Linux 2.6.20.7
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / socket.c
blobafb6085827ca437c37280483407cc9efc2303a0a
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static struct file_operations socket_file_ops = {
121 .owner = THIS_MODULE,
122 .llseek = no_llseek,
123 .aio_read = sock_aio_read,
124 .aio_write = sock_aio_write,
125 .poll = sock_poll,
126 .unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 .compat_ioctl = compat_sock_ioctl,
129 #endif
130 .mmap = sock_mmap,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .sendpage = sock_sendpage,
135 .splice_write = generic_splice_sendpage,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
152 * Support routines.
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
159 24 for IPv6,
160 about 80 for AX.25
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
163 :unix_mkname()).
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
179 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 return -EINVAL;
181 if (ulen == 0)
182 return 0;
183 if (copy_from_user(kaddr, uaddr, ulen))
184 return -EFAULT;
185 return audit_sockaddr(ulen, kaddr);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
199 * accessible.
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 int __user *ulen)
208 int err;
209 int len;
211 err = get_user(len, ulen);
212 if (err)
213 return err;
214 if (len > klen)
215 len = klen;
216 if (len < 0 || len > MAX_SOCK_ADDR)
217 return -EINVAL;
218 if (len) {
219 if (audit_sockaddr(klen, kaddr))
220 return -ENOMEM;
221 if (copy_to_user(uaddr, kaddr, len))
222 return -EFAULT;
225 * "fromlen shall refer to the value before truncation.."
226 * 1003.1g
228 return __put_user(klen, ulen);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
235 static struct inode *sock_alloc_inode(struct super_block *sb)
237 struct socket_alloc *ei;
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wait);
244 ei->socket.fasync_list = NULL;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
251 return &ei->vfs_inode;
254 static void sock_destroy_inode(struct inode *inode)
256 kmem_cache_free(sock_inode_cachep,
257 container_of(inode, struct socket_alloc, vfs_inode));
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
262 struct socket_alloc *ei = (struct socket_alloc *)foo;
264 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR))
265 == SLAB_CTOR_CONSTRUCTOR)
266 inode_init_once(&ei->vfs_inode);
269 static int init_inodecache(void)
271 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
272 sizeof(struct socket_alloc),
274 (SLAB_HWCACHE_ALIGN |
275 SLAB_RECLAIM_ACCOUNT |
276 SLAB_MEM_SPREAD),
277 init_once,
278 NULL);
279 if (sock_inode_cachep == NULL)
280 return -ENOMEM;
281 return 0;
284 static struct super_operations sockfs_ops = {
285 .alloc_inode = sock_alloc_inode,
286 .destroy_inode =sock_destroy_inode,
287 .statfs = simple_statfs,
290 static int sockfs_get_sb(struct file_system_type *fs_type,
291 int flags, const char *dev_name, void *data,
292 struct vfsmount *mnt)
294 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
295 mnt);
298 static struct vfsmount *sock_mnt __read_mostly;
300 static struct file_system_type sock_fs_type = {
301 .name = "sockfs",
302 .get_sb = sockfs_get_sb,
303 .kill_sb = kill_anon_super,
306 static int sockfs_delete_dentry(struct dentry *dentry)
309 * At creation time, we pretended this dentry was hashed
310 * (by clearing DCACHE_UNHASHED bit in d_flags)
311 * At delete time, we restore the truth : not hashed.
312 * (so that dput() can proceed correctly)
314 dentry->d_flags |= DCACHE_UNHASHED;
315 return 0;
317 static struct dentry_operations sockfs_dentry_operations = {
318 .d_delete = sockfs_delete_dentry,
322 * Obtains the first available file descriptor and sets it up for use.
324 * These functions create file structures and maps them to fd space
325 * of the current process. On success it returns file descriptor
326 * and file struct implicitly stored in sock->file.
327 * Note that another thread may close file descriptor before we return
328 * from this function. We use the fact that now we do not refer
329 * to socket after mapping. If one day we will need it, this
330 * function will increment ref. count on file by 1.
332 * In any case returned fd MAY BE not valid!
333 * This race condition is unavoidable
334 * with shared fd spaces, we cannot solve it inside kernel,
335 * but we take care of internal coherence yet.
338 static int sock_alloc_fd(struct file **filep)
340 int fd;
342 fd = get_unused_fd();
343 if (likely(fd >= 0)) {
344 struct file *file = get_empty_filp();
346 *filep = file;
347 if (unlikely(!file)) {
348 put_unused_fd(fd);
349 return -ENFILE;
351 } else
352 *filep = NULL;
353 return fd;
356 static int sock_attach_fd(struct socket *sock, struct file *file)
358 struct qstr this;
359 char name[32];
361 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
362 this.name = name;
363 this.hash = 0;
365 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
366 if (unlikely(!file->f_path.dentry))
367 return -ENOMEM;
369 file->f_path.dentry->d_op = &sockfs_dentry_operations;
371 * We dont want to push this dentry into global dentry hash table.
372 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
373 * This permits a working /proc/$pid/fd/XXX on sockets
375 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
376 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
377 file->f_path.mnt = mntget(sock_mnt);
378 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
380 sock->file = file;
381 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
382 file->f_mode = FMODE_READ | FMODE_WRITE;
383 file->f_flags = O_RDWR;
384 file->f_pos = 0;
385 file->private_data = sock;
387 return 0;
390 int sock_map_fd(struct socket *sock)
392 struct file *newfile;
393 int fd = sock_alloc_fd(&newfile);
395 if (likely(fd >= 0)) {
396 int err = sock_attach_fd(sock, newfile);
398 if (unlikely(err < 0)) {
399 put_filp(newfile);
400 put_unused_fd(fd);
401 return err;
403 fd_install(fd, newfile);
405 return fd;
408 static struct socket *sock_from_file(struct file *file, int *err)
410 struct inode *inode;
411 struct socket *sock;
413 if (file->f_op == &socket_file_ops)
414 return file->private_data; /* set in sock_map_fd */
416 inode = file->f_path.dentry->d_inode;
417 if (!S_ISSOCK(inode->i_mode)) {
418 *err = -ENOTSOCK;
419 return NULL;
422 sock = SOCKET_I(inode);
423 if (sock->file != file) {
424 printk(KERN_ERR "socki_lookup: socket file changed!\n");
425 sock->file = file;
427 return sock;
431 * sockfd_lookup - Go from a file number to its socket slot
432 * @fd: file handle
433 * @err: pointer to an error code return
435 * The file handle passed in is locked and the socket it is bound
436 * too is returned. If an error occurs the err pointer is overwritten
437 * with a negative errno code and NULL is returned. The function checks
438 * for both invalid handles and passing a handle which is not a socket.
