185 * processes, wake 'em up.
188 static void
189 svc_sock_enqueue(struct svc_sock *svsk)
191 struct svc_serv *serv = svsk->sk_server;
192 struct svc_pool *pool;
193 struct svc_rqst *rqstp;
194 int cpu;
196 if (!(svsk->sk_flags &
197 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
198 return;
199 if (test_bit(SK_DEAD, &svsk->sk_flags))
200 return;
202 cpu = get_cpu();
203 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
204 put_cpu();
206 spin_lock_bh(&pool->sp_lock);
208 if (!list_empty(&pool->sp_threads) &&
209 !list_empty(&pool->sp_sockets))
210 printk(KERN_ERR
211 "svc_sock_enqueue: threads and sockets both waiting??\n");
213 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
214 /* Don't enqueue dead sockets */
215 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
216 goto out_unlock;
219 /* Mark socket as busy. It will remain in this state until the
220 * server has processed all pending data and put the socket back
221 * on the idle list. We update SK_BUSY atomically because
222 * it also guards against trying to enqueue the svc_sock twice.
224 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
225 /* Don't enqueue socket while already enqueued */
226 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
227 goto out_unlock;
229 BUG_ON(svsk->sk_pool != NULL);
230 svsk->sk_pool = pool;
232 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
233 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
234 > svc_sock_wspace(svsk))
235 && !test_bit(SK_CLOSE, &svsk->sk_flags)
236 && !test_bit(SK_CONN, &svsk->sk_flags)) {
237 /* Don't enqueue while not enough space for reply */
238 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
239 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
240 svc_sock_wspace(svsk));
241 svsk->sk_pool = NULL;
242 clear_bit(SK_BUSY, &svsk->sk_flags);
243 goto out_unlock;
245 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
248 if (!list_empty(&pool->sp_threads)) {
249 rqstp = list_entry(pool->sp_threads.next,
250 struct svc_rqst,
251 rq_list);
252 dprintk("svc: socket %p served by daemon %p\n",
253 svsk->sk_sk, rqstp);
254 svc_thread_dequeue(pool, rqstp);
255 if (rqstp->rq_sock)
256 printk(KERN_ERR
257 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
258 rqstp, rqstp->rq_sock);
259 rqstp->rq_sock = svsk;
260 atomic_inc(&svsk->sk_inuse);
261 rqstp->rq_reserved = serv->sv_max_mesg;
262 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
263 BUG_ON(svsk->sk_pool != pool);
264 wake_up(&rqstp->rq_wait);
265 } else {
266 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
267 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
268 BUG_ON(svsk->sk_pool != pool);
271 out_unlock:
272 spin_unlock_bh(&pool->sp_lock);
276 * Dequeue the first socket. Must be called with the pool->sp_lock held.
278 static inline struct svc_sock *
279 svc_sock_dequeue(struct svc_pool *pool)
281 struct svc_sock *svsk;
283 if (list_empty(&pool->sp_sockets))
284 return NULL;
286 svsk = list_entry(pool->sp_sockets.next,
287 struct svc_sock, sk_ready);
288 list_del_init(&svsk->sk_ready);
290 dprintk("svc: socket %p dequeued, inuse=%d\n",
291 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
293 return svsk;
297 * Having read something from a socket, check whether it
298 * needs to be re-enqueued.
299 * Note: SK_DATA only gets cleared when a read-attempt finds
300 * no (or insufficient) data.
302 static inline void
303 svc_sock_received(struct svc_sock *svsk)
305 svsk->sk_pool = NULL;
306 clear_bit(SK_BUSY, &svsk->sk_flags);
307 svc_sock_enqueue(svsk);
312 * svc_reserve - change the space reserved for the reply to a request.
313 * @rqstp: The request in question
314 * @space: new max space to reserve
316 * Each request reserves some space on the output queue of the socket
317 * to make sure the reply fits. This function reduces that reserved
318 * space to be the amount of space used already, plus @space.
321 void svc_reserve(struct svc_rqst *rqstp, int space)
323 space += rqstp->rq_res.head[0].iov_len;
325 if (space < rqstp->rq_reserved) {
326 struct svc_sock *svsk = rqstp->rq_sock;
327 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
328 rqstp->rq_reserved = space;
330 svc_sock_enqueue(svsk);
335 * Release a socket after use.
337 static inline void
338 svc_sock_put(struct svc_sock *svsk)
340 if (atomic_dec_and_test(&svsk->sk_inuse)) {
341 BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
343 dprintk("svc: releasing dead socket\n");
344 if (svsk->sk_sock->file)
345 sockfd_put(svsk->sk_sock);
346 else
347 sock_release(svsk->sk_sock);
348 if (svsk->sk_info_authunix != NULL)
349 svcauth_unix_info_release(svsk->sk_info_authunix);
350 kfree(svsk);
354 static void
355 svc_sock_release(struct svc_rqst *rqstp)
357 struct svc_sock *svsk = rqstp->rq_sock;
359 svc_release_skb(rqstp);
361 svc_free_res_pages(rqstp);
362 rqstp->rq_res.page_len = 0;
363 rqstp->rq_res.page_base = 0;
366 /* Reset response buffer and release
367 * the reservation.
368 * But first, check that enough space was reserved
369 * for the reply, otherwise we have a bug!
371 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
372 printk(KERN_ERR "RPC request reserved %d but used %d\n",
373 rqstp->rq_reserved,
374 rqstp->rq_res.len);
376 rqstp->rq_res.head[0].iov_len = 0;
377 svc_reserve(rqstp, 0);
378 rqstp->rq_sock = NULL;
380 svc_sock_put(svsk);
384 * External function to wake up a server waiting for data
385 * This really only makes sense for services like lockd
386 * which have exactly one thread anyway.
