2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
23 #include <linux/sunrpc/clnt.h>
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id
;
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache
*rpc_task_slabp __read_mostly
;
38 static struct kmem_cache
*rpc_buffer_slabp __read_mostly
;
39 static mempool_t
*rpc_task_mempool __read_mostly
;
40 static mempool_t
*rpc_buffer_mempool __read_mostly
;
42 static void __rpc_default_timer(struct rpc_task
*task
);
43 static void rpciod_killall(void);
44 static void rpc_async_schedule(struct work_struct
*);
45 static void rpc_release_task(struct rpc_task
*task
);
48 * RPC tasks sit here while waiting for conditions to improve.
50 static RPC_WAITQ(delay_queue
, "delayq");
53 * All RPC tasks are linked into this list
55 static LIST_HEAD(all_tasks
);
58 * rpciod-related stuff
60 static DEFINE_MUTEX(rpciod_mutex
);
61 static unsigned int rpciod_users
;
62 struct workqueue_struct
*rpciod_workqueue
;
65 * Spinlock for other critical sections of code.
67 static DEFINE_SPINLOCK(rpc_sched_lock
);
70 * Disable the timer for a given RPC task. Should be called with
71 * queue->lock and bh_disabled in order to avoid races within
75 __rpc_disable_timer(struct rpc_task
*task
)
77 dprintk("RPC: %4d disabling timer\n", task
->tk_pid
);
78 task
->tk_timeout_fn
= NULL
;
83 * Run a timeout function.
84 * We use the callback in order to allow __rpc_wake_up_task()
85 * and friends to disable the timer synchronously on SMP systems
86 * without calling del_timer_sync(). The latter could cause a
87 * deadlock if called while we're holding spinlocks...
89 static void rpc_run_timer(struct rpc_task
*task
)
91 void (*callback
)(struct rpc_task
*);
93 callback
= task
->tk_timeout_fn
;
94 task
->tk_timeout_fn
= NULL
;
95 if (callback
&& RPC_IS_QUEUED(task
)) {
96 dprintk("RPC: %4d running timer\n", task
->tk_pid
);
99 smp_mb__before_clear_bit();
100 clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
101 smp_mb__after_clear_bit();
105 * Set up a timer for the current task.
108 __rpc_add_timer(struct rpc_task
*task
, rpc_action timer
)
110 if (!task
->tk_timeout
)
113 dprintk("RPC: %4d setting alarm for %lu ms\n",
114 task
->tk_pid
, task
->tk_timeout
* 1000 / HZ
);
117 task
->tk_timeout_fn
= timer
;
119 task
->tk_timeout_fn
= __rpc_default_timer
;
120 set_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
);
121 mod_timer(&task
->tk_timer
, jiffies
+ task
->tk_timeout
);
125 * Delete any timer for the current task. Because we use del_timer_sync(),
126 * this function should never be called while holding queue->lock.
129 rpc_delete_timer(struct rpc_task
*task
)
131 if (RPC_IS_QUEUED(task
))
133 if (test_and_clear_bit(RPC_TASK_HAS_TIMER
, &task
->tk_runstate
)) {
134 del_singleshot_timer_sync(&task
->tk_timer
);
135 dprintk("RPC: %4d deleting timer\n", task
->tk_pid
);
140 * Add new request to a priority queue.
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
147 INIT_LIST_HEAD(&task
->u
.tk_wait
.links
);
148 q
= &queue
->tasks
[task
->tk_priority
];
149 if (unlikely(task
->tk_priority
> queue
->maxpriority
))
150 q
= &queue
->tasks
[queue
->maxpriority
];
151 list_for_each_entry(t
, q
, u
.tk_wait
.list
) {
152 if (t
->tk_cookie
== task
->tk_cookie
) {
153 list_add_tail(&task
->u
.tk_wait
.list
, &t
->u
.tk_wait
.links
);
157 list_add_tail(&task
->u
.tk_wait
.list
, q
);
161 * Add new request to wait queue.
163 * Swapper tasks always get inserted at the head of the queue.
