xfs: fix unreferenced var error in xfs_buf.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / linux-2.6 / xfs_buf.c
blobd917146c043bba9d01a8e876af5f899eb22c50b2
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct workqueue_struct *xfslogd_workqueue;
50 struct workqueue_struct *xfsdatad_workqueue;
51 struct workqueue_struct *xfsconvertd_workqueue;
53 #ifdef XFS_BUF_LOCK_TRACKING
54 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
57 #else
58 # define XB_SET_OWNER(bp) do { } while (0)
59 # define XB_CLEAR_OWNER(bp) do { } while (0)
60 # define XB_GET_OWNER(bp) do { } while (0)
61 #endif
63 #define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
67 #define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
70 #define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72 #define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
75 static inline int
76 xfs_buf_is_vmapped(
77 struct xfs_buf *bp)
80 * Return true if the buffer is vmapped.
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
86 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
89 static inline int
90 xfs_buf_vmap_len(
91 struct xfs_buf *bp)
93 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
97 * xfs_buf_lru_add - add a buffer to the LRU.
99 * The LRU takes a new reference to the buffer so that it will only be freed
100 * once the shrinker takes the buffer off the LRU.
102 STATIC void
103 xfs_buf_lru_add(
104 struct xfs_buf *bp)
106 struct xfs_buftarg *btp = bp->b_target;
108 spin_lock(&btp->bt_lru_lock);
109 if (list_empty(&bp->b_lru)) {
110 atomic_inc(&bp->b_hold);
111 list_add_tail(&bp->b_lru, &btp->bt_lru);
112 btp->bt_lru_nr++;
114 spin_unlock(&btp->bt_lru_lock);
118 * xfs_buf_lru_del - remove a buffer from the LRU
120 * The unlocked check is safe here because it only occurs when there are not
121 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
122 * to optimise the shrinker removing the buffer from the LRU and calling
123 * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
124 * bt_lru_lock.
126 STATIC void
127 xfs_buf_lru_del(
128 struct xfs_buf *bp)
130 struct xfs_buftarg *btp = bp->b_target;
132 if (list_empty(&bp->b_lru))
133 return;
135 spin_lock(&btp->bt_lru_lock);
136 if (!list_empty(&bp->b_lru)) {
137 list_del_init(&bp->b_lru);
138 btp->bt_lru_nr--;
140 spin_unlock(&btp->bt_lru_lock);
144 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
145 * b_lru_ref count so that the buffer is freed immediately when the buffer
146 * reference count falls to zero. If the buffer is already on the LRU, we need
147 * to remove the reference that LRU holds on the buffer.
149 * This prevents build-up of stale buffers on the LRU.
151 void
152 xfs_buf_stale(
153 struct xfs_buf *bp)
155 bp->b_flags |= XBF_STALE;
156 atomic_set(&(bp)->b_lru_ref, 0);
157 if (!list_empty(&bp->b_lru)) {
158 struct xfs_buftarg *btp = bp->b_target;
160 spin_lock(&btp->bt_lru_lock);
161 if (!list_empty(&bp->b_lru)) {
162 list_del_init(&bp->b_lru);
163 btp->bt_lru_nr--;
164 atomic_dec(&bp->b_hold);
166 spin_unlock(&btp->bt_lru_lock);
168 ASSERT(atomic_read(&bp->b_hold) >= 1);
171 STATIC void
172 _xfs_buf_initialize(
173 xfs_buf_t *bp,
174 xfs_buftarg_t *target,
175 xfs_off_t range_base,
176 size_t range_length,
177 xfs_buf_flags_t flags)
180 * We don't want certain flags to appear in b_flags.
182 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
184 memset(bp, 0, sizeof(xfs_buf_t));
185 atomic_set(&bp->b_hold, 1);
186 atomic_set(&bp->b_lru_ref, 1);
187 init_completion(&bp->b_iowait);
188 INIT_LIST_HEAD(&bp->b_lru);
189 INIT_LIST_HEAD(&bp->b_list);
190 RB_CLEAR_NODE(&bp->b_rbnode);
191 sema_init(&bp->b_sema, 0); /* held, no waiters */
192 XB_SET_OWNER(bp);
193 bp->b_target = target;
194 bp->b_file_offset = range_base;
196 * Set buffer_length and count_desired to the same value initially.
197 * I/O routines should use count_desired, which will be the same in
198 * most cases but may be reset (e.g. XFS recovery).
200 bp->b_buffer_length = bp->b_count_desired = range_length;
201 bp->b_flags = flags;
202 bp->b_bn = XFS_BUF_DADDR_NULL;
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
206 XFS_STATS_INC(xb_create);
208 trace_xfs_buf_init(bp, _RET_IP_);
212 * Allocate a page array capable of holding a specified number
213 * of pages, and point the page buf at it.
215 STATIC int
216 _xfs_buf_get_pages(
217 xfs_buf_t *bp,
218 int page_count,
219 xfs_buf_flags_t flags)
221 /* Make sure that we have a page list */
222 if (bp->b_pages == NULL) {
223 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
224 bp->b_page_count = page_count;
225 if (page_count <= XB_PAGES) {
226 bp->b_pages = bp->b_page_array;
227 } else {
228 bp->b_pages = kmem_alloc(sizeof(struct page *) *
229 page_count, xb_to_km(flags));
230 if (bp->b_pages == NULL)
231 return -ENOMEM;
233 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235 return 0;
239 * Frees b_pages if it was allocated.
241 STATIC void
242 _xfs_buf_free_pages(
243 xfs_buf_t *bp)
245 if (bp->b_pages != bp->b_page_array) {
246 kmem_free(bp->b_pages);
247 bp->b_pages = NULL;
252 * Releases the specified buffer.
254 * The modification state of any associated pages is left unchanged.
255 * The buffer most not be on any hash - use xfs_buf_rele instead for
256 * hashed and refcounted buffers
258 void
259 xfs_buf_free(
260 xfs_buf_t *bp)
262 trace_xfs_buf_free(bp, _RET_IP_);
264 ASSERT(list_empty(&bp->b_lru));
266 if (bp->b_flags & _XBF_PAGES) {
267 uint i;
269 if (xfs_buf_is_vmapped(bp))
270 vm_unmap_ram(bp->b_addr - bp->b_offset,
271 bp->b_page_count);
273 for (i = 0; i < bp->b_page_count; i++) {
274 struct page *page = bp->b_pages[i];
276 __free_page(page);
278 } else if (bp->b_flags & _XBF_KMEM)
279 kmem_free(bp->b_addr);
280 _xfs_buf_free_pages(bp);
281 xfs_buf_deallocate(bp);
285 * Allocates all the pages for buffer in question and builds it's page list.
