4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
35 #define RPCDBG_FACILITY RPCDBG_CACHE
37 static int cache_defer_req(struct cache_req
*req
, struct cache_head
*item
);
38 static void cache_revisit_request(struct cache_head
*item
);
40 static void cache_init(struct cache_head
*h
)
42 time_t now
= get_seconds();
46 h
->expiry_time
= now
+ CACHE_NEW_EXPIRY
;
47 h
->last_refresh
= now
;
50 struct cache_head
*sunrpc_cache_lookup(struct cache_detail
*detail
,
51 struct cache_head
*key
, int hash
)
53 struct cache_head
**head
, **hp
;
54 struct cache_head
*new = NULL
;
56 head
= &detail
->hash_table
[hash
];
58 read_lock(&detail
->hash_lock
);
60 for (hp
=head
; *hp
!= NULL
; hp
= &(*hp
)->next
) {
61 struct cache_head
*tmp
= *hp
;
62 if (detail
->match(tmp
, key
)) {
64 read_unlock(&detail
->hash_lock
);
68 read_unlock(&detail
->hash_lock
);
69 /* Didn't find anything, insert an empty entry */
71 new = detail
->alloc();
74 /* must fully initialise 'new', else
75 * we might get lose if we need to
79 detail
->init(new, key
);
81 write_lock(&detail
->hash_lock
);
83 /* check if entry appeared while we slept */
84 for (hp
=head
; *hp
!= NULL
; hp
= &(*hp
)->next
) {
85 struct cache_head
*tmp
= *hp
;
86 if (detail
->match(tmp
, key
)) {
88 write_unlock(&detail
->hash_lock
);
89 cache_put(new, detail
);
97 write_unlock(&detail
->hash_lock
);
101 EXPORT_SYMBOL(sunrpc_cache_lookup
);
104 static void queue_loose(struct cache_detail
*detail
, struct cache_head
*ch
);
106 static int cache_fresh_locked(struct cache_head
*head
, time_t expiry
)
108 head
->expiry_time
= expiry
;
109 head
->last_refresh
= get_seconds();
110 return !test_and_set_bit(CACHE_VALID
, &head
->flags
);
113 static void cache_fresh_unlocked(struct cache_head
*head
,
114 struct cache_detail
*detail
, int new)
117 cache_revisit_request(head
);
118 if (test_and_clear_bit(CACHE_PENDING
, &head
->flags
)) {
119 cache_revisit_request(head
);
120 queue_loose(detail
, head
);
124 struct cache_head
*sunrpc_cache_update(struct cache_detail
*detail
,
125 struct cache_head
*new, struct cache_head
*old
, int hash
)
127 /* The 'old' entry is to be replaced by 'new'.
128 * If 'old' is not VALID, we update it directly,
129 * otherwise we need to replace it
131 struct cache_head
**head
;
132 struct cache_head
*tmp
;
135 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
136 write_lock(&detail
->hash_lock
);
137 if (!test_bit(CACHE_VALID
, &old
->flags
)) {
138 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
139 set_bit(CACHE_NEGATIVE
, &old
->flags
);
141 detail
->update(old
, new);
142 is_new
= cache_fresh_locked(old
, new->expiry_time
);
143 write_unlock(&detail
->hash_lock
);
144 cache_fresh_unlocked(old
, detail
, is_new
);
147 write_unlock(&detail
->hash_lock
);
149 /* We need to insert a new entry */
150 tmp
= detail
->alloc();
152 cache_put(old
, detail
);
156 detail
->init(tmp
, old
);
157 head
= &detail
->hash_table
[hash
];
159 write_lock(&detail
->hash_lock
);
160 if (test_bit(CACHE_NEGATIVE
, &new->flags
))
161 set_bit(CACHE_NEGATIVE
, &tmp
->flags
);
163 detail
->update(tmp
, new);
168 is_new
= cache_fresh_locked(tmp
, new->expiry_time
);
169 cache_fresh_locked(old
, 0);
170 write_unlock(&detail
->hash_lock
);
171 cache_fresh_unlocked(tmp
, detail
, is_new
);
172 cache_fresh_unlocked(old
, detail
, 0);
173 cache_put(old
, detail
);
176 EXPORT_SYMBOL(sunrpc_cache_update
);
178 static int cache_make_upcall(struct cache_detail
*detail
, struct cache_head
*h
);
180 * This is the generic cache management routine for all
181 * the authentication caches.