164 * This should avoid many nasty memory deadlocks and hopefully
165 * improve overall performance.
166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
168 static void __rpc_add_wait_queue(struct rpc_wait_queue
*queue
, struct rpc_task
*task
)
170 BUG_ON (RPC_IS_QUEUED(task
));
172 if (RPC_IS_PRIORITY(queue
))
173 __rpc_add_wait_queue_priority(queue
, task
);
174 else if (RPC_IS_SWAPPER(task
))
175 list_add(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
177 list_add_tail(&task
->u
.tk_wait
.list
, &queue
->tasks
[0]);
178 task
->u
.tk_wait
.rpc_waitq
= queue
;
180 rpc_set_queued(task
);
182 dprintk("RPC: %4d added to queue %p \"%s\"\n",
183 task
->tk_pid
, queue
, rpc_qname(queue
));
187 * Remove request from a priority queue.
189 static void __rpc_remove_wait_queue_priority(struct rpc_task
*task
)
193 if (!list_empty(&task
->u
.tk_wait
.links
)) {
194 t
= list_entry(task
->u
.tk_wait
.links
.next
, struct rpc_task
, u
.tk_wait
.list
);
195 list_move(&t
->u
.tk_wait
.list
, &task
->u
.tk_wait
.list
);
196 list_splice_init(&task
->u
.tk_wait
.links
, &t
->u
.tk_wait
.links
);
198 list_del(&task
->u
.tk_wait
.list
);
202 * Remove request from queue.
203 * Note: must be called with spin lock held.
205 static void __rpc_remove_wait_queue(struct rpc_task
*task
)
207 struct rpc_wait_queue
*queue
;
208 queue
= task
->u
.tk_wait
.rpc_waitq
;
210 if (RPC_IS_PRIORITY(queue
))
211 __rpc_remove_wait_queue_priority(task
);
213 list_del(&task
->u
.tk_wait
.list
);
215 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
216 task
->tk_pid
, queue
, rpc_qname(queue
));
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue
*queue
, int priority
)
221 queue
->priority
= priority
;
222 queue
->count
= 1 << (priority
* 2);
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue
*queue
, unsigned long cookie
)
227 queue
->cookie
= cookie
;
228 queue
->nr
= RPC_BATCH_COUNT
;
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue
*queue
)
233 rpc_set_waitqueue_priority(queue
, queue
->maxpriority
);
234 rpc_set_waitqueue_cookie(queue
, 0);
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
, int maxprio
)
241 spin_lock_init(&queue
->lock
);
242 for (i
= 0; i
< ARRAY_SIZE(queue
->tasks
); i
++)
243 INIT_LIST_HEAD(&queue
->tasks
[i
]);
244 queue
->maxpriority
= maxprio
;
245 rpc_reset_waitqueue_priority(queue
);
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
253 __rpc_init_priority_wait_queue(queue
, qname
, RPC_PRIORITY_HIGH
);
256 void rpc_init_wait_queue(struct rpc_wait_queue
*queue
, const char *qname
)
258 __rpc_init_priority_wait_queue(queue
, qname
, 0);
260 EXPORT_SYMBOL(rpc_init_wait_queue
);
262 static int rpc_wait_bit_interruptible(void *word
)
264 if (signal_pending(current
))
270 static void rpc_set_active(struct rpc_task
*task
)
272 if (test_and_set_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
) != 0)
274 spin_lock(&rpc_sched_lock
);
276 task
->tk_magic
= RPC_TASK_MAGIC_ID
;
277 task
->tk_pid
= rpc_task_id
++;
279 /* Add to global list of all tasks */
280 list_add_tail(&task
->tk_task
, &all_tasks
);
281 spin_unlock(&rpc_sched_lock
);
285 * Mark an RPC call as having completed by clearing the 'active' bit
287 static void rpc_mark_complete_task(struct rpc_task
*task
)
289 smp_mb__before_clear_bit();
290 clear_bit(RPC_TASK_ACTIVE
, &task
->tk_runstate
);
291 smp_mb__after_clear_bit();
292 wake_up_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
);
296 * Allow callers to wait for completion of an RPC call
298 int __rpc_wait_for_completion_task(struct rpc_task
*task
, int (*action
)(void *))
301 action
= rpc_wait_bit_interruptible
;
302 return wait_on_bit(&task
->tk_runstate
, RPC_TASK_ACTIVE
,
303 action
, TASK_INTERRUPTIBLE
);
305 EXPORT_SYMBOL(__rpc_wait_for_completion_task
);
308 * Make an RPC task runnable.