287 STATIC int
288 xfs_buf_allocate_memory(
289 xfs_buf_t *bp,
290 uint flags)
292 size_t size = bp->b_count_desired;
293 size_t nbytes, offset;
294 gfp_t gfp_mask = xb_to_gfp(flags);
295 unsigned short page_count, i;
296 pgoff_t first;
297 xfs_off_t end;
298 int error;
301 * for buffers that are contained within a single page, just allocate
302 * the memory from the heap - there's no need for the complexity of
303 * page arrays to keep allocation down to order 0.
305 if (bp->b_buffer_length < PAGE_SIZE) {
306 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
307 if (!bp->b_addr) {
308 /* low memory - use alloc_page loop instead */
309 goto use_alloc_page;
312 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
313 PAGE_MASK) !=
314 ((unsigned long)bp->b_addr & PAGE_MASK)) {
315 /* b_addr spans two pages - use alloc_page instead */
316 kmem_free(bp->b_addr);
317 bp->b_addr = NULL;
318 goto use_alloc_page;
320 bp->b_offset = offset_in_page(bp->b_addr);
321 bp->b_pages = bp->b_page_array;
322 bp->b_pages[0] = virt_to_page(bp->b_addr);
323 bp->b_page_count = 1;
324 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
325 return 0;
328 use_alloc_page:
329 end = bp->b_file_offset + bp->b_buffer_length;
330 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
331 error = _xfs_buf_get_pages(bp, page_count, flags);
332 if (unlikely(error))
333 return error;
335 offset = bp->b_offset;
336 first = bp->b_file_offset >> PAGE_SHIFT;
337 bp->b_flags |= _XBF_PAGES;
339 for (i = 0; i < bp->b_page_count; i++) {
340 struct page *page;
341 uint retries = 0;
342 retry:
343 page = alloc_page(gfp_mask);
344 if (unlikely(page == NULL)) {
345 if (flags & XBF_READ_AHEAD) {
346 bp->b_page_count = i;
347 error = ENOMEM;
348 goto out_free_pages;
352 * This could deadlock.
354 * But until all the XFS lowlevel code is revamped to
355 * handle buffer allocation failures we can't do much.
357 if (!(++retries % 100))
358 xfs_err(NULL,
359 "possible memory allocation deadlock in %s (mode:0x%x)",
360 __func__, gfp_mask);
362 XFS_STATS_INC(xb_page_retries);
363 congestion_wait(BLK_RW_ASYNC, HZ/50);
364 goto retry;
367 XFS_STATS_INC(xb_page_found);
369 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
370 size -= nbytes;
371 bp->b_pages[i] = page;
372 offset = 0;
374 return 0;
376 out_free_pages:
377 for (i = 0; i < bp->b_page_count; i++)
378 __free_page(bp->b_pages[i]);
379 return error;
383 * Map buffer into kernel address-space if nessecary.
385 STATIC int
386 _xfs_buf_map_pages(
387 xfs_buf_t *bp,
388 uint flags)
390 ASSERT(bp->b_flags & _XBF_PAGES);
391 if (bp->b_page_count == 1) {
392 /* A single page buffer is always mappable */
393 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
394 bp->b_flags |= XBF_MAPPED;
395 } else if (flags & XBF_MAPPED) {
396 int retried = 0;
398 do {
399 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
400 -1, PAGE_KERNEL);
401 if (bp->b_addr)
402 break;
403 vm_unmap_aliases();
404 } while (retried++ <= 1);
406 if (!bp->b_addr)
407 return -ENOMEM;
408 bp->b_addr += bp->b_offset;
409 bp->b_flags |= XBF_MAPPED;
412 return 0;
416 * Finding and Reading Buffers
420 * Look up, and creates if absent, a lockable buffer for
421 * a given range of an inode. The buffer is returned
422 * locked. If other overlapping buffers exist, they are
423 * released before the new buffer is created and locked,
424 * which may imply that this call will block until those buffers
425 * are unlocked. No I/O is implied by this call.
427 xfs_buf_t *
428 _xfs_buf_find(
429 xfs_buftarg_t *btp, /* block device target */
430 xfs_off_t ioff, /* starting offset of range */
431 size_t isize, /* length of range */
432 xfs_buf_flags_t flags,
433 xfs_buf_t *new_bp)
435 xfs_off_t range_base;
436 size_t range_length;
437 struct xfs_perag *pag;
438 struct rb_node **rbp;
439 struct rb_node *parent;
440 xfs_buf_t *bp;
442 range_base = (ioff << BBSHIFT);
443 range_length = (isize << BBSHIFT);
445 /* Check for IOs smaller than the sector size / not sector aligned */
446 ASSERT(!(range_length < (1 << btp->bt_sshift)));
447 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
449 /* get tree root */
450 pag = xfs_perag_get(btp->bt_mount,
451 xfs_daddr_to_agno(btp->bt_mount, ioff));
453 /* walk tree */
454 spin_lock(&pag->pag_buf_lock);
455 rbp = &pag->pag_buf_tree.rb_node;
456 parent = NULL;
457 bp = NULL;
458 while (*rbp) {
459 parent = *rbp;
460 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
462 if (range_base < bp->b_file_offset)
463 rbp = &(*rbp)->rb_left;
464 else if (range_base > bp->b_file_offset)
465 rbp = &(*rbp)->rb_right;
466 else {
468 * found a block offset match. If the range doesn't
469 * match, the only way this is allowed is if the buffer
470 * in the cache is stale and the transaction that made
471 * it stale has not yet committed. i.e. we are
472 * reallocating a busy extent. Skip this buffer and
473 * continue searching to the right for an exact match.
