2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
48 #include "xfs_utils.h"
50 STATIC
int xlog_find_zeroed(xlog_t
*, xfs_daddr_t
*);
51 STATIC
int xlog_clear_stale_blocks(xlog_t
*, xfs_lsn_t
);
52 STATIC
void xlog_recover_insert_item_backq(xlog_recover_item_t
**q
,
53 xlog_recover_item_t
*item
);
55 STATIC
void xlog_recover_check_summary(xlog_t
*);
57 #define xlog_recover_check_summary(log)
62 * Sector aligned buffer routines for buffer create/read/write/access
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
66 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
75 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
76 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
77 XFS_ERROR_REPORT("xlog_get_bp(1)",
78 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
82 if (log
->l_sectbb_log
) {
84 nbblks
+= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
85 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
87 return xfs_buf_get_noaddr(BBTOB(nbblks
), log
->l_mp
->m_logdev_targp
);
99 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
110 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
111 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
112 XFS_ERROR_REPORT("xlog_bread(1)",
113 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
117 if (log
->l_sectbb_log
) {
118 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
119 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
123 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
126 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
129 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
130 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
132 xfsbdstrat(log
->l_mp
, bp
);
133 error
= xfs_iowait(bp
);
135 xfs_ioerror_alert("xlog_bread", log
->l_mp
,
136 bp
, XFS_BUF_ADDR(bp
));
141 * Write out the buffer at the given block for the given number of blocks.
142 * The buffer is kept locked across the write and is returned locked.
143 * This can only be used for synchronous log writes.
154 if (nbblks
<= 0 || nbblks
> log
->l_logBBsize
) {
155 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks
);
156 XFS_ERROR_REPORT("xlog_bwrite(1)",
157 XFS_ERRLEVEL_HIGH
, log
->l_mp
);
161 if (log
->l_sectbb_log
) {
162 blk_no
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, blk_no
);
163 nbblks
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, nbblks
);
167 ASSERT(BBTOB(nbblks
) <= XFS_BUF_SIZE(bp
));
169 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
170 XFS_BUF_ZEROFLAGS(bp
);
173 XFS_BUF_PSEMA(bp
, PRIBIO
);
174 XFS_BUF_SET_COUNT(bp
, BBTOB(nbblks
));
175 XFS_BUF_SET_TARGET(bp
, log
->l_mp
->m_logdev_targp
);
177 if ((error
= xfs_bwrite(log
->l_mp
, bp
)))
178 xfs_ioerror_alert("xlog_bwrite", log
->l_mp
,
179 bp
, XFS_BUF_ADDR(bp
));
192 if (!log
->l_sectbb_log
)
193 return XFS_BUF_PTR(bp
);
195 ptr
= XFS_BUF_PTR(bp
) + BBTOB((int)blk_no
& log
->l_sectbb_mask
);
196 ASSERT(XFS_BUF_SIZE(bp
) >=
197 BBTOB(nbblks
+ (blk_no
& log
->l_sectbb_mask
)));
203 * dump debug superblock and log record information
206 xlog_header_check_dump(
208 xlog_rec_header_t
*head
)
212 cmn_err(CE_DEBUG
, "%s: SB : uuid = ", __func__
);
213 for (b
= 0; b
< 16; b
++)
214 cmn_err(CE_DEBUG
, "%02x", ((uchar_t
*)&mp
->m_sb
.sb_uuid
)[b
]);
215 cmn_err(CE_DEBUG
, ", fmt = %d\n", XLOG_FMT
);
216 cmn_err(CE_DEBUG
, " log : uuid = ");
217 for (b
= 0; b
< 16; b
++)
218 cmn_err(CE_DEBUG
, "%02x",((uchar_t
*)&head
->h_fs_uuid
)[b
]);
219 cmn_err(CE_DEBUG
, ", fmt = %d\n", be32_to_cpu(head
->h_fmt
));
222 #define xlog_header_check_dump(mp, head)
226 * check log record header for recovery
229 xlog_header_check_recover(
231 xlog_rec_header_t
*head
)
233 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
236 * IRIX doesn't write the h_fmt field and leaves it zeroed
237 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
238 * a dirty log created in IRIX.
240 if (unlikely(be32_to_cpu(head
->h_fmt
) != XLOG_FMT
)) {
242 "XFS: dirty log written in incompatible format - can't recover");
243 xlog_header_check_dump(mp
, head
);
244 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
245 XFS_ERRLEVEL_HIGH
, mp
);
246 return XFS_ERROR(EFSCORRUPTED
);
247 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
249 "XFS: dirty log entry has mismatched uuid - can't recover");
250 xlog_header_check_dump(mp
, head
);
251 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
252 XFS_ERRLEVEL_HIGH
, mp
);
253 return XFS_ERROR(EFSCORRUPTED
);
259 * read the head block of the log and check the header
262 xlog_header_check_mount(
264 xlog_rec_header_t
*head
)
266 ASSERT(be32_to_cpu(head
->h_magicno
) == XLOG_HEADER_MAGIC_NUM
);
268 if (uuid_is_nil(&head
->h_fs_uuid
)) {
270 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
271 * h_fs_uuid is nil, we assume this log was last mounted
272 * by IRIX and continue.
274 xlog_warn("XFS: nil uuid in log - IRIX style log");
275 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
276 xlog_warn("XFS: log has mismatched uuid - can't recover");
277 xlog_header_check_dump(mp
, head
);
278 XFS_ERROR_REPORT("xlog_header_check_mount",
279 XFS_ERRLEVEL_HIGH
, mp
);
280 return XFS_ERROR(EFSCORRUPTED
);
289 if (XFS_BUF_GETERROR(bp
)) {
291 * We're not going to bother about retrying
292 * this during recovery. One strike!
294 xfs_ioerror_alert("xlog_recover_iodone",
295 bp
->b_mount
, bp
, XFS_BUF_ADDR(bp
));
296 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_META_IO_ERROR
);
299 XFS_BUF_CLR_IODONE_FUNC(bp
);
304 * This routine finds (to an approximation) the first block in the physical
305 * log which contains the given cycle. It uses a binary search algorithm.
306 * Note that the algorithm can not be perfect because the disk will not
307 * necessarily be perfect.
310 xlog_find_cycle_start(
313 xfs_daddr_t first_blk
,
314 xfs_daddr_t
*last_blk
,
322 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
323 while (mid_blk
!= first_blk
&& mid_blk
!= *last_blk
) {
324 if ((error
= xlog_bread(log
, mid_blk
, 1, bp
)))
326 offset
= xlog_align(log
, mid_blk
, 1, bp
);
327 mid_cycle
= xlog_get_cycle(offset
);
328 if (mid_cycle
== cycle
) {
330 /* last_half_cycle == mid_cycle */
333 /* first_half_cycle == mid_cycle */
335 mid_blk
= BLK_AVG(first_blk
, *last_blk
);
337 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == *last_blk
) ||
338 (mid_blk
== *last_blk
&& mid_blk
-1 == first_blk
));
344 * Check that the range of blocks does not contain the cycle number
345 * given. The scan needs to occur from front to back and the ptr into the
346 * region must be updated since a later routine will need to perform another
347 * test. If the region is completely good, we end up returning the same
350 * Set blkno to -1 if we encounter no errors. This is an invalid block number
351 * since we don't ever expect logs to get this large.
354 xlog_find_verify_cycle(
356 xfs_daddr_t start_blk
,
358 uint stop_on_cycle_no
,
359 xfs_daddr_t
*new_blk
)
365 xfs_caddr_t buf
= NULL
;
368 bufblks
= 1 << ffs(nbblks
);
370 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
371 /* can't get enough memory to do everything in one big buffer */
373 if (bufblks
<= log
->l_sectbb_log
)
377 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
380 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
382 if ((error
= xlog_bread(log
, i
, bcount
, bp
)))
385 buf
= xlog_align(log
, i
, bcount
, bp
);
386 for (j
= 0; j
< bcount
; j
++) {
387 cycle
= xlog_get_cycle(buf
);
388 if (cycle
== stop_on_cycle_no
) {
405 * Potentially backup over partial log record write.
407 * In the typical case, last_blk is the number of the block directly after
408 * a good log record. Therefore, we subtract one to get the block number
409 * of the last block in the given buffer. extra_bblks contains the number
410 * of blocks we would have read on a previous read. This happens when the
411 * last log record is split over the end of the physical log.
413 * extra_bblks is the number of blocks potentially verified on a previous
414 * call to this routine.
417 xlog_find_verify_log_record(
419 xfs_daddr_t start_blk
,
420 xfs_daddr_t
*last_blk
,
425 xfs_caddr_t offset
= NULL
;
426 xlog_rec_header_t
*head
= NULL
;
429 int num_blks
= *last_blk
- start_blk
;
432 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
434 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
435 if (!(bp
= xlog_get_bp(log
, 1)))
439 if ((error
= xlog_bread(log
, start_blk
, num_blks
, bp
)))
441 offset
= xlog_align(log
, start_blk
, num_blks
, bp
);
442 offset
+= ((num_blks
- 1) << BBSHIFT
);
445 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
447 /* valid log record not found */
449 "XFS: Log inconsistent (didn't find previous header)");
451 error
= XFS_ERROR(EIO
);
456 if ((error
= xlog_bread(log
, i
, 1, bp
)))
458 offset
= xlog_align(log
, i
, 1, bp
);
461 head
= (xlog_rec_header_t
*)offset
;
463 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(head
->h_magicno
))
471 * We hit the beginning of the physical log & still no header. Return
472 * to caller. If caller can handle a return of -1, then this routine
473 * will be called again for the end of the physical log.
481 * We have the final block of the good log (the first block
482 * of the log record _before_ the head. So we check the uuid.
484 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
488 * We may have found a log record header before we expected one.
489 * last_blk will be the 1st block # with a given cycle #. We may end
490 * up reading an entire log record. In this case, we don't want to
491 * reset last_blk. Only when last_blk points in the middle of a log
492 * record do we update last_blk.
494 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
495 uint h_size
= be32_to_cpu(head
->h_size
);
497 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
498 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
504 if (*last_blk
- i
+ extra_bblks
!=
505 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
514 * Head is defined to be the point of the log where the next log write
515 * write could go. This means that incomplete LR writes at the end are
516 * eliminated when calculating the head. We aren't guaranteed that previous
517 * LR have complete transactions. We only know that a cycle number of
518 * current cycle number -1 won't be present in the log if we start writing
519 * from our current block number.