182 * It checks the currency of a cache item and will (later)
183 * initiate an upcall to fill it if needed.
186 * Returns 0 if the cache_head can be used, or cache_puts it and returns
187 * -EAGAIN if upcall is pending,
188 * -ETIMEDOUT if upcall failed and should be retried,
189 * -ENOENT if cache entry was negative
191 int cache_check(struct cache_detail
*detail
,
192 struct cache_head
*h
, struct cache_req
*rqstp
)
195 long refresh_age
, age
;
197 /* First decide return status as best we can */
198 if (!test_bit(CACHE_VALID
, &h
->flags
) ||
199 h
->expiry_time
< get_seconds())
201 else if (detail
->flush_time
> h
->last_refresh
)
205 if (test_bit(CACHE_NEGATIVE
, &h
->flags
))
210 /* now see if we want to start an upcall */
211 refresh_age
= (h
->expiry_time
- h
->last_refresh
);
212 age
= get_seconds() - h
->last_refresh
;
217 } else if (rv
== -EAGAIN
|| age
> refresh_age
/2) {
218 dprintk("Want update, refage=%ld, age=%ld\n", refresh_age
, age
);
219 if (!test_and_set_bit(CACHE_PENDING
, &h
->flags
)) {
220 switch (cache_make_upcall(detail
, h
)) {
222 clear_bit(CACHE_PENDING
, &h
->flags
);
224 set_bit(CACHE_NEGATIVE
, &h
->flags
);
225 cache_fresh_unlocked(h
, detail
,
226 cache_fresh_locked(h
, get_seconds()+CACHE_NEW_EXPIRY
));
232 clear_bit(CACHE_PENDING
, &h
->flags
);
233 cache_revisit_request(h
);
240 if (cache_defer_req(rqstp
, h
) != 0)
244 cache_put(h
, detail
);
249 * caches need to be periodically cleaned.
250 * For this we maintain a list of cache_detail and
251 * a current pointer into that list and into the table
254 * Each time clean_cache is called it finds the next non-empty entry
255 * in the current table and walks the list in that entry
256 * looking for entries that can be removed.
258 * An entry gets removed if:
259 * - The expiry is before current time
260 * - The last_refresh time is before the flush_time for that cache
262 * later we might drop old entries with non-NEVER expiry if that table
263 * is getting 'full' for some definition of 'full'
265 * The question of "how often to scan a table" is an interesting one
266 * and is answered in part by the use of the "nextcheck" field in the
268 * When a scan of a table begins, the nextcheck field is set to a time
269 * that is well into the future.
270 * While scanning, if an expiry time is found that is earlier than the
271 * current nextcheck time, nextcheck is set to that expiry time.
272 * If the flush_time is ever set to a time earlier than the nextcheck
273 * time, the nextcheck time is then set to that flush_time.
275 * A table is then only scanned if the current time is at least
276 * the nextcheck time.