310 * Note: If the task is ASYNC, this must be called with
311 * the spinlock held to protect the wait queue operation.
313 static void rpc_make_runnable(struct rpc_task
*task
)
315 BUG_ON(task
->tk_timeout_fn
);
316 rpc_clear_queued(task
);
317 if (rpc_test_and_set_running(task
))
319 /* We might have raced */
320 if (RPC_IS_QUEUED(task
)) {
321 rpc_clear_running(task
);
324 if (RPC_IS_ASYNC(task
)) {
327 INIT_WORK(&task
->u
.tk_work
, rpc_async_schedule
);
328 status
= queue_work(task
->tk_workqueue
, &task
->u
.tk_work
);
330 printk(KERN_WARNING
"RPC: failed to add task to queue: error: %d!\n", status
);
331 task
->tk_status
= status
;
335 wake_up_bit(&task
->tk_runstate
, RPC_TASK_QUEUED
);
339 * Prepare for sleeping on a wait queue.
340 * By always appending tasks to the list we ensure FIFO behavior.
341 * NB: An RPC task will only receive interrupt-driven events as long
342 * as it's on a wait queue.
344 static void __rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
345 rpc_action action
, rpc_action timer
)
347 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task
->tk_pid
,
348 rpc_qname(q
), jiffies
);
350 if (!RPC_IS_ASYNC(task
) && !RPC_IS_ACTIVATED(task
)) {
351 printk(KERN_ERR
"RPC: Inactive synchronous task put to sleep!\n");
355 __rpc_add_wait_queue(q
, task
);
357 BUG_ON(task
->tk_callback
!= NULL
);
358 task
->tk_callback
= action
;
359 __rpc_add_timer(task
, timer
);
362 void rpc_sleep_on(struct rpc_wait_queue
*q
, struct rpc_task
*task
,
363 rpc_action action
, rpc_action timer
)
365 /* Mark the task as being activated if so needed */
366 rpc_set_active(task
);
369 * Protect the queue operations.
371 spin_lock_bh(&q
->lock
);
372 __rpc_sleep_on(q
, task
, action
, timer
);
373 spin_unlock_bh(&q
->lock
);
377 * __rpc_do_wake_up_task - wake up a single rpc_task
378 * @task: task to be woken up
380 * Caller must hold queue->lock, and have cleared the task queued flag.
382 static void __rpc_do_wake_up_task(struct rpc_task
*task
)
384 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task
->tk_pid
, jiffies
);
387 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
389 /* Has the task been executed yet? If not, we cannot wake it up! */
390 if (!RPC_IS_ACTIVATED(task
)) {
391 printk(KERN_ERR
"RPC: Inactive task (%p) being woken up!\n", task
);
395 __rpc_disable_timer(task
);
396 __rpc_remove_wait_queue(task
);
398 rpc_make_runnable(task
);
400 dprintk("RPC: __rpc_wake_up_task done\n");
404 * Wake up the specified task
406 static void __rpc_wake_up_task(struct rpc_task
*task
)
408 if (rpc_start_wakeup(task
)) {
409 if (RPC_IS_QUEUED(task
))
410 __rpc_do_wake_up_task(task
);
411 rpc_finish_wakeup(task
);
416 * Default timeout handler if none specified by user
419 __rpc_default_timer(struct rpc_task
*task
)
421 dprintk("RPC: %d timeout (default timer)\n", task
->tk_pid
);
422 task
->tk_status
= -ETIMEDOUT
;
423 rpc_wake_up_task(task
);
427 * Wake up the specified task
429 void rpc_wake_up_task(struct rpc_task
*task
)
432 if (rpc_start_wakeup(task
)) {
433 if (RPC_IS_QUEUED(task
)) {
434 struct rpc_wait_queue
*queue
= task
->u
.tk_wait
.rpc_waitq
;
436 /* Note: we're already in a bh-safe context */
437 spin_lock(&queue
->lock
);
438 __rpc_do_wake_up_task(task
);
439 spin_unlock(&queue
->lock
);
441 rpc_finish_wakeup(task
);
443 rcu_read_unlock_bh();
447 * Wake up the next task on a priority queue.