521 * last_blk contains the block number of the first block with a given
524 * Return: zero if normal, non-zero if error.
529 xfs_daddr_t
*return_head_blk
)
533 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
535 uint first_half_cycle
, last_half_cycle
;
537 int error
, log_bbnum
= log
->l_logBBsize
;
539 /* Is the end of the log device zeroed? */
540 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
541 *return_head_blk
= first_blk
;
543 /* Is the whole lot zeroed? */
545 /* Linux XFS shouldn't generate totally zeroed logs -
546 * mkfs etc write a dummy unmount record to a fresh
547 * log so we can store the uuid in there
549 xlog_warn("XFS: totally zeroed log");
554 xlog_warn("XFS: empty log check failed");
558 first_blk
= 0; /* get cycle # of 1st block */
559 bp
= xlog_get_bp(log
, 1);
562 if ((error
= xlog_bread(log
, 0, 1, bp
)))
564 offset
= xlog_align(log
, 0, 1, bp
);
565 first_half_cycle
= xlog_get_cycle(offset
);
567 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
568 if ((error
= xlog_bread(log
, last_blk
, 1, bp
)))
570 offset
= xlog_align(log
, last_blk
, 1, bp
);
571 last_half_cycle
= xlog_get_cycle(offset
);
572 ASSERT(last_half_cycle
!= 0);
575 * If the 1st half cycle number is equal to the last half cycle number,
576 * then the entire log is stamped with the same cycle number. In this
577 * case, head_blk can't be set to zero (which makes sense). The below
578 * math doesn't work out properly with head_blk equal to zero. Instead,
579 * we set it to log_bbnum which is an invalid block number, but this
580 * value makes the math correct. If head_blk doesn't changed through
581 * all the tests below, *head_blk is set to zero at the very end rather
582 * than log_bbnum. In a sense, log_bbnum and zero are the same block
583 * in a circular file.
585 if (first_half_cycle
== last_half_cycle
) {
587 * In this case we believe that the entire log should have
588 * cycle number last_half_cycle. We need to scan backwards
589 * from the end verifying that there are no holes still
590 * containing last_half_cycle - 1. If we find such a hole,
591 * then the start of that hole will be the new head. The
592 * simple case looks like
593 * x | x ... | x - 1 | x
594 * Another case that fits this picture would be
595 * x | x + 1 | x ... | x
596 * In this case the head really is somewhere at the end of the
597 * log, as one of the latest writes at the beginning was
600 * x | x + 1 | x ... | x - 1 | x
601 * This is really the combination of the above two cases, and
602 * the head has to end up at the start of the x-1 hole at the
605 * In the 256k log case, we will read from the beginning to the
606 * end of the log and search for cycle numbers equal to x-1.
607 * We don't worry about the x+1 blocks that we encounter,
608 * because we know that they cannot be the head since the log
611 head_blk
= log_bbnum
;
612 stop_on_cycle
= last_half_cycle
- 1;
615 * In this case we want to find the first block with cycle
616 * number matching last_half_cycle. We expect the log to be
619 * The first block with cycle number x (last_half_cycle) will
620 * be where the new head belongs. First we do a binary search
621 * for the first occurrence of last_half_cycle. The binary
622 * search may not be totally accurate, so then we scan back
623 * from there looking for occurrences of last_half_cycle before
624 * us. If that backwards scan wraps around the beginning of
625 * the log, then we look for occurrences of last_half_cycle - 1
626 * at the end of the log. The cases we're looking for look
628 * x + 1 ... | x | x + 1 | x ...
629 * ^ binary search stopped here
631 * x + 1 ... | x ... | x - 1 | x
632 * <---------> less than scan distance
634 stop_on_cycle
= last_half_cycle
;
635 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
636 &head_blk
, last_half_cycle
)))
641 * Now validate the answer. Scan back some number of maximum possible
642 * blocks and make sure each one has the expected cycle number. The
643 * maximum is determined by the total possible amount of buffering
644 * in the in-core log. The following number can be made tighter if
645 * we actually look at the block size of the filesystem.
647 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
648 if (head_blk
>= num_scan_bblks
) {
650 * We are guaranteed that the entire check can be performed
653 start_blk
= head_blk
- num_scan_bblks
;
654 if ((error
= xlog_find_verify_cycle(log
,
655 start_blk
, num_scan_bblks
,
656 stop_on_cycle
, &new_blk
)))
660 } else { /* need to read 2 parts of log */
662 * We are going to scan backwards in the log in two parts.
663 * First we scan the physical end of the log. In this part
664 * of the log, we are looking for blocks with cycle number
665 * last_half_cycle - 1.
666 * If we find one, then we know that the log starts there, as
667 * we've found a hole that didn't get written in going around
668 * the end of the physical log. The simple case for this is
669 * x + 1 ... | x ... | x - 1 | x
670 * <---------> less than scan distance
671 * If all of the blocks at the end of the log have cycle number
672 * last_half_cycle, then we check the blocks at the start of
673 * the log looking for occurrences of last_half_cycle. If we
674 * find one, then our current estimate for the location of the
675 * first occurrence of last_half_cycle is wrong and we move
676 * back to the hole we've found. This case looks like
677 * x + 1 ... | x | x + 1 | x ...
678 * ^ binary search stopped here
679 * Another case we need to handle that only occurs in 256k
681 * x + 1 ... | x ... | x+1 | x ...
682 * ^ binary search stops here
683 * In a 256k log, the scan at the end of the log will see the
684 * x + 1 blocks. We need to skip past those since that is
685 * certainly not the head of the log. By searching for
686 * last_half_cycle-1 we accomplish that.
688 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
689 ASSERT(head_blk
<= INT_MAX
&&
690 (xfs_daddr_t
) num_scan_bblks
- head_blk
>= 0);
691 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
692 num_scan_bblks
- (int)head_blk
,
693 (stop_on_cycle
- 1), &new_blk
)))
701 * Scan beginning of log now. The last part of the physical
702 * log is good. This scan needs to verify that it doesn't find
703 * the last_half_cycle.
706 ASSERT(head_blk
<= INT_MAX
);
707 if ((error
= xlog_find_verify_cycle(log
,
708 start_blk
, (int)head_blk
,
709 stop_on_cycle
, &new_blk
)))
717 * Now we need to make sure head_blk is not pointing to a block in
718 * the middle of a log record.
720 num_scan_bblks
= XLOG_REC_SHIFT(log
);
721 if (head_blk
>= num_scan_bblks
) {
722 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
724 /* start ptr at last block ptr before head_blk */
725 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
726 &head_blk
, 0)) == -1) {
727 error
= XFS_ERROR(EIO
);
733 ASSERT(head_blk
<= INT_MAX
);
734 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
735 &head_blk
, 0)) == -1) {
736 /* We hit the beginning of the log during our search */
737 start_blk
= log_bbnum
- num_scan_bblks
+ head_blk
;
739 ASSERT(start_blk
<= INT_MAX
&&
740 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
741 ASSERT(head_blk
<= INT_MAX
);
742 if ((error
= xlog_find_verify_log_record(log
,
744 (int)head_blk
)) == -1) {
745 error
= XFS_ERROR(EIO
);
749 if (new_blk
!= log_bbnum
)
756 if (head_blk
== log_bbnum
)
757 *return_head_blk
= 0;
759 *return_head_blk
= head_blk
;
761 * When returning here, we have a good block number. Bad block
762 * means that during a previous crash, we didn't have a clean break
763 * from cycle number N to cycle number N-1. In this case, we need
764 * to find the first block with cycle number N-1.
772 xlog_warn("XFS: failed to find log head");
777 * Find the sync block number or the tail of the log.
779 * This will be the block number of the last record to have its
780 * associated buffers synced to disk. Every log record header has
781 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
782 * to get a sync block number. The only concern is to figure out which
783 * log record header to believe.
785 * The following algorithm uses the log record header with the largest
786 * lsn. The entire log record does not need to be valid. We only care
787 * that the header is valid.
789 * We could speed up search by using current head_blk buffer, but it is not
795 xfs_daddr_t
*head_blk
,
796 xfs_daddr_t
*tail_blk
)
798 xlog_rec_header_t
*rhead
;
799 xlog_op_header_t
*op_head
;
800 xfs_caddr_t offset
= NULL
;
803 xfs_daddr_t umount_data_blk
;
804 xfs_daddr_t after_umount_blk
;
811 * Find previous log record
813 if ((error
= xlog_find_head(log
, head_blk
)))
816 bp
= xlog_get_bp(log
, 1);
819 if (*head_blk
== 0) { /* special case */
820 if ((error
= xlog_bread(log
, 0, 1, bp
)))
822 offset
= xlog_align(log
, 0, 1, bp
);
823 if (xlog_get_cycle(offset
) == 0) {
825 /* leave all other log inited values alone */
831 * Search backwards looking for log record header block
833 ASSERT(*head_blk
< INT_MAX
);
834 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
835 if ((error
= xlog_bread(log
, i
, 1, bp
)))
837 offset
= xlog_align(log
, i
, 1, bp
);
838 if (XLOG_HEADER_MAGIC_NUM
== be32_to_cpu(*(__be32
*)offset
)) {
844 * If we haven't found the log record header block, start looking
845 * again from the end of the physical log. XXXmiken: There should be
846 * a check here to make sure we didn't search more than N blocks in
850 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
851 if ((error
= xlog_bread(log
, i
, 1, bp
)))
853 offset
= xlog_align(log
, i
, 1, bp
);
854 if (XLOG_HEADER_MAGIC_NUM
==
855 be32_to_cpu(*(__be32
*)offset
)) {
862 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
864 return XFS_ERROR(EIO
);
867 /* find blk_no of tail of log */
868 rhead
= (xlog_rec_header_t
*)offset
;
869 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
872 * Reset log values according to the state of the log when we
873 * crashed. In the case where head_blk == 0, we bump curr_cycle
874 * one because the next write starts a new cycle rather than
875 * continuing the cycle of the last good log record. At this
876 * point we have guaranteed that all partial log records have been
877 * accounted for. Therefore, we know that the last good log record
878 * written was complete and ended exactly on the end boundary
879 * of the physical log.