440 * On a success the socket object pointer is returned.
443 struct socket *sockfd_lookup(int fd, int *err)
445 struct file *file;
446 struct socket *sock;
448 file = fget(fd);
449 if (!file) {
450 *err = -EBADF;
451 return NULL;
454 sock = sock_from_file(file, err);
455 if (!sock)
456 fput(file);
457 return sock;
460 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
462 struct file *file;
463 struct socket *sock;
465 *err = -EBADF;
466 file = fget_light(fd, fput_needed);
467 if (file) {
468 sock = sock_from_file(file, err);
469 if (sock)
470 return sock;
471 fput_light(file, *fput_needed);
473 return NULL;
477 * sock_alloc - allocate a socket
479 * Allocate a new inode and socket object. The two are bound together
480 * and initialised. The socket is then returned. If we are out of inodes
481 * NULL is returned.
484 static struct socket *sock_alloc(void)
486 struct inode *inode;
487 struct socket *sock;
489 inode = new_inode(sock_mnt->mnt_sb);
490 if (!inode)
491 return NULL;
493 sock = SOCKET_I(inode);
495 inode->i_mode = S_IFSOCK | S_IRWXUGO;
496 inode->i_uid = current->fsuid;
497 inode->i_gid = current->fsgid;
499 get_cpu_var(sockets_in_use)++;
500 put_cpu_var(sockets_in_use);
501 return sock;
505 * In theory you can't get an open on this inode, but /proc provides
506 * a back door. Remember to keep it shut otherwise you'll let the
507 * creepy crawlies in.
510 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
512 return -ENXIO;
515 const struct file_operations bad_sock_fops = {
516 .owner = THIS_MODULE,
517 .open = sock_no_open,
521 * sock_release - close a socket
522 * @sock: socket to close
524 * The socket is released from the protocol stack if it has a release
525 * callback, and the inode is then released if the socket is bound to
526 * an inode not a file.
529 void sock_release(struct socket *sock)
531 if (sock->ops) {
532 struct module *owner = sock->ops->owner;
534 sock->ops->release(sock);
535 sock->ops = NULL;
536 module_put(owner);
539 if (sock->fasync_list)
540 printk(KERN_ERR "sock_release: fasync list not empty!\n");
542 get_cpu_var(sockets_in_use)--;
543 put_cpu_var(sockets_in_use);
544 if (!sock->file) {
545 iput(SOCK_INODE(sock));
546 return;
548 sock->file = NULL;
551 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
552 struct msghdr *msg, size_t size)
554 struct sock_iocb *si = kiocb_to_siocb(iocb);
555 int err;
557 si->sock = sock;
558 si->scm = NULL;
559 si->msg = msg;
560 si->size = size;
562 err = security_socket_sendmsg(sock, msg, size);
563 if (err)
564 return err;
566 return sock->ops->sendmsg(iocb, sock, msg, size);
569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
571 struct kiocb iocb;
572 struct sock_iocb siocb;
573 int ret;
575 init_sync_kiocb(&iocb, NULL);
576 iocb.private = &siocb;
577 ret = __sock_sendmsg(&iocb, sock, msg, size);
578 if (-EIOCBQUEUED == ret)
579 ret = wait_on_sync_kiocb(&iocb);
580 return ret;
583 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
584 struct kvec *vec, size_t num, size_t size)
586 mm_segment_t oldfs = get_fs();
587 int result;
589 set_fs(KERNEL_DS);
591 * the following is safe, since for compiler definitions of kvec and
592 * iovec are identical, yielding the same in-core layout and alignment
594 msg->msg_iov = (struct iovec *)vec;
595 msg->msg_iovlen = num;
596 result = sock_sendmsg(sock, msg, size);
597 set_fs(oldfs);
598 return result;
601 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
602 struct msghdr *msg, size_t size, int flags)
604 int err;
605 struct sock_iocb *si = kiocb_to_siocb(iocb);
607 si->sock = sock;
608 si->scm = NULL;
609 si->msg = msg;
610 si->size = size;
611 si->flags = flags;
613 err = security_socket_recvmsg(sock, msg, size, flags);
614 if (err)
615 return err;
617 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
620 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
621 size_t size, int flags)
623 struct kiocb iocb;
624 struct sock_iocb siocb;
625 int ret;
627 init_sync_kiocb(&iocb, NULL);
628 iocb.private = &siocb;
629 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
630 if (-EIOCBQUEUED == ret)
631 ret = wait_on_sync_kiocb(&iocb);
632 return ret;
635 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
636 struct kvec *vec, size_t num, size_t size, int flags)
638 mm_segment_t oldfs = get_fs();
639 int result;
641 set_fs(KERNEL_DS);
643 * the following is safe, since for compiler definitions of kvec and
644 * iovec are identical, yielding the same in-core layout and alignment
646 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
647 result = sock_recvmsg(sock, msg, size, flags);
648 set_fs(oldfs);
649 return result;
652 static void sock_aio_dtor(struct kiocb *iocb)
654 kfree(iocb->private);
657 static ssize_t sock_sendpage(struct file *file, struct page *page,
658 int offset, size_t size, loff_t *ppos, int more)
660 struct socket *sock;
661 int flags;
663 sock = file->private_data;
665 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
666 if (more)
667 flags |= MSG_MORE;
669 return sock->ops->sendpage(sock, page, offset, size, flags);
672 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
673 struct sock_iocb *siocb)
675 if (!is_sync_kiocb(iocb)) {
676 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
677 if (!siocb)
678 return NULL;
679 iocb->ki_dtor = sock_aio_dtor;
682 siocb->kiocb = iocb;
683 iocb->private = siocb;
684 return siocb;
687 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
688 struct file *file, const struct iovec *iov,
689 unsigned long nr_segs)
691 struct socket *sock = file->private_data;
692 size_t size = 0;
693 int i;
695 for (i = 0; i < nr_segs; i++)
696 size += iov[i].iov_len;
698 msg->msg_name = NULL;
699 msg->msg_namelen = 0;
700 msg->msg_control = NULL;
701 msg->msg_controllen = 0;
702 msg->msg_iov = (struct iovec *)iov;
703 msg->msg_iovlen = nr_segs;
704 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
706 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
709 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
710 unsigned long nr_segs, loff_t pos)
712 struct sock_iocb siocb, *x;
714 if (pos != 0)
715 return -ESPIPE;
717 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
718 return 0;
721 x = alloc_sock_iocb(iocb, &siocb);
722 if (!x)
723 return -ENOMEM;
724 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
727 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
728 struct file *file, const struct iovec *iov,
729 unsigned long nr_segs)
731 struct socket *sock = file->private_data;
732 size_t size = 0;
733 int i;
735 for (i = 0; i < nr_segs; i++)
736 size += iov[i].iov_len;
738 msg->msg_name = NULL;
739 msg->msg_namelen = 0;
740 msg->msg_control = NULL;
741 msg->msg_controllen = 0;
742 msg->msg_iov = (struct iovec *)iov;
743 msg->msg_iovlen = nr_segs;
744 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
745 if (sock->type == SOCK_SEQPACKET)
746 msg->msg_flags |= MSG_EOR;
748 return __sock_sendmsg(iocb, sock, msg, size);
751 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
752 unsigned long nr_segs, loff_t pos)
754 struct sock_iocb siocb, *x;
756 if (pos != 0)
757 return -ESPIPE;
759 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
760 return 0;
762 x = alloc_sock_iocb(iocb, &siocb);
763 if (!x)
764 return -ENOMEM;
766 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
770 * Atomic setting of ioctl hooks to avoid race
771 * with module unload.