280 static LIST_HEAD(cache_list
);
281 static DEFINE_SPINLOCK(cache_list_lock
);
282 static struct cache_detail
*current_detail
;
283 static int current_index
;
285 static struct file_operations cache_file_operations
;
286 static struct file_operations content_file_operations
;
287 static struct file_operations cache_flush_operations
;
289 static void do_cache_clean(struct work_struct
*work
);
290 static DECLARE_DELAYED_WORK(cache_cleaner
, do_cache_clean
);
292 void cache_register(struct cache_detail
*cd
)
294 cd
->proc_ent
= proc_mkdir(cd
->name
, proc_net_rpc
);
296 struct proc_dir_entry
*p
;
297 cd
->proc_ent
->owner
= cd
->owner
;
298 cd
->channel_ent
= cd
->content_ent
= NULL
;
300 p
= create_proc_entry("flush", S_IFREG
|S_IRUSR
|S_IWUSR
,
304 p
->proc_fops
= &cache_flush_operations
;
305 p
->owner
= cd
->owner
;
309 if (cd
->cache_request
|| cd
->cache_parse
) {
310 p
= create_proc_entry("channel", S_IFREG
|S_IRUSR
|S_IWUSR
,
314 p
->proc_fops
= &cache_file_operations
;
315 p
->owner
= cd
->owner
;
319 if (cd
->cache_show
) {
320 p
= create_proc_entry("content", S_IFREG
|S_IRUSR
|S_IWUSR
,
324 p
->proc_fops
= &content_file_operations
;
325 p
->owner
= cd
->owner
;
330 rwlock_init(&cd
->hash_lock
);
331 INIT_LIST_HEAD(&cd
->queue
);
332 spin_lock(&cache_list_lock
);
335 atomic_set(&cd
->readers
, 0);
338 list_add(&cd
->others
, &cache_list
);
339 spin_unlock(&cache_list_lock
);
341 /* start the cleaning process */
342 schedule_delayed_work(&cache_cleaner
, 0);
345 int cache_unregister(struct cache_detail
*cd
)
348 spin_lock(&cache_list_lock
);
349 write_lock(&cd
->hash_lock
);
350 if (cd
->entries
|| atomic_read(&cd
->inuse
)) {
351 write_unlock(&cd
->hash_lock
);
352 spin_unlock(&cache_list_lock
);
355 if (current_detail
== cd
)
356 current_detail
= NULL
;
357 list_del_init(&cd
->others
);
358 write_unlock(&cd
->hash_lock
);
359 spin_unlock(&cache_list_lock
);
362 remove_proc_entry("flush", cd
->proc_ent
);
364 remove_proc_entry("channel", cd
->proc_ent
);
366 remove_proc_entry("content", cd
->proc_ent
);
369 remove_proc_entry(cd
->name
, proc_net_rpc
);
371 if (list_empty(&cache_list
)) {
372 /* module must be being unloaded so its safe to kill the worker */
373 cancel_delayed_work(&cache_cleaner
);
374 flush_scheduled_work();
379 /* clean cache tries to find something to clean
381 * It returns 1 if it cleaned something,
382 * 0 if it didn't find anything this time
383 * -1 if it fell off the end of the list.
385 static int cache_clean(void)
388 struct list_head
*next
;
390 spin_lock(&cache_list_lock
);
392 /* find a suitable table if we don't already have one */
393 while (current_detail
== NULL
||
394 current_index
>= current_detail
->hash_size
) {
396 next
= current_detail
->others
.next
;
398 next
= cache_list
.next
;
399 if (next
== &cache_list
) {
400 current_detail
= NULL
;
401 spin_unlock(&cache_list_lock
);
404 current_detail
= list_entry(next
, struct cache_detail
, others
);
405 if (current_detail
->nextcheck
> get_seconds())
406 current_index
= current_detail
->hash_size
;
409 current_detail
->nextcheck
= get_seconds()+30*60;
413 /* find a non-empty bucket in the table */
414 while (current_detail
&&
415 current_index
< current_detail
->hash_size
&&
416 current_detail
->hash_table
[current_index
] == NULL
)
419 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
421 if (current_detail
&& current_index
< current_detail
->hash_size
) {
422 struct cache_head
*ch
, **cp
;
423 struct cache_detail
*d
;
425 write_lock(¤t_detail
->hash_lock
);
427 /* Ok, now to clean this strand */
429 cp
= & current_detail
->hash_table
[current_index
];
431 for (; ch
; cp
= & ch
->next
, ch
= *cp
) {
432 if (current_detail
->nextcheck
> ch
->expiry_time
)
433 current_detail
->nextcheck
= ch
->expiry_time
+1;
434 if (ch
->expiry_time
>= get_seconds()
435 && ch
->last_refresh
>= current_detail
->flush_time
438 if (test_and_clear_bit(CACHE_PENDING
, &ch
->flags
))
439 queue_loose(current_detail
, ch
);
441 if (atomic_read(&ch
->ref
.refcount
) == 1)
447 current_detail
->entries
--;
450 write_unlock(¤t_detail
->hash_lock
);
454 spin_unlock(&cache_list_lock
);
458 spin_unlock(&cache_list_lock
);
464 * We want to regularly clean the cache, so we need to schedule some work ...