881 log
->l_prev_block
= i
;
882 log
->l_curr_block
= (int)*head_blk
;
883 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
886 log
->l_tail_lsn
= be64_to_cpu(rhead
->h_tail_lsn
);
887 log
->l_last_sync_lsn
= be64_to_cpu(rhead
->h_lsn
);
888 log
->l_grant_reserve_cycle
= log
->l_curr_cycle
;
889 log
->l_grant_reserve_bytes
= BBTOB(log
->l_curr_block
);
890 log
->l_grant_write_cycle
= log
->l_curr_cycle
;
891 log
->l_grant_write_bytes
= BBTOB(log
->l_curr_block
);
894 * Look for unmount record. If we find it, then we know there
895 * was a clean unmount. Since 'i' could be the last block in
896 * the physical log, we convert to a log block before comparing
899 * Save the current tail lsn to use to pass to
900 * xlog_clear_stale_blocks() below. We won't want to clear the
901 * unmount record if there is one, so we pass the lsn of the
902 * unmount record rather than the block after it.
904 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
905 int h_size
= be32_to_cpu(rhead
->h_size
);
906 int h_version
= be32_to_cpu(rhead
->h_version
);
908 if ((h_version
& XLOG_VERSION_2
) &&
909 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
910 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
911 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
919 after_umount_blk
= (i
+ hblks
+ (int)
920 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
921 tail_lsn
= log
->l_tail_lsn
;
922 if (*head_blk
== after_umount_blk
&&
923 be32_to_cpu(rhead
->h_num_logops
) == 1) {
924 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
925 if ((error
= xlog_bread(log
, umount_data_blk
, 1, bp
))) {
928 offset
= xlog_align(log
, umount_data_blk
, 1, bp
);
929 op_head
= (xlog_op_header_t
*)offset
;
930 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
932 * Set tail and last sync so that newly written
933 * log records will point recovery to after the
934 * current unmount record.
937 xlog_assign_lsn(log
->l_curr_cycle
,
939 log
->l_last_sync_lsn
=
940 xlog_assign_lsn(log
->l_curr_cycle
,
942 *tail_blk
= after_umount_blk
;
945 * Note that the unmount was clean. If the unmount
946 * was not clean, we need to know this to rebuild the
947 * superblock counters from the perag headers if we
948 * have a filesystem using non-persistent counters.
950 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
955 * Make sure that there are no blocks in front of the head
956 * with the same cycle number as the head. This can happen
957 * because we allow multiple outstanding log writes concurrently,
958 * and the later writes might make it out before earlier ones.
960 * We use the lsn from before modifying it so that we'll never
961 * overwrite the unmount record after a clean unmount.
963 * Do this only if we are going to recover the filesystem
965 * NOTE: This used to say "if (!readonly)"
966 * However on Linux, we can & do recover a read-only filesystem.
967 * We only skip recovery if NORECOVERY is specified on mount,
968 * in which case we would not be here.
970 * But... if the -device- itself is readonly, just skip this.
971 * We can't recover this device anyway, so it won't matter.
973 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
974 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
982 xlog_warn("XFS: failed to locate log tail");
987 * Is the log zeroed at all?
989 * The last binary search should be changed to perform an X block read
990 * once X becomes small enough. You can then search linearly through
991 * the X blocks. This will cut down on the number of reads we need to do.
993 * If the log is partially zeroed, this routine will pass back the blkno
994 * of the first block with cycle number 0. It won't have a complete LR
998 * 0 => the log is completely written to
999 * -1 => use *blk_no as the first block of the log
1000 * >0 => error has occurred
1005 xfs_daddr_t
*blk_no
)
1009 uint first_cycle
, last_cycle
;
1010 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1011 xfs_daddr_t num_scan_bblks
;
1012 int error
, log_bbnum
= log
->l_logBBsize
;
1016 /* check totally zeroed log */
1017 bp
= xlog_get_bp(log
, 1);
1020 if ((error
= xlog_bread(log
, 0, 1, bp
)))
1022 offset
= xlog_align(log
, 0, 1, bp
);
1023 first_cycle
= xlog_get_cycle(offset
);
1024 if (first_cycle
== 0) { /* completely zeroed log */
1030 /* check partially zeroed log */
1031 if ((error
= xlog_bread(log
, log_bbnum
-1, 1, bp
)))
1033 offset
= xlog_align(log
, log_bbnum
-1, 1, bp
);
1034 last_cycle
= xlog_get_cycle(offset
);
1035 if (last_cycle
!= 0) { /* log completely written to */
1038 } else if (first_cycle
!= 1) {
1040 * If the cycle of the last block is zero, the cycle of
1041 * the first block must be 1. If it's not, maybe we're
1042 * not looking at a log... Bail out.
1044 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1045 return XFS_ERROR(EINVAL
);
1048 /* we have a partially zeroed log */
1049 last_blk
= log_bbnum
-1;
1050 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1054 * Validate the answer. Because there is no way to guarantee that
1055 * the entire log is made up of log records which are the same size,
1056 * we scan over the defined maximum blocks. At this point, the maximum
1057 * is not chosen to mean anything special. XXXmiken
1059 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1060 ASSERT(num_scan_bblks
<= INT_MAX
);
1062 if (last_blk
< num_scan_bblks
)
1063 num_scan_bblks
= last_blk
;
1064 start_blk
= last_blk
- num_scan_bblks
;
1067 * We search for any instances of cycle number 0 that occur before
1068 * our current estimate of the head. What we're trying to detect is
1069 * 1 ... | 0 | 1 | 0...
1070 * ^ binary search ends here
1072 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1073 (int)num_scan_bblks
, 0, &new_blk
)))
1079 * Potentially backup over partial log record write. We don't need
1080 * to search the end of the log because we know it is zero.
1082 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1083 &last_blk
, 0)) == -1) {
1084 error
= XFS_ERROR(EIO
);
1098 * These are simple subroutines used by xlog_clear_stale_blocks() below
1099 * to initialize a buffer full of empty log record headers and write
1100 * them into the log.
1111 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1113 memset(buf
, 0, BBSIZE
);
1114 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1115 recp
->h_cycle
= cpu_to_be32(cycle
);
1116 recp
->h_version
= cpu_to_be32(
1117 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1118 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1119 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1120 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1121 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1125 xlog_write_log_records(
1136 int sectbb
= XLOG_SECTOR_ROUNDUP_BBCOUNT(log
, 1);
1137 int end_block
= start_block
+ blocks
;
1142 bufblks
= 1 << ffs(blocks
);
1143 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1145 if (bufblks
<= log
->l_sectbb_log
)
1149 /* We may need to do a read at the start to fill in part of
1150 * the buffer in the starting sector not covered by the first
1153 balign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, start_block
);
1154 if (balign
!= start_block
) {
1155 if ((error
= xlog_bread(log
, start_block
, 1, bp
))) {
1159 j
= start_block
- balign
;
1162 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1163 int bcount
, endcount
;
1165 bcount
= min(bufblks
, end_block
- start_block
);
1166 endcount
= bcount
- j
;
1168 /* We may need to do a read at the end to fill in part of
1169 * the buffer in the final sector not covered by the write.
1170 * If this is the same sector as the above read, skip it.
1172 ealign
= XLOG_SECTOR_ROUNDDOWN_BLKNO(log
, end_block
);
1173 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1174 offset
= XFS_BUF_PTR(bp
);
1175 balign
= BBTOB(ealign
- start_block
);
1176 error
= XFS_BUF_SET_PTR(bp
, offset
+ balign
,
1179 error
= xlog_bread(log
, ealign
, sectbb
, bp
);
1181 error
= XFS_BUF_SET_PTR(bp
, offset
, bufblks
);
1186 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1187 for (; j
< endcount
; j
++) {
1188 xlog_add_record(log
, offset
, cycle
, i
+j
,
1189 tail_cycle
, tail_block
);
1192 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1195 start_block
+= endcount
;
1203 * This routine is called to blow away any incomplete log writes out
1204 * in front of the log head. We do this so that we won't become confused
1205 * if we come up, write only a little bit more, and then crash again.
1206 * If we leave the partial log records out there, this situation could
1207 * cause us to think those partial writes are valid blocks since they
1208 * have the current cycle number. We get rid of them by overwriting them
1209 * with empty log records with the old cycle number rather than the
1212 * The tail lsn is passed in rather than taken from
1213 * the log so that we will not write over the unmount record after a
1214 * clean unmount in a 512 block log. Doing so would leave the log without
1215 * any valid log records in it until a new one was written. If we crashed
1216 * during that time we would not be able to recover.
1219 xlog_clear_stale_blocks(
1223 int tail_cycle
, head_cycle
;
1224 int tail_block
, head_block
;
1225 int tail_distance
, max_distance
;
1229 tail_cycle
= CYCLE_LSN(tail_lsn
);
1230 tail_block
= BLOCK_LSN(tail_lsn
);
1231 head_cycle
= log
->l_curr_cycle
;
1232 head_block
= log
->l_curr_block
;
1235 * Figure out the distance between the new head of the log
1236 * and the tail. We want to write over any blocks beyond the
1237 * head that we may have written just before the crash, but
1238 * we don't want to overwrite the tail of the log.
1240 if (head_cycle
== tail_cycle
) {
1242 * The tail is behind the head in the physical log,
1243 * so the distance from the head to the tail is the
1244 * distance from the head to the end of the log plus
1245 * the distance from the beginning of the log to the
1248 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1249 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1250 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1251 return XFS_ERROR(EFSCORRUPTED
);
1253 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1256 * The head is behind the tail in the physical log,
1257 * so the distance from the head to the tail is just
1258 * the tail block minus the head block.
1260 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1261 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1262 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1263 return XFS_ERROR(EFSCORRUPTED
);
1265 tail_distance
= tail_block
- head_block
;
1269 * If the head is right up against the tail, we can't clear
1272 if (tail_distance
<= 0) {
1273 ASSERT(tail_distance
== 0);
1277 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1279 * Take the smaller of the maximum amount of outstanding I/O
1280 * we could have and the distance to the tail to clear out.
1281 * We take the smaller so that we don't overwrite the tail and
1282 * we don't waste all day writing from the head to the tail
1285 max_distance
= MIN(max_distance
, tail_distance
);
1287 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1289 * We can stomp all the blocks we need to without
1290 * wrapping around the end of the log. Just do it
1291 * in a single write. Use the cycle number of the
1292 * current cycle minus one so that the log will look like:
1295 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1296 head_block
, max_distance
, tail_cycle
,
1302 * We need to wrap around the end of the physical log in
1303 * order to clear all the blocks. Do it in two separate
1304 * I/Os. The first write should be from the head to the
1305 * end of the physical log, and it should use the current
1306 * cycle number minus one just like above.
1308 distance
= log
->l_logBBsize
- head_block
;
1309 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1310 head_block
, distance
, tail_cycle
,
1317 * Now write the blocks at the start of the physical log.