475 if (bp->b_buffer_length != range_length) {
476 ASSERT(bp->b_flags & XBF_STALE);
477 rbp = &(*rbp)->rb_right;
478 continue;
480 atomic_inc(&bp->b_hold);
481 goto found;
485 /* No match found */
486 if (new_bp) {
487 _xfs_buf_initialize(new_bp, btp, range_base,
488 range_length, flags);
489 rb_link_node(&new_bp->b_rbnode, parent, rbp);
490 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
491 /* the buffer keeps the perag reference until it is freed */
492 new_bp->b_pag = pag;
493 spin_unlock(&pag->pag_buf_lock);
494 } else {
495 XFS_STATS_INC(xb_miss_locked);
496 spin_unlock(&pag->pag_buf_lock);
497 xfs_perag_put(pag);
499 return new_bp;
501 found:
502 spin_unlock(&pag->pag_buf_lock);
503 xfs_perag_put(pag);
505 if (xfs_buf_cond_lock(bp)) {
506 /* failed, so wait for the lock if requested. */
507 if (!(flags & XBF_TRYLOCK)) {
508 xfs_buf_lock(bp);
509 XFS_STATS_INC(xb_get_locked_waited);
510 } else {
511 xfs_buf_rele(bp);
512 XFS_STATS_INC(xb_busy_locked);
513 return NULL;
518 * if the buffer is stale, clear all the external state associated with
519 * it. We need to keep flags such as how we allocated the buffer memory
520 * intact here.
522 if (bp->b_flags & XBF_STALE) {
523 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
524 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
527 trace_xfs_buf_find(bp, flags, _RET_IP_);
528 XFS_STATS_INC(xb_get_locked);
529 return bp;
533 * Assembles a buffer covering the specified range.
534 * Storage in memory for all portions of the buffer will be allocated,
535 * although backing storage may not be.
537 xfs_buf_t *
538 xfs_buf_get(
539 xfs_buftarg_t *target,/* target for buffer */
540 xfs_off_t ioff, /* starting offset of range */
541 size_t isize, /* length of range */
542 xfs_buf_flags_t flags)
544 xfs_buf_t *bp, *new_bp;
545 int error = 0;
547 new_bp = xfs_buf_allocate(flags);
548 if (unlikely(!new_bp))
549 return NULL;
551 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
552 if (bp == new_bp) {
553 error = xfs_buf_allocate_memory(bp, flags);
554 if (error)
555 goto no_buffer;
556 } else {
557 xfs_buf_deallocate(new_bp);
558 if (unlikely(bp == NULL))
559 return NULL;
562 if (!(bp->b_flags & XBF_MAPPED)) {
563 error = _xfs_buf_map_pages(bp, flags);
564 if (unlikely(error)) {
565 xfs_warn(target->bt_mount,
566 "%s: failed to map pages\n", __func__);
567 goto no_buffer;
571 XFS_STATS_INC(xb_get);
574 * Always fill in the block number now, the mapped cases can do
575 * their own overlay of this later.
577 bp->b_bn = ioff;
578 bp->b_count_desired = bp->b_buffer_length;
580 trace_xfs_buf_get(bp, flags, _RET_IP_);
581 return bp;
583 no_buffer:
584 if (flags & (XBF_LOCK | XBF_TRYLOCK))
585 xfs_buf_unlock(bp);
586 xfs_buf_rele(bp);
587 return NULL;
590 STATIC int
591 _xfs_buf_read(
592 xfs_buf_t *bp,
593 xfs_buf_flags_t flags)
595 int status;
597 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
598 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
600 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
601 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
602 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
603 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
605 status = xfs_buf_iorequest(bp);
606 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
607 return status;
608 return xfs_buf_iowait(bp);
611 xfs_buf_t *
612 xfs_buf_read(
613 xfs_buftarg_t *target,
614 xfs_off_t ioff,
615 size_t isize,
616 xfs_buf_flags_t flags)
618 xfs_buf_t *bp;
620 flags |= XBF_READ;
622 bp = xfs_buf_get(target, ioff, isize, flags);
623 if (bp) {
624 trace_xfs_buf_read(bp, flags, _RET_IP_);
626 if (!XFS_BUF_ISDONE(bp)) {
627 XFS_STATS_INC(xb_get_read);
628 _xfs_buf_read(bp, flags);
629 } else if (flags & XBF_ASYNC) {
631 * Read ahead call which is already satisfied,
632 * drop the buffer
634 goto no_buffer;
635 } else {
636 /* We do not want read in the flags */
637 bp->b_flags &= ~XBF_READ;
641 return bp;
643 no_buffer:
644 if (flags & (XBF_LOCK | XBF_TRYLOCK))
645 xfs_buf_unlock(bp);
646 xfs_buf_rele(bp);
647 return NULL;
651 * If we are not low on memory then do the readahead in a deadlock
652 * safe manner.
654 void
655 xfs_buf_readahead(
656 xfs_buftarg_t *target,
657 xfs_off_t ioff,
658 size_t isize)
660 if (bdi_read_congested(target->bt_bdi))
661 return;
663 xfs_buf_read(target, ioff, isize,
664 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
668 * Read an uncached buffer from disk. Allocates and returns a locked
669 * buffer containing the disk contents or nothing.
