Linux 2.6.20.7
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sunrpc / sched.c
blobfc083f0b354434940b98aa27e882f9d4bef8bfe6
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
23 #include <linux/sunrpc/clnt.h>
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 static int rpc_task_id;
29 #endif
32 * RPC slabs and memory pools
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache *rpc_task_slabp __read_mostly;
38 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
39 static mempool_t *rpc_task_mempool __read_mostly;
40 static mempool_t *rpc_buffer_mempool __read_mostly;
42 static void __rpc_default_timer(struct rpc_task *task);
43 static void rpciod_killall(void);
44 static void rpc_async_schedule(struct work_struct *);
45 static void rpc_release_task(struct rpc_task *task);
48 * RPC tasks sit here while waiting for conditions to improve.
50 static RPC_WAITQ(delay_queue, "delayq");
53 * All RPC tasks are linked into this list
55 static LIST_HEAD(all_tasks);
58 * rpciod-related stuff
60 static DEFINE_MUTEX(rpciod_mutex);
61 static unsigned int rpciod_users;
62 struct workqueue_struct *rpciod_workqueue;
65 * Spinlock for other critical sections of code.
67 static DEFINE_SPINLOCK(rpc_sched_lock);
70 * Disable the timer for a given RPC task. Should be called with
71 * queue->lock and bh_disabled in order to avoid races within
72 * rpc_run_timer().
74 static inline void
75 __rpc_disable_timer(struct rpc_task *task)
77 dprintk("RPC: %4d disabling timer\n", task->tk_pid);
78 task->tk_timeout_fn = NULL;
79 task->tk_timeout = 0;
83 * Run a timeout function.
84 * We use the callback in order to allow __rpc_wake_up_task()
85 * and friends to disable the timer synchronously on SMP systems
86 * without calling del_timer_sync(). The latter could cause a
87 * deadlock if called while we're holding spinlocks...
89 static void rpc_run_timer(struct rpc_task *task)
91 void (*callback)(struct rpc_task *);
93 callback = task->tk_timeout_fn;
94 task->tk_timeout_fn = NULL;
95 if (callback && RPC_IS_QUEUED(task)) {
96 dprintk("RPC: %4d running timer\n", task->tk_pid);
97 callback(task);
99 smp_mb__before_clear_bit();
100 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
101 smp_mb__after_clear_bit();
105 * Set up a timer for the current task.
107 static inline void
108 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
110 if (!task->tk_timeout)
111 return;
113 dprintk("RPC: %4d setting alarm for %lu ms\n",
114 task->tk_pid, task->tk_timeout * 1000 / HZ);
116 if (timer)
117 task->tk_timeout_fn = timer;
118 else
119 task->tk_timeout_fn = __rpc_default_timer;
120 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
121 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
125 * Delete any timer for the current task. Because we use del_timer_sync(),
126 * this function should never be called while holding queue->lock.
128 static void
129 rpc_delete_timer(struct rpc_task *task)
131 if (RPC_IS_QUEUED(task))
132 return;
133 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
134 del_singleshot_timer_sync(&task->tk_timer);
135 dprintk("RPC: %4d deleting timer\n", task->tk_pid);
140 * Add new request to a priority queue.
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
144 struct list_head *q;
145 struct rpc_task *t;
147 INIT_LIST_HEAD(&task->u.tk_wait.links);
148 q = &queue->tasks[task->tk_priority];
149 if (unlikely(task->tk_priority > queue->maxpriority))
150 q = &queue->tasks[queue->maxpriority];
151 list_for_each_entry(t, q, u.tk_wait.list) {
152 if (t->tk_cookie == task->tk_cookie) {
153 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154 return;
157 list_add_tail(&task->u.tk_wait.list, q);
161 * Add new request to wait queue.
163 * Swapper tasks always get inserted at the head of the queue.
164 * This should avoid many nasty memory deadlocks and hopefully
165 * improve overall performance.