1318 * This writes the remainder of the blocks we want to clear.
1319 * It uses the current cycle number since we're now on the
1320 * same cycle as the head so that we get:
1321 * n ... n ... | n - 1 ...
1322 * ^^^^^ blocks we're writing
1324 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1325 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1326 tail_cycle
, tail_block
);
1334 /******************************************************************************
1336 * Log recover routines
1338 ******************************************************************************
1341 STATIC xlog_recover_t
*
1342 xlog_recover_find_tid(
1346 xlog_recover_t
*p
= q
;
1349 if (p
->r_log_tid
== tid
)
1357 xlog_recover_put_hashq(
1359 xlog_recover_t
*trans
)
1366 xlog_recover_add_item(
1367 xlog_recover_item_t
**itemq
)
1369 xlog_recover_item_t
*item
;
1371 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1372 xlog_recover_insert_item_backq(itemq
, item
);
1376 xlog_recover_add_to_cont_trans(
1377 xlog_recover_t
*trans
,
1381 xlog_recover_item_t
*item
;
1382 xfs_caddr_t ptr
, old_ptr
;
1385 item
= trans
->r_itemq
;
1387 /* finish copying rest of trans header */
1388 xlog_recover_add_item(&trans
->r_itemq
);
1389 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1390 sizeof(xfs_trans_header_t
) - len
;
1391 memcpy(ptr
, dp
, len
); /* d, s, l */
1394 item
= item
->ri_prev
;
1396 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1397 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1399 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, 0u);
1400 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1401 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1402 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1407 * The next region to add is the start of a new region. It could be
1408 * a whole region or it could be the first part of a new region. Because
1409 * of this, the assumption here is that the type and size fields of all
1410 * format structures fit into the first 32 bits of the structure.
1412 * This works because all regions must be 32 bit aligned. Therefore, we
1413 * either have both fields or we have neither field. In the case we have
1414 * neither field, the data part of the region is zero length. We only have
1415 * a log_op_header and can throw away the header since a new one will appear
1416 * later. If we have at least 4 bytes, then we can determine how many regions
1417 * will appear in the current log item.
1420 xlog_recover_add_to_trans(
1421 xlog_recover_t
*trans
,
1425 xfs_inode_log_format_t
*in_f
; /* any will do */
1426 xlog_recover_item_t
*item
;
1431 item
= trans
->r_itemq
;
1433 /* we need to catch log corruptions here */
1434 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1435 xlog_warn("XFS: xlog_recover_add_to_trans: "
1436 "bad header magic number");
1438 return XFS_ERROR(EIO
);
1440 if (len
== sizeof(xfs_trans_header_t
))
1441 xlog_recover_add_item(&trans
->r_itemq
);
1442 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1446 ptr
= kmem_alloc(len
, KM_SLEEP
);
1447 memcpy(ptr
, dp
, len
);
1448 in_f
= (xfs_inode_log_format_t
*)ptr
;
1450 if (item
->ri_prev
->ri_total
!= 0 &&
1451 item
->ri_prev
->ri_total
== item
->ri_prev
->ri_cnt
) {
1452 xlog_recover_add_item(&trans
->r_itemq
);
1454 item
= trans
->r_itemq
;
1455 item
= item
->ri_prev
;
1457 if (item
->ri_total
== 0) { /* first region to be added */
1458 item
->ri_total
= in_f
->ilf_size
;
1459 ASSERT(item
->ri_total
<= XLOG_MAX_REGIONS_IN_ITEM
);
1460 item
->ri_buf
= kmem_zalloc((item
->ri_total
*
1461 sizeof(xfs_log_iovec_t
)), KM_SLEEP
);
1463 ASSERT(item
->ri_total
> item
->ri_cnt
);
1464 /* Description region is ri_buf[0] */
1465 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1466 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1472 xlog_recover_new_tid(
1477 xlog_recover_t
*trans
;
1479 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1480 trans
->r_log_tid
= tid
;
1482 xlog_recover_put_hashq(q
, trans
);
1486 xlog_recover_unlink_tid(
1488 xlog_recover_t
*trans
)
1493 ASSERT(trans
!= NULL
);
1499 if (tp
->r_next
== trans
) {
1507 "XFS: xlog_recover_unlink_tid: trans not found");
1509 return XFS_ERROR(EIO
);
1511 tp
->r_next
= tp
->r_next
->r_next
;
1517 xlog_recover_insert_item_backq(
1518 xlog_recover_item_t
**q
,
1519 xlog_recover_item_t
*item
)
1522 item
->ri_prev
= item
->ri_next
= item
;
1526 item
->ri_prev
= (*q
)->ri_prev
;
1527 (*q
)->ri_prev
= item
;
1528 item
->ri_prev
->ri_next
= item
;
1533 xlog_recover_insert_item_frontq(
1534 xlog_recover_item_t
**q
,
1535 xlog_recover_item_t
*item
)
1537 xlog_recover_insert_item_backq(q
, item
);
1542 xlog_recover_reorder_trans(
1543 xlog_recover_t
*trans
)
1545 xlog_recover_item_t
*first_item
, *itemq
, *itemq_next
;
1546 xfs_buf_log_format_t
*buf_f
;
1549 first_item
= itemq
= trans
->r_itemq
;
1550 trans
->r_itemq
= NULL
;
1552 itemq_next
= itemq
->ri_next
;
1553 buf_f
= (xfs_buf_log_format_t
*)itemq
->ri_buf
[0].i_addr
;
1555 switch (ITEM_TYPE(itemq
)) {
1557 flags
= buf_f
->blf_flags
;
1558 if (!(flags
& XFS_BLI_CANCEL
)) {
1559 xlog_recover_insert_item_frontq(&trans
->r_itemq
,
1565 case XFS_LI_QUOTAOFF
:
1568 xlog_recover_insert_item_backq(&trans
->r_itemq
, itemq
);
1572 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1574 return XFS_ERROR(EIO
);
1577 } while (first_item
!= itemq
);
1582 * Build up the table of buf cancel records so that we don't replay
1583 * cancelled data in the second pass. For buffer records that are
1584 * not cancel records, there is nothing to do here so we just return.
1586 * If we get a cancel record which is already in the table, this indicates
1587 * that the buffer was cancelled multiple times. In order to ensure
1588 * that during pass 2 we keep the record in the table until we reach its
1589 * last occurrence in the log, we keep a reference count in the cancel
1590 * record in the table to tell us how many times we expect to see this
1591 * record during the second pass.
1594 xlog_recover_do_buffer_pass1(
1596 xfs_buf_log_format_t
*buf_f
)
1598 xfs_buf_cancel_t
*bcp
;
1599 xfs_buf_cancel_t
*nextp
;
1600 xfs_buf_cancel_t
*prevp
;
1601 xfs_buf_cancel_t
**bucket
;
1602 xfs_daddr_t blkno
= 0;
1606 switch (buf_f
->blf_type
) {
1608 blkno
= buf_f
->blf_blkno
;
1609 len
= buf_f
->blf_len
;
1610 flags
= buf_f
->blf_flags
;
1615 * If this isn't a cancel buffer item, then just return.
1617 if (!(flags
& XFS_BLI_CANCEL
))
1621 * Insert an xfs_buf_cancel record into the hash table of
1622 * them. If there is already an identical record, bump
1623 * its reference count.
1625 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1626 XLOG_BC_TABLE_SIZE
];
1628 * If the hash bucket is empty then just insert a new record into
1631 if (*bucket
== NULL
) {
1632 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1634 bcp
->bc_blkno
= blkno
;
1636 bcp
->bc_refcount
= 1;
1637 bcp
->bc_next
= NULL
;
1643 * The hash bucket is not empty, so search for duplicates of our
1644 * record. If we find one them just bump its refcount. If not
1645 * then add us at the end of the list.
1649 while (nextp
!= NULL
) {
1650 if (nextp
->bc_blkno
== blkno
&& nextp
->bc_len
== len
) {
1651 nextp
->bc_refcount
++;
1655 nextp
= nextp
->bc_next
;
1657 ASSERT(prevp
!= NULL
);
1658 bcp
= (xfs_buf_cancel_t
*)kmem_alloc(sizeof(xfs_buf_cancel_t
),
1660 bcp
->bc_blkno
= blkno
;
1662 bcp
->bc_refcount
= 1;
1663 bcp
->bc_next
= NULL
;
1664 prevp
->bc_next
= bcp
;
1668 * Check to see whether the buffer being recovered has a corresponding
1669 * entry in the buffer cancel record table. If it does then return 1
1670 * so that it will be cancelled, otherwise return 0. If the buffer is
1671 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1672 * the refcount on the entry in the table and remove it from the table
1673 * if this is the last reference.
1675 * We remove the cancel record from the table when we encounter its
1676 * last occurrence in the log so that if the same buffer is re-used
1677 * again after its last cancellation we actually replay the changes
1678 * made at that point.
1681 xlog_check_buffer_cancelled(
1687 xfs_buf_cancel_t
*bcp
;
1688 xfs_buf_cancel_t
*prevp
;
1689 xfs_buf_cancel_t
**bucket
;
1691 if (log
->l_buf_cancel_table
== NULL
) {
1693 * There is nothing in the table built in pass one,
1694 * so this buffer must not be cancelled.
1696 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1700 bucket
= &log
->l_buf_cancel_table
[(__uint64_t
)blkno
%
1701 XLOG_BC_TABLE_SIZE
];
1705 * There is no corresponding entry in the table built
1706 * in pass one, so this buffer has not been cancelled.
1708 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1713 * Search for an entry in the buffer cancel table that
1714 * matches our buffer.
1717 while (bcp
!= NULL
) {
1718 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
) {
1720 * We've go a match, so return 1 so that the
1721 * recovery of this buffer is cancelled.
1722 * If this buffer is actually a buffer cancel
1723 * log item, then decrement the refcount on the
1724 * one in the table and remove it if this is the
1727 if (flags
& XFS_BLI_CANCEL
) {
1729 if (bcp
->bc_refcount
== 0) {
1730 if (prevp
== NULL
) {
1731 *bucket
= bcp
->bc_next
;
1733 prevp
->bc_next
= bcp
->bc_next
;
1744 * We didn't find a corresponding entry in the table, so
1745 * return 0 so that the buffer is NOT cancelled.