774 static DEFINE_MUTEX(br_ioctl_mutex);
775 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
777 void brioctl_set(int (*hook) (unsigned int, void __user *))
779 mutex_lock(&br_ioctl_mutex);
780 br_ioctl_hook = hook;
781 mutex_unlock(&br_ioctl_mutex);
784 EXPORT_SYMBOL(brioctl_set);
786 static DEFINE_MUTEX(vlan_ioctl_mutex);
787 static int (*vlan_ioctl_hook) (void __user *arg);
789 void vlan_ioctl_set(int (*hook) (void __user *))
791 mutex_lock(&vlan_ioctl_mutex);
792 vlan_ioctl_hook = hook;
793 mutex_unlock(&vlan_ioctl_mutex);
796 EXPORT_SYMBOL(vlan_ioctl_set);
798 static DEFINE_MUTEX(dlci_ioctl_mutex);
799 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
801 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
803 mutex_lock(&dlci_ioctl_mutex);
804 dlci_ioctl_hook = hook;
805 mutex_unlock(&dlci_ioctl_mutex);
808 EXPORT_SYMBOL(dlci_ioctl_set);
811 * With an ioctl, arg may well be a user mode pointer, but we don't know
812 * what to do with it - that's up to the protocol still.
815 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
817 struct socket *sock;
818 void __user *argp = (void __user *)arg;
819 int pid, err;
821 sock = file->private_data;
822 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
823 err = dev_ioctl(cmd, argp);
824 } else
825 #ifdef CONFIG_WIRELESS_EXT
826 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
827 err = dev_ioctl(cmd, argp);
828 } else
829 #endif /* CONFIG_WIRELESS_EXT */
830 switch (cmd) {
831 case FIOSETOWN:
832 case SIOCSPGRP:
833 err = -EFAULT;
834 if (get_user(pid, (int __user *)argp))
835 break;
836 err = f_setown(sock->file, pid, 1);
837 break;
838 case FIOGETOWN:
839 case SIOCGPGRP:
840 err = put_user(f_getown(sock->file),
841 (int __user *)argp);
842 break;
843 case SIOCGIFBR:
844 case SIOCSIFBR:
845 case SIOCBRADDBR:
846 case SIOCBRDELBR:
847 err = -ENOPKG;
848 if (!br_ioctl_hook)
849 request_module("bridge");
851 mutex_lock(&br_ioctl_mutex);
852 if (br_ioctl_hook)
853 err = br_ioctl_hook(cmd, argp);
854 mutex_unlock(&br_ioctl_mutex);
855 break;
856 case SIOCGIFVLAN:
857 case SIOCSIFVLAN:
858 err = -ENOPKG;
859 if (!vlan_ioctl_hook)
860 request_module("8021q");
862 mutex_lock(&vlan_ioctl_mutex);
863 if (vlan_ioctl_hook)
864 err = vlan_ioctl_hook(argp);
865 mutex_unlock(&vlan_ioctl_mutex);
866 break;
867 case SIOCADDDLCI:
868 case SIOCDELDLCI:
869 err = -ENOPKG;
870 if (!dlci_ioctl_hook)
871 request_module("dlci");
873 if (dlci_ioctl_hook) {
874 mutex_lock(&dlci_ioctl_mutex);
875 err = dlci_ioctl_hook(cmd, argp);
876 mutex_unlock(&dlci_ioctl_mutex);
878 break;
879 default:
880 err = sock->ops->ioctl(sock, cmd, arg);
883 * If this ioctl is unknown try to hand it down
884 * to the NIC driver.
886 if (err == -ENOIOCTLCMD)
887 err = dev_ioctl(cmd, argp);
888 break;
890 return err;
893 int sock_create_lite(int family, int type, int protocol, struct socket **res)
895 int err;
896 struct socket *sock = NULL;
898 err = security_socket_create(family, type, protocol, 1);
899 if (err)
900 goto out;
902 sock = sock_alloc();
903 if (!sock) {
904 err = -ENOMEM;
905 goto out;
908 sock->type = type;
909 err = security_socket_post_create(sock, family, type, protocol, 1);
910 if (err)
911 goto out_release;
913 out:
914 *res = sock;
915 return err;
916 out_release:
917 sock_release(sock);
918 sock = NULL;
919 goto out;
922 /* No kernel lock held - perfect */
923 static unsigned int sock_poll(struct file *file, poll_table *wait)
925 struct socket *sock;
928 * We can't return errors to poll, so it's either yes or no.
930 sock = file->private_data;
931 return sock->ops->poll(file, sock, wait);
934 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
936 struct socket *sock = file->private_data;
938 return sock->ops->mmap(file, sock, vma);
941 static int sock_close(struct inode *inode, struct file *filp)
944 * It was possible the inode is NULL we were
945 * closing an unfinished socket.
948 if (!inode) {
949 printk(KERN_DEBUG "sock_close: NULL inode\n");
950 return 0;
952 sock_fasync(-1, filp, 0);
953 sock_release(SOCKET_I(inode));
954 return 0;
958 * Update the socket async list
960 * Fasync_list locking strategy.
962 * 1. fasync_list is modified only under process context socket lock
963 * i.e. under semaphore.
964 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
965 * or under socket lock.
966 * 3. fasync_list can be used from softirq context, so that
967 * modification under socket lock have to be enhanced with
968 * write_lock_bh(&sk->sk_callback_lock).