671 struct xfs_buf *
672 xfs_buf_read_uncached(
673 struct xfs_mount *mp,
674 struct xfs_buftarg *target,
675 xfs_daddr_t daddr,
676 size_t length,
677 int flags)
679 xfs_buf_t *bp;
680 int error;
682 bp = xfs_buf_get_uncached(target, length, flags);
683 if (!bp)
684 return NULL;
686 /* set up the buffer for a read IO */
687 xfs_buf_lock(bp);
688 XFS_BUF_SET_ADDR(bp, daddr);
689 XFS_BUF_READ(bp);
690 XFS_BUF_BUSY(bp);
692 xfsbdstrat(mp, bp);
693 error = xfs_buf_iowait(bp);
694 if (error || bp->b_error) {
695 xfs_buf_relse(bp);
696 return NULL;
698 return bp;
701 xfs_buf_t *
702 xfs_buf_get_empty(
703 size_t len,
704 xfs_buftarg_t *target)
706 xfs_buf_t *bp;
708 bp = xfs_buf_allocate(0);
709 if (bp)
710 _xfs_buf_initialize(bp, target, 0, len, 0);
711 return bp;
714 static inline struct page *
715 mem_to_page(
716 void *addr)
718 if ((!is_vmalloc_addr(addr))) {
719 return virt_to_page(addr);
720 } else {
721 return vmalloc_to_page(addr);
726 xfs_buf_associate_memory(
727 xfs_buf_t *bp,
728 void *mem,
729 size_t len)
731 int rval;
732 int i = 0;
733 unsigned long pageaddr;
734 unsigned long offset;
735 size_t buflen;
736 int page_count;
738 pageaddr = (unsigned long)mem & PAGE_MASK;
739 offset = (unsigned long)mem - pageaddr;
740 buflen = PAGE_ALIGN(len + offset);
741 page_count = buflen >> PAGE_SHIFT;
743 /* Free any previous set of page pointers */
744 if (bp->b_pages)
745 _xfs_buf_free_pages(bp);
747 bp->b_pages = NULL;
748 bp->b_addr = mem;
750 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
751 if (rval)
752 return rval;
754 bp->b_offset = offset;
756 for (i = 0; i < bp->b_page_count; i++) {
757 bp->b_pages[i] = mem_to_page((void *)pageaddr);
758 pageaddr += PAGE_SIZE;
761 bp->b_count_desired = len;
762 bp->b_buffer_length = buflen;
763 bp->b_flags |= XBF_MAPPED;
765 return 0;
768 xfs_buf_t *
769 xfs_buf_get_uncached(
770 struct xfs_buftarg *target,
771 size_t len,
772 int flags)
774 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
775 int error, i;
776 xfs_buf_t *bp;
778 bp = xfs_buf_allocate(0);
779 if (unlikely(bp == NULL))
780 goto fail;
781 _xfs_buf_initialize(bp, target, 0, len, 0);
783 error = _xfs_buf_get_pages(bp, page_count, 0);
784 if (error)
785 goto fail_free_buf;
787 for (i = 0; i < page_count; i++) {
788 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
789 if (!bp->b_pages[i])
790 goto fail_free_mem;
792 bp->b_flags |= _XBF_PAGES;
794 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
795 if (unlikely(error)) {
796 xfs_warn(target->bt_mount,
797 "%s: failed to map pages\n", __func__);
798 goto fail_free_mem;
801 xfs_buf_unlock(bp);
803 trace_xfs_buf_get_uncached(bp, _RET_IP_);
804 return bp;
806 fail_free_mem:
807 while (--i >= 0)
808 __free_page(bp->b_pages[i]);
809 _xfs_buf_free_pages(bp);
810 fail_free_buf:
811 xfs_buf_deallocate(bp);
812 fail:
813 return NULL;
817 * Increment reference count on buffer, to hold the buffer concurrently
818 * with another thread which may release (free) the buffer asynchronously.
819 * Must hold the buffer already to call this function.
821 void
822 xfs_buf_hold(
823 xfs_buf_t *bp)
825 trace_xfs_buf_hold(bp, _RET_IP_);
826 atomic_inc(&bp->b_hold);
830 * Releases a hold on the specified buffer. If the
831 * the hold count is 1, calls xfs_buf_free.
833 void
834 xfs_buf_rele(
835 xfs_buf_t *bp)
837 struct xfs_perag *pag = bp->b_pag;
839 trace_xfs_buf_rele(bp, _RET_IP_);
841 if (!pag) {
842 ASSERT(list_empty(&bp->b_lru));
843 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
844 if (atomic_dec_and_test(&bp->b_hold))
845 xfs_buf_free(bp);
846 return;
849 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
851 ASSERT(atomic_read(&bp->b_hold) > 0);
852 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
853 if (!(bp->b_flags & XBF_STALE) &&
854 atomic_read(&bp->b_lru_ref)) {
855 xfs_buf_lru_add(bp);
856 spin_unlock(&pag->pag_buf_lock);
857 } else {
858 xfs_buf_lru_del(bp);
859 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
860 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
861 spin_unlock(&pag->pag_buf_lock);
862 xfs_perag_put(pag);
863 xfs_buf_free(bp);
870 * Lock a buffer object, if it is not already locked.
872 * If we come across a stale, pinned, locked buffer, we know that we are
873 * being asked to lock a buffer that has been reallocated. Because it is
874 * pinned, we know that the log has not been pushed to disk and hence it
875 * will still be locked. Rather than continuing to have trylock attempts
876 * fail until someone else pushes the log, push it ourselves before
877 * returning. This means that the xfsaild will not get stuck trying
878 * to push on stale inode buffers.
881 xfs_buf_cond_lock(
882 xfs_buf_t *bp)
884 int locked;
886 locked = down_trylock(&bp->b_sema) == 0;
887 if (locked)
888 XB_SET_OWNER(bp);
889 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
890 xfs_log_force(bp->b_target->bt_mount, 0);
892 trace_xfs_buf_cond_lock(bp, _RET_IP_);
893 return locked ? 0 : -EBUSY;
897 xfs_buf_lock_value(
898 xfs_buf_t *bp)
900 return bp->b_sema.count;
904 * Lock a buffer object.
906 * If we come across a stale, pinned, locked buffer, we know that we
907 * are being asked to lock a buffer that has been reallocated. Because
908 * it is pinned, we know that the log has not been pushed to disk and
909 * hence it will still be locked. Rather than sleeping until someone
910 * else pushes the log, push it ourselves before trying to get the lock.
912 void
913 xfs_buf_lock(
914 xfs_buf_t *bp)
916 trace_xfs_buf_lock(bp, _RET_IP_);
918 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
919 xfs_log_force(bp->b_target->bt_mount, 0);
920 if (atomic_read(&bp->b_io_remaining))
921 blk_flush_plug(current);
922 down(&bp->b_sema);
923 XB_SET_OWNER(bp);
925 trace_xfs_buf_lock_done(bp, _RET_IP_);
929 * Releases the lock on the buffer object.
930 * If the buffer is marked delwri but is not queued, do so before we
931 * unlock the buffer as we need to set flags correctly. We also need to
932 * take a reference for the delwri queue because the unlocker is going to
933 * drop their's and they don't know we just queued it.