1747 ASSERT(!(flags
& XFS_BLI_CANCEL
));
1752 xlog_recover_do_buffer_pass2(
1754 xfs_buf_log_format_t
*buf_f
)
1756 xfs_daddr_t blkno
= 0;
1760 switch (buf_f
->blf_type
) {
1762 blkno
= buf_f
->blf_blkno
;
1763 flags
= buf_f
->blf_flags
;
1764 len
= buf_f
->blf_len
;
1768 return xlog_check_buffer_cancelled(log
, blkno
, len
, flags
);
1772 * Perform recovery for a buffer full of inodes. In these buffers,
1773 * the only data which should be recovered is that which corresponds
1774 * to the di_next_unlinked pointers in the on disk inode structures.
1775 * The rest of the data for the inodes is always logged through the
1776 * inodes themselves rather than the inode buffer and is recovered
1777 * in xlog_recover_do_inode_trans().
1779 * The only time when buffers full of inodes are fully recovered is
1780 * when the buffer is full of newly allocated inodes. In this case
1781 * the buffer will not be marked as an inode buffer and so will be
1782 * sent to xlog_recover_do_reg_buffer() below during recovery.
1785 xlog_recover_do_inode_buffer(
1787 xlog_recover_item_t
*item
,
1789 xfs_buf_log_format_t
*buf_f
)
1797 int next_unlinked_offset
;
1799 xfs_agino_t
*logged_nextp
;
1800 xfs_agino_t
*buffer_nextp
;
1801 unsigned int *data_map
= NULL
;
1802 unsigned int map_size
= 0;
1804 switch (buf_f
->blf_type
) {
1806 data_map
= buf_f
->blf_data_map
;
1807 map_size
= buf_f
->blf_map_size
;
1811 * Set the variables corresponding to the current region to
1812 * 0 so that we'll initialize them on the first pass through
1820 inodes_per_buf
= XFS_BUF_COUNT(bp
) >> mp
->m_sb
.sb_inodelog
;
1821 for (i
= 0; i
< inodes_per_buf
; i
++) {
1822 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1823 offsetof(xfs_dinode_t
, di_next_unlinked
);
1825 while (next_unlinked_offset
>=
1826 (reg_buf_offset
+ reg_buf_bytes
)) {
1828 * The next di_next_unlinked field is beyond
1829 * the current logged region. Find the next
1830 * logged region that contains or is beyond
1831 * the current di_next_unlinked field.
1834 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1837 * If there are no more logged regions in the
1838 * buffer, then we're done.
1844 nbits
= xfs_contig_bits(data_map
, map_size
,
1847 reg_buf_offset
= bit
<< XFS_BLI_SHIFT
;
1848 reg_buf_bytes
= nbits
<< XFS_BLI_SHIFT
;
1853 * If the current logged region starts after the current
1854 * di_next_unlinked field, then move on to the next
1855 * di_next_unlinked field.
1857 if (next_unlinked_offset
< reg_buf_offset
) {
1861 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1862 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLI_CHUNK
) == 0);
1863 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= XFS_BUF_COUNT(bp
));
1866 * The current logged region contains a copy of the
1867 * current di_next_unlinked field. Extract its value
1868 * and copy it to the buffer copy.
1870 logged_nextp
= (xfs_agino_t
*)
1871 ((char *)(item
->ri_buf
[item_index
].i_addr
) +
1872 (next_unlinked_offset
- reg_buf_offset
));
1873 if (unlikely(*logged_nextp
== 0)) {
1874 xfs_fs_cmn_err(CE_ALERT
, mp
,
1875 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1877 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1878 XFS_ERRLEVEL_LOW
, mp
);
1879 return XFS_ERROR(EFSCORRUPTED
);
1882 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1883 next_unlinked_offset
);
1884 *buffer_nextp
= *logged_nextp
;
1891 * Perform a 'normal' buffer recovery. Each logged region of the
1892 * buffer should be copied over the corresponding region in the
1893 * given buffer. The bitmap in the buf log format structure indicates
1894 * where to place the logged data.
1898 xlog_recover_do_reg_buffer(
1899 xlog_recover_item_t
*item
,
1901 xfs_buf_log_format_t
*buf_f
)
1906 unsigned int *data_map
= NULL
;
1907 unsigned int map_size
= 0;
1910 switch (buf_f
->blf_type
) {
1912 data_map
= buf_f
->blf_data_map
;
1913 map_size
= buf_f
->blf_map_size
;
1917 i
= 1; /* 0 is the buf format structure */
1919 bit
= xfs_next_bit(data_map
, map_size
, bit
);
1922 nbits
= xfs_contig_bits(data_map
, map_size
, bit
);
1924 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1925 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLI_CHUNK
== 0);
1926 ASSERT(XFS_BUF_COUNT(bp
) >=
1927 ((uint
)bit
<< XFS_BLI_SHIFT
)+(nbits
<<XFS_BLI_SHIFT
));
1930 * Do a sanity check if this is a dquot buffer. Just checking
1931 * the first dquot in the buffer should do. XXXThis is
1932 * probably a good thing to do for other buf types also.
1935 if (buf_f
->blf_flags
&
1936 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
1937 error
= xfs_qm_dqcheck((xfs_disk_dquot_t
*)
1938 item
->ri_buf
[i
].i_addr
,
1939 -1, 0, XFS_QMOPT_DOWARN
,
1940 "dquot_buf_recover");
1943 memcpy(xfs_buf_offset(bp
,
1944 (uint
)bit
<< XFS_BLI_SHIFT
), /* dest */
1945 item
->ri_buf
[i
].i_addr
, /* source */
1946 nbits
<<XFS_BLI_SHIFT
); /* length */
1951 /* Shouldn't be any more regions */
1952 ASSERT(i
== item
->ri_total
);
1956 * Do some primitive error checking on ondisk dquot data structures.
1960 xfs_disk_dquot_t
*ddq
,
1962 uint type
, /* used only when IO_dorepair is true */
1966 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
1970 * We can encounter an uninitialized dquot buffer for 2 reasons:
1971 * 1. If we crash while deleting the quotainode(s), and those blks got
1972 * used for user data. This is because we take the path of regular
1973 * file deletion; however, the size field of quotainodes is never
1974 * updated, so all the tricks that we play in itruncate_finish
1975 * don't quite matter.
1977 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1978 * But the allocation will be replayed so we'll end up with an
1979 * uninitialized quota block.
1981 * This is all fine; things are still consistent, and we haven't lost
1982 * any quota information. Just don't complain about bad dquot blks.
1984 if (be16_to_cpu(ddq
->d_magic
) != XFS_DQUOT_MAGIC
) {
1985 if (flags
& XFS_QMOPT_DOWARN
)
1987 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1988 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
1991 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
1992 if (flags
& XFS_QMOPT_DOWARN
)
1994 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1995 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
1999 if (ddq
->d_flags
!= XFS_DQ_USER
&&
2000 ddq
->d_flags
!= XFS_DQ_PROJ
&&
2001 ddq
->d_flags
!= XFS_DQ_GROUP
) {
2002 if (flags
& XFS_QMOPT_DOWARN
)
2004 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2005 str
, id
, ddq
->d_flags
);
2009 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
2010 if (flags
& XFS_QMOPT_DOWARN
)
2012 "%s : ondisk-dquot 0x%p, ID mismatch: "
2013 "0x%x expected, found id 0x%x",
2014 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
2018 if (!errs
&& ddq
->d_id
) {
2019 if (ddq
->d_blk_softlimit
&&
2020 be64_to_cpu(ddq
->d_bcount
) >=
2021 be64_to_cpu(ddq
->d_blk_softlimit
)) {
2022 if (!ddq
->d_btimer
) {
2023 if (flags
& XFS_QMOPT_DOWARN
)
2025 "%s : Dquot ID 0x%x (0x%p) "
2026 "BLK TIMER NOT STARTED",
2027 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2031 if (ddq
->d_ino_softlimit
&&
2032 be64_to_cpu(ddq
->d_icount
) >=
2033 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2034 if (!ddq
->d_itimer
) {
2035 if (flags
& XFS_QMOPT_DOWARN
)
2037 "%s : Dquot ID 0x%x (0x%p) "
2038 "INODE TIMER NOT STARTED",
2039 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2043 if (ddq
->d_rtb_softlimit
&&
2044 be64_to_cpu(ddq
->d_rtbcount
) >=
2045 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2046 if (!ddq
->d_rtbtimer
) {
2047 if (flags
& XFS_QMOPT_DOWARN
)
2049 "%s : Dquot ID 0x%x (0x%p) "
2050 "RTBLK TIMER NOT STARTED",
2051 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2057 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2060 if (flags
& XFS_QMOPT_DOWARN
)
2061 cmn_err(CE_NOTE
, "Re-initializing dquot ID 0x%x", id
);
2064 * Typically, a repair is only requested by quotacheck.
2067 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2068 memset(d
, 0, sizeof(xfs_dqblk_t
));
2070 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2071 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2072 d
->dd_diskdq
.d_flags
= type
;
2073 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2079 * Perform a dquot buffer recovery.
2080 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2081 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2082 * Else, treat it as a regular buffer and do recovery.
2085 xlog_recover_do_dquot_buffer(
2088 xlog_recover_item_t
*item
,
2090 xfs_buf_log_format_t
*buf_f
)
2095 * Filesystems are required to send in quota flags at mount time.
2097 if (mp
->m_qflags
== 0) {
2102 if (buf_f
->blf_flags
& XFS_BLI_UDQUOT_BUF
)
2103 type
|= XFS_DQ_USER
;
2104 if (buf_f
->blf_flags
& XFS_BLI_PDQUOT_BUF
)
2105 type
|= XFS_DQ_PROJ
;
2106 if (buf_f
->blf_flags
& XFS_BLI_GDQUOT_BUF
)
2107 type
|= XFS_DQ_GROUP
;
2109 * This type of quotas was turned off, so ignore this buffer
2111 if (log
->l_quotaoffs_flag
& type
)
2114 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2118 * This routine replays a modification made to a buffer at runtime.
2119 * There are actually two types of buffer, regular and inode, which
2120 * are handled differently. Inode buffers are handled differently
2121 * in that we only recover a specific set of data from them, namely
2122 * the inode di_next_unlinked fields. This is because all other inode
2123 * data is actually logged via inode records and any data we replay
2124 * here which overlaps that may be stale.
2126 * When meta-data buffers are freed at run time we log a buffer item
2127 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2128 * of the buffer in the log should not be replayed at recovery time.
2129 * This is so that if the blocks covered by the buffer are reused for
2130 * file data before we crash we don't end up replaying old, freed
2131 * meta-data into a user's file.