388 void
389 svc_wake_up(struct svc_serv *serv)
391 struct svc_rqst *rqstp;
392 unsigned int i;
393 struct svc_pool *pool;
395 for (i = 0; i < serv->sv_nrpools; i++) {
396 pool = &serv->sv_pools[i];
398 spin_lock_bh(&pool->sp_lock);
399 if (!list_empty(&pool->sp_threads)) {
400 rqstp = list_entry(pool->sp_threads.next,
401 struct svc_rqst,
402 rq_list);
403 dprintk("svc: daemon %p woken up.\n", rqstp);
405 svc_thread_dequeue(pool, rqstp);
406 rqstp->rq_sock = NULL;
408 wake_up(&rqstp->rq_wait);
410 spin_unlock_bh(&pool->sp_lock);
415 * Generic sendto routine
417 static int
418 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
420 struct svc_sock *svsk = rqstp->rq_sock;
421 struct socket *sock = svsk->sk_sock;
422 int slen;
423 char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
424 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
425 struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
426 int len = 0;
427 int result;
428 int size;
429 struct page **ppage = xdr->pages;
430 size_t base = xdr->page_base;
431 unsigned int pglen = xdr->page_len;
432 unsigned int flags = MSG_MORE;
434 slen = xdr->len;
436 if (rqstp->rq_prot == IPPROTO_UDP) {
437 /* set the source and destination */
438 struct msghdr msg;
439 msg.msg_name = &rqstp->rq_addr;
440 msg.msg_namelen = sizeof(rqstp->rq_addr);
441 msg.msg_iov = NULL;
442 msg.msg_iovlen = 0;
443 msg.msg_flags = MSG_MORE;
445 msg.msg_control = cmh;
446 msg.msg_controllen = sizeof(buffer);
447 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
448 cmh->cmsg_level = SOL_IP;
449 cmh->cmsg_type = IP_PKTINFO;
450 pki->ipi_ifindex = 0;
451 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
453 if (sock_sendmsg(sock, &msg, 0) < 0)
454 goto out;
457 /* send head */
458 if (slen == xdr->head[0].iov_len)
459 flags = 0;
460 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
461 xdr->head[0].iov_len, flags);
462 if (len != xdr->head[0].iov_len)
463 goto out;
464 slen -= xdr->head[0].iov_len;
465 if (slen == 0)
466 goto out;
468 /* send page data */
469 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
470 while (pglen > 0) {
471 if (slen == size)
472 flags = 0;
473 result = kernel_sendpage(sock, *ppage, base, size, flags);
474 if (result > 0)
475 len += result;
476 if (result != size)
477 goto out;
478 slen -= size;
479 pglen -= size;
480 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
481 base = 0;
482 ppage++;
484 /* send tail */
485 if (xdr->tail[0].iov_len) {
486 result = kernel_sendpage(sock, rqstp->rq_respages[0],
487 ((unsigned long)xdr->tail[0].iov_base)
488 & (PAGE_SIZE-1),
489 xdr->tail[0].iov_len, 0);
491 if (result > 0)
492 len += result;
494 out:
495 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
496 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
497 rqstp->rq_addr.sin_addr.s_addr);
499 return len;
503 * Report socket names for nfsdfs
505 static int one_sock_name(char *buf, struct svc_sock *svsk)
507 int len;
509 switch(svsk->sk_sk->sk_family) {
510 case AF_INET:
511 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
512 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
513 "udp" : "tcp",
514 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
515 inet_sk(svsk->sk_sk)->num);
516 break;
517 default:
518 len = sprintf(buf, "*unknown-%d*\n",
519 svsk->sk_sk->sk_family);
521 return len;
525 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
527 struct svc_sock *svsk, *closesk = NULL;
528 int len = 0;
530 if (!serv)
531 return 0;
532 spin_lock_bh(&serv->sv_lock);
533 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
534 int onelen = one_sock_name(buf+len, svsk);
535 if (toclose && strcmp(toclose, buf+len) == 0)
536 closesk = svsk;
537 else
538 len += onelen;
540 spin_unlock_bh(&serv->sv_lock);
541 if (closesk)
542 /* Should unregister with portmap, but you cannot
543 * unregister just one protocol...
545 svc_close_socket(closesk);
546 else if (toclose)
547 return -ENOENT;
548 return len;
550 EXPORT_SYMBOL(svc_sock_names);
553 * Check input queue length
555 static int
556 svc_recv_available(struct svc_sock *svsk)
558 struct socket *sock = svsk->sk_sock;
559 int avail, err;
561 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
563 return (err >= 0)? avail : err;
567 * Generic recvfrom routine.
569 static int
570 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
572 struct msghdr msg;
573 struct socket *sock;
574 int len, alen;
576 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
577 sock = rqstp->rq_sock->sk_sock;
579 msg.msg_name = &rqstp->rq_addr;
580 msg.msg_namelen = sizeof(rqstp->rq_addr);
581 msg.msg_control = NULL;
582 msg.msg_controllen = 0;
584 msg.msg_flags = MSG_DONTWAIT;
586 len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
588 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
589 * possibly we should cache this in the svc_sock structure
590 * at accept time. FIXME
592 alen = sizeof(rqstp->rq_addr);
593 kernel_getpeername(sock, (struct sockaddr *)&rqstp->rq_addr, &alen);
595 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
596 rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
598 return len;
602 * Set socket snd and rcv buffer lengths
604 static inline void
605 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
607 #if 0
608 mm_segment_t oldfs;
609 oldfs = get_fs(); set_fs(KERNEL_DS);
610 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
611 (char*)&snd, sizeof(snd));
612 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
613 (char*)&rcv, sizeof(rcv));
614 #else
615 /* sock_setsockopt limits use to sysctl_?mem_max,
616 * which isn't acceptable. Until that is made conditional
617 * on not having CAP_SYS_RESOURCE or similar, we go direct...
618 * DaveM said I could!