969 * --ANK (990710)
972 static int sock_fasync(int fd, struct file *filp, int on)
974 struct fasync_struct *fa, *fna = NULL, **prev;
975 struct socket *sock;
976 struct sock *sk;
978 if (on) {
979 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
980 if (fna == NULL)
981 return -ENOMEM;
984 sock = filp->private_data;
986 sk = sock->sk;
987 if (sk == NULL) {
988 kfree(fna);
989 return -EINVAL;
992 lock_sock(sk);
994 prev = &(sock->fasync_list);
996 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
997 if (fa->fa_file == filp)
998 break;
1000 if (on) {
1001 if (fa != NULL) {
1002 write_lock_bh(&sk->sk_callback_lock);
1003 fa->fa_fd = fd;
1004 write_unlock_bh(&sk->sk_callback_lock);
1006 kfree(fna);
1007 goto out;
1009 fna->fa_file = filp;
1010 fna->fa_fd = fd;
1011 fna->magic = FASYNC_MAGIC;
1012 fna->fa_next = sock->fasync_list;
1013 write_lock_bh(&sk->sk_callback_lock);
1014 sock->fasync_list = fna;
1015 write_unlock_bh(&sk->sk_callback_lock);
1016 } else {
1017 if (fa != NULL) {
1018 write_lock_bh(&sk->sk_callback_lock);
1019 *prev = fa->fa_next;
1020 write_unlock_bh(&sk->sk_callback_lock);
1021 kfree(fa);
1025 out:
1026 release_sock(sock->sk);
1027 return 0;
1030 /* This function may be called only under socket lock or callback_lock */
1032 int sock_wake_async(struct socket *sock, int how, int band)
1034 if (!sock || !sock->fasync_list)
1035 return -1;
1036 switch (how) {
1037 case 1:
1039 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1040 break;
1041 goto call_kill;
1042 case 2:
1043 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1044 break;
1045 /* fall through */
1046 case 0:
1047 call_kill:
1048 __kill_fasync(sock->fasync_list, SIGIO, band);
1049 break;
1050 case 3:
1051 __kill_fasync(sock->fasync_list, SIGURG, band);
1053 return 0;
1056 static int __sock_create(int family, int type, int protocol,
1057 struct socket **res, int kern)
1059 int err;
1060 struct socket *sock;
1061 const struct net_proto_family *pf;
1064 * Check protocol is in range
1066 if (family < 0 || family >= NPROTO)
1067 return -EAFNOSUPPORT;
1068 if (type < 0 || type >= SOCK_MAX)
1069 return -EINVAL;
1071 /* Compatibility.
1073 This uglymoron is moved from INET layer to here to avoid
1074 deadlock in module load.
1076 if (family == PF_INET && type == SOCK_PACKET) {
1077 static int warned;
1078 if (!warned) {
1079 warned = 1;
1080 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1081 current->comm);
1083 family = PF_PACKET;
1086 err = security_socket_create(family, type, protocol, kern);
1087 if (err)
1088 return err;
1091 * Allocate the socket and allow the family to set things up. if
1092 * the protocol is 0, the family is instructed to select an appropriate
1093 * default.
1095 sock = sock_alloc();
1096 if (!sock) {
1097 if (net_ratelimit())
1098 printk(KERN_WARNING "socket: no more sockets\n");
1099 return -ENFILE; /* Not exactly a match, but its the
1100 closest posix thing */
1103 sock->type = type;
1105 #if defined(CONFIG_KMOD)
1106 /* Attempt to load a protocol module if the find failed.
1108 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1109 * requested real, full-featured networking support upon configuration.
1110 * Otherwise module support will break!
1112 if (net_families[family] == NULL)
1113 request_module("net-pf-%d", family);
1114 #endif
1116 rcu_read_lock();
1117 pf = rcu_dereference(net_families[family]);
1118 err = -EAFNOSUPPORT;
1119 if (!pf)
1120 goto out_release;
1123 * We will call the ->create function, that possibly is in a loadable
1124 * module, so we have to bump that loadable module refcnt first.
1126 if (!try_module_get(pf->owner))
1127 goto out_release;
1129 /* Now protected by module ref count */
1130 rcu_read_unlock();
1132 err = pf->create(sock, protocol);
1133 if (err < 0)
1134 goto out_module_put;
1137 * Now to bump the refcnt of the [loadable] module that owns this
1138 * socket at sock_release time we decrement its refcnt.
1140 if (!try_module_get(sock->ops->owner))
1141 goto out_module_busy;
1144 * Now that we're done with the ->create function, the [loadable]
1145 * module can have its refcnt decremented
1147 module_put(pf->owner);
1148 err = security_socket_post_create(sock, family, type, protocol, kern);
1149 if (err)
1150 goto out_release;
1151 *res = sock;
1153 return 0;
1155 out_module_busy:
1156 err = -EAFNOSUPPORT;
1157 out_module_put:
1158 sock->ops = NULL;
1159 module_put(pf->owner);
1160 out_sock_release:
1161 sock_release(sock);
1162 return err;
1164 out_release:
1165 rcu_read_unlock();
1166 goto out_sock_release;
1169 int sock_create(int family, int type, int protocol, struct socket **res)
1171 return __sock_create(family, type, protocol, res, 0);
1174 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1176 return __sock_create(family, type, protocol, res, 1);
1179 asmlinkage long sys_socket(int family, int type, int protocol)
1181 int retval;
1182 struct socket *sock;
1184 retval = sock_create(family, type, protocol, &sock);
1185 if (retval < 0)
1186 goto out;
1188 retval = sock_map_fd(sock);
1189 if (retval < 0)
1190 goto out_release;
1192 out:
1193 /* It may be already another descriptor 8) Not kernel problem. */
1194 return retval;
1196 out_release:
1197 sock_release(sock);
1198 return retval;
1202 * Create a pair of connected sockets.
1205 asmlinkage long sys_socketpair(int family, int type, int protocol,
1206 int __user *usockvec)
1208 struct socket *sock1, *sock2;
1209 int fd1, fd2, err;
1212 * Obtain the first socket and check if the underlying protocol
1213 * supports the socketpair call.
1216 err = sock_create(family, type, protocol, &sock1);
1217 if (err < 0)
1218 goto out;
1220 err = sock_create(family, type, protocol, &sock2);
1221 if (err < 0)
1222 goto out_release_1;
1224 err = sock1->ops->socketpair(sock1, sock2);
1225 if (err < 0)
1226 goto out_release_both;
1228 fd1 = fd2 = -1;
1230 err = sock_map_fd(sock1);
1231 if (err < 0)
1232 goto out_release_both;
1233 fd1 = err;
1235 err = sock_map_fd(sock2);
1236 if (err < 0)
1237 goto out_close_1;
1238 fd2 = err;
1240 /* fd1 and fd2 may be already another descriptors.
1241 * Not kernel problem.