449 static struct rpc_task
* __rpc_wake_up_next_priority(struct rpc_wait_queue
*queue
)
452 struct rpc_task
*task
;
455 * Service a batch of tasks from a single cookie.
457 q
= &queue
->tasks
[queue
->priority
];
458 if (!list_empty(q
)) {
459 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
460 if (queue
->cookie
== task
->tk_cookie
) {
463 list_move_tail(&task
->u
.tk_wait
.list
, q
);
466 * Check if we need to switch queues.
473 * Service the next queue.
476 if (q
== &queue
->tasks
[0])
477 q
= &queue
->tasks
[queue
->maxpriority
];
480 if (!list_empty(q
)) {
481 task
= list_entry(q
->next
, struct rpc_task
, u
.tk_wait
.list
);
484 } while (q
!= &queue
->tasks
[queue
->priority
]);
486 rpc_reset_waitqueue_priority(queue
);
490 rpc_set_waitqueue_priority(queue
, (unsigned int)(q
- &queue
->tasks
[0]));
492 rpc_set_waitqueue_cookie(queue
, task
->tk_cookie
);
494 __rpc_wake_up_task(task
);
499 * Wake up the next task on the wait queue.
501 struct rpc_task
* rpc_wake_up_next(struct rpc_wait_queue
*queue
)
503 struct rpc_task
*task
= NULL
;
505 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue
, rpc_qname(queue
));
507 spin_lock(&queue
->lock
);
508 if (RPC_IS_PRIORITY(queue
))
509 task
= __rpc_wake_up_next_priority(queue
);
511 task_for_first(task
, &queue
->tasks
[0])
512 __rpc_wake_up_task(task
);
514 spin_unlock(&queue
->lock
);
515 rcu_read_unlock_bh();
521 * rpc_wake_up - wake up all rpc_tasks
522 * @queue: rpc_wait_queue on which the tasks are sleeping
526 void rpc_wake_up(struct rpc_wait_queue
*queue
)
528 struct rpc_task
*task
, *next
;
529 struct list_head
*head
;
532 spin_lock(&queue
->lock
);
533 head
= &queue
->tasks
[queue
->maxpriority
];
535 list_for_each_entry_safe(task
, next
, head
, u
.tk_wait
.list
)
536 __rpc_wake_up_task(task
);
537 if (head
== &queue
->tasks
[0])
541 spin_unlock(&queue
->lock
);
542 rcu_read_unlock_bh();
546 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
547 * @queue: rpc_wait_queue on which the tasks are sleeping
548 * @status: status value to set
552 void rpc_wake_up_status(struct rpc_wait_queue
*queue
, int status
)
554 struct rpc_task
*task
, *next
;
555 struct list_head
*head
;
558 spin_lock(&queue
->lock
);
559 head
= &queue
->tasks
[queue
->maxpriority
];
561 list_for_each_entry_safe(task
, next
, head
, u
.tk_wait
.list
) {
562 task
->tk_status
= status
;
563 __rpc_wake_up_task(task
);
565 if (head
== &queue
->tasks
[0])
569 spin_unlock(&queue
->lock
);
570 rcu_read_unlock_bh();
573 static void __rpc_atrun(struct rpc_task
*task
)
575 rpc_wake_up_task(task
);
579 * Run a task at a later time
581 void rpc_delay(struct rpc_task
*task
, unsigned long delay
)
583 task
->tk_timeout
= delay
;
584 rpc_sleep_on(&delay_queue
, task
, NULL
, __rpc_atrun
);
588 * Helper to call task->tk_ops->rpc_call_prepare
590 static void rpc_prepare_task(struct rpc_task
*task
)
593 task
->tk_ops