2133 * To handle the cancellation of buffer log items, we make two passes
2134 * over the log during recovery. During the first we build a table of
2135 * those buffers which have been cancelled, and during the second we
2136 * only replay those buffers which do not have corresponding cancel
2137 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2138 * for more details on the implementation of the table of cancel records.
2141 xlog_recover_do_buffer_trans(
2143 xlog_recover_item_t
*item
,
2146 xfs_buf_log_format_t
*buf_f
;
2155 buf_f
= (xfs_buf_log_format_t
*)item
->ri_buf
[0].i_addr
;
2157 if (pass
== XLOG_RECOVER_PASS1
) {
2159 * In this pass we're only looking for buf items
2160 * with the XFS_BLI_CANCEL bit set.
2162 xlog_recover_do_buffer_pass1(log
, buf_f
);
2166 * In this pass we want to recover all the buffers
2167 * which have not been cancelled and are not
2168 * cancellation buffers themselves. The routine
2169 * we call here will tell us whether or not to
2170 * continue with the replay of this buffer.
2172 cancel
= xlog_recover_do_buffer_pass2(log
, buf_f
);
2177 switch (buf_f
->blf_type
) {
2179 blkno
= buf_f
->blf_blkno
;
2180 len
= buf_f
->blf_len
;
2181 flags
= buf_f
->blf_flags
;
2184 xfs_fs_cmn_err(CE_ALERT
, log
->l_mp
,
2185 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2186 buf_f
->blf_type
, log
->l_mp
->m_logname
?
2187 log
->l_mp
->m_logname
: "internal");
2188 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2189 XFS_ERRLEVEL_LOW
, log
->l_mp
);
2190 return XFS_ERROR(EFSCORRUPTED
);
2194 if (flags
& XFS_BLI_INODE_BUF
) {
2195 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, blkno
, len
,
2198 bp
= xfs_buf_read(mp
->m_ddev_targp
, blkno
, len
, 0);
2200 if (XFS_BUF_ISERROR(bp
)) {
2201 xfs_ioerror_alert("xlog_recover_do..(read#1)", log
->l_mp
,
2203 error
= XFS_BUF_GETERROR(bp
);
2209 if (flags
& XFS_BLI_INODE_BUF
) {
2210 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2212 (XFS_BLI_UDQUOT_BUF
|XFS_BLI_PDQUOT_BUF
|XFS_BLI_GDQUOT_BUF
)) {
2213 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2215 xlog_recover_do_reg_buffer(item
, bp
, buf_f
);
2218 return XFS_ERROR(error
);
2221 * Perform delayed write on the buffer. Asynchronous writes will be
2222 * slower when taking into account all the buffers to be flushed.
2224 * Also make sure that only inode buffers with good sizes stay in
2225 * the buffer cache. The kernel moves inodes in buffers of 1 block
2226 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2227 * buffers in the log can be a different size if the log was generated
2228 * by an older kernel using unclustered inode buffers or a newer kernel
2229 * running with a different inode cluster size. Regardless, if the
2230 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2231 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2232 * the buffer out of the buffer cache so that the buffer won't
2233 * overlap with future reads of those inodes.
2235 if (XFS_DINODE_MAGIC
==
2236 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2237 (XFS_BUF_COUNT(bp
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2238 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2240 error
= xfs_bwrite(mp
, bp
);
2242 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2244 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2245 xfs_bdwrite(mp
, bp
);
2252 xlog_recover_do_inode_trans(
2254 xlog_recover_item_t
*item
,
2257 xfs_inode_log_format_t
*in_f
;
2268 xfs_icdinode_t
*dicp
;
2271 if (pass
== XLOG_RECOVER_PASS1
) {
2275 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2276 in_f
= (xfs_inode_log_format_t
*)item
->ri_buf
[0].i_addr
;
2278 in_f
= (xfs_inode_log_format_t
*)kmem_alloc(
2279 sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2281 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2285 ino
= in_f
->ilf_ino
;
2289 * Inode buffers can be freed, look out for it,
2290 * and do not replay the inode.
2292 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2293 in_f
->ilf_len
, 0)) {
2298 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, in_f
->ilf_blkno
,
2299 in_f
->ilf_len
, XFS_BUF_LOCK
);
2300 if (XFS_BUF_ISERROR(bp
)) {
2301 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp
,
2302 bp
, in_f
->ilf_blkno
);
2303 error
= XFS_BUF_GETERROR(bp
);
2308 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2309 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2312 * Make sure the place we're flushing out to really looks
2315 if (unlikely(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
)) {
2317 xfs_fs_cmn_err(CE_ALERT
, mp
,
2318 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2320 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2321 XFS_ERRLEVEL_LOW
, mp
);
2322 error
= EFSCORRUPTED
;
2325 dicp
= (xfs_icdinode_t
*)(item
->ri_buf
[1].i_addr
);
2326 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2328 xfs_fs_cmn_err(CE_ALERT
, mp
,
2329 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2331 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2332 XFS_ERRLEVEL_LOW
, mp
);
2333 error
= EFSCORRUPTED
;
2337 /* Skip replay when the on disk inode is newer than the log one */
2338 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2340 * Deal with the wrap case, DI_MAX_FLUSH is less
2341 * than smaller numbers
2343 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2344 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2352 /* Take the opportunity to reset the flush iteration count */
2353 dicp
->di_flushiter
= 0;
2355 if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFREG
)) {
2356 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2357 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2358 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2359 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2361 xfs_fs_cmn_err(CE_ALERT
, mp
,
2362 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2363 item
, dip
, bp
, ino
);
2364 error
= EFSCORRUPTED
;
2367 } else if (unlikely((dicp
->di_mode
& S_IFMT
) == S_IFDIR
)) {
2368 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2369 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2370 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2371 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2372 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2374 xfs_fs_cmn_err(CE_ALERT
, mp
,
2375 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2376 item
, dip
, bp
, ino
);
2377 error
= EFSCORRUPTED
;
2381 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2382 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2383 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2385 xfs_fs_cmn_err(CE_ALERT
, mp
,
2386 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2388 dicp
->di_nextents
+ dicp
->di_anextents
,
2390 error
= EFSCORRUPTED
;
2393 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2394 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2395 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2397 xfs_fs_cmn_err(CE_ALERT
, mp
,
2398 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2399 item
, dip
, bp
, ino
, dicp
->di_forkoff
);
2400 error
= EFSCORRUPTED
;
2403 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
))) {
2404 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2405 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2407 xfs_fs_cmn_err(CE_ALERT
, mp
,
2408 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2409 item
->ri_buf
[1].i_len
, item
);
2410 error
= EFSCORRUPTED
;
2414 /* The core is in in-core format */
2415 xfs_dinode_to_disk(dip
, (xfs_icdinode_t
*)item
->ri_buf
[1].i_addr
);
2417 /* the rest is in on-disk format */
2418 if (item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
)) {
2419 memcpy((xfs_caddr_t
) dip
+ sizeof(struct xfs_icdinode
),
2420 item
->ri_buf
[1].i_addr
+ sizeof(struct xfs_icdinode
),
2421 item
->ri_buf
[1].i_len
- sizeof(struct xfs_icdinode
));
2424 fields
= in_f
->ilf_fields
;
2425 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2427 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2430 memcpy(XFS_DFORK_DPTR(dip
),
2431 &in_f
->ilf_u
.ilfu_uuid
,
2436 if (in_f
->ilf_size
== 2)
2437 goto write_inode_buffer
;
2438 len
= item
->ri_buf
[2].i_len
;
2439 src
= item
->ri_buf
[2].i_addr
;
2440 ASSERT(in_f
->ilf_size
<= 4);
2441 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2442 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2443 (len
== in_f
->ilf_dsize
));
2445 switch (fields
& XFS_ILOG_DFORK
) {
2446 case XFS_ILOG_DDATA
:
2448 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2451 case XFS_ILOG_DBROOT
:
2452 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2453 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2454 XFS_DFORK_DSIZE(dip
, mp
));
2459 * There are no data fork flags set.
2461 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2466 * If we logged any attribute data, recover it. There may or
2467 * may not have been any other non-core data logged in this
2470 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2471 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2476 len
= item
->ri_buf
[attr_index
].i_len
;
2477 src
= item
->ri_buf
[attr_index
].i_addr
;
2478 ASSERT(len
== in_f
->ilf_asize
);
2480 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2481 case XFS_ILOG_ADATA
:
2483 dest
= XFS_DFORK_APTR(dip
);
2484 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2485 memcpy(dest
, src
, len
);
2488 case XFS_ILOG_ABROOT
:
2489 dest
= XFS_DFORK_APTR(dip
);
2490 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2491 len
, (xfs_bmdr_block_t
*)dest
,
2492 XFS_DFORK_ASIZE(dip
, mp
));
2496 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2505 if (ITEM_TYPE(item
) == XFS_LI_INODE
) {
2506 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2508 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2509 xfs_bdwrite(mp
, bp
);
2512 error
= xfs_bwrite(mp
, bp
);
2518 return XFS_ERROR(error
);
2522 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2523 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2527 xlog_recover_do_quotaoff_trans(
2529 xlog_recover_item_t
*item
,
2532 xfs_qoff_logformat_t
*qoff_f
;
2534 if (pass
== XLOG_RECOVER_PASS2
) {
2538 qoff_f
= (xfs_qoff_logformat_t
*)item
->ri_buf
[0].i_addr
;
2542 * The logitem format's flag tells us if this was user quotaoff,
2543 * group/project quotaoff or both.
2545 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2546 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2547 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2548 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2549 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2550 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2556 * Recover a dquot record
2559 xlog_recover_do_dquot_trans(
2561 xlog_recover_item_t
*item
,
2566 struct xfs_disk_dquot
*ddq
, *recddq
;
2568 xfs_dq_logformat_t
*dq_f
;
2571 if (pass
== XLOG_RECOVER_PASS1
) {
2577 * Filesystems are required to send in quota flags at mount time.
2579 if (mp
->m_qflags
== 0)
2582 recddq
= (xfs_disk_dquot_t
*)item
->ri_buf
[1].i_addr
;
2585 * This type of quotas was turned off, so ignore this record.
2587 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2589 if (log
->l_quotaoffs_flag
& type
)
2593 * At this point we know that quota was _not_ turned off.
2594 * Since the mount flags are not indicating to us otherwise, this
2595 * must mean that quota is on, and the dquot needs to be replayed.
2596 * Remember that we may not have fully recovered the superblock yet,
2597 * so we can't do the usual trick of looking at the SB quota bits.