1244 err = put_user(fd1, &usockvec[0]);
1245 if (!err)
1246 err = put_user(fd2, &usockvec[1]);
1247 if (!err)
1248 return 0;
1250 sys_close(fd2);
1251 sys_close(fd1);
1252 return err;
1254 out_close_1:
1255 sock_release(sock2);
1256 sys_close(fd1);
1257 return err;
1259 out_release_both:
1260 sock_release(sock2);
1261 out_release_1:
1262 sock_release(sock1);
1263 out:
1264 return err;
1268 * Bind a name to a socket. Nothing much to do here since it's
1269 * the protocol's responsibility to handle the local address.
1271 * We move the socket address to kernel space before we call
1272 * the protocol layer (having also checked the address is ok).
1275 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1277 struct socket *sock;
1278 char address[MAX_SOCK_ADDR];
1279 int err, fput_needed;
1281 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1282 if(sock) {
1283 err = move_addr_to_kernel(umyaddr, addrlen, address);
1284 if (err >= 0) {
1285 err = security_socket_bind(sock,
1286 (struct sockaddr *)address,
1287 addrlen);
1288 if (!err)
1289 err = sock->ops->bind(sock,
1290 (struct sockaddr *)
1291 address, addrlen);
1293 fput_light(sock->file, fput_needed);
1295 return err;
1299 * Perform a listen. Basically, we allow the protocol to do anything
1300 * necessary for a listen, and if that works, we mark the socket as
1301 * ready for listening.
1304 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1306 asmlinkage long sys_listen(int fd, int backlog)
1308 struct socket *sock;
1309 int err, fput_needed;
1311 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1312 if (sock) {
1313 if ((unsigned)backlog > sysctl_somaxconn)
1314 backlog = sysctl_somaxconn;
1316 err = security_socket_listen(sock, backlog);
1317 if (!err)
1318 err = sock->ops->listen(sock, backlog);
1320 fput_light(sock->file, fput_needed);
1322 return err;
1326 * For accept, we attempt to create a new socket, set up the link
1327 * with the client, wake up the client, then return the new
1328 * connected fd. We collect the address of the connector in kernel
1329 * space and move it to user at the very end. This is unclean because
1330 * we open the socket then return an error.
1332 * 1003.1g adds the ability to recvmsg() to query connection pending
1333 * status to recvmsg. We need to add that support in a way thats
1334 * clean when we restucture accept also.
1337 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1338 int __user *upeer_addrlen)
1340 struct socket *sock, *newsock;
1341 struct file *newfile;
1342 int err, len, newfd, fput_needed;
1343 char address[MAX_SOCK_ADDR];
1345 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1346 if (!sock)
1347 goto out;
1349 err = -ENFILE;
1350 if (!(newsock = sock_alloc()))
1351 goto out_put;
1353 newsock->type = sock->type;
1354 newsock->ops = sock->ops;
1357 * We don't need try_module_get here, as the listening socket (sock)
1358 * has the protocol module (sock->ops->owner) held.
1360 __module_get(newsock->ops->owner);
1362 newfd = sock_alloc_fd(&newfile);
1363 if (unlikely(newfd < 0)) {
1364 err = newfd;
1365 sock_release(newsock);
1366 goto out_put;
1369 err = sock_attach_fd(newsock, newfile);
1370 if (err < 0)
1371 goto out_fd_simple;
1373 err = security_socket_accept(sock, newsock);
1374 if (err)
1375 goto out_fd;
1377 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1378 if (err < 0)
1379 goto out_fd;
1381 if (upeer_sockaddr) {
1382 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1383 &len, 2) < 0) {
1384 err = -ECONNABORTED;
1385 goto out_fd;
1387 err = move_addr_to_user(address, len, upeer_sockaddr,
1388 upeer_addrlen);
1389 if (err < 0)
1390 goto out_fd;
1393 /* File flags are not inherited via accept() unlike another OSes. */
1395 fd_install(newfd, newfile);
1396 err = newfd;
1398 security_socket_post_accept(sock, newsock);
1400 out_put:
1401 fput_light(sock->file, fput_needed);
1402 out:
1403 return err;
1404 out_fd_simple:
1405 sock_release(newsock);
1406 put_filp(newfile);
1407 put_unused_fd(newfd);
1408 goto out_put;
1409 out_fd:
1410 fput(newfile);
1411 put_unused_fd(newfd);
1412 goto out_put;
1416 * Attempt to connect to a socket with the server address. The address
1417 * is in user space so we verify it is OK and move it to kernel space.
1419 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1420 * break bindings
1422 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1423 * other SEQPACKET protocols that take time to connect() as it doesn't
1424 * include the -EINPROGRESS status for such sockets.
1427 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1428 int addrlen)
1430 struct socket *sock;
1431 char address[MAX_SOCK_ADDR];
1432 int err, fput_needed;
1434 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1435 if (!sock)
1436 goto out;
1437 err = move_addr_to_kernel(uservaddr, addrlen, address);
1438 if (err < 0)
1439 goto out_put;
1441 err =
1442 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1443 if (err)
1444 goto out_put;
1446 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1447 sock->file->f_flags);
1448 out_put:
1449 fput_light(sock->file, fput_needed);
1450 out:
1451 return err;
1455 * Get the local address ('name') of a socket object. Move the obtained
1456 * name to user space.
1459 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1460 int __user *usockaddr_len)
1462 struct socket *sock;
1463 char address[MAX_SOCK_ADDR];
1464 int len, err, fput_needed;
1466 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1467 if (!sock)
1468 goto out;
1470 err = security_socket_getsockname(sock);
1471 if (err)
1472 goto out_put;
1474 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1475 if (err)
1476 goto out_put;
1477 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1479 out_put:
1480 fput_light(sock->file, fput_needed);
1481 out:
1482 return err;
1486 * Get the remote address ('name') of a socket object. Move the obtained
1487 * name to user space.
1490 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1491 int __user *usockaddr_len)
1493 struct socket *sock;
1494 char address[MAX_SOCK_ADDR];
1495 int len, err, fput_needed;
1497 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1498 if (sock != NULL) {
1499 err = security_socket_getpeername(sock);
1500 if (err) {
1501 fput_light(sock->file, fput_needed);
1502 return err;
1505 err =
1506 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1508 if (!err)
1509 err = move_addr_to_user(address, len, usockaddr,
1510 usockaddr_len);
1511 fput_light(sock->file, fput_needed);
1513 return err;
1517 * Send a datagram to a given address. We move the address into kernel
1518 * space and check the user space data area is readable before invoking
1519 * the protocol.