466 static void do_cache_clean(struct work_struct
*work
)
469 if (cache_clean() == -1)
472 if (list_empty(&cache_list
))
476 schedule_delayed_work(&cache_cleaner
, delay
);
481 * Clean all caches promptly. This just calls cache_clean
482 * repeatedly until we are sure that every cache has had a chance to
485 void cache_flush(void)
487 while (cache_clean() != -1)
489 while (cache_clean() != -1)
493 void cache_purge(struct cache_detail
*detail
)
495 detail
->flush_time
= LONG_MAX
;
496 detail
->nextcheck
= get_seconds();
498 detail
->flush_time
= 1;
504 * Deferral and Revisiting of Requests.
506 * If a cache lookup finds a pending entry, we
507 * need to defer the request and revisit it later.
508 * All deferred requests are stored in a hash table,
509 * indexed by "struct cache_head *".
510 * As it may be wasteful to store a whole request
511 * structure, we allow the request to provide a
512 * deferred form, which must contain a
513 * 'struct cache_deferred_req'
514 * This cache_deferred_req contains a method to allow
515 * it to be revisited when cache info is available
518 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
519 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
521 #define DFR_MAX 300 /* ??? */
523 static DEFINE_SPINLOCK(cache_defer_lock
);
524 static LIST_HEAD(cache_defer_list
);
525 static struct list_head cache_defer_hash
[DFR_HASHSIZE
];
526 static int cache_defer_cnt
;
528 static int cache_defer_req(struct cache_req
*req
, struct cache_head
*item
)
530 struct cache_deferred_req
*dreq
;
531 int hash
= DFR_HASH(item
);
533 if (cache_defer_cnt
>= DFR_MAX
) {
534 /* too much in the cache, randomly drop this one,
535 * or continue and drop the oldest below
540 dreq
= req
->defer(req
);
545 dreq
->recv_time
= get_seconds();
547 spin_lock(&cache_defer_lock
);
549 list_add(&dreq
->recent
, &cache_defer_list
);
551 if (cache_defer_hash
[hash
].next
== NULL
)
552 INIT_LIST_HEAD(&cache_defer_hash
[hash
]);
553 list_add(&dreq
->hash
, &cache_defer_hash
[hash
]);
555 /* it is in, now maybe clean up */
557 if (++cache_defer_cnt
> DFR_MAX
) {
558 dreq
= list_entry(cache_defer_list
.prev
,
559 struct cache_deferred_req
, recent
);
560 list_del(&dreq
->recent
);
561 list_del(&dreq
->hash
);
564 spin_unlock(&cache_defer_lock
);
567 /* there was one too many */
568 dreq
->revisit(dreq
, 1);
570 if (!test_bit(CACHE_PENDING
, &item
->flags
)) {
571 /* must have just been validated... */
572 cache_revisit_request(item
);
577 static void cache_revisit_request(struct cache_head
*item
)
579 struct cache_deferred_req
*dreq
;
580 struct list_head pending
;
582 struct list_head
*lp
;
583 int hash
= DFR_HASH(item
);
585 INIT_LIST_HEAD(&pending
);
586 spin_lock(&cache_defer_lock
);
588 lp
= cache_defer_hash
[hash
].next
;
590 while (lp
!= &cache_defer_hash
[hash
]) {
591 dreq
= list_entry(lp
, struct cache_deferred_req
, hash
);
593 if (dreq
->item
== item
) {
594 list_del(&dreq
->hash
);
595 list_move(&dreq
->recent
, &pending
);
600 spin_unlock(&cache_defer_lock
);
602 while (!list_empty(&pending
)) {
603 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
604 list_del_init(&dreq
->recent
);
605 dreq
->revisit(dreq
, 0);
609 void cache_clean_deferred(void *owner
)
611 struct cache_deferred_req
*dreq
, *tmp
;
612 struct list_head pending
;
615 INIT_LIST_HEAD(&pending
);
616 spin_lock(&cache_defer_lock
);
618 list_for_each_entry_safe(dreq
, tmp
, &cache_defer_list
, recent
) {
619 if (dreq
->owner
== owner
) {
620 list_del(&dreq
->hash
);
621 list_move(&dreq
->recent
, &pending
);
625 spin_unlock(&cache_defer_lock
);
627 while (!list_empty(&pending
)) {
628 dreq
= list_entry(pending
.next
, struct cache_deferred_req
, recent
);
629 list_del_init(&dreq
->recent
);
630 dreq
->revisit(dreq
, 1);
635 * communicate with user-space
637 * We have a magic /proc file - /proc/sunrpc/cache
638 * On read, you get a full request, or block
639 * On write, an update request is processed
640 * Poll works if anything to read, and always allows write
642 * Implemented by linked list of requests. Each open file has
643 * a ->private that also exists in this list. New request are added
644 * to the end and may wakeup and preceding readers.