620 lock_sock(sock->sk);
621 sock->sk->sk_sndbuf = snd * 2;
622 sock->sk->sk_rcvbuf = rcv * 2;
623 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
624 release_sock(sock->sk);
625 #endif
628 * INET callback when data has been received on the socket.
630 static void
631 svc_udp_data_ready(struct sock *sk, int count)
633 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
635 if (svsk) {
636 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
637 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
638 set_bit(SK_DATA, &svsk->sk_flags);
639 svc_sock_enqueue(svsk);
641 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
642 wake_up_interruptible(sk->sk_sleep);
646 * INET callback when space is newly available on the socket.
648 static void
649 svc_write_space(struct sock *sk)
651 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
653 if (svsk) {
654 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
655 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
656 svc_sock_enqueue(svsk);
659 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
660 dprintk("RPC svc_write_space: someone sleeping on %p\n",
661 svsk);
662 wake_up_interruptible(sk->sk_sleep);
667 * Receive a datagram from a UDP socket.
669 static int
670 svc_udp_recvfrom(struct svc_rqst *rqstp)
672 struct svc_sock *svsk = rqstp->rq_sock;
673 struct svc_serv *serv = svsk->sk_server;
674 struct sk_buff *skb;
675 int err, len;
677 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
678 /* udp sockets need large rcvbuf as all pending
679 * requests are still in that buffer. sndbuf must
680 * also be large enough that there is enough space
681 * for one reply per thread. We count all threads
682 * rather than threads in a particular pool, which
683 * provides an upper bound on the number of threads
684 * which will access the socket.
686 svc_sock_setbufsize(svsk->sk_sock,
687 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
688 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
690 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
691 svc_sock_received(svsk);
692 return svc_deferred_recv(rqstp);
695 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
696 svc_delete_socket(svsk);
697 return 0;
700 clear_bit(SK_DATA, &svsk->sk_flags);
701 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
702 if (err == -EAGAIN) {
703 svc_sock_received(svsk);
704 return err;
706 /* possibly an icmp error */
707 dprintk("svc: recvfrom returned error %d\n", -err);
709 if (skb->tstamp.off_sec == 0) {
710 struct timeval tv;
712 tv.tv_sec = xtime.tv_sec;
713 tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
714 skb_set_timestamp(skb, &tv);
715 /* Don't enable netstamp, sunrpc doesn't
716 need that much accuracy */
718 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
719 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
722 * Maybe more packets - kick another thread ASAP.
724 svc_sock_received(svsk);
726 len = skb->len - sizeof(struct udphdr);
727 rqstp->rq_arg.len = len;
729 rqstp->rq_prot = IPPROTO_UDP;
731 /* Get sender address */
732 rqstp->rq_addr.sin_family = AF_INET;
733 rqstp->rq_addr.sin_port = skb->h.uh->source;
734 rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
735 rqstp->rq_daddr = skb->nh.iph->daddr;
737 if (skb_is_nonlinear(skb)) {
738 /* we have to copy */
739 local_bh_disable();
740 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
741 local_bh_enable();
742 /* checksum error */
743 skb_free_datagram(svsk->sk_sk, skb);
744 return 0;
746 local_bh_enable();
747 skb_free_datagram(svsk->sk_sk, skb);
748 } else {
749 /* we can use it in-place */
750 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
751 rqstp->rq_arg.head[0].iov_len = len;
752 if (skb_checksum_complete(skb)) {
753 skb_free_datagram(svsk->sk_sk, skb);
754 return 0;
756 rqstp->rq_skbuff = skb;
759 rqstp->rq_arg.page_base = 0;
760 if (len <= rqstp->rq_arg.head[0].iov_len) {
761 rqstp->rq_arg.head[0].iov_len = len;
762 rqstp->rq_arg.page_len = 0;
763 rqstp->rq_respages = rqstp->rq_pages+1;
764 } else {
765 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
766 rqstp->rq_respages = rqstp->rq_pages + 1 +
767 (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
770 if (serv->sv_stats)
771 serv->sv_stats->netudpcnt++;
773 return len;
776 static int
777 svc_udp_sendto(struct svc_rqst *rqstp)
779 int error;
781 error = svc_sendto(rqstp, &rqstp->rq_res);
782 if (error == -ECONNREFUSED)
783 /* ICMP error on earlier request. */
784 error = svc_sendto(rqstp, &rqstp->rq_res);
786 return error;
789 static void
790 svc_udp_init(struct svc_sock *svsk)
792 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
793 svsk->sk_sk->sk_write_space = svc_write_space;
794 svsk->sk_recvfrom = svc_udp_recvfrom;
795 svsk->sk_sendto = svc_udp_sendto;
797 /* initialise setting must have enough space to
798 * receive and respond to one request.
799 * svc_udp_recvfrom will re-adjust if necessary
801 svc_sock_setbufsize(svsk->sk_sock,
802 3 * svsk->sk_server->sv_max_mesg,
803 3 * svsk->sk_server->sv_max_mesg);
805 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
806 set_bit(SK_CHNGBUF, &svsk->sk_flags);
810 * A data_ready event on a listening socket means there's a connection
811 * pending. Do not use state_change as a substitute for it.
813 static void
814 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
816 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
818 dprintk("svc: socket %p TCP (listen) state change %d\n",
819 sk, sk->sk_state);
822 * This callback may called twice when a new connection
823 * is established as a child socket inherits everything
824 * from a parent LISTEN socket.
825 * 1) data_ready method of the parent socket will be called
826 * when one of child sockets become ESTABLISHED.
827 * 2) data_ready method of the child socket may be called
828 * when it receives data before the socket is accepted.
829 * In case of 2, we should ignore it silently.
831 if (sk->sk_state == TCP_LISTEN) {
832 if (svsk) {
833 set_bit(SK_CONN, &svsk->sk_flags);
834 svc_sock_enqueue(svsk);
835 } else
836 printk("svc: socket %p: no user data\n", sk);
839 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
840 wake_up_interruptible_all(sk->sk_sleep);
844 * A state change on a connected socket means it's dying or dead.