1522 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1523 unsigned flags, struct sockaddr __user *addr,
1524 int addr_len)
1526 struct socket *sock;
1527 char address[MAX_SOCK_ADDR];
1528 int err;
1529 struct msghdr msg;
1530 struct iovec iov;
1531 int fput_needed;
1532 struct file *sock_file;
1534 sock_file = fget_light(fd, &fput_needed);
1535 if (!sock_file)
1536 return -EBADF;
1538 sock = sock_from_file(sock_file, &err);
1539 if (!sock)
1540 goto out_put;
1541 iov.iov_base = buff;
1542 iov.iov_len = len;
1543 msg.msg_name = NULL;
1544 msg.msg_iov = &iov;
1545 msg.msg_iovlen = 1;
1546 msg.msg_control = NULL;
1547 msg.msg_controllen = 0;
1548 msg.msg_namelen = 0;
1549 if (addr) {
1550 err = move_addr_to_kernel(addr, addr_len, address);
1551 if (err < 0)
1552 goto out_put;
1553 msg.msg_name = address;
1554 msg.msg_namelen = addr_len;
1556 if (sock->file->f_flags & O_NONBLOCK)
1557 flags |= MSG_DONTWAIT;
1558 msg.msg_flags = flags;
1559 err = sock_sendmsg(sock, &msg, len);
1561 out_put:
1562 fput_light(sock_file, fput_needed);
1563 return err;
1567 * Send a datagram down a socket.
1570 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1572 return sys_sendto(fd, buff, len, flags, NULL, 0);
1576 * Receive a frame from the socket and optionally record the address of the
1577 * sender. We verify the buffers are writable and if needed move the
1578 * sender address from kernel to user space.
1581 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1582 unsigned flags, struct sockaddr __user *addr,
1583 int __user *addr_len)
1585 struct socket *sock;
1586 struct iovec iov;
1587 struct msghdr msg;
1588 char address[MAX_SOCK_ADDR];
1589 int err, err2;
1590 struct file *sock_file;
1591 int fput_needed;
1593 sock_file = fget_light(fd, &fput_needed);
1594 if (!sock_file)
1595 return -EBADF;
1597 sock = sock_from_file(sock_file, &err);
1598 if (!sock)
1599 goto out;
1601 msg.msg_control = NULL;
1602 msg.msg_controllen = 0;
1603 msg.msg_iovlen = 1;
1604 msg.msg_iov = &iov;
1605 iov.iov_len = size;
1606 iov.iov_base = ubuf;
1607 msg.msg_name = address;
1608 msg.msg_namelen = MAX_SOCK_ADDR;
1609 if (sock->file->f_flags & O_NONBLOCK)
1610 flags |= MSG_DONTWAIT;
1611 err = sock_recvmsg(sock, &msg, size, flags);
1613 if (err >= 0 && addr != NULL) {
1614 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1615 if (err2 < 0)
1616 err = err2;
1618 out:
1619 fput_light(sock_file, fput_needed);
1620 return err;
1624 * Receive a datagram from a socket.
1627 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1628 unsigned flags)
1630 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1634 * Set a socket option. Because we don't know the option lengths we have
1635 * to pass the user mode parameter for the protocols to sort out.
1638 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1639 char __user *optval, int optlen)
1641 int err, fput_needed;
1642 struct socket *sock;
1644 if (optlen < 0)
1645 return -EINVAL;
1647 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1648 if (sock != NULL) {
1649 err = security_socket_setsockopt(sock, level, optname);
1650 if (err)
1651 goto out_put;
1653 if (level == SOL_SOCKET)
1654 err =
1655 sock_setsockopt(sock, level, optname, optval,
1656 optlen);
1657 else
1658 err =
1659 sock->ops->setsockopt(sock, level, optname, optval,
1660 optlen);
1661 out_put:
1662 fput_light(sock->file, fput_needed);
1664 return err;
1668 * Get a socket option. Because we don't know the option lengths we have
1669 * to pass a user mode parameter for the protocols to sort out.
1672 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1673 char __user *optval, int __user *optlen)
1675 int err, fput_needed;
1676 struct socket *sock;
1678 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1679 if (sock != NULL) {
1680 err = security_socket_getsockopt(sock, level, optname);
1681 if (err)
1682 goto out_put;
1684 if (level == SOL_SOCKET)
1685 err =
1686 sock_getsockopt(sock, level, optname, optval,
1687 optlen);
1688 else
1689 err =
1690 sock->ops->getsockopt(sock, level, optname, optval,
1691 optlen);
1692 out_put:
1693 fput_light(sock->file, fput_needed);
1695 return err;
1699 * Shutdown a socket.
1702 asmlinkage long sys_shutdown(int fd, int how)
1704 int err, fput_needed;
1705 struct socket *sock;
1707 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 if (sock != NULL) {
1709 err = security_socket_shutdown(sock, how);
1710 if (!err)
1711 err = sock->ops->shutdown(sock, how);
1712 fput_light(sock->file, fput_needed);
1714 return err;
1717 /* A couple of helpful macros for getting the address of the 32/64 bit
1718 * fields which are the same type (int / unsigned) on our platforms.
1720 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1721 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1722 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1725 * BSD sendmsg interface
1728 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1730 struct compat_msghdr __user *msg_compat =
1731 (struct compat_msghdr __user *)msg;
1732 struct socket *sock;
1733 char address[MAX_SOCK_ADDR];
1734 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1735 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1736 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1737 /* 20 is size of ipv6_pktinfo */
1738 unsigned char *ctl_buf = ctl;
1739 struct msghdr msg_sys;
1740 int err, ctl_len, iov_size, total_len;
1741 int fput_needed;
1743 err = -EFAULT;
1744 if (MSG_CMSG_COMPAT & flags) {
1745 if (get_compat_msghdr(&msg_sys, msg_compat))
1746 return -EFAULT;
1748 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1749 return -EFAULT;
1751 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1752 if (!sock)
1753 goto out;
1755 /* do not move before msg_sys is valid */
1756 err = -EMSGSIZE;
1757 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1758 goto out_put;
1760 /* Check whether to allocate the iovec area */
1761 err = -ENOMEM;
1762 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1763 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1764 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1765 if (!iov)
1766 goto out_put;
1769 /* This will also move the address data into kernel space */
1770 if (MSG_CMSG_COMPAT & flags) {
1771 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1772 } else
1773 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1774 if (err < 0)
1775 goto out_freeiov;
1776 total_len = err;
1778 err = -ENOBUFS;
1780 if (msg_sys.msg_controllen > INT_MAX)
1781 goto out_freeiov;
1782 ctl_len = msg_sys.msg_controllen;
1783 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1784 err =
1785 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1786 sizeof(ctl));
1787 if (err)
1788 goto out_freeiov;
1789 ctl_buf = msg_sys.msg_control;
1790 ctl_len = msg_sys.msg_controllen;
1791 } else if (ctl_len) {
1792 if (ctl_len > sizeof(ctl)) {
1793 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1794 if (ctl_buf == NULL)
1795 goto out_freeiov;
1797 err = -EFAULT;
1799 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1800 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1801 * checking falls down on this.