645 * New readers are added to the head. If, on read, an item is found with
646 * CACHE_UPCALLING clear, we free it from the list.
650 static DEFINE_SPINLOCK(queue_lock
);
651 static DEFINE_MUTEX(queue_io_mutex
);
654 struct list_head list
;
655 int reader
; /* if 0, then request */
657 struct cache_request
{
658 struct cache_queue q
;
659 struct cache_head
*item
;
664 struct cache_reader
{
665 struct cache_queue q
;
666 int offset
; /* if non-0, we have a refcnt on next request */
670 cache_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
672 struct cache_reader
*rp
= filp
->private_data
;
673 struct cache_request
*rq
;
674 struct cache_detail
*cd
= PDE(filp
->f_path
.dentry
->d_inode
)->data
;
680 mutex_lock(&queue_io_mutex
); /* protect against multiple concurrent
681 * readers on this file */
683 spin_lock(&queue_lock
);
684 /* need to find next request */
685 while (rp
->q
.list
.next
!= &cd
->queue
&&
686 list_entry(rp
->q
.list
.next
, struct cache_queue
, list
)
688 struct list_head
*next
= rp
->q
.list
.next
;
689 list_move(&rp
->q
.list
, next
);
691 if (rp
->q
.list
.next
== &cd
->queue
) {
692 spin_unlock(&queue_lock
);
693 mutex_unlock(&queue_io_mutex
);
697 rq
= container_of(rp
->q
.list
.next
, struct cache_request
, q
.list
);
698 BUG_ON(rq
->q
.reader
);
701 spin_unlock(&queue_lock
);
703 if (rp
->offset
== 0 && !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
705 spin_lock(&queue_lock
);
706 list_move(&rp
->q
.list
, &rq
->q
.list
);
707 spin_unlock(&queue_lock
);
709 if (rp
->offset
+ count
> rq
->len
)
710 count
= rq
->len
- rp
->offset
;
712 if (copy_to_user(buf
, rq
->buf
+ rp
->offset
, count
))
715 if (rp
->offset
>= rq
->len
) {
717 spin_lock(&queue_lock
);
718 list_move(&rp
->q
.list
, &rq
->q
.list
);
719 spin_unlock(&queue_lock
);
724 if (rp
->offset
== 0) {
725 /* need to release rq */
726 spin_lock(&queue_lock
);
728 if (rq
->readers
== 0 &&
729 !test_bit(CACHE_PENDING
, &rq
->item
->flags
)) {
730 list_del(&rq
->q
.list
);
731 spin_unlock(&queue_lock
);
732 cache_put(rq
->item
, cd
);
736 spin_unlock(&queue_lock
);
740 mutex_unlock(&queue_io_mutex
);
741 return err
? err
: count
;
744 static char write_buf
[8192]; /* protected by queue_io_mutex */
747 cache_write(struct file
*filp
, const char __user
*buf
, size_t count
,
751 struct cache_detail
*cd
= PDE(filp
->f_path
.dentry
->d_inode
)->data
;
755 if (count
>= sizeof(write_buf
))
758 mutex_lock(&queue_io_mutex
);
760 if (copy_from_user(write_buf
, buf
, count
)) {
761 mutex_unlock(&queue_io_mutex
);
764 write_buf
[count
] = '\0';
766 err
= cd
->cache_parse(cd
, write_buf
, count
);
770 mutex_unlock(&queue_io_mutex
);
771 return err
? err
: count
;
774 static DECLARE_WAIT_QUEUE_HEAD(queue_wait
);
777 cache_poll(struct file
*filp
, poll_table
*wait
)
780 struct cache_reader