166 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
170 BUG_ON (RPC_IS_QUEUED(task));
172 if (RPC_IS_PRIORITY(queue))
173 __rpc_add_wait_queue_priority(queue, task);
174 else if (RPC_IS_SWAPPER(task))
175 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
176 else
177 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
178 task->u.tk_wait.rpc_waitq = queue;
179 queue->qlen++;
180 rpc_set_queued(task);
182 dprintk("RPC: %4d added to queue %p \"%s\"\n",
183 task->tk_pid, queue, rpc_qname(queue));
187 * Remove request from a priority queue.
189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
191 struct rpc_task *t;
193 if (!list_empty(&task->u.tk_wait.links)) {
194 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
195 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
196 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
198 list_del(&task->u.tk_wait.list);
202 * Remove request from queue.
203 * Note: must be called with spin lock held.
205 static void __rpc_remove_wait_queue(struct rpc_task *task)
207 struct rpc_wait_queue *queue;
208 queue = task->u.tk_wait.rpc_waitq;
210 if (RPC_IS_PRIORITY(queue))
211 __rpc_remove_wait_queue_priority(task);
212 else
213 list_del(&task->u.tk_wait.list);
214 queue->qlen--;
215 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
216 task->tk_pid, queue, rpc_qname(queue));
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
221 queue->priority = priority;
222 queue->count = 1 << (priority * 2);
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
227 queue->cookie = cookie;
228 queue->nr = RPC_BATCH_COUNT;
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
233 rpc_set_waitqueue_priority(queue, queue->maxpriority);
234 rpc_set_waitqueue_cookie(queue, 0);
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
239 int i;
241 spin_lock_init(&queue->lock);
242 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
243 INIT_LIST_HEAD(&queue->tasks[i]);
244 queue->maxpriority = maxprio;
245 rpc_reset_waitqueue_priority(queue);
246 #ifdef RPC_DEBUG
247 queue->name = qname;
248 #endif
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
253 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
258 __rpc_init_priority_wait_queue(queue, qname, 0);
260 EXPORT_SYMBOL(rpc_init_wait_queue);
262 static int rpc_wait_bit_interruptible(void *word)
264 if (signal_pending(current))
265 return -ERESTARTSYS;
266 schedule();
267 return 0;
270 static void rpc_set_active(struct rpc_task *task)
272 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
273 return;
274 spin_lock(&rpc_sched_lock);
275 #ifdef RPC_DEBUG
276 task->tk_magic = RPC_TASK_MAGIC_ID;
277 task->tk_pid = rpc_task_id++;
278 #endif
279 /* Add to global list of all tasks */
280 list_add_tail(&task->tk_task, &all_tasks);
281 spin_unlock(&rpc_sched_lock);
285 * Mark an RPC call as having completed by clearing the 'active' bit
287 static void rpc_mark_complete_task(struct rpc_task *task)
289 smp_mb__before_clear_bit();
290 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
291 smp_mb__after_clear_bit();
292 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
296 * Allow callers to wait for completion of an RPC call
298 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
300 if (action == NULL)
301 action = rpc_wait_bit_interruptible;
302 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
303 action, TASK_INTERRUPTIBLE);
305 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
308 * Make an RPC task runnable.
310 * Note: If the task is ASYNC, this must be called with
311 * the spinlock held to protect the wait queue operation.
313 static void rpc_make_runnable(struct rpc_task *task)
315 BUG_ON(task->tk_timeout_fn);
316 rpc_clear_queued(task);
317 if (rpc_test_and_set_running(task))
318 return;
319 /* We might have raced */
320 if (RPC_IS_QUEUED(task)) {
321 rpc_clear_running(task);
322 return;
324 if (RPC_IS_ASYNC(task)) {
325 int status;
327 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
328 status = queue_work(task->tk_workqueue, &task->u.tk_work);
329 if (status < 0) {
330 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
331 task->tk_status = status;
332 return;
334 } else
335 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
339 * Prepare for sleeping on a wait queue.
340 * By always appending tasks to the list we ensure FIFO behavior.
341 * NB: An RPC task will only receive interrupt-driven events as long
342 * as it's on a wait queue.