846 static void
847 svc_tcp_state_change(struct sock *sk)
849 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
851 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
852 sk, sk->sk_state, sk->sk_user_data);
854 if (!svsk)
855 printk("svc: socket %p: no user data\n", sk);
856 else {
857 set_bit(SK_CLOSE, &svsk->sk_flags);
858 svc_sock_enqueue(svsk);
860 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
861 wake_up_interruptible_all(sk->sk_sleep);
864 static void
865 svc_tcp_data_ready(struct sock *sk, int count)
867 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
869 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
870 sk, sk->sk_user_data);
871 if (svsk) {
872 set_bit(SK_DATA, &svsk->sk_flags);
873 svc_sock_enqueue(svsk);
875 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
876 wake_up_interruptible(sk->sk_sleep);
880 * Accept a TCP connection
882 static void
883 svc_tcp_accept(struct svc_sock *svsk)
885 struct sockaddr_in sin;
886 struct svc_serv *serv = svsk->sk_server;
887 struct socket *sock = svsk->sk_sock;
888 struct socket *newsock;
889 struct svc_sock *newsvsk;
890 int err, slen;
892 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
893 if (!sock)
894 return;
896 clear_bit(SK_CONN, &svsk->sk_flags);
897 err = kernel_accept(sock, &newsock, O_NONBLOCK);
898 if (err < 0) {
899 if (err == -ENOMEM)
900 printk(KERN_WARNING "%s: no more sockets!\n",
901 serv->sv_name);
902 else if (err != -EAGAIN && net_ratelimit())
903 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
904 serv->sv_name, -err);
905 return;
908 set_bit(SK_CONN, &svsk->sk_flags);
909 svc_sock_enqueue(svsk);
911 slen = sizeof(sin);
912 err = kernel_getpeername(newsock, (struct sockaddr *) &sin, &slen);
913 if (err < 0) {
914 if (net_ratelimit())
915 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
916 serv->sv_name, -err);
917 goto failed; /* aborted connection or whatever */
920 /* Ideally, we would want to reject connections from unauthorized
921 * hosts here, but when we get encription, the IP of the host won't
922 * tell us anything. For now just warn about unpriv connections.
924 if (ntohs(sin.sin_port) >= 1024) {
925 dprintk(KERN_WARNING
926 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
927 serv->sv_name,
928 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
931 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
932 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
934 /* make sure that a write doesn't block forever when
935 * low on memory
937 newsock->sk->sk_sndtimeo = HZ*30;
939 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
940 goto failed;
943 /* make sure that we don't have too many active connections.
944 * If we have, something must be dropped.
946 * There's no point in trying to do random drop here for
947 * DoS prevention. The NFS clients does 1 reconnect in 15
948 * seconds. An attacker can easily beat that.
950 * The only somewhat efficient mechanism would be if drop
951 * old connections from the same IP first. But right now
952 * we don't even record the client IP in svc_sock.
954 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
955 struct svc_sock *svsk = NULL;
956 spin_lock_bh(&serv->sv_lock);
957 if (!list_empty(&serv->sv_tempsocks)) {
958 if (net_ratelimit()) {
959 /* Try to help the admin */
960 printk(KERN_NOTICE "%s: too many open TCP "
961 "sockets, consider increasing the "
962 "number of nfsd threads\n",
963 serv->sv_name);
964 printk(KERN_NOTICE "%s: last TCP connect from "
965 "%u.%u.%u.%u:%d\n",
966 serv->sv_name,
967 NIPQUAD(sin.sin_addr.s_addr),
968 ntohs(sin.sin_port));
971 * Always select the oldest socket. It's not fair,
972 * but so is life
974 svsk = list_entry(serv->sv_tempsocks.prev,
975 struct svc_sock,
976 sk_list);
977 set_bit(SK_CLOSE, &svsk->sk_flags);
978 atomic_inc(&svsk->sk_inuse);
980 spin_unlock_bh(&serv->sv_lock);
982 if (svsk) {
983 svc_sock_enqueue(svsk);
984 svc_sock_put(svsk);
989 if (serv->sv_stats)
990 serv->sv_stats->nettcpconn++;
992 return;
994 failed:
995 sock_release(newsock);
996 return;
1000 * Receive data from a TCP socket.
1002 static int
1003 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1005 struct svc_sock *svsk = rqstp->rq_sock;
1006 struct svc_serv *serv = svsk->sk_server;
1007 int len;
1008 struct kvec *vec;
1009 int pnum, vlen;
1011 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1012 svsk, test_bit(SK_DATA, &svsk->sk_flags),
1013 test_bit(SK_CONN, &svsk->sk_flags),
1014 test_bit(SK_CLOSE, &svsk->sk_flags));
1016 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1017 svc_sock_received(svsk);
1018 return svc_deferred_recv(rqstp);
1021 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1022 svc_delete_socket(svsk);
1023 return 0;
1026 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1027 svc_tcp_accept(svsk);
1028 svc_sock_received(svsk);
1029 return 0;
1032 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1033 /* sndbuf needs to have room for one request
1034 * per thread, otherwise we can stall even when the
1035 * network isn't a bottleneck.
1037 * We count all threads rather than threads in a
1038 * particular pool, which provides an upper bound
1039 * on the number of threads which will access the socket.
1041 * rcvbuf just needs to be able to hold a few requests.
1042 * Normally they will be removed from the queue
1043 * as soon a a complete request arrives.
1045 svc_sock_setbufsize(svsk->sk_sock,
1046 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1047 3 * serv->sv_max_mesg);
1049 clear_bit(SK_DATA, &svsk->sk_flags);
1051 /* Receive data. If we haven't got the record length yet, get
1052 * the next four bytes. Otherwise try to gobble up as much as
1053 * possible up to the complete record length.