->rpc_call_prepare(task
, task
->tk_calldata
);
598 * Helper that calls task->tk_ops->rpc_call_done if it exists
600 void rpc_exit_task(struct rpc_task
*task
)
602 task
->tk_action
= NULL
;
603 if (task
->tk_ops
->rpc_call_done
!= NULL
) {
605 task
->tk_ops
->rpc_call_done(task
, task
->tk_calldata
);
607 if (task
->tk_action
!= NULL
) {
608 WARN_ON(RPC_ASSASSINATED(task
));
609 /* Always release the RPC slot and buffer memory */
614 EXPORT_SYMBOL(rpc_exit_task
);
616 void rpc_release_calldata(const struct rpc_call_ops
*ops
, void *calldata
)
618 if (ops
->rpc_release
!= NULL
) {
620 ops
->rpc_release(calldata
);
626 * This is the RPC `scheduler' (or rather, the finite state machine).
628 static int __rpc_execute(struct rpc_task
*task
)
632 dprintk("RPC: %4d rpc_execute flgs %x\n",
633 task
->tk_pid
, task
->tk_flags
);
635 BUG_ON(RPC_IS_QUEUED(task
));
639 * Garbage collection of pending timers...
641 rpc_delete_timer(task
);
644 * Execute any pending callback.
646 if (RPC_DO_CALLBACK(task
)) {
647 /* Define a callback save pointer */
648 void (*save_callback
)(struct rpc_task
*);
651 * If a callback exists, save it, reset it,
653 * The save is needed to stop from resetting
654 * another callback set within the callback handler
657 save_callback
=task
->tk_callback
;
658 task
->tk_callback
=NULL
;
663 * Perform the next FSM step.
664 * tk_action may be NULL when the task has been killed
667 if (!RPC_IS_QUEUED(task
)) {
668 if (task
->tk_action
== NULL
)
670 task
->tk_action(task
);
674 * Lockless check for whether task is sleeping or not.
676 if (!RPC_IS_QUEUED(task
))
678 rpc_clear_running(task
);
679 if (RPC_IS_ASYNC(task
)) {
680 /* Careful! we may have raced... */
681 if (RPC_IS_QUEUED(task
))
683 if (rpc_test_and_set_running(task
))
688 /* sync task: sleep here */
689 dprintk("RPC: %4d sync task going to sleep\n", task
->tk_pid
);
690 /* Note: Caller should be using rpc_clnt_sigmask() */
691 status
= out_of_line_wait_on_bit(&task
->tk_runstate
,
692 RPC_TASK_QUEUED
, rpc_wait_bit_interruptible
,
694 if (status
== -ERESTARTSYS
) {
696 * When a sync task receives a signal, it exits with
697 * -ERESTARTSYS. In order to catch any callbacks that
698 * clean up after sleeping on some queue, we don't
699 * break the loop here, but go around once more.
701 dprintk("RPC: %4d got signal\n", task
->tk_pid
);
702 task
->tk_flags
|= RPC_TASK_KILLED
;
703 rpc_exit(task
, -ERESTARTSYS
);
704 rpc_wake_up_task(task
);
706 rpc_set_running(task
);
707 dprintk("RPC: %4d sync task resuming\n", task
->tk_pid
);
710 dprintk("RPC: %4d, return %d, status %d\n", task
->tk_pid
, status
, task
->tk_status
);
711 /* Release all resources associated with the task */
712 rpc_release_task(task
);
717 * User-visible entry point to the scheduler.
719 * This may be called recursively if e.g. an async NFS task updates
720 * the attributes and finds that dirty pages must be flushed.