344 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345 rpc_action action, rpc_action timer)
347 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
348 rpc_qname(q), jiffies);
350 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
351 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
352 return;
355 __rpc_add_wait_queue(q, task);
357 BUG_ON(task->tk_callback != NULL);
358 task->tk_callback = action;
359 __rpc_add_timer(task, timer);
362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
363 rpc_action action, rpc_action timer)
365 /* Mark the task as being activated if so needed */
366 rpc_set_active(task);
369 * Protect the queue operations.
371 spin_lock_bh(&q->lock);
372 __rpc_sleep_on(q, task, action, timer);
373 spin_unlock_bh(&q->lock);
377 * __rpc_do_wake_up_task - wake up a single rpc_task
378 * @task: task to be woken up
380 * Caller must hold queue->lock, and have cleared the task queued flag.
382 static void __rpc_do_wake_up_task(struct rpc_task *task)
384 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
386 #ifdef RPC_DEBUG
387 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
388 #endif
389 /* Has the task been executed yet? If not, we cannot wake it up! */
390 if (!RPC_IS_ACTIVATED(task)) {
391 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
392 return;
395 __rpc_disable_timer(task);
396 __rpc_remove_wait_queue(task);
398 rpc_make_runnable(task);
400 dprintk("RPC: __rpc_wake_up_task done\n");
404 * Wake up the specified task
406 static void __rpc_wake_up_task(struct rpc_task *task)
408 if (rpc_start_wakeup(task)) {
409 if (RPC_IS_QUEUED(task))
410 __rpc_do_wake_up_task(task);
411 rpc_finish_wakeup(task);
416 * Default timeout handler if none specified by user
418 static void
419 __rpc_default_timer(struct rpc_task *task)
421 dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
422 task->tk_status = -ETIMEDOUT;
423 rpc_wake_up_task(task);
427 * Wake up the specified task
429 void rpc_wake_up_task(struct rpc_task *task)
431 rcu_read_lock_bh();
432 if (rpc_start_wakeup(task)) {
433 if (RPC_IS_QUEUED(task)) {
434 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
436 /* Note: we're already in a bh-safe context */
437 spin_lock(&queue->lock);
438 __rpc_do_wake_up_task(task);
439 spin_unlock(&queue->lock);
441 rpc_finish_wakeup(task);
443 rcu_read_unlock_bh();
447 * Wake up the next task on a priority queue.
449 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
451 struct list_head *q;
452 struct rpc_task *task;
455 * Service a batch of tasks from a single cookie.
457 q = &queue->tasks[queue->priority];
458 if (!list_empty(q)) {
459 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
460 if (queue->cookie == task->tk_cookie) {
461 if (--queue->nr)
462 goto out;
463 list_move_tail(&task->u.tk_wait.list, q);
466 * Check if we need to switch queues.
468 if (--queue->count)
469 goto new_cookie;
473 * Service the next queue.
475 do {
476 if (q == &queue->tasks[0])
477 q = &queue->tasks[queue->maxpriority];
478 else
479 q = q - 1;
480 if (!list_empty(q)) {
481 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
482 goto new_queue;
484 } while (q != &queue->tasks[queue->priority]);
486 rpc_reset_waitqueue_priority(queue);
487 return NULL;
489 new_queue:
490 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
491 new_cookie:
492 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
493 out:
494 __rpc_wake_up_task(task);
495 return task;
499 * Wake up the next task on the wait queue.