935 void
936 xfs_buf_unlock(
937 xfs_buf_t *bp)
939 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
940 atomic_inc(&bp->b_hold);
941 bp->b_flags |= XBF_ASYNC;
942 xfs_buf_delwri_queue(bp, 0);
945 XB_CLEAR_OWNER(bp);
946 up(&bp->b_sema);
948 trace_xfs_buf_unlock(bp, _RET_IP_);
951 STATIC void
952 xfs_buf_wait_unpin(
953 xfs_buf_t *bp)
955 DECLARE_WAITQUEUE (wait, current);
957 if (atomic_read(&bp->b_pin_count) == 0)
958 return;
960 add_wait_queue(&bp->b_waiters, &wait);
961 for (;;) {
962 set_current_state(TASK_UNINTERRUPTIBLE);
963 if (atomic_read(&bp->b_pin_count) == 0)
964 break;
965 io_schedule();
967 remove_wait_queue(&bp->b_waiters, &wait);
968 set_current_state(TASK_RUNNING);
972 * Buffer Utility Routines
975 STATIC void
976 xfs_buf_iodone_work(
977 struct work_struct *work)
979 xfs_buf_t *bp =
980 container_of(work, xfs_buf_t, b_iodone_work);
982 if (bp->b_iodone)
983 (*(bp->b_iodone))(bp);
984 else if (bp->b_flags & XBF_ASYNC)
985 xfs_buf_relse(bp);
988 void
989 xfs_buf_ioend(
990 xfs_buf_t *bp,
991 int schedule)
993 trace_xfs_buf_iodone(bp, _RET_IP_);
995 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
996 if (bp->b_error == 0)
997 bp->b_flags |= XBF_DONE;
999 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1000 if (schedule) {
1001 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1002 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1003 } else {
1004 xfs_buf_iodone_work(&bp->b_iodone_work);
1006 } else {
1007 complete(&bp->b_iowait);
1011 void
1012 xfs_buf_ioerror(
1013 xfs_buf_t *bp,
1014 int error)
1016 ASSERT(error >= 0 && error <= 0xffff);
1017 bp->b_error = (unsigned short)error;
1018 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1022 xfs_bwrite(
1023 struct xfs_mount *mp,
1024 struct xfs_buf *bp)
1026 int error;
1028 bp->b_flags |= XBF_WRITE;
1029 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1031 xfs_buf_delwri_dequeue(bp);
1032 xfs_bdstrat_cb(bp);
1034 error = xfs_buf_iowait(bp);
1035 if (error)
1036 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1037 xfs_buf_relse(bp);
1038 return error;
1041 void
1042 xfs_bdwrite(
1043 void *mp,
1044 struct xfs_buf *bp)
1046 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1048 bp->b_flags &= ~XBF_READ;
1049 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1051 xfs_buf_delwri_queue(bp, 1);
1055 * Called when we want to stop a buffer from getting written or read.
1056 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1057 * so that the proper iodone callbacks get called.
1059 STATIC int
1060 xfs_bioerror(
1061 xfs_buf_t *bp)
1063 #ifdef XFSERRORDEBUG
1064 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1065 #endif
1068 * No need to wait until the buffer is unpinned, we aren't flushing it.
1070 XFS_BUF_ERROR(bp, EIO);
1073 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1075 XFS_BUF_UNREAD(bp);
1076 XFS_BUF_UNDELAYWRITE(bp);
1077 XFS_BUF_UNDONE(bp);
1078 XFS_BUF_STALE(bp);
1080 xfs_buf_ioend(bp, 0);
1082 return EIO;
1086 * Same as xfs_bioerror, except that we are releasing the buffer
1087 * here ourselves, and avoiding the xfs_buf_ioend call.
1088 * This is meant for userdata errors; metadata bufs come with
1089 * iodone functions attached, so that we can track down errors.
1091 STATIC int
1092 xfs_bioerror_relse(
1093 struct xfs_buf *bp)
1095 int64_t fl = XFS_BUF_BFLAGS(bp);
1097 * No need to wait until the buffer is unpinned.
1098 * We aren't flushing it.
1100 * chunkhold expects B_DONE to be set, whether
1101 * we actually finish the I/O or not. We don't want to
1102 * change that interface.
1104 XFS_BUF_UNREAD(bp);
1105 XFS_BUF_UNDELAYWRITE(bp);
1106 XFS_BUF_DONE(bp);
1107 XFS_BUF_STALE(bp);
1108 XFS_BUF_CLR_IODONE_FUNC(bp);
1109 if (!(fl & XBF_ASYNC)) {
1111 * Mark b_error and B_ERROR _both_.
1112 * Lot's of chunkcache code assumes that.
1113 * There's no reason to mark error for
1114 * ASYNC buffers.
1116 XFS_BUF_ERROR(bp, EIO);
1117 XFS_BUF_FINISH_IOWAIT(bp);
1118 } else {
1119 xfs_buf_relse(bp);
1122 return EIO;
1127 * All xfs metadata buffers except log state machine buffers
1128 * get this attached as their b_bdstrat callback function.
1129 * This is so that we can catch a buffer
1130 * after prematurely unpinning it to forcibly shutdown the filesystem.
1133 xfs_bdstrat_cb(
1134 struct xfs_buf *bp)
1136 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1137 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1139 * Metadata write that didn't get logged but
1140 * written delayed anyway. These aren't associated
1141 * with a transaction, and can be ignored.
1143 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1144 return xfs_bioerror_relse(bp);
1145 else
1146 return xfs_bioerror(bp);
1149 xfs_buf_iorequest(bp);
1150 return 0;
1154 * Wrapper around bdstrat so that we can stop data from going to disk in case
1155 * we are shutting down the filesystem. Typically user data goes thru this
1156 * path; one of the exceptions is the superblock.