1055 if (svsk->sk_tcplen < 4) {
1056 unsigned long want = 4 - svsk->sk_tcplen;
1057 struct kvec iov;
1059 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1060 iov.iov_len = want;
1061 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1062 goto error;
1063 svsk->sk_tcplen += len;
1065 if (len < want) {
1066 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1067 len, want);
1068 svc_sock_received(svsk);
1069 return -EAGAIN; /* record header not complete */
1072 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1073 if (!(svsk->sk_reclen & 0x80000000)) {
1074 /* FIXME: technically, a record can be fragmented,
1075 * and non-terminal fragments will not have the top
1076 * bit set in the fragment length header.
1077 * But apparently no known nfs clients send fragmented
1078 * records. */
1079 if (net_ratelimit())
1080 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1081 " (non-terminal)\n",
1082 (unsigned long) svsk->sk_reclen);
1083 goto err_delete;
1085 svsk->sk_reclen &= 0x7fffffff;
1086 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1087 if (svsk->sk_reclen > serv->sv_max_mesg) {
1088 if (net_ratelimit())
1089 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1090 " (large)\n",
1091 (unsigned long) svsk->sk_reclen);
1092 goto err_delete;
1096 /* Check whether enough data is available */
1097 len = svc_recv_available(svsk);
1098 if (len < 0)
1099 goto error;
1101 if (len < svsk->sk_reclen) {
1102 dprintk("svc: incomplete TCP record (%d of %d)\n",
1103 len, svsk->sk_reclen);
1104 svc_sock_received(svsk);
1105 return -EAGAIN; /* record not complete */
1107 len = svsk->sk_reclen;
1108 set_bit(SK_DATA, &svsk->sk_flags);
1110 vec = rqstp->rq_vec;
1111 vec[0] = rqstp->rq_arg.head[0];
1112 vlen = PAGE_SIZE;
1113 pnum = 1;
1114 while (vlen < len) {
1115 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1116 vec[pnum].iov_len = PAGE_SIZE;
1117 pnum++;
1118 vlen += PAGE_SIZE;
1120 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1122 /* Now receive data */
1123 len = svc_recvfrom(rqstp, vec, pnum, len);
1124 if (len < 0)
1125 goto error;
1127 dprintk("svc: TCP complete record (%d bytes)\n", len);
1128 rqstp->rq_arg.len = len;
1129 rqstp->rq_arg.page_base = 0;
1130 if (len <= rqstp->rq_arg.head[0].iov_len) {
1131 rqstp->rq_arg.head[0].iov_len = len;
1132 rqstp->rq_arg.page_len = 0;
1133 } else {
1134 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1137 rqstp->rq_skbuff = NULL;
1138 rqstp->rq_prot = IPPROTO_TCP;
1140 /* Reset TCP read info */
1141 svsk->sk_reclen = 0;
1142 svsk->sk_tcplen = 0;
1144 svc_sock_received(svsk);
1145 if (serv->sv_stats)
1146 serv->sv_stats->nettcpcnt++;
1148 return len;
1150 err_delete:
1151 svc_delete_socket(svsk);
1152 return -EAGAIN;
1154 error:
1155 if (len == -EAGAIN) {
1156 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1157 svc_sock_received(svsk);
1158 } else {
1159 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1160 svsk->sk_server->sv_name, -len);
1161 goto err_delete;
1164 return len;
1168 * Send out data on TCP socket.
1170 static int
1171 svc_tcp_sendto(struct svc_rqst *rqstp)
1173 struct xdr_buf *xbufp = &rqstp->rq_res;
1174 int sent;
1175 __be32 reclen;
1177 /* Set up the first element of the reply kvec.
1178 * Any other kvecs that may be in use have been taken
1179 * care of by the server implementation itself.
1181 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1182 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1184 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1185 return -ENOTCONN;
1187 sent = svc_sendto(rqstp, &rqstp->rq_res);
1188 if (sent != xbufp->len) {
1189 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1190 rqstp->rq_sock->sk_server->sv_name,
1191 (sent<0)?"got error":"sent only",
1192 sent, xbufp->len);
1193 set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1194 svc_sock_enqueue(rqstp->rq_sock);
1195 sent = -EAGAIN;
1197 return sent;
1200 static void
1201 svc_tcp_init(struct svc_sock *svsk)
1203 struct sock *sk = svsk->sk_sk;
1204 struct tcp_sock *tp = tcp_sk(sk);
1206 svsk->sk_recvfrom = svc_tcp_recvfrom;
1207 svsk->sk_sendto = svc_tcp_sendto;
1209 if (sk->sk_state == TCP_LISTEN) {
1210 dprintk("setting up TCP socket for listening\n");
1211 sk->sk_data_ready = svc_tcp_listen_data_ready;
1212 set_bit(SK_CONN, &svsk->sk_flags);
1213 } else {
1214 dprintk("setting up TCP socket for reading\n");
1215 sk->sk_state_change = svc_tcp_state_change;
1216 sk->sk_data_ready = svc_tcp_data_ready;
1217 sk->sk_write_space = svc_write_space;
1219 svsk->sk_reclen = 0;
1220 svsk->sk_tcplen = 0;
1222 tp->nonagle = 1; /* disable Nagle's algorithm */
1224 /* initialise setting must have enough space to
1225 * receive and respond to one request.