501 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
503 struct rpc_task *task = NULL;
505 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
506 rcu_read_lock_bh();
507 spin_lock(&queue->lock);
508 if (RPC_IS_PRIORITY(queue))
509 task = __rpc_wake_up_next_priority(queue);
510 else {
511 task_for_first(task, &queue->tasks[0])
512 __rpc_wake_up_task(task);
514 spin_unlock(&queue->lock);
515 rcu_read_unlock_bh();
517 return task;
521 * rpc_wake_up - wake up all rpc_tasks
522 * @queue: rpc_wait_queue on which the tasks are sleeping
524 * Grabs queue->lock
526 void rpc_wake_up(struct rpc_wait_queue *queue)
528 struct rpc_task *task, *next;
529 struct list_head *head;
531 rcu_read_lock_bh();
532 spin_lock(&queue->lock);
533 head = &queue->tasks[queue->maxpriority];
534 for (;;) {
535 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
536 __rpc_wake_up_task(task);
537 if (head == &queue->tasks[0])
538 break;
539 head--;
541 spin_unlock(&queue->lock);
542 rcu_read_unlock_bh();
546 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
547 * @queue: rpc_wait_queue on which the tasks are sleeping
548 * @status: status value to set
550 * Grabs queue->lock
552 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
554 struct rpc_task *task, *next;
555 struct list_head *head;
557 rcu_read_lock_bh();
558 spin_lock(&queue->lock);
559 head = &queue->tasks[queue->maxpriority];
560 for (;;) {
561 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
562 task->tk_status = status;
563 __rpc_wake_up_task(task);
565 if (head == &queue->tasks[0])
566 break;
567 head--;
569 spin_unlock(&queue->lock);
570 rcu_read_unlock_bh();
573 static void __rpc_atrun(struct rpc_task *task)
575 rpc_wake_up_task(task);
579 * Run a task at a later time
581 void rpc_delay(struct rpc_task *task, unsigned long delay)
583 task->tk_timeout = delay;
584 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
588 * Helper to call task->tk_ops->rpc_call_prepare
590 static void rpc_prepare_task(struct rpc_task *task)
592 lock_kernel();
593 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
594 unlock_kernel();
598 * Helper that calls task->tk_ops->rpc_call_done if it exists
600 void rpc_exit_task(struct rpc_task *task)
602 task->tk_action = NULL;
603 if (task->tk_ops->rpc_call_done != NULL) {
604 lock_kernel();
605 task->tk_ops->rpc_call_done(task, task->tk_calldata);
606 unlock_kernel();
607 if (task->tk_action != NULL) {
608 WARN_ON(RPC_ASSASSINATED(task));
609 /* Always release the RPC slot and buffer memory */
610 xprt_release(task);
614 EXPORT_SYMBOL(rpc_exit_task);
616 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
618 if (ops->rpc_release != NULL) {
619 lock_kernel();
620 ops->rpc_release(calldata);
621 unlock_kernel();
626 * This is the RPC `scheduler' (or rather, the finite state machine).
628 static int __rpc_execute(struct rpc_task *task)
630 int status = 0;
632 dprintk("RPC: %4d rpc_execute flgs %x\n",
633 task->tk_pid, task->tk_flags);
635 BUG_ON(RPC_IS_QUEUED(task));
637 for (;;) {
639 * Garbage collection of pending timers...
641 rpc_delete_timer(task);
644 * Execute any pending callback.
646 if (RPC_DO_CALLBACK(task)) {
647 /* Define a callback save pointer */
648 void (*save_callback)(struct rpc_task *);
651 * If a callback exists, save it, reset it,
652 * call it.
653 * The save is needed to stop from resetting
654 * another callback set within the callback handler
655 * - Dave
657 save_callback=task->tk_callback;
658 task->tk_callback=NULL;
659 save_callback(task);
663 * Perform the next FSM step.
664 * tk_action may be NULL when the task has been killed
665 * by someone else.
667 if (!RPC_IS_QUEUED(task)) {
668 if (task->tk_action == NULL)
669 break;
670 task->tk_action(task);
674 * Lockless check for whether task is sleeping or not.
676 if (!RPC_IS_QUEUED(task))
677 continue;
678 rpc_clear_running(task);
679 if (RPC_IS_ASYNC(task)) {
680 /* Careful! we may have raced... */
681 if (RPC_IS_QUEUED(task))
682 return 0;
683 if (rpc_test_and_set_running(task))
684 return 0;
685 continue;
688 /* sync task: sleep here */
689 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
690 /* Note: Caller should be using rpc_clnt_sigmask() */
691 status = out_of_line_wait_on_bit(&task->tk_runstate,
692 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
693 TASK_INTERRUPTIBLE);
694 if (status == -ERESTARTSYS) {
696 * When a sync task receives a signal, it exits with
697 * -ERESTARTSYS. In order to catch any callbacks that
698 * clean up after sleeping on some queue, we don't
699 * break the loop here, but go around once more.