2599 * The other possibility, of course, is that the quota subsystem was
2600 * removed since the last mount - ENOSYS.
2602 dq_f
= (xfs_dq_logformat_t
*)item
->ri_buf
[0].i_addr
;
2604 if ((error
= xfs_qm_dqcheck(recddq
,
2606 0, XFS_QMOPT_DOWARN
,
2607 "xlog_recover_do_dquot_trans (log copy)"))) {
2608 return XFS_ERROR(EIO
);
2610 ASSERT(dq_f
->qlf_len
== 1);
2612 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
2614 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
),
2617 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp
,
2618 bp
, dq_f
->qlf_blkno
);
2622 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2625 * At least the magic num portion should be on disk because this
2626 * was among a chunk of dquots created earlier, and we did some
2627 * minimal initialization then.
2629 if (xfs_qm_dqcheck(ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2630 "xlog_recover_do_dquot_trans")) {
2632 return XFS_ERROR(EIO
);
2635 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2637 ASSERT(dq_f
->qlf_size
== 2);
2638 ASSERT(bp
->b_mount
== NULL
|| bp
->b_mount
== mp
);
2640 XFS_BUF_SET_IODONE_FUNC(bp
, xlog_recover_iodone
);
2641 xfs_bdwrite(mp
, bp
);
2647 * This routine is called to create an in-core extent free intent
2648 * item from the efi format structure which was logged on disk.
2649 * It allocates an in-core efi, copies the extents from the format
2650 * structure into it, and adds the efi to the AIL with the given
2654 xlog_recover_do_efi_trans(
2656 xlog_recover_item_t
*item
,
2662 xfs_efi_log_item_t
*efip
;
2663 xfs_efi_log_format_t
*efi_formatp
;
2665 if (pass
== XLOG_RECOVER_PASS1
) {
2669 efi_formatp
= (xfs_efi_log_format_t
*)item
->ri_buf
[0].i_addr
;
2672 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2673 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2674 &(efip
->efi_format
)))) {
2675 xfs_efi_item_free(efip
);
2678 efip
->efi_next_extent
= efi_formatp
->efi_nextents
;
2679 efip
->efi_flags
|= XFS_EFI_COMMITTED
;
2681 spin_lock(&log
->l_ailp
->xa_lock
);
2683 * xfs_trans_ail_update() drops the AIL lock.
2685 xfs_trans_ail_update(log
->l_ailp
, (xfs_log_item_t
*)efip
, lsn
);
2691 * This routine is called when an efd format structure is found in
2692 * a committed transaction in the log. It's purpose is to cancel
2693 * the corresponding efi if it was still in the log. To do this
2694 * it searches the AIL for the efi with an id equal to that in the
2695 * efd format structure. If we find it, we remove the efi from the
2699 xlog_recover_do_efd_trans(
2701 xlog_recover_item_t
*item
,
2704 xfs_efd_log_format_t
*efd_formatp
;
2705 xfs_efi_log_item_t
*efip
= NULL
;
2706 xfs_log_item_t
*lip
;
2708 struct xfs_ail_cursor cur
;
2709 struct xfs_ail
*ailp
= log
->l_ailp
;
2711 if (pass
== XLOG_RECOVER_PASS1
) {
2715 efd_formatp
= (xfs_efd_log_format_t
*)item
->ri_buf
[0].i_addr
;
2716 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2717 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2718 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2719 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2720 efi_id
= efd_formatp
->efd_efi_id
;
2723 * Search for the efi with the id in the efd format structure
2726 spin_lock(&ailp
->xa_lock
);
2727 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2728 while (lip
!= NULL
) {
2729 if (lip
->li_type
== XFS_LI_EFI
) {
2730 efip
= (xfs_efi_log_item_t
*)lip
;
2731 if (efip
->efi_format
.efi_id
== efi_id
) {
2733 * xfs_trans_ail_delete() drops the
2736 xfs_trans_ail_delete(ailp
, lip
);
2737 xfs_efi_item_free(efip
);
2738 spin_lock(&ailp
->xa_lock
);
2742 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2744 xfs_trans_ail_cursor_done(ailp
, &cur
);
2745 spin_unlock(&ailp
->xa_lock
);
2749 * Perform the transaction
2751 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2752 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2755 xlog_recover_do_trans(
2757 xlog_recover_t
*trans
,
2761 xlog_recover_item_t
*item
, *first_item
;
2763 if ((error
= xlog_recover_reorder_trans(trans
)))
2765 first_item
= item
= trans
->r_itemq
;
2768 * we don't need to worry about the block number being
2769 * truncated in > 1 TB buffers because in user-land,
2770 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2771 * the blknos will get through the user-mode buffer
2772 * cache properly. The only bad case is o32 kernels
2773 * where xfs_daddr_t is 32-bits but mount will warn us
2774 * off a > 1 TB filesystem before we get here.
2776 if ((ITEM_TYPE(item
) == XFS_LI_BUF
)) {
2777 if ((error
= xlog_recover_do_buffer_trans(log
, item
,
2780 } else if ((ITEM_TYPE(item
) == XFS_LI_INODE
)) {
2781 if ((error
= xlog_recover_do_inode_trans(log
, item
,
2784 } else if (ITEM_TYPE(item
) == XFS_LI_EFI
) {
2785 if ((error
= xlog_recover_do_efi_trans(log
, item
, trans
->r_lsn
,
2788 } else if (ITEM_TYPE(item
) == XFS_LI_EFD
) {
2789 xlog_recover_do_efd_trans(log
, item
, pass
);
2790 } else if (ITEM_TYPE(item
) == XFS_LI_DQUOT
) {
2791 if ((error
= xlog_recover_do_dquot_trans(log
, item
,
2794 } else if ((ITEM_TYPE(item
) == XFS_LI_QUOTAOFF
)) {
2795 if ((error
= xlog_recover_do_quotaoff_trans(log
, item
,
2799 xlog_warn("XFS: xlog_recover_do_trans");
2801 error
= XFS_ERROR(EIO
);
2804 item
= item
->ri_next
;
2805 } while (first_item
!= item
);
2811 * Free up any resources allocated by the transaction
2813 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2816 xlog_recover_free_trans(
2817 xlog_recover_t
*trans
)
2819 xlog_recover_item_t
*first_item
, *item
, *free_item
;
2822 item
= first_item
= trans
->r_itemq
;
2825 item
= item
->ri_next
;
2826 /* Free the regions in the item. */
2827 for (i
= 0; i
< free_item
->ri_cnt
; i
++) {
2828 kmem_free(free_item
->ri_buf
[i
].i_addr
);
2830 /* Free the item itself */
2831 kmem_free(free_item
->ri_buf
);
2832 kmem_free(free_item
);
2833 } while (first_item
!= item
);
2834 /* Free the transaction recover structure */
2839 xlog_recover_commit_trans(
2842 xlog_recover_t
*trans
,
2847 if ((error
= xlog_recover_unlink_tid(q
, trans
)))
2849 if ((error
= xlog_recover_do_trans(log
, trans
, pass
)))
2851 xlog_recover_free_trans(trans
); /* no error */
2856 xlog_recover_unmount_trans(
2857 xlog_recover_t
*trans
)
2859 /* Do nothing now */
2860 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2865 * There are two valid states of the r_state field. 0 indicates that the
2866 * transaction structure is in a normal state. We have either seen the
2867 * start of the transaction or the last operation we added was not a partial
2868 * operation. If the last operation we added to the transaction was a
2869 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2871 * NOTE: skip LRs with 0 data length.
2874 xlog_recover_process_data(
2876 xlog_recover_t
*rhash
[],
2877 xlog_rec_header_t
*rhead
,
2883 xlog_op_header_t
*ohead
;
2884 xlog_recover_t
*trans
;
2890 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2891 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2893 /* check the log format matches our own - else we can't recover */
2894 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2895 return (XFS_ERROR(EIO
));
2897 while ((dp
< lp
) && num_logops
) {
2898 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2899 ohead
= (xlog_op_header_t
*)dp
;
2900 dp
+= sizeof(xlog_op_header_t
);
2901 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2902 ohead
->oh_clientid
!= XFS_LOG
) {
2904 "XFS: xlog_recover_process_data: bad clientid");
2906 return (XFS_ERROR(EIO
));
2908 tid
= be32_to_cpu(ohead
->oh_tid
);
2909 hash
= XLOG_RHASH(tid
);
2910 trans
= xlog_recover_find_tid(rhash
[hash
], tid
);
2911 if (trans
== NULL
) { /* not found; add new tid */
2912 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2913 xlog_recover_new_tid(&rhash
[hash
], tid
,
2914 be64_to_cpu(rhead
->h_lsn
));
2916 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2918 "XFS: xlog_recover_process_data: bad length");
2920 return (XFS_ERROR(EIO
));
2922 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2923 if (flags
& XLOG_WAS_CONT_TRANS
)
2924 flags
&= ~XLOG_CONTINUE_TRANS
;
2926 case XLOG_COMMIT_TRANS
:
2927 error
= xlog_recover_commit_trans(log
,
2928 &rhash
[hash
], trans
, pass
);
2930 case XLOG_UNMOUNT_TRANS
:
2931 error
= xlog_recover_unmount_trans(trans
);
2933 case XLOG_WAS_CONT_TRANS
:
2934 error
= xlog_recover_add_to_cont_trans(trans
,
2935 dp
, be32_to_cpu(ohead
->oh_len
));
2937 case XLOG_START_TRANS
:
2939 "XFS: xlog_recover_process_data: bad transaction");
2941 error
= XFS_ERROR(EIO
);
2944 case XLOG_CONTINUE_TRANS
:
2945 error
= xlog_recover_add_to_trans(trans
,
2946 dp
, be32_to_cpu(ohead
->oh_len
));
2950 "XFS: xlog_recover_process_data: bad flag");
2952 error
= XFS_ERROR(EIO
);
2958 dp
+= be32_to_cpu(ohead
->oh_len
);
2965 * Process an extent free intent item that was recovered from
2966 * the log. We need to free the extents that it describes.
2969 xlog_recover_process_efi(
2971 xfs_efi_log_item_t
*efip
)
2973 xfs_efd_log_item_t
*efdp
;
2978 xfs_fsblock_t startblock_fsb
;
2980 ASSERT(!(efip
->efi_flags
& XFS_EFI_RECOVERED
));
2983 * First check the validity of the extents described by the
2984 * EFI. If any are bad, then assume that all are bad and
2985 * just toss the EFI.