1803 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1804 ctl_len))
1805 goto out_freectl;
1806 msg_sys.msg_control = ctl_buf;
1808 msg_sys.msg_flags = flags;
1810 if (sock->file->f_flags & O_NONBLOCK)
1811 msg_sys.msg_flags |= MSG_DONTWAIT;
1812 err = sock_sendmsg(sock, &msg_sys, total_len);
1814 out_freectl:
1815 if (ctl_buf != ctl)
1816 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1817 out_freeiov:
1818 if (iov != iovstack)
1819 sock_kfree_s(sock->sk, iov, iov_size);
1820 out_put:
1821 fput_light(sock->file, fput_needed);
1822 out:
1823 return err;
1827 * BSD recvmsg interface
1830 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1831 unsigned int flags)
1833 struct compat_msghdr __user *msg_compat =
1834 (struct compat_msghdr __user *)msg;
1835 struct socket *sock;
1836 struct iovec iovstack[UIO_FASTIOV];
1837 struct iovec *iov = iovstack;
1838 struct msghdr msg_sys;
1839 unsigned long cmsg_ptr;
1840 int err, iov_size, total_len, len;
1841 int fput_needed;
1843 /* kernel mode address */
1844 char addr[MAX_SOCK_ADDR];
1846 /* user mode address pointers */
1847 struct sockaddr __user *uaddr;
1848 int __user *uaddr_len;
1850 if (MSG_CMSG_COMPAT & flags) {
1851 if (get_compat_msghdr(&msg_sys, msg_compat))
1852 return -EFAULT;
1854 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1855 return -EFAULT;
1857 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858 if (!sock)
1859 goto out;
1861 err = -EMSGSIZE;
1862 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1863 goto out_put;
1865 /* Check whether to allocate the iovec area */
1866 err = -ENOMEM;
1867 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1868 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1869 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1870 if (!iov)
1871 goto out_put;
1875 * Save the user-mode address (verify_iovec will change the
1876 * kernel msghdr to use the kernel address space)
1879 uaddr = (void __user *)msg_sys.msg_name;
1880 uaddr_len = COMPAT_NAMELEN(msg);
1881 if (MSG_CMSG_COMPAT & flags) {
1882 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1883 } else
1884 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1885 if (err < 0)
1886 goto out_freeiov;
1887 total_len = err;
1889 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1890 msg_sys.msg_flags = 0;
1891 if (MSG_CMSG_COMPAT & flags)
1892 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1894 if (sock->file->f_flags & O_NONBLOCK)
1895 flags |= MSG_DONTWAIT;
1896 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1897 if (err < 0)
1898 goto out_freeiov;
1899 len = err;
1901 if (uaddr != NULL) {
1902 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1903 uaddr_len);
1904 if (err < 0)
1905 goto out_freeiov;
1907 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1908 COMPAT_FLAGS(msg));
1909 if (err)
1910 goto out_freeiov;
1911 if (MSG_CMSG_COMPAT & flags)
1912 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1913 &msg_compat->msg_controllen);
1914 else
1915 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1916 &msg->msg_controllen);
1917 if (err)
1918 goto out_freeiov;
1919 err = len;
1921 out_freeiov:
1922 if (iov != iovstack)
1923 sock_kfree_s(sock->sk, iov, iov_size);
1924 out_put:
1925 fput_light(sock->file, fput_needed);
1926 out:
1927 return err;
1930 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1932 /* Argument list sizes for sys_socketcall */
1933 #define AL(x) ((x) * sizeof(unsigned long))
1934 static const unsigned char nargs[18]={
1935 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1936 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1937 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1940 #undef AL
1943 * System call vectors.
1945 * Argument checking cleaned up. Saved 20% in size.
1946 * This function doesn't need to set the kernel lock because
1947 * it is set by the callees.
1950 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1952 unsigned long a[6];
1953 unsigned long a0, a1;
1954 int err;
1956 if (call < 1 || call > SYS_RECVMSG)
1957 return -EINVAL;
1959 /* copy_from_user should be SMP safe. */
1960 if (copy_from_user(a, args, nargs[call]))
1961 return -EFAULT;
1963 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
1964 if (err)
1965 return err;
1967 a0 = a[0];
1968 a1 = a[1];
1970 switch (call) {
1971 case SYS_SOCKET:
1972 err = sys_socket(a0, a1, a[2]);
1973 break;
1974 case SYS_BIND:
1975 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
1976 break;
1977 case SYS_CONNECT:
1978 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1979 break;
1980 case SYS_LISTEN:
1981 err = sys_listen(a0, a1);
1982 break;
1983 case SYS_ACCEPT:
1984 err =
1985 sys_accept(a0, (struct sockaddr __user *)a1,
1986 (int __user *)a[2]);
1987 break;
1988 case SYS_GETSOCKNAME:
1989 err =
1990 sys_getsockname(a0, (struct sockaddr __user *)a1,
1991 (int __user *)a[2]);
1992 break;
1993 case SYS_GETPEERNAME:
1994 err =
1995 sys_getpeername(a0, (struct sockaddr __user *)a1,
1996 (int __user *)a[2]);
1997 break;
1998 case SYS_SOCKETPAIR:
1999 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2000 break;
2001 case SYS_SEND:
2002 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2003 break;
2004 case SYS_SENDTO:
2005 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2006 (struct sockaddr __user *)a[4], a[5]);
2007 break;
2008 case SYS_RECV:
2009 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2010 break;
2011 case SYS_RECVFROM:
2012 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2013 (struct sockaddr __user *)a[4],
2014 (int __user *)a[5]);
2015 break;
2016 case SYS_SHUTDOWN:
2017 err = sys_shutdown(a0, a1);
2018 break;
2019 case SYS_SETSOCKOPT:
2020 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2021 break;
2022 case SYS_GETSOCKOPT:
2023 err =
2024 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2025 (int __user *)a[4]);
2026 break;
2027 case SYS_SENDMSG:
2028 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2029 break;
2030 case SYS_RECVMSG:
2031 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2032 break;
2033 default:
2034 err = -EINVAL;
2035 break;
2037 return err;
2040 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2043 * sock_register - add a socket protocol handler
2044 * @ops: description of protocol
2046 * This function is called by a protocol handler that wants to
2047 * advertise its address family, and have it linked into the
2048 * socket interface. The value ops->family coresponds to the
2049 * socket system call protocol family.