701 dprintk("RPC: %4d got signal\n", task->tk_pid);
702 task->tk_flags |= RPC_TASK_KILLED;
703 rpc_exit(task, -ERESTARTSYS);
704 rpc_wake_up_task(task);
706 rpc_set_running(task);
707 dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
710 dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
711 /* Release all resources associated with the task */
712 rpc_release_task(task);
713 return status;
717 * User-visible entry point to the scheduler.
719 * This may be called recursively if e.g. an async NFS task updates
720 * the attributes and finds that dirty pages must be flushed.
721 * NOTE: Upon exit of this function the task is guaranteed to be
722 * released. In particular note that tk_release() will have
723 * been called, so your task memory may have been freed.
726 rpc_execute(struct rpc_task *task)
728 rpc_set_active(task);
729 rpc_set_running(task);
730 return __rpc_execute(task);
733 static void rpc_async_schedule(struct work_struct *work)
735 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
739 * rpc_malloc - allocate an RPC buffer
740 * @task: RPC task that will use this buffer
741 * @size: requested byte size
743 * We try to ensure that some NFS reads and writes can always proceed
744 * by using a mempool when allocating 'small' buffers.
745 * In order to avoid memory starvation triggering more writebacks of
746 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
748 void * rpc_malloc(struct rpc_task *task, size_t size)
750 struct rpc_rqst *req = task->tk_rqstp;
751 gfp_t gfp;
753 if (task->tk_flags & RPC_TASK_SWAPPER)
754 gfp = GFP_ATOMIC;
755 else
756 gfp = GFP_NOFS;
758 if (size > RPC_BUFFER_MAXSIZE) {
759 req->rq_buffer = kmalloc(size, gfp);
760 if (req->rq_buffer)
761 req->rq_bufsize = size;
762 } else {
763 req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
764 if (req->rq_buffer)
765 req->rq_bufsize = RPC_BUFFER_MAXSIZE;
767 return req->rq_buffer;
771 * rpc_free - free buffer allocated via rpc_malloc
772 * @task: RPC task with a buffer to be freed
775 void rpc_free(struct rpc_task *task)
777 struct rpc_rqst *req = task->tk_rqstp;
779 if (req->rq_buffer) {
780 if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
781 mempool_free(req->rq_buffer, rpc_buffer_mempool);
782 else
783 kfree(req->rq_buffer);
784 req->rq_buffer = NULL;
785 req->rq_bufsize = 0;
790 * Creation and deletion of RPC task structures
792 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
794 memset(task, 0, sizeof(*task));
795 init_timer(&task->tk_timer);
796 task->tk_timer.data = (unsigned long) task;
797 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
798 atomic_set(&task->tk_count, 1);
799 task->tk_client = clnt;
800 task->tk_flags = flags;
801 task->tk_ops = tk_ops;
802 if (tk_ops->rpc_call_prepare != NULL)
803 task->tk_action = rpc_prepare_task;
804 task->tk_calldata = calldata;
806 /* Initialize retry counters */
807 task->tk_garb_retry = 2;
808 task->tk_cred_retry = 2;
810 task->tk_priority = RPC_PRIORITY_NORMAL;
811 task->tk_cookie = (unsigned long)current;
813 /* Initialize workqueue for async tasks */
814 task->tk_workqueue = rpciod_workqueue;
816 if (clnt) {
817 atomic_inc(&clnt->cl_users);
818 if (clnt->cl_softrtry)
819 task->tk_flags |= RPC_TASK_SOFT;
820 if (!clnt->cl_intr)
821 task->tk_flags |= RPC_TASK_NOINTR;
824 BUG_ON(task->tk_ops == NULL);
826 /* starting timestamp */
827 task->tk_start = jiffies;
829 dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
830 current->pid);
833 static struct rpc_task *
834 rpc_alloc_task(void)
836 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
839 static void rpc_free_task(struct rcu_head *rcu)
841 struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
842 dprintk("RPC: %4d freeing task\n", task->tk_pid);
843 mempool_free(task, rpc_task_mempool);
847 * Create a new task for the specified client. We have to
848 * clean up after an allocation failure, as the client may
849 * have specified "oneshot".