1158 void
1159 xfsbdstrat(
1160 struct xfs_mount *mp,
1161 struct xfs_buf *bp)
1163 if (XFS_FORCED_SHUTDOWN(mp)) {
1164 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1165 xfs_bioerror_relse(bp);
1166 return;
1169 xfs_buf_iorequest(bp);
1172 STATIC void
1173 _xfs_buf_ioend(
1174 xfs_buf_t *bp,
1175 int schedule)
1177 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1178 xfs_buf_ioend(bp, schedule);
1181 STATIC void
1182 xfs_buf_bio_end_io(
1183 struct bio *bio,
1184 int error)
1186 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1188 xfs_buf_ioerror(bp, -error);
1190 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1191 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1193 _xfs_buf_ioend(bp, 1);
1194 bio_put(bio);
1197 STATIC void
1198 _xfs_buf_ioapply(
1199 xfs_buf_t *bp)
1201 int rw, map_i, total_nr_pages, nr_pages;
1202 struct bio *bio;
1203 int offset = bp->b_offset;
1204 int size = bp->b_count_desired;
1205 sector_t sector = bp->b_bn;
1207 total_nr_pages = bp->b_page_count;
1208 map_i = 0;
1210 if (bp->b_flags & XBF_ORDERED) {
1211 ASSERT(!(bp->b_flags & XBF_READ));
1212 rw = WRITE_FLUSH_FUA;
1213 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1214 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1215 bp->b_flags &= ~_XBF_RUN_QUEUES;
1216 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1217 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1218 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1219 bp->b_flags &= ~_XBF_RUN_QUEUES;
1220 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1221 } else {
1222 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1223 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1227 next_chunk:
1228 atomic_inc(&bp->b_io_remaining);
1229 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1230 if (nr_pages > total_nr_pages)
1231 nr_pages = total_nr_pages;
1233 bio = bio_alloc(GFP_NOIO, nr_pages);
1234 bio->bi_bdev = bp->b_target->bt_bdev;
1235 bio->bi_sector = sector;
1236 bio->bi_end_io = xfs_buf_bio_end_io;
1237 bio->bi_private = bp;
1240 for (; size && nr_pages; nr_pages--, map_i++) {
1241 int rbytes, nbytes = PAGE_SIZE - offset;
1243 if (nbytes > size)
1244 nbytes = size;
1246 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1247 if (rbytes < nbytes)
1248 break;
1250 offset = 0;
1251 sector += nbytes >> BBSHIFT;
1252 size -= nbytes;
1253 total_nr_pages--;
1256 if (likely(bio->bi_size)) {
1257 if (xfs_buf_is_vmapped(bp)) {
1258 flush_kernel_vmap_range(bp->b_addr,
1259 xfs_buf_vmap_len(bp));
1261 submit_bio(rw, bio);
1262 if (size)
1263 goto next_chunk;
1264 } else {
1265 xfs_buf_ioerror(bp, EIO);
1266 bio_put(bio);
1271 xfs_buf_iorequest(
1272 xfs_buf_t *bp)
1274 trace_xfs_buf_iorequest(bp, _RET_IP_);
1276 if (bp->b_flags & XBF_DELWRI) {
1277 xfs_buf_delwri_queue(bp, 1);
1278 return 0;
1281 if (bp->b_flags & XBF_WRITE) {
1282 xfs_buf_wait_unpin(bp);
1285 xfs_buf_hold(bp);
1287 /* Set the count to 1 initially, this will stop an I/O
1288 * completion callout which happens before we have started
1289 * all the I/O from calling xfs_buf_ioend too early.
1291 atomic_set(&bp->b_io_remaining, 1);
1292 _xfs_buf_ioapply(bp);
1293 _xfs_buf_ioend(bp, 0);
1295 xfs_buf_rele(bp);
1296 return 0;
1300 * Waits for I/O to complete on the buffer supplied.
1301 * It returns immediately if no I/O is pending.
1302 * It returns the I/O error code, if any, or 0 if there was no error.
1305 xfs_buf_iowait(
1306 xfs_buf_t *bp)
1308 trace_xfs_buf_iowait(bp, _RET_IP_);
1310 if (atomic_read(&bp->b_io_remaining))
1311 blk_flush_plug(current);
1312 wait_for_completion(&bp->b_iowait);
1314 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1315 return bp->b_error;
1318 xfs_caddr_t
1319 xfs_buf_offset(
1320 xfs_buf_t *bp,
1321 size_t offset)
1323 struct page *page;
1325 if (bp->b_flags & XBF_MAPPED)
1326 return XFS_BUF_PTR(bp) + offset;
1328 offset += bp->b_offset;
1329 page = bp->b_pages[offset >> PAGE_SHIFT];
1330 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1334 * Move data into or out of a buffer.
1336 void
1337 xfs_buf_iomove(
1338 xfs_buf_t *bp, /* buffer to process */
1339 size_t boff, /* starting buffer offset */
1340 size_t bsize, /* length to copy */
1341 void *data, /* data address */
1342 xfs_buf_rw_t mode) /* read/write/zero flag */
1344 size_t bend, cpoff, csize;
1345 struct page *page;
1347 bend = boff + bsize;
1348 while (boff < bend) {
1349 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1350 cpoff = xfs_buf_poff(boff + bp->b_offset);
1351 csize = min_t(size_t,
1352 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1354 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1356 switch (mode) {
1357 case XBRW_ZERO:
1358 memset(page_address(page) + cpoff, 0, csize);
1359 break;
1360 case XBRW_READ:
1361 memcpy(data, page_address(page) + cpoff, csize);
1362 break;
1363 case XBRW_WRITE:
1364 memcpy(page_address(page) + cpoff, data, csize);
1367 boff += csize;
1368 data += csize;
1373 * Handling of buffer targets (buftargs).
1377 * Wait for any bufs with callbacks that have been submitted but have not yet
1378 * returned. These buffers will have an elevated hold count, so wait on those
1379 * while freeing all the buffers only held by the LRU.
1381 void
1382 xfs_wait_buftarg(
1383 struct xfs_buftarg *btp)
1385 struct xfs_buf *bp;
1387 restart:
1388 spin_lock(&btp->bt_lru_lock);
1389 while (!list_empty(&btp->bt_lru)) {
1390 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1391 if (atomic_read(&bp->b_hold) > 1) {
1392 spin_unlock(&btp->bt_lru_lock);
1393 delay(100);
1394 goto restart;
1397 * clear the LRU reference count so the bufer doesn't get
1398 * ignored in xfs_buf_rele().