721 * NOTE: Upon exit of this function the task is guaranteed to be
722 * released. In particular note that tk_release() will have
723 * been called, so your task memory may have been freed.
726 rpc_execute(struct rpc_task
*task
)
728 rpc_set_active(task
);
729 rpc_set_running(task
);
730 return __rpc_execute(task
);
733 static void rpc_async_schedule(struct work_struct
*work
)
735 __rpc_execute(container_of(work
, struct rpc_task
, u
.tk_work
));
739 * rpc_malloc - allocate an RPC buffer
740 * @task: RPC task that will use this buffer
741 * @size: requested byte size
743 * We try to ensure that some NFS reads and writes can always proceed
744 * by using a mempool when allocating 'small' buffers.
745 * In order to avoid memory starvation triggering more writebacks of
746 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
748 void * rpc_malloc(struct rpc_task
*task
, size_t size
)
750 struct rpc_rqst
*req
= task
->tk_rqstp
;
753 if (task
->tk_flags
& RPC_TASK_SWAPPER
)
758 if (size
> RPC_BUFFER_MAXSIZE
) {
759 req
->rq_buffer
= kmalloc(size
, gfp
);
761 req
->rq_bufsize
= size
;
763 req
->rq_buffer
= mempool_alloc(rpc_buffer_mempool
, gfp
);
765 req
->rq_bufsize
= RPC_BUFFER_MAXSIZE
;
767 return req
->rq_buffer
;
771 * rpc_free - free buffer allocated via rpc_malloc
772 * @task: RPC task with a buffer to be freed
775 void rpc_free(struct rpc_task
*task
)
777 struct rpc_rqst
*req
= task
->tk_rqstp
;
779 if (req
->rq_buffer
) {
780 if (req
->rq_bufsize
== RPC_BUFFER_MAXSIZE
)
781 mempool_free(req
->rq_buffer
, rpc_buffer_mempool
);
783 kfree(req
->rq_buffer
);
784 req
->rq_buffer
= NULL
;
790 * Creation and deletion of RPC task structures
792 void rpc_init_task(struct rpc_task
*task
, struct rpc_clnt
*clnt
, int flags
, const struct rpc_call_ops
*tk_ops
, void *calldata
)
794 memset(task
, 0, sizeof(*task
));
795 init_timer(&task
->tk_timer
);
796 task
->tk_timer
.data
= (unsigned long) task
;
797 task
->tk_timer
.function
= (void (*)(unsigned long)) rpc_run_timer
;
798 atomic_set(&task
->tk_count
, 1);
799 task
->tk_client
= clnt
;
800 task
->tk_flags
= flags
;
801 task
->tk_ops
= tk_ops
;
802 if (tk_ops
->rpc_call_prepare
!= NULL
)
803 task
->tk_action
= rpc_prepare_task
;
804 task
->tk_calldata
= calldata
;
806 /* Initialize retry counters */
807 task
->tk_garb_retry
= 2;
808 task
->tk_cred_retry
= 2;
810 task
->tk_priority
= RPC_PRIORITY_NORMAL
;
811 task
->tk_cookie
= (unsigned long)current
;
813 /* Initialize workqueue for async tasks */
814 task
->tk_workqueue
= rpciod_workqueue
;
817 atomic_inc(&clnt
->cl_users
);
818 if (clnt
->cl_softrtry
)
819 task
->tk_flags
|= RPC_TASK_SOFT
;
821 task
->tk_flags
|= RPC_TASK_NOINTR
;
824 BUG_ON(task
->tk_ops
== NULL
);
826 /* starting timestamp */
827 task
->tk_start
= jiffies
;
829 dprintk("RPC: %4d new task procpid %d\n", task
->tk_pid
,
833 static struct rpc_task
*
836 return (struct rpc_task
*)mempool_alloc(rpc_task_mempool
, GFP_NOFS
);
839 static void rpc_free_task(struct rcu_head
*rcu
)
841 struct rpc_task
*task
= container_of(rcu
, struct rpc_task
, u
.tk_rcu
);
842 dprintk("RPC: %4d freeing task\n", task
->tk_pid
);
843 mempool_free(task
, rpc_task_mempool
);
847 * Create a new task for the specified client. We have to
848 * clean up after an allocation failure, as the client may
849 * have specified "oneshot".