851 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
853 struct rpc_task *task;
855 task = rpc_alloc_task();
856 if (!task)
857 goto cleanup;
859 rpc_init_task(task, clnt, flags, tk_ops, calldata);
861 dprintk("RPC: %4d allocated task\n", task->tk_pid);
862 task->tk_flags |= RPC_TASK_DYNAMIC;
863 out:
864 return task;
866 cleanup:
867 /* Check whether to release the client */
868 if (clnt) {
869 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
870 atomic_read(&clnt->cl_users), clnt->cl_oneshot);
871 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
872 rpc_release_client(clnt);
874 goto out;
878 void rpc_put_task(struct rpc_task *task)
880 const struct rpc_call_ops *tk_ops = task->tk_ops;
881 void *calldata = task->tk_calldata;
883 if (!atomic_dec_and_test(&task->tk_count))
884 return;
885 /* Release resources */
886 if (task->tk_rqstp)
887 xprt_release(task);
888 if (task->tk_msg.rpc_cred)
889 rpcauth_unbindcred(task);
890 if (task->tk_client) {
891 rpc_release_client(task->tk_client);
892 task->tk_client = NULL;
894 if (task->tk_flags & RPC_TASK_DYNAMIC)
895 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
896 rpc_release_calldata(tk_ops, calldata);
898 EXPORT_SYMBOL(rpc_put_task);
900 static void rpc_release_task(struct rpc_task *task)
902 #ifdef RPC_DEBUG
903 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
904 #endif
905 dprintk("RPC: %4d release task\n", task->tk_pid);
907 /* Remove from global task list */
908 spin_lock(&rpc_sched_lock);
909 list_del(&task->tk_task);
910 spin_unlock(&rpc_sched_lock);
912 BUG_ON (RPC_IS_QUEUED(task));
914 /* Synchronously delete any running timer */
915 rpc_delete_timer(task);
917 #ifdef RPC_DEBUG
918 task->tk_magic = 0;
919 #endif
920 /* Wake up anyone who is waiting for task completion */
921 rpc_mark_complete_task(task);
923 rpc_put_task(task);
927 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
928 * @clnt: pointer to RPC client
929 * @flags: RPC flags
930 * @ops: RPC call ops
931 * @data: user call data
933 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
934 const struct rpc_call_ops *ops,
935 void *data)
937 struct rpc_task *task;
938 task = rpc_new_task(clnt, flags, ops, data);
939 if (task == NULL) {
940 rpc_release_calldata(ops, data);
941 return ERR_PTR(-ENOMEM);
943 atomic_inc(&task->tk_count);
944 rpc_execute(task);
945 return task;
947 EXPORT_SYMBOL(rpc_run_task);
950 * Kill all tasks for the given client.
951 * XXX: kill their descendants as well?
953 void rpc_killall_tasks(struct rpc_clnt *clnt)
955 struct rpc_task *rovr;
956 struct list_head *le;
958 dprintk("RPC: killing all tasks for client %p\n", clnt);
961 * Spin lock all_tasks to prevent changes...
963 spin_lock(&rpc_sched_lock);
964 alltask_for_each(rovr, le, &all_tasks) {
965 if (! RPC_IS_ACTIVATED(rovr))
966 continue;
967 if (!clnt || rovr->tk_client == clnt) {
968 rovr->tk_flags |= RPC_TASK_KILLED;
969 rpc_exit(rovr, -EIO);
970 rpc_wake_up_task(rovr);
973 spin_unlock(&rpc_sched_lock);
976 static DECLARE_MUTEX_LOCKED(rpciod_running);
978 static void rpciod_killall(void)
980 unsigned long flags;
982 while (!list_empty(&all_tasks)) {
983 clear_thread_flag(TIF_SIGPENDING);
984 rpc_killall_tasks(NULL);
985 flush_workqueue(rpciod_workqueue);
986 if (!list_empty(&all_tasks)) {
987 dprintk("rpciod_killall: waiting for tasks to exit\n");
988 yield();
992 spin_lock_irqsave(&current->sighand->siglock, flags);
993 recalc_sigpending();
994 spin_unlock_irqrestore(&current->sighand->siglock, flags);
998 * Start up the rpciod process if it's not already running.