1226 * svc_tcp_recvfrom will re-adjust if necessary
1228 svc_sock_setbufsize(svsk->sk_sock,
1229 3 * svsk->sk_server->sv_max_mesg,
1230 3 * svsk->sk_server->sv_max_mesg);
1232 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1233 set_bit(SK_DATA, &svsk->sk_flags);
1234 if (sk->sk_state != TCP_ESTABLISHED)
1235 set_bit(SK_CLOSE, &svsk->sk_flags);
1239 void
1240 svc_sock_update_bufs(struct svc_serv *serv)
1243 * The number of server threads has changed. Update
1244 * rcvbuf and sndbuf accordingly on all sockets
1246 struct list_head *le;
1248 spin_lock_bh(&serv->sv_lock);
1249 list_for_each(le, &serv->sv_permsocks) {
1250 struct svc_sock *svsk =
1251 list_entry(le, struct svc_sock, sk_list);
1252 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1254 list_for_each(le, &serv->sv_tempsocks) {
1255 struct svc_sock *svsk =
1256 list_entry(le, struct svc_sock, sk_list);
1257 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1259 spin_unlock_bh(&serv->sv_lock);
1263 * Receive the next request on any socket. This code is carefully
1264 * organised not to touch any cachelines in the shared svc_serv
1265 * structure, only cachelines in the local svc_pool.
1268 svc_recv(struct svc_rqst *rqstp, long timeout)
1270 struct svc_sock *svsk =NULL;
1271 struct svc_serv *serv = rqstp->rq_server;
1272 struct svc_pool *pool = rqstp->rq_pool;
1273 int len, i;
1274 int pages;
1275 struct xdr_buf *arg;
1276 DECLARE_WAITQUEUE(wait, current);
1278 dprintk("svc: server %p waiting for data (to = %ld)\n",
1279 rqstp, timeout);
1281 if (rqstp->rq_sock)
1282 printk(KERN_ERR
1283 "svc_recv: service %p, socket not NULL!\n",
1284 rqstp);
1285 if (waitqueue_active(&rqstp->rq_wait))
1286 printk(KERN_ERR
1287 "svc_recv: service %p, wait queue active!\n",
1288 rqstp);
1291 /* now allocate needed pages. If we get a failure, sleep briefly */
1292 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1293 for (i=0; i < pages ; i++)
1294 while (rqstp->rq_pages[i] == NULL) {
1295 struct page *p = alloc_page(GFP_KERNEL);
1296 if (!p)
1297 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1298 rqstp->rq_pages[i] = p;
1300 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1301 BUG_ON(pages >= RPCSVC_MAXPAGES);
1303 /* Make arg->head point to first page and arg->pages point to rest */
1304 arg = &rqstp->rq_arg;
1305 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1306 arg->head[0].iov_len = PAGE_SIZE;
1307 arg->pages = rqstp->rq_pages + 1;
1308 arg->page_base = 0;
1309 /* save at least one page for response */
1310 arg->page_len = (pages-2)*PAGE_SIZE;
1311 arg->len = (pages-1)*PAGE_SIZE;
1312 arg->tail[0].iov_len = 0;
1314 try_to_freeze();
1315 cond_resched();
1316 if (signalled())
1317 return -EINTR;
1319 spin_lock_bh(&pool->sp_lock);
1320 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1321 rqstp->rq_sock = svsk;
1322 atomic_inc(&svsk->sk_inuse);
1323 rqstp->rq_reserved = serv->sv_max_mesg;
1324 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1325 } else {
1326 /* No data pending. Go to sleep */
1327 svc_thread_enqueue(pool, rqstp);
1330 * We have to be able to interrupt this wait
1331 * to bring down the daemons ...
1333 set_current_state(TASK_INTERRUPTIBLE);
1334 add_wait_queue(&rqstp->rq_wait, &wait);
1335 spin_unlock_bh(&pool->sp_lock);
1337 schedule_timeout(timeout);
1339 try_to_freeze();
1341 spin_lock_bh(&pool->sp_lock);
1342 remove_wait_queue(&rqstp->rq_wait, &wait);
1344 if (!(svsk = rqstp->rq_sock)) {
1345 svc_thread_dequeue(pool, rqstp);
1346 spin_unlock_bh(&pool->sp_lock);
1347 dprintk("svc: server %p, no data yet\n", rqstp);
1348 return signalled()? -EINTR : -EAGAIN;
1351 spin_unlock_bh(&pool->sp_lock);
1353 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1354 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1355 len = svsk->sk_recvfrom(rqstp);
1356 dprintk("svc: got len=%d\n", len);
1358 /* No data, incomplete (TCP) read, or accept() */
1359 if (len == 0 || len == -EAGAIN) {
1360 rqstp->rq_res.len = 0;
1361 svc_sock_release(rqstp);
1362 return -EAGAIN;
1364 svsk->sk_lastrecv = get_seconds();
1365 clear_bit(SK_OLD, &svsk->sk_flags);
1367 rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024;
1368 rqstp->rq_chandle.defer = svc_defer;
1370 if (serv->sv_stats)
1371 serv->sv_stats->netcnt++;
1372 return len;
1376 * Drop request
1378 void
1379 svc_drop(struct svc_rqst *rqstp)
1381 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1382 svc_sock_release(rqstp);
1386 * Return reply to client.
1389 svc_send(struct svc_rqst *rqstp)
1391 struct svc_sock *svsk;
1392 int len;
1393 struct xdr_buf *xb;
1395 if ((svsk = rqstp->rq_sock) == NULL) {
1396 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1397 __FILE__, __LINE__);
1398 return -EFAULT;
1401 /* release the receive skb before sending the reply */
1402 svc_release_skb(rqstp);
1404 /* calculate over-all length */
1405 xb = & rqstp->rq_res;
1406 xb->len = xb->head[0].iov_len +
1407 xb->page_len +
1408 xb->tail[0].iov_len;
1410 /* Grab svsk->sk_mutex to serialize outgoing data. */
1411 mutex_lock(&svsk->sk_mutex);
1412 if (test_bit(SK_DEAD, &svsk->sk_flags))
1413 len = -ENOTCONN;
1414 else
1415 len = svsk->sk_sendto(rqstp);
1416 mutex_unlock(&svsk->sk_mutex);
1417 svc_sock_release(rqstp);
1419 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1420 return 0;
1421 return len;
1425 * Timer function to close old temporary sockets, using
1426 * a mark-and-sweep algorithm.