851 struct rpc_task
*rpc_new_task(struct rpc_clnt
*clnt
, int flags
, const struct rpc_call_ops
*tk_ops
, void *calldata
)
853 struct rpc_task
*task
;
855 task
= rpc_alloc_task();
859 rpc_init_task(task
, clnt
, flags
, tk_ops
, calldata
);
861 dprintk("RPC: %4d allocated task\n", task
->tk_pid
);
862 task
->tk_flags
|= RPC_TASK_DYNAMIC
;
867 /* Check whether to release the client */
869 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
870 atomic_read(&clnt
->cl_users
), clnt
->cl_oneshot
);
871 atomic_inc(&clnt
->cl_users
); /* pretend we were used ... */
872 rpc_release_client(clnt
);
878 void rpc_put_task(struct rpc_task
*task
)
880 const struct rpc_call_ops
*tk_ops
= task
->tk_ops
;
881 void *calldata
= task
->tk_calldata
;
883 if (!atomic_dec_and_test(&task
->tk_count
))
885 /* Release resources */
888 if (task
->tk_msg
.rpc_cred
)
889 rpcauth_unbindcred(task
);
890 if (task
->tk_client
) {
891 rpc_release_client(task
->tk_client
);
892 task
->tk_client
= NULL
;
894 if (task
->tk_flags
& RPC_TASK_DYNAMIC
)
895 call_rcu_bh(&task
->u
.tk_rcu
, rpc_free_task
);
896 rpc_release_calldata(tk_ops
, calldata
);
898 EXPORT_SYMBOL(rpc_put_task
);
900 static void rpc_release_task(struct rpc_task
*task
)
903 BUG_ON(task
->tk_magic
!= RPC_TASK_MAGIC_ID
);
905 dprintk("RPC: %4d release task\n", task
->tk_pid
);
907 /* Remove from global task list */
908 spin_lock(&rpc_sched_lock
);
909 list_del(&task
->tk_task
);
910 spin_unlock(&rpc_sched_lock
);
912 BUG_ON (RPC_IS_QUEUED(task
));
914 /* Synchronously delete any running timer */
915 rpc_delete_timer(task
);
920 /* Wake up anyone who is waiting for task completion */
921 rpc_mark_complete_task(task
);
927 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
928 * @clnt: pointer to RPC client
931 * @data: user call data
933 struct rpc_task
*rpc_run_task(struct rpc_clnt
*clnt
, int flags
,
934 const struct rpc_call_ops
*ops
,
937 struct rpc_task
*task
;
938 task
= rpc_new_task(clnt
, flags
, ops
, data
);
940 rpc_release_calldata(ops
, data
);
941 return ERR_PTR(-ENOMEM
);
943 atomic_inc(&task
->tk_count
);
947 EXPORT_SYMBOL(rpc_run_task
);
950 * Kill all tasks for the given client.
951 * XXX: kill their descendants as well?
953 void rpc_killall_tasks(struct rpc_clnt
*clnt
)
955 struct rpc_task
*rovr
;
956 struct list_head
*le
;
958 dprintk("RPC: killing all tasks for client %p\n", clnt
);
961 * Spin lock all_tasks to prevent changes...
963 spin_lock(&rpc_sched_lock
);
964 alltask_for_each(rovr
, le
, &all_tasks
) {
965 if (! RPC_IS_ACTIVATED(rovr
))
967 if (!clnt
|| rovr
->tk_client
== clnt
) {
968 rovr
->tk_flags
|= RPC_TASK_KILLED
;
969 rpc_exit(rovr
, -EIO
);
970 rpc_wake_up_task(rovr
);
973 spin_unlock(&rpc_sched_lock
);
976 static DECLARE_MUTEX_LOCKED(rpciod_running
);
978 static void rpciod_killall(void)
982 while (!list_empty(&all_tasks
)) {
983 clear_thread_flag(TIF_SIGPENDING
);
984 rpc_killall_tasks(NULL
);
985 flush_workqueue(rpciod_workqueue
);
986 if (!list_empty(&all_tasks
)) {
987 dprintk("rpciod_killall: waiting for tasks to exit\n");
992 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
994 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
998 * Start up the rpciod process if it's not already running.