1400 atomic_set(&bp->b_lru_ref, 0);
1401 spin_unlock(&btp->bt_lru_lock);
1402 xfs_buf_rele(bp);
1403 spin_lock(&btp->bt_lru_lock);
1405 spin_unlock(&btp->bt_lru_lock);
1409 xfs_buftarg_shrink(
1410 struct shrinker *shrink,
1411 int nr_to_scan,
1412 gfp_t mask)
1414 struct xfs_buftarg *btp = container_of(shrink,
1415 struct xfs_buftarg, bt_shrinker);
1416 struct xfs_buf *bp;
1417 LIST_HEAD(dispose);
1419 if (!nr_to_scan)
1420 return btp->bt_lru_nr;
1422 spin_lock(&btp->bt_lru_lock);
1423 while (!list_empty(&btp->bt_lru)) {
1424 if (nr_to_scan-- <= 0)
1425 break;
1427 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1430 * Decrement the b_lru_ref count unless the value is already
1431 * zero. If the value is already zero, we need to reclaim the
1432 * buffer, otherwise it gets another trip through the LRU.
1434 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1435 list_move_tail(&bp->b_lru, &btp->bt_lru);
1436 continue;
1440 * remove the buffer from the LRU now to avoid needing another
1441 * lock round trip inside xfs_buf_rele().
1443 list_move(&bp->b_lru, &dispose);
1444 btp->bt_lru_nr--;
1446 spin_unlock(&btp->bt_lru_lock);
1448 while (!list_empty(&dispose)) {
1449 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1450 list_del_init(&bp->b_lru);
1451 xfs_buf_rele(bp);
1454 return btp->bt_lru_nr;
1457 void
1458 xfs_free_buftarg(
1459 struct xfs_mount *mp,
1460 struct xfs_buftarg *btp)
1462 unregister_shrinker(&btp->bt_shrinker);
1464 xfs_flush_buftarg(btp, 1);
1465 if (mp->m_flags & XFS_MOUNT_BARRIER)
1466 xfs_blkdev_issue_flush(btp);
1468 kthread_stop(btp->bt_task);
1469 kmem_free(btp);
1472 STATIC int
1473 xfs_setsize_buftarg_flags(
1474 xfs_buftarg_t *btp,
1475 unsigned int blocksize,
1476 unsigned int sectorsize,
1477 int verbose)
1479 btp->bt_bsize = blocksize;
1480 btp->bt_sshift = ffs(sectorsize) - 1;
1481 btp->bt_smask = sectorsize - 1;
1483 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1484 xfs_warn(btp->bt_mount,
1485 "Cannot set_blocksize to %u on device %s\n",
1486 sectorsize, XFS_BUFTARG_NAME(btp));
1487 return EINVAL;
1490 return 0;
1494 * When allocating the initial buffer target we have not yet
1495 * read in the superblock, so don't know what sized sectors
1496 * are being used is at this early stage. Play safe.
1498 STATIC int
1499 xfs_setsize_buftarg_early(
1500 xfs_buftarg_t *btp,
1501 struct block_device *bdev)
1503 return xfs_setsize_buftarg_flags(btp,
1504 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1508 xfs_setsize_buftarg(
1509 xfs_buftarg_t *btp,
1510 unsigned int blocksize,
1511 unsigned int sectorsize)
1513 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1516 STATIC int
1517 xfs_alloc_delwrite_queue(
1518 xfs_buftarg_t *btp,
1519 const char *fsname)
1521 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1522 spin_lock_init(&btp->bt_delwrite_lock);
1523 btp->bt_flags = 0;
1524 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1525 if (IS_ERR(btp->bt_task))
1526 return PTR_ERR(btp->bt_task);
1527 return 0;
1530 xfs_buftarg_t *
1531 xfs_alloc_buftarg(
1532 struct xfs_mount *mp,
1533 struct block_device *bdev,
1534 int external,
1535 const char *fsname)
1537 xfs_buftarg_t *btp;
1539 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1541 btp->bt_mount = mp;
1542 btp->bt_dev = bdev->bd_dev;
1543 btp->bt_bdev = bdev;
1544 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1545 if (!btp->bt_bdi)
1546 goto error;
1548 INIT_LIST_HEAD(&btp->bt_lru);
1549 spin_lock_init(&btp->bt_lru_lock);
1550 if (xfs_setsize_buftarg_early(btp, bdev))
1551 goto error;
1552 if (xfs_alloc_delwrite_queue(btp, fsname))
1553 goto error;
1554 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1555 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1556 register_shrinker(&btp->bt_shrinker);
1557 return btp;
1559 error:
1560 kmem_free(btp);
1561 return NULL;
1566 * Delayed write buffer handling
1568 STATIC void
1569 xfs_buf_delwri_queue(
1570 xfs_buf_t *bp,
1571 int unlock)
1573 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1574 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1576 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1578 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1580 spin_lock(dwlk);
1581 /* If already in the queue, dequeue and place at tail */
1582 if (!list_empty(&bp->b_list)) {
1583 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1584 if (unlock)
1585 atomic_dec(&bp->b_hold);
1586 list_del(&bp->b_list);
1589 if (list_empty(dwq)) {
1590 /* start xfsbufd as it is about to have something to do */
1591 wake_up_process(bp->b_target->bt_task);
1594 bp->b_flags |= _XBF_DELWRI_Q;
1595 list_add_tail(&bp->b_list, dwq);
1596 bp->b_queuetime = jiffies;
1597 spin_unlock(dwlk);
1599 if (unlock)
1600 xfs_buf_unlock(bp);
1603 void
1604 xfs_buf_delwri_dequeue(
1605 xfs_buf_t *bp)
1607 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1608 int dequeued = 0;
1610 spin_lock(dwlk);
1611 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1612 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613 list_del_init(&bp->b_list);
1614 dequeued = 1;
1616 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1617 spin_unlock(dwlk);
1619 if (dequeued)
1620 xfs_buf_rele(bp);
1622 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1626 * If a delwri buffer needs to be pushed before it has aged out, then promote
1627 * it to the head of the delwri queue so that it will be flushed on the next
1628 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1629 * than the age currently needed to flush the buffer. Hence the next time the
1630 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1632 void
1633 xfs_buf_delwri_promote(
1634 struct xfs_buf *bp)
1636 struct xfs_buftarg *btp = bp->b_target;
1637 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1639 ASSERT(bp->b_flags & XBF_DELWRI);
1640 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1643 * Check the buffer age before locking the delayed write queue as we
1644 * don't need to promote buffers that are already past the flush age.