1428 static void
1429 svc_age_temp_sockets(unsigned long closure)
1431 struct svc_serv *serv = (struct svc_serv *)closure;
1432 struct svc_sock *svsk;
1433 struct list_head *le, *next;
1434 LIST_HEAD(to_be_aged);
1436 dprintk("svc_age_temp_sockets\n");
1438 if (!spin_trylock_bh(&serv->sv_lock)) {
1439 /* busy, try again 1 sec later */
1440 dprintk("svc_age_temp_sockets: busy\n");
1441 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1442 return;
1445 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1446 svsk = list_entry(le, struct svc_sock, sk_list);
1448 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1449 continue;
1450 if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1451 continue;
1452 atomic_inc(&svsk->sk_inuse);
1453 list_move(le, &to_be_aged);
1454 set_bit(SK_CLOSE, &svsk->sk_flags);
1455 set_bit(SK_DETACHED, &svsk->sk_flags);
1457 spin_unlock_bh(&serv->sv_lock);
1459 while (!list_empty(&to_be_aged)) {
1460 le = to_be_aged.next;
1461 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1462 list_del_init(le);
1463 svsk = list_entry(le, struct svc_sock, sk_list);
1465 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1466 svsk, get_seconds() - svsk->sk_lastrecv);
1468 /* a thread will dequeue and close it soon */
1469 svc_sock_enqueue(svsk);
1470 svc_sock_put(svsk);
1473 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1477 * Initialize socket for RPC use and create svc_sock struct
1478 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1480 static struct svc_sock *
1481 svc_setup_socket(struct svc_serv *serv, struct socket *sock,
1482 int *errp, int pmap_register)
1484 struct svc_sock *svsk;
1485 struct sock *inet;
1487 dprintk("svc: svc_setup_socket %p\n", sock);
1488 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1489 *errp = -ENOMEM;
1490 return NULL;
1493 inet = sock->sk;
1495 /* Register socket with portmapper */
1496 if (*errp >= 0 && pmap_register)
1497 *errp = svc_register(serv, inet->sk_protocol,
1498 ntohs(inet_sk(inet)->sport));
1500 if (*errp < 0) {
1501 kfree(svsk);
1502 return NULL;
1505 set_bit(SK_BUSY, &svsk->sk_flags);
1506 inet->sk_user_data = svsk;
1507 svsk->sk_sock = sock;
1508 svsk->sk_sk = inet;
1509 svsk->sk_ostate = inet->sk_state_change;
1510 svsk->sk_odata = inet->sk_data_ready;
1511 svsk->sk_owspace = inet->sk_write_space;
1512 svsk->sk_server = serv;
1513 atomic_set(&svsk->sk_inuse, 1);
1514 svsk->sk_lastrecv = get_seconds();
1515 spin_lock_init(&svsk->sk_defer_lock);
1516 INIT_LIST_HEAD(&svsk->sk_deferred);
1517 INIT_LIST_HEAD(&svsk->sk_ready);
1518 mutex_init(&svsk->sk_mutex);
1520 /* Initialize the socket */
1521 if (sock->type == SOCK_DGRAM)
1522 svc_udp_init(svsk);
1523 else
1524 svc_tcp_init(svsk);
1526 spin_lock_bh(&serv->sv_lock);
1527 if (!pmap_register) {
1528 set_bit(SK_TEMP, &svsk->sk_flags);
1529 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1530 serv->sv_tmpcnt++;
1531 if (serv->sv_temptimer.function == NULL) {
1532 /* setup timer to age temp sockets */
1533 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1534 (unsigned long)serv);
1535 mod_timer(&serv->sv_temptimer,
1536 jiffies + svc_conn_age_period * HZ);
1538 } else {
1539 clear_bit(SK_TEMP, &svsk->sk_flags);
1540 list_add(&svsk->sk_list, &serv->sv_permsocks);
1542 spin_unlock_bh(&serv->sv_lock);
1544 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1545 svsk, svsk->sk_sk);
1547 clear_bit(SK_BUSY, &svsk->sk_flags);
1548 svc_sock_enqueue(svsk);
1549 return svsk;
1552 int svc_addsock(struct svc_serv *serv,
1553 int fd,
1554 char *name_return,
1555 int *proto)
1557 int err = 0;
1558 struct socket *so = sockfd_lookup(fd, &err);
1559 struct svc_sock *svsk = NULL;
1561 if (!so)
1562 return err;
1563 if (so->sk->sk_family != AF_INET)
1564 err = -EAFNOSUPPORT;
1565 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1566 so->sk->sk_protocol != IPPROTO_UDP)
1567 err = -EPROTONOSUPPORT;
1568 else if (so->state > SS_UNCONNECTED)
1569 err = -EISCONN;
1570 else {
1571 svsk = svc_setup_socket(serv, so, &err, 1);
1572 if (svsk)
1573 err = 0;
1575 if (err) {
1576 sockfd_put(so);
1577 return err;
1579 if (proto) *proto = so->sk->sk_protocol;
1580 return one_sock_name(name_return, svsk);
1582 EXPORT_SYMBOL_GPL(svc_addsock);
1585 * Create socket for RPC service.