*rp
= filp
->private_data
;
781 struct cache_queue
*cq
;
782 struct cache_detail
*cd
= PDE(filp
->f_path
.dentry
->d_inode
)->data
;
784 poll_wait(filp
, &queue_wait
, wait
);
786 /* alway allow write */
787 mask
= POLL_OUT
| POLLWRNORM
;
792 spin_lock(&queue_lock
);
794 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
795 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
797 mask
|= POLLIN
| POLLRDNORM
;
800 spin_unlock(&queue_lock
);
805 cache_ioctl(struct inode
*ino
, struct file
*filp
,
806 unsigned int cmd
, unsigned long arg
)
809 struct cache_reader
*rp
= filp
->private_data
;
810 struct cache_queue
*cq
;
811 struct cache_detail
*cd
= PDE(ino
)->data
;
813 if (cmd
!= FIONREAD
|| !rp
)
816 spin_lock(&queue_lock
);
818 /* only find the length remaining in current request,
819 * or the length of the next request
821 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
822 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
824 struct cache_request
*cr
=
825 container_of(cq
, struct cache_request
, q
);
826 len
= cr
->len
- rp
->offset
;
829 spin_unlock(&queue_lock
);
831 return put_user(len
, (int __user
*)arg
);
835 cache_open(struct inode
*inode
, struct file
*filp
)
837 struct cache_reader
*rp
= NULL
;
839 nonseekable_open(inode
, filp
);
840 if (filp
->f_mode
& FMODE_READ
) {
841 struct cache_detail
*cd
= PDE(inode
)->data
;
843 rp
= kmalloc(sizeof(*rp
), GFP_KERNEL
);
848 atomic_inc(&cd
->readers
);
849 spin_lock(&queue_lock
);
850 list_add(&rp
->q
.list
, &cd
->queue
);
851 spin_unlock(&queue_lock
);
853 filp
->private_data
= rp
;
858 cache_release(struct inode
*inode
, struct file
*filp
)
860 struct cache_reader
*rp
= filp
->private_data
;
861 struct cache_detail
*cd
= PDE(inode
)->data
;
864 spin_lock(&queue_lock
);
866 struct cache_queue
*cq
;
867 for (cq
= &rp
->q
; &cq
->list
!= &cd
->queue
;
868 cq
= list_entry(cq
->list
.next
, struct cache_queue
, list
))
870 container_of(cq
, struct cache_request
, q
)
876 list_del(&rp
->q
.list
);
877 spin_unlock(&queue_lock
);
879 filp
->private_data
= NULL
;
882 cd
->last_close
= get_seconds();
883 atomic_dec(&cd
->readers
);
890 static struct file_operations cache_file_operations
= {
891 .owner
= THIS_MODULE
,
894 .write
= cache_write
,
896 .ioctl
= cache_ioctl
, /* for FIONREAD */
898 .release
= cache_release
,
902 static void queue_loose(struct cache_detail
*detail
, struct cache_head
*ch
)
904 struct cache_queue
*cq
;
905 spin_lock(&queue_lock
);
906 list_for_each_entry(cq
, &detail
->queue
, list
)
908 struct cache_request
*cr
= container_of(cq
, struct cache_request
, q
);
911 if (cr
->readers
!= 0)
913 list_del(&cr
->q
.list
);
914 spin_unlock(&queue_lock
);
915 cache_put(cr
->item
, detail
);
920 spin_unlock(&queue_lock
);
924 * Support routines for text-based upcalls.