1646 if (bp->b_queuetime < jiffies - age)
1647 return;
1648 bp->b_queuetime = jiffies - age;
1649 spin_lock(&btp->bt_delwrite_lock);
1650 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1651 spin_unlock(&btp->bt_delwrite_lock);
1654 STATIC void
1655 xfs_buf_runall_queues(
1656 struct workqueue_struct *queue)
1658 flush_workqueue(queue);
1662 * Move as many buffers as specified to the supplied list
1663 * idicating if we skipped any buffers to prevent deadlocks.
1665 STATIC int
1666 xfs_buf_delwri_split(
1667 xfs_buftarg_t *target,
1668 struct list_head *list,
1669 unsigned long age)
1671 xfs_buf_t *bp, *n;
1672 struct list_head *dwq = &target->bt_delwrite_queue;
1673 spinlock_t *dwlk = &target->bt_delwrite_lock;
1674 int skipped = 0;
1675 int force;
1677 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1678 INIT_LIST_HEAD(list);
1679 spin_lock(dwlk);
1680 list_for_each_entry_safe(bp, n, dwq, b_list) {
1681 ASSERT(bp->b_flags & XBF_DELWRI);
1683 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1684 if (!force &&
1685 time_before(jiffies, bp->b_queuetime + age)) {
1686 xfs_buf_unlock(bp);
1687 break;
1690 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1691 _XBF_RUN_QUEUES);
1692 bp->b_flags |= XBF_WRITE;
1693 list_move_tail(&bp->b_list, list);
1694 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1695 } else
1696 skipped++;
1698 spin_unlock(dwlk);
1700 return skipped;
1705 * Compare function is more complex than it needs to be because
1706 * the return value is only 32 bits and we are doing comparisons
1707 * on 64 bit values
1709 static int
1710 xfs_buf_cmp(
1711 void *priv,
1712 struct list_head *a,
1713 struct list_head *b)
1715 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1716 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1717 xfs_daddr_t diff;
1719 diff = ap->b_bn - bp->b_bn;
1720 if (diff < 0)
1721 return -1;
1722 if (diff > 0)
1723 return 1;
1724 return 0;
1727 void
1728 xfs_buf_delwri_sort(
1729 xfs_buftarg_t *target,
1730 struct list_head *list)
1732 list_sort(NULL, list, xfs_buf_cmp);
1735 STATIC int
1736 xfsbufd(
1737 void *data)
1739 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1741 current->flags |= PF_MEMALLOC;
1743 set_freezable();
1745 do {
1746 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1747 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1748 int count = 0;
1749 struct list_head tmp;
1751 if (unlikely(freezing(current))) {
1752 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1753 refrigerator();
1754 } else {
1755 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1758 /* sleep for a long time if there is nothing to do. */
1759 if (list_empty(&target->bt_delwrite_queue))
1760 tout = MAX_SCHEDULE_TIMEOUT;
1761 schedule_timeout_interruptible(tout);
1763 xfs_buf_delwri_split(target, &tmp, age);
1764 list_sort(NULL, &tmp, xfs_buf_cmp);
1765 while (!list_empty(&tmp)) {
1766 struct xfs_buf *bp;
1767 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1768 list_del_init(&bp->b_list);
1769 xfs_bdstrat_cb(bp);
1770 count++;
1772 if (count)
1773 blk_flush_plug(current);
1775 } while (!kthread_should_stop());
1777 return 0;
1781 * Go through all incore buffers, and release buffers if they belong to
1782 * the given device. This is used in filesystem error handling to
1783 * preserve the consistency of its metadata.
1786 xfs_flush_buftarg(
1787 xfs_buftarg_t *target,
1788 int wait)
1790 xfs_buf_t *bp;
1791 int pincount = 0;
1792 LIST_HEAD(tmp_list);
1793 LIST_HEAD(wait_list);
1795 xfs_buf_runall_queues(xfsconvertd_workqueue);
1796 xfs_buf_runall_queues(xfsdatad_workqueue);
1797 xfs_buf_runall_queues(xfslogd_workqueue);
1799 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1800 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1803 * Dropped the delayed write list lock, now walk the temporary list.
1804 * All I/O is issued async and then if we need to wait for completion
1805 * we do that after issuing all the IO.
1807 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1808 while (!list_empty(&tmp_list)) {
1809 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1810 ASSERT(target == bp->b_target);
1811 list_del_init(&bp->b_list);
1812 if (wait) {
1813 bp->b_flags &= ~XBF_ASYNC;
1814 list_add(&bp->b_list, &wait_list);
1816 xfs_bdstrat_cb(bp);
1819 if (wait) {
1820 /* Expedite and wait for IO to complete. */
1821 blk_flush_plug(current);
1822 while (!list_empty(&wait_list)) {
1823 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1825 list_del_init(&bp->b_list);
1826 xfs_buf_iowait(bp);
1827 xfs_buf_relse(bp);
1831 return pincount;
1834 int __init
1835 xfs_buf_init(void)
1837 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1838 KM_ZONE_HWALIGN, NULL);
1839 if (!xfs_buf_zone)
1840 goto out;
1842 xfslogd_workqueue = alloc_workqueue("xfslogd",
1843 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1844 if (!xfslogd_workqueue)
1845 goto out_free_buf_zone;
1847 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1848 if (!xfsdatad_workqueue)
1849 goto out_destroy_xfslogd_workqueue;
1851 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1852 WQ_MEM_RECLAIM, 1);
1853 if (!xfsconvertd_workqueue)
1854 goto out_destroy_xfsdatad_workqueue;
1856 return 0;
1858 out_destroy_xfsdatad_workqueue:
1859 destroy_workqueue(xfsdatad_workqueue);
1860 out_destroy_xfslogd_workqueue:
1861 destroy_workqueue(xfslogd_workqueue);
1862 out_free_buf_zone:
1863 kmem_zone_destroy(xfs_buf_zone);
1864 out:
1865 return -ENOMEM;
1868 void
1869 xfs_buf_terminate(void)
1871 destroy_workqueue(xfsconvertd_workqueue);
1872 destroy_workqueue(xfsdatad_workqueue);
1873 destroy_workqueue(xfslogd_workqueue);
1874 kmem_zone_destroy(xfs_buf_zone);
1877 #ifdef CONFIG_KDB_MODULES
1878 struct list_head *
1879 xfs_get_buftarg_list(void)
1881 return &xfs_buftarg_list;
1883 #endif