1587 static int
1588 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
1590 struct svc_sock *svsk;
1591 struct socket *sock;
1592 int error;
1593 int type;
1595 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
1596 serv->sv_program->pg_name, protocol,
1597 NIPQUAD(sin->sin_addr.s_addr),
1598 ntohs(sin->sin_port));
1600 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1601 printk(KERN_WARNING "svc: only UDP and TCP "
1602 "sockets supported\n");
1603 return -EINVAL;
1605 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1607 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
1608 return error;
1610 svc_reclassify_socket(sock);
1612 if (type == SOCK_STREAM)
1613 sock->sk->sk_reuse = 1; /* allow address reuse */
1614 error = kernel_bind(sock, (struct sockaddr *) sin,
1615 sizeof(*sin));
1616 if (error < 0)
1617 goto bummer;
1619 if (protocol == IPPROTO_TCP) {
1620 if ((error = kernel_listen(sock, 64)) < 0)
1621 goto bummer;
1624 if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
1625 return 0;
1627 bummer:
1628 dprintk("svc: svc_create_socket error = %d\n", -error);
1629 sock_release(sock);
1630 return error;
1634 * Remove a dead socket
1636 static void
1637 svc_delete_socket(struct svc_sock *svsk)
1639 struct svc_serv *serv;
1640 struct sock *sk;
1642 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1644 serv = svsk->sk_server;
1645 sk = svsk->sk_sk;
1647 sk->sk_state_change = svsk->sk_ostate;
1648 sk->sk_data_ready = svsk->sk_odata;
1649 sk->sk_write_space = svsk->sk_owspace;
1651 spin_lock_bh(&serv->sv_lock);
1653 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1654 list_del_init(&svsk->sk_list);
1656 * We used to delete the svc_sock from whichever list
1657 * it's sk_ready node was on, but we don't actually
1658 * need to. This is because the only time we're called
1659 * while still attached to a queue, the queue itself
1660 * is about to be destroyed (in svc_destroy).
1662 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1663 BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1664 atomic_dec(&svsk->sk_inuse);
1665 if (test_bit(SK_TEMP, &svsk->sk_flags))
1666 serv->sv_tmpcnt--;
1669 spin_unlock_bh(&serv->sv_lock);
1672 static void svc_close_socket(struct svc_sock *svsk)
1674 set_bit(SK_CLOSE, &svsk->sk_flags);
1675 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1676 /* someone else will have to effect the close */
1677 return;
1679 atomic_inc(&svsk->sk_inuse);
1680 svc_delete_socket(svsk);
1681 clear_bit(SK_BUSY, &svsk->sk_flags);
1682 svc_sock_put(svsk);
1685 void svc_force_close_socket(struct svc_sock *svsk)
1687 set_bit(SK_CLOSE, &svsk->sk_flags);
1688 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1689 /* Waiting to be processed, but no threads left,
1690 * So just remove it from the waiting list
1692 list_del_init(&svsk->sk_ready);
1693 clear_bit(SK_BUSY, &svsk->sk_flags);
1695 svc_close_socket(svsk);
1699 * Make a socket for nfsd and lockd
1702 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
1704 struct sockaddr_in sin;
1706 dprintk("svc: creating socket proto = %d\n", protocol);
1707 sin.sin_family = AF_INET;
1708 sin.sin_addr.s_addr = INADDR_ANY;
1709 sin.sin_port = htons(port);
1710 return svc_create_socket(serv, protocol, &sin);
1714 * Handle defer and revisit of requests
1717 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1719 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1720 struct svc_sock *svsk;
1722 if (too_many) {
1723 svc_sock_put(dr->svsk);
1724 kfree(dr);
1725 return;
1727 dprintk("revisit queued\n");
1728 svsk = dr->svsk;
1729 dr->svsk = NULL;
1730 spin_lock_bh(&svsk->sk_defer_lock);
1731 list_add(&dr->handle.recent, &svsk->sk_deferred);
1732 spin_unlock_bh(&svsk->sk_defer_lock);
1733 set_bit(SK_DEFERRED, &svsk->sk_flags);
1734 svc_sock_enqueue(svsk);
1735 svc_sock_put(svsk);
1738 static struct cache_deferred_req *
1739 svc_defer(struct cache_req *req)
1741 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1742 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1743 struct svc_deferred_req *dr;
1745 if (rqstp->rq_arg.page_len)
1746 return NULL; /* if more than a page, give up FIXME */
1747 if (rqstp->rq_deferred) {
1748 dr = rqstp->rq_deferred;
1749 rqstp->rq_deferred = NULL;
1750 } else {
1751 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1752 /* FIXME maybe discard if size too large */
1753 dr = kmalloc(size, GFP_KERNEL);
1754 if (dr == NULL)
1755 return NULL;
1757 dr->handle.owner = rqstp->rq_server;
1758 dr->prot = rqstp->rq_prot;
1759 dr->addr = rqstp->rq_addr;
1760 dr->daddr = rqstp->rq_daddr;
1761 dr->argslen = rqstp->rq_arg.len >> 2;
1762 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1764 atomic_inc(&rqstp->rq_sock->sk_inuse);
1765 dr->svsk = rqstp->rq_sock;
1767 dr->handle.revisit = svc_revisit;
1768 return &dr->handle;
1772 * recv data from a deferred request into an active one
1774 static int svc_deferred_recv(struct svc_rqst *rqstp)
1776 struct svc_deferred_req *dr = rqstp->rq_deferred;
1778 rqstp->rq_arg.head[0].iov_base = dr->args;
1779 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1780 rqstp->rq_arg.page_len = 0;
1781 rqstp->rq_arg.len = dr->argslen<<2;
1782 rqstp->rq_prot = dr->prot;
1783 rqstp->rq_addr = dr->addr;
1784 rqstp->rq_daddr = dr->daddr;
1785 rqstp->rq_respages = rqstp->rq_pages;
1786 return dr->argslen<<2;
1790 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1792 struct svc_deferred_req *dr = NULL;
1794 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1795 return NULL;
1796 spin_lock_bh(&svsk->sk_defer_lock);
1797 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1798 if (!list_empty(&svsk->sk_deferred)) {
1799 dr = list_entry(svsk->sk_deferred.next,
1800 struct svc_deferred_req,
1801 handle.recent);
1802 list_del_init(&dr->handle.recent);
1803 set_bit(SK_DEFERRED, &svsk->sk_flags);
1805 spin_unlock_bh(&svsk->sk_defer_lock);
1806 return dr;