2051 int sock_register(const struct net_proto_family *ops)
2053 int err;
2055 if (ops->family >= NPROTO) {
2056 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2057 NPROTO);
2058 return -ENOBUFS;
2061 spin_lock(&net_family_lock);
2062 if (net_families[ops->family])
2063 err = -EEXIST;
2064 else {
2065 net_families[ops->family] = ops;
2066 err = 0;
2068 spin_unlock(&net_family_lock);
2070 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2071 return err;
2075 * sock_unregister - remove a protocol handler
2076 * @family: protocol family to remove
2078 * This function is called by a protocol handler that wants to
2079 * remove its address family, and have it unlinked from the
2080 * new socket creation.
2082 * If protocol handler is a module, then it can use module reference
2083 * counts to protect against new references. If protocol handler is not
2084 * a module then it needs to provide its own protection in
2085 * the ops->create routine.
2087 void sock_unregister(int family)
2089 BUG_ON(family < 0 || family >= NPROTO);
2091 spin_lock(&net_family_lock);
2092 net_families[family] = NULL;
2093 spin_unlock(&net_family_lock);
2095 synchronize_rcu();
2097 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2100 static int __init sock_init(void)
2103 * Initialize sock SLAB cache.
2106 sk_init();
2109 * Initialize skbuff SLAB cache
2111 skb_init();
2114 * Initialize the protocols module.
2117 init_inodecache();
2118 register_filesystem(&sock_fs_type);
2119 sock_mnt = kern_mount(&sock_fs_type);
2121 /* The real protocol initialization is performed in later initcalls.
2124 #ifdef CONFIG_NETFILTER
2125 netfilter_init();
2126 #endif
2128 return 0;
2131 core_initcall(sock_init); /* early initcall */
2133 #ifdef CONFIG_PROC_FS
2134 void socket_seq_show(struct seq_file *seq)
2136 int cpu;
2137 int counter = 0;
2139 for_each_possible_cpu(cpu)
2140 counter += per_cpu(sockets_in_use, cpu);
2142 /* It can be negative, by the way. 8) */
2143 if (counter < 0)
2144 counter = 0;
2146 seq_printf(seq, "sockets: used %d\n", counter);
2148 #endif /* CONFIG_PROC_FS */
2150 #ifdef CONFIG_COMPAT
2151 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2152 unsigned long arg)
2154 struct socket *sock = file->private_data;
2155 int ret = -ENOIOCTLCMD;
2157 if (sock->ops->compat_ioctl)
2158 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2160 return ret;
2162 #endif
2164 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2166 return sock->ops->bind(sock, addr, addrlen);
2169 int kernel_listen(struct socket *sock, int backlog)
2171 return sock->ops->listen(sock, backlog);
2174 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2176 struct sock *sk = sock->sk;
2177 int err;
2179 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2180 newsock);
2181 if (err < 0)
2182 goto done;
2184 err = sock->ops->accept(sock, *newsock, flags);
2185 if (err < 0) {
2186 sock_release(*newsock);
2187 goto done;
2190 (*newsock)->ops = sock->ops;
2192 done:
2193 return err;
2196 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2197 int flags)
2199 return sock->ops->connect(sock, addr, addrlen, flags);
2202 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2203 int *addrlen)
2205 return sock->ops->getname(sock, addr, addrlen, 0);
2208 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2209 int *addrlen)
2211 return sock->ops->getname(sock, addr, addrlen, 1);
2214 int kernel_getsockopt(struct socket *sock, int level, int optname,
2215 char *optval, int *optlen)
2217 mm_segment_t oldfs = get_fs();
2218 int err;
2220 set_fs(KERNEL_DS);
2221 if (level == SOL_SOCKET)
2222 err = sock_getsockopt(sock, level, optname, optval, optlen);
2223 else
2224 err = sock->ops->getsockopt(sock, level, optname, optval,
2225 optlen);
2226 set_fs(oldfs);
2227 return err;
2230 int kernel_setsockopt(struct socket *sock, int level, int optname,
2231 char *optval, int optlen)
2233 mm_segment_t oldfs = get_fs();
2234 int err;
2236 set_fs(KERNEL_DS);
2237 if (level == SOL_SOCKET)
2238 err = sock_setsockopt(sock, level, optname, optval, optlen);
2239 else
2240 err = sock->ops->setsockopt(sock, level, optname, optval,
2241 optlen);
2242 set_fs(oldfs);
2243 return err;
2246 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2247 size_t size, int flags)
2249 if (sock->ops->sendpage)
2250 return sock->ops->sendpage(sock, page, offset, size, flags);
2252 return sock_no_sendpage(sock, page, offset, size, flags);
2255 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2257 mm_segment_t oldfs = get_fs();
2258 int err;
2260 set_fs(KERNEL_DS);
2261 err = sock->ops->ioctl(sock, cmd, arg);
2262 set_fs(oldfs);
2264 return err;
2267 /* ABI emulation layers need these two */
2268 EXPORT_SYMBOL(move_addr_to_kernel);
2269 EXPORT_SYMBOL(move_addr_to_user);
2270 EXPORT_SYMBOL(sock_create);
2271 EXPORT_SYMBOL(sock_create_kern);
2272 EXPORT_SYMBOL(sock_create_lite);
2273 EXPORT_SYMBOL(sock_map_fd);
2274 EXPORT_SYMBOL(sock_recvmsg);
2275 EXPORT_SYMBOL(sock_register);
2276 EXPORT_SYMBOL(sock_release);
2277 EXPORT_SYMBOL(sock_sendmsg);
2278 EXPORT_SYMBOL(sock_unregister);
2279 EXPORT_SYMBOL(sock_wake_async);
2280 EXPORT_SYMBOL(sockfd_lookup);
2281 EXPORT_SYMBOL(kernel_sendmsg);
2282 EXPORT_SYMBOL(kernel_recvmsg);
2283 EXPORT_SYMBOL(kernel_bind);
2284 EXPORT_SYMBOL(kernel_listen);
2285 EXPORT_SYMBOL(kernel_accept);
2286 EXPORT_SYMBOL(kernel_connect);
2287 EXPORT_SYMBOL(kernel_getsockname);
2288 EXPORT_SYMBOL(kernel_getpeername);
2289 EXPORT_SYMBOL(kernel_getsockopt);
2290 EXPORT_SYMBOL(kernel_setsockopt);
2291 EXPORT_SYMBOL(kernel_sendpage);
2292 EXPORT_SYMBOL(kernel_sock_ioctl);