925 * Fields are separated by spaces.
926 * Fields are either mangled to quote space tab newline slosh with slosh
927 * or a hexified with a leading \x
928 * Record is terminated with newline.
932 void qword_add(char **bpp
, int *lp
, char *str
)
940 while ((c
=*str
++) && len
)
948 *bp
++ = '0' + ((c
& 0300)>>6);
949 *bp
++ = '0' + ((c
& 0070)>>3);
950 *bp
++ = '0' + ((c
& 0007)>>0);
958 if (c
|| len
<1) len
= -1;
967 void qword_addhex(char **bpp
, int *lp
, char *buf
, int blen
)
978 while (blen
&& len
>= 2) {
979 unsigned char c
= *buf
++;
980 *bp
++ = '0' + ((c
&0xf0)>>4) + (c
>=0xa0)*('a'-'9'-1);
981 *bp
++ = '0' + (c
&0x0f) + ((c
&0x0f)>=0x0a)*('a'-'9'-1);
986 if (blen
|| len
<1) len
= -1;
995 static void warn_no_listener(struct cache_detail
*detail
)
997 if (detail
->last_warn
!= detail
->last_close
) {
998 detail
->last_warn
= detail
->last_close
;
999 if (detail
->warn_no_listener
)
1000 detail
->warn_no_listener(detail
);
1005 * register an upcall request to user-space.
1006 * Each request is at most one page long.
1008 static int cache_make_upcall(struct cache_detail
*detail
, struct cache_head
*h
)
1012 struct cache_request
*crq
;
1016 if (detail
->cache_request
== NULL
)
1019 if (atomic_read(&detail
->readers
) == 0 &&
1020 detail
->last_close
< get_seconds() - 30) {
1021 warn_no_listener(detail
);
1025 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1029 crq
= kmalloc(sizeof (*crq
), GFP_KERNEL
);
1035 bp
= buf
; len
= PAGE_SIZE
;
1037 detail
->cache_request(detail
, h
, &bp
, &len
);
1045 crq
->item
= cache_get(h
);
1047 crq
->len
= PAGE_SIZE
- len
;
1049 spin_lock(&queue_lock
);
1050 list_add_tail(&crq
->q
.list
, &detail
->queue
);
1051 spin_unlock(&queue_lock
);
1052 wake_up(&queue_wait
);
1057 * parse a message from user-space and pass it
1058 * to an appropriate cache
1059 * Messages are, like requests, separated into fields by
1060 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1063 * reply cachename expiry key ... content....
1065 * key and content are both parsed by cache
1068 #define isodigit(c) (isdigit(c) && c <= '7')
1069 int qword_get(char **bpp
, char *dest
, int bufsize
)
1071 /* return bytes copied, or -1 on error */
1075 while (*bp
== ' ') bp
++;
1077 if (bp
[0] == '\\' && bp
[1] == 'x') {
1080 while (isxdigit(bp
[0]) && isxdigit(bp
[1]) && len
< bufsize
) {
1081 int byte
= isdigit(*bp
) ? *bp
-'0' : toupper(*bp
)-'A'+10;
1084 byte
|= isdigit(*bp
) ? *bp
-'0' : toupper(*bp
)-'A'+10;
1090 /* text with \nnn octal quoting */
1091 while (*bp
!= ' ' && *bp
!= '\n' && *bp
&& len
< bufsize
-1) {
1093 isodigit(bp
[1]) && (bp
[1] <= '3') &&
1096 int byte
= (*++bp
-'0');
1098 byte
= (byte
<< 3) | (*bp
++ - '0');
1099 byte
= (byte
<< 3) | (*bp
++ - '0');
1109 if (*bp
!= ' ' && *bp
!= '\n' && *bp
!= '\0')
1111 while (*bp
== ' ') bp
++;
1119 * support /proc/sunrpc/cache/$CACHENAME/content
1121 * We call ->cache_show passing NULL for the item to
1122 * get a header, then pass each real item in the cache
1126 struct cache_detail
*cd
;
1129 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1132 unsigned hash
, entry
;
1133 struct cache_head