1001 rpciod_up(void)
1003 struct workqueue_struct *wq;
1004 int error = 0;
1006 mutex_lock(&rpciod_mutex);
1007 dprintk("rpciod_up: users %d\n", rpciod_users);
1008 rpciod_users++;
1009 if (rpciod_workqueue)
1010 goto out;
1012 * If there's no pid, we should be the first user.
1014 if (rpciod_users > 1)
1015 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1017 * Create the rpciod thread and wait for it to start.
1019 error = -ENOMEM;
1020 wq = create_workqueue("rpciod");
1021 if (wq == NULL) {
1022 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1023 rpciod_users--;
1024 goto out;
1026 rpciod_workqueue = wq;
1027 error = 0;
1028 out:
1029 mutex_unlock(&rpciod_mutex);
1030 return error;
1033 void
1034 rpciod_down(void)
1036 mutex_lock(&rpciod_mutex);
1037 dprintk("rpciod_down sema %d\n", rpciod_users);
1038 if (rpciod_users) {
1039 if (--rpciod_users)
1040 goto out;
1041 } else
1042 printk(KERN_WARNING "rpciod_down: no users??\n");
1044 if (!rpciod_workqueue) {
1045 dprintk("rpciod_down: Nothing to do!\n");
1046 goto out;
1048 rpciod_killall();
1050 destroy_workqueue(rpciod_workqueue);
1051 rpciod_workqueue = NULL;
1052 out:
1053 mutex_unlock(&rpciod_mutex);
1056 #ifdef RPC_DEBUG
1057 void rpc_show_tasks(void)
1059 struct list_head *le;
1060 struct rpc_task *t;
1062 spin_lock(&rpc_sched_lock);
1063 if (list_empty(&all_tasks)) {
1064 spin_unlock(&rpc_sched_lock);
1065 return;
1067 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1068 "-rpcwait -action- ---ops--\n");
1069 alltask_for_each(t, le, &all_tasks) {
1070 const char *rpc_waitq = "none";
1072 if (RPC_IS_QUEUED(t))
1073 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1075 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1076 t->tk_pid,
1077 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1078 t->tk_flags, t->tk_status,
1079 t->tk_client,
1080 (t->tk_client ? t->tk_client->cl_prog : 0),
1081 t->tk_rqstp, t->tk_timeout,
1082 rpc_waitq,
1083 t->tk_action, t->tk_ops);
1085 spin_unlock(&rpc_sched_lock);
1087 #endif
1089 void
1090 rpc_destroy_mempool(void)
1092 if (rpc_buffer_mempool)
1093 mempool_destroy(rpc_buffer_mempool);
1094 if (rpc_task_mempool)
1095 mempool_destroy(rpc_task_mempool);
1096 if (rpc_task_slabp)
1097 kmem_cache_destroy(rpc_task_slabp);
1098 if (rpc_buffer_slabp)
1099 kmem_cache_destroy(rpc_buffer_slabp);
1103 rpc_init_mempool(void)
1105 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1106 sizeof(struct rpc_task),
1107 0, SLAB_HWCACHE_ALIGN,
1108 NULL, NULL);
1109 if (!rpc_task_slabp)
1110 goto err_nomem;
1111 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1112 RPC_BUFFER_MAXSIZE,
1113 0, SLAB_HWCACHE_ALIGN,
1114 NULL, NULL);
1115 if (!rpc_buffer_slabp)
1116 goto err_nomem;
1117 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1118 rpc_task_slabp);
1119 if (!rpc_task_mempool)
1120 goto err_nomem;
1121 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1122 rpc_buffer_slabp);
1123 if (!rpc_buffer_mempool)
1124 goto err_nomem;
1125 return 0;
1126 err_nomem:
1127 rpc_destroy_mempool();
1128 return -ENOMEM;