1003 struct workqueue_struct
*wq
;
1006 mutex_lock(&rpciod_mutex
);
1007 dprintk("rpciod_up: users %d\n", rpciod_users
);
1009 if (rpciod_workqueue
)
1012 * If there's no pid, we should be the first user.
1014 if (rpciod_users
> 1)
1015 printk(KERN_WARNING
"rpciod_up: no workqueue, %d users??\n", rpciod_users
);
1017 * Create the rpciod thread and wait for it to start.
1020 wq
= create_workqueue("rpciod");
1022 printk(KERN_WARNING
"rpciod_up: create workqueue failed, error=%d\n", error
);
1026 rpciod_workqueue
= wq
;
1029 mutex_unlock(&rpciod_mutex
);
1036 mutex_lock(&rpciod_mutex
);
1037 dprintk("rpciod_down sema %d\n", rpciod_users
);
1042 printk(KERN_WARNING
"rpciod_down: no users??\n");
1044 if (!rpciod_workqueue
) {
1045 dprintk("rpciod_down: Nothing to do!\n");
1050 destroy_workqueue(rpciod_workqueue
);
1051 rpciod_workqueue
= NULL
;
1053 mutex_unlock(&rpciod_mutex
);
1057 void rpc_show_tasks(void)
1059 struct list_head
*le
;
1062 spin_lock(&rpc_sched_lock
);
1063 if (list_empty(&all_tasks
)) {
1064 spin_unlock(&rpc_sched_lock
);
1067 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1068 "-rpcwait -action- ---ops--\n");
1069 alltask_for_each(t
, le
, &all_tasks
) {
1070 const char *rpc_waitq
= "none";
1072 if (RPC_IS_QUEUED(t
))
1073 rpc_waitq
= rpc_qname(t
->u
.tk_wait
.rpc_waitq
);
1075 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1077 (t
->tk_msg
.rpc_proc
? t
->tk_msg
.rpc_proc
->p_proc
: -1),
1078 t
->tk_flags
, t
->tk_status
,
1080 (t
->tk_client
? t
->tk_client
->cl_prog
: 0),
1081 t
->tk_rqstp
, t
->tk_timeout
,
1083 t
->tk_action
, t
->tk_ops
);
1085 spin_unlock(&rpc_sched_lock
);
1090 rpc_destroy_mempool(void)
1092 if (rpc_buffer_mempool
)
1093 mempool_destroy(rpc_buffer_mempool
);
1094 if (rpc_task_mempool
)
1095 mempool_destroy(rpc_task_mempool
);
1097 kmem_cache_destroy(rpc_task_slabp
);
1098 if (rpc_buffer_slabp
)
1099 kmem_cache_destroy(rpc_buffer_slabp
);
1103 rpc_init_mempool(void)
1105 rpc_task_slabp
= kmem_cache_create("rpc_tasks",
1106 sizeof(struct rpc_task
),
1107 0, SLAB_HWCACHE_ALIGN
,
1109 if (!rpc_task_slabp
)
1111 rpc_buffer_slabp
= kmem_cache_create("rpc_buffers",
1113 0, SLAB_HWCACHE_ALIGN
,
1115 if (!rpc_buffer_slabp
)
1117 rpc_task_mempool
= mempool_create_slab_pool(RPC_TASK_POOLSIZE
,
1119 if (!rpc_task_mempool
)
1121 rpc_buffer_mempool
= mempool_create_slab_pool(RPC_BUFFER_POOLSIZE
,
1123 if (!rpc_buffer_mempool
)
1127 rpc_destroy_mempool();