*ch
;
1134 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1137 read_lock(&cd
->hash_lock
);
1139 return SEQ_START_TOKEN
;
1141 entry
= n
& ((1LL<<32) - 1);
1143 for (ch
=cd
->hash_table
[hash
]; ch
; ch
=ch
->next
)
1146 n
&= ~((1LL<<32) - 1);
1150 } while(hash
< cd
->hash_size
&&
1151 cd
->hash_table
[hash
]==NULL
);
1152 if (hash
>= cd
->hash_size
)
1155 return cd
->hash_table
[hash
];
1158 static void *c_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1160 struct cache_head
*ch
= p
;
1161 int hash
= (*pos
>> 32);
1162 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1164 if (p
== SEQ_START_TOKEN
)
1166 else if (ch
->next
== NULL
) {
1173 *pos
&= ~((1LL<<32) - 1);
1174 while (hash
< cd
->hash_size
&&
1175 cd
->hash_table
[hash
] == NULL
) {
1179 if (hash
>= cd
->hash_size
)
1182 return cd
->hash_table
[hash
];
1185 static void c_stop(struct seq_file
*m
, void *p
)
1187 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1188 read_unlock(&cd
->hash_lock
);
1191 static int c_show(struct seq_file
*m
, void *p
)
1193 struct cache_head
*cp
= p
;
1194 struct cache_detail
*cd
= ((struct handle
*)m
->private)->cd
;
1196 if (p
== SEQ_START_TOKEN
)
1197 return cd
->cache_show(m
, cd
, NULL
);
1200 seq_printf(m
, "# expiry=%ld refcnt=%d flags=%lx\n",
1201 cp
->expiry_time
, atomic_read(&cp
->ref
.refcount
), cp
->flags
);
1203 if (cache_check(cd
, cp
, NULL
))
1204 /* cache_check does a cache_put on failure */
1205 seq_printf(m
, "# ");
1209 return cd
->cache_show(m
, cd
, cp
);
1212 static struct seq_operations cache_content_op
= {
1219 static int content_open(struct inode
*inode
, struct file
*file
)
1223 struct cache_detail
*cd
= PDE(inode
)->data
;
1225 han
= kmalloc(sizeof(*han
), GFP_KERNEL
);
1231 res
= seq_open(file
, &cache_content_op
);
1235 ((struct seq_file
*)file
->private_data
)->private = han
;
1239 static int content_release(struct inode
*inode
, struct file
*file
)
1241 struct seq_file
*m
= (struct seq_file
*)file
->private_data
;
1242 struct handle
*han
= m
->private;
1245 return seq_release(inode
, file
);
1248 static struct file_operations content_file_operations
= {
1249 .open
= content_open
,
1251 .llseek
= seq_lseek
,
1252 .release
= content_release
,
1255 static ssize_t
read_flush(struct file
*file
, char __user
*buf
,
1256 size_t count
, loff_t
*ppos
)
1258 struct cache_detail
*cd
= PDE(file
->f_path
.dentry
->d_inode
)->data
;
1260 unsigned long p
= *ppos
;
1263 sprintf(tbuf
, "%lu\n", cd
->flush_time
);
1268 if (len
> count
) len
= count
;
1269 if (copy_to_user(buf
, (void*)(tbuf
+p
), len
))
1276 static ssize_t
write_flush(struct file
* file
, const char __user
* buf
,
1277 size_t count
, loff_t
*ppos
)
1279 struct cache_detail
*cd
= PDE(file
->f_path
.dentry
->d_inode
)->data
;
1283 if (*ppos
|| count
> sizeof(tbuf
)-1)
1285 if (copy_from_user(tbuf
, buf
, count
))
1288 flushtime
= simple_strtoul(tbuf
, &ep
, 0);
1289 if (*ep
&& *ep
!= '\n')
1292 cd
->flush_time
= flushtime
;
1293 cd
->nextcheck
= get_seconds();
1300 static struct file_operations cache_flush_operations
= {
1301 .open
= nonseekable_open
,
1303 .write
= write_flush
,