2987 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2988 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2989 startblock_fsb
= XFS_BB_TO_FSB(mp
,
2990 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
2991 if ((startblock_fsb
== 0) ||
2992 (extp
->ext_len
== 0) ||
2993 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
2994 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
2996 * This will pull the EFI from the AIL and
2997 * free the memory associated with it.
2999 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
3000 return XFS_ERROR(EIO
);
3004 tp
= xfs_trans_alloc(mp
, 0);
3005 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
3008 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
3010 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3011 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3012 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3015 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3019 efip
->efi_flags
|= XFS_EFI_RECOVERED
;
3020 error
= xfs_trans_commit(tp
, 0);
3024 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3029 * When this is called, all of the EFIs which did not have
3030 * corresponding EFDs should be in the AIL. What we do now
3031 * is free the extents associated with each one.
3033 * Since we process the EFIs in normal transactions, they
3034 * will be removed at some point after the commit. This prevents
3035 * us from just walking down the list processing each one.
3036 * We'll use a flag in the EFI to skip those that we've already
3037 * processed and use the AIL iteration mechanism's generation
3038 * count to try to speed this up at least a bit.
3040 * When we start, we know that the EFIs are the only things in
3041 * the AIL. As we process them, however, other items are added
3042 * to the AIL. Since everything added to the AIL must come after
3043 * everything already in the AIL, we stop processing as soon as
3044 * we see something other than an EFI in the AIL.
3047 xlog_recover_process_efis(
3050 xfs_log_item_t
*lip
;
3051 xfs_efi_log_item_t
*efip
;
3053 struct xfs_ail_cursor cur
;
3054 struct xfs_ail
*ailp
;
3057 spin_lock(&ailp
->xa_lock
);
3058 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3059 while (lip
!= NULL
) {
3061 * We're done when we see something other than an EFI.
3062 * There should be no EFIs left in the AIL now.
3064 if (lip
->li_type
!= XFS_LI_EFI
) {
3066 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3067 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3073 * Skip EFIs that we've already processed.
3075 efip
= (xfs_efi_log_item_t
*)lip
;
3076 if (efip
->efi_flags
& XFS_EFI_RECOVERED
) {
3077 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3081 spin_unlock(&ailp
->xa_lock
);
3082 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3083 spin_lock(&ailp
->xa_lock
);
3086 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3089 xfs_trans_ail_cursor_done(ailp
, &cur
);
3090 spin_unlock(&ailp
->xa_lock
);
3095 * This routine performs a transaction to null out a bad inode pointer
3096 * in an agi unlinked inode hash bucket.
3099 xlog_recover_clear_agi_bucket(
3101 xfs_agnumber_t agno
,
3110 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3111 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3116 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3120 agi
= XFS_BUF_TO_AGI(agibp
);
3121 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3122 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3123 (sizeof(xfs_agino_t
) * bucket
);
3124 xfs_trans_log_buf(tp
, agibp
, offset
,
3125 (offset
+ sizeof(xfs_agino_t
) - 1));
3127 error
= xfs_trans_commit(tp
, 0);
3133 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3135 xfs_fs_cmn_err(CE_WARN
, mp
, "xlog_recover_clear_agi_bucket: "
3136 "failed to clear agi %d. Continuing.", agno
);
3141 xlog_recover_process_one_iunlink(
3142 struct xfs_mount
*mp
,
3143 xfs_agnumber_t agno
,
3147 struct xfs_buf
*ibp
;
3148 struct xfs_dinode
*dip
;
3149 struct xfs_inode
*ip
;
3153 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3154 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
, 0);
3159 * Get the on disk inode to find the next inode in the bucket.
3161 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
3165 ASSERT(ip
->i_d
.di_nlink
== 0);
3166 ASSERT(ip
->i_d
.di_mode
!= 0);
3168 /* setup for the next pass */
3169 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3173 * Prevent any DMAPI event from being sent when the reference on
3174 * the inode is dropped.
3176 ip
->i_d
.di_dmevmask
= 0;
3185 * We can't read in the inode this bucket points to, or this inode
3186 * is messed up. Just ditch this bucket of inodes. We will lose
3187 * some inodes and space, but at least we won't hang.
3189 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3190 * clear the inode pointer in the bucket.
3192 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3197 * xlog_iunlink_recover
3199 * This is called during recovery to process any inodes which
3200 * we unlinked but not freed when the system crashed. These
3201 * inodes will be on the lists in the AGI blocks. What we do
3202 * here is scan all the AGIs and fully truncate and free any
3203 * inodes found on the lists. Each inode is removed from the
3204 * lists when it has been fully truncated and is freed. The
3205 * freeing of the inode and its removal from the list must be
3209 xlog_recover_process_iunlinks(
3213 xfs_agnumber_t agno
;
3224 * Prevent any DMAPI event from being sent while in this function.
3226 mp_dmevmask
= mp
->m_dmevmask
;
3229 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3231 * Find the agi for this ag.
3233 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3236 * AGI is b0rked. Don't process it.
3238 * We should probably mark the filesystem as corrupt
3239 * after we've recovered all the ag's we can....
3243 agi
= XFS_BUF_TO_AGI(agibp
);
3245 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3246 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3247 while (agino
!= NULLAGINO
) {
3249 * Release the agi buffer so that it can
3250 * be acquired in the normal course of the
3251 * transaction to truncate and free the inode.
3253 xfs_buf_relse(agibp
);
3255 agino
= xlog_recover_process_one_iunlink(mp
,
3256 agno
, agino
, bucket
);
3259 * Reacquire the agibuffer and continue around
3260 * the loop. This should never fail as we know
3261 * the buffer was good earlier on.
3263 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3265 agi
= XFS_BUF_TO_AGI(agibp
);
3270 * Release the buffer for the current agi so we can
3271 * go on to the next one.
3273 xfs_buf_relse(agibp
);
3276 mp
->m_dmevmask
= mp_dmevmask
;
3282 xlog_pack_data_checksum(
3284 xlog_in_core_t
*iclog
,
3291 up
= (__be32
*)iclog
->ic_datap
;
3292 /* divide length by 4 to get # words */
3293 for (i
= 0; i
< (size
>> 2); i
++) {
3294 chksum
^= be32_to_cpu(*up
);
3297 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3300 #define xlog_pack_data_checksum(log, iclog, size)
3304 * Stamp cycle number in every block
3309 xlog_in_core_t
*iclog
,
3313 int size
= iclog
->ic_offset
+ roundoff
;
3317 xlog_pack_data_checksum(log
, iclog
, size
);
3319 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3321 dp
= iclog
->ic_datap
;
3322 for (i
= 0; i
< BTOBB(size
) &&
3323 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3324 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3325 *(__be32
*)dp
= cycle_lsn
;
3329 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3330 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
3332 for ( ; i
< BTOBB(size
); i
++) {
3333 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3334 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3335 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3336 *(__be32
*)dp
= cycle_lsn
;
3340 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3341 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3346 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3348 xlog_unpack_data_checksum(
3349 xlog_rec_header_t
*rhead
,
3353 __be32
*up
= (__be32
*)dp
;
3357 /* divide length by 4 to get # words */
3358 for (i
=0; i
< be32_to_cpu(rhead
->h_len
) >> 2; i
++) {
3359 chksum
^= be32_to_cpu(*up
);
3362 if (chksum
!= be32_to_cpu(rhead
->h_chksum
)) {
3363 if (rhead
->h_chksum
||
3364 ((log
->l_flags
& XLOG_CHKSUM_MISMATCH
) == 0)) {
3366 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3367 be32_to_cpu(rhead
->h_chksum
), chksum
);
3369 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3370 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3372 "XFS: LogR this is a LogV2 filesystem\n");
3374 log
->l_flags
|= XLOG_CHKSUM_MISMATCH
;
3379 #define xlog_unpack_data_checksum(rhead, dp, log)
3384 xlog_rec_header_t
*rhead
,
3390 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3391 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3392 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3396 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3397 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3398 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3399 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3400 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3401 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3406 xlog_unpack_data_checksum(rhead
, dp
, log
);
3410 xlog_valid_rec_header(
3412 xlog_rec_header_t
*rhead
,
3417 if (unlikely(be32_to_cpu(rhead
->h_magicno
) != XLOG_HEADER_MAGIC_NUM
)) {
3418 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3419 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3420 return XFS_ERROR(EFSCORRUPTED
);
3423 (!rhead
->h_version
||
3424 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3425 xlog_warn("XFS: %s: unrecognised log version (%d).",
3426 __func__
, be32_to_cpu(rhead
->h_version
));
3427 return XFS_ERROR(EIO
);
3430 /* LR body must have data or it wouldn't have been written */
3431 hlen
= be32_to_cpu(rhead
->h_len
);
3432 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3433 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3434 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3435 return XFS_ERROR(EFSCORRUPTED
);
3437 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3438 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3439 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3440 return XFS_ERROR(EFSCORRUPTED
);
3446 * Read the log from tail to head and process the log records found.
3447 * Handle the two cases where the tail and head are in the same cycle
3448 * and where the active portion of the log wraps around the end of
3449 * the physical log separately. The pass parameter is passed through
3450 * to the routines called to process the data and is not looked at
3454 xlog_do_recovery_pass(
3456 xfs_daddr_t head_blk
,
3457 xfs_daddr_t tail_blk
,
3460 xlog_rec_header_t
*rhead
;
3462 xfs_caddr_t bufaddr
, offset
;
3463 xfs_buf_t
*hbp
, *dbp
;
3464 int error
= 0, h_size
;
3465 int bblks
, split_bblks
;
3466 int hblks
, split_hblks
, wrapped_hblks
;
3467 xlog_recover_t
*rhash
[XLOG_RHASH_SIZE
];
3469 ASSERT(head_blk
!= tail_blk
);
3472 * Read the header of the tail block and get the iclog buffer size from
3473 * h_size. Use this to tell how many sectors make up the log header.
3475 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3477 * When using variable length iclogs, read first sector of
3478 * iclog header and extract the header size from it. Get a
3479 * new hbp that is the correct size.
3481 hbp
= xlog_get_bp(log
, 1);
3484 if ((error
= xlog_bread(log
, tail_blk
, 1, hbp
)))
3486 offset
= xlog_align(log
, tail_blk
, 1, hbp
);
3487 rhead
= (xlog_rec_header_t
*)offset
;
3488 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3491 h_size
= be32_to_cpu(rhead
->h_size
);
3492 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3493 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3494 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3495 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3498 hbp
= xlog_get_bp(log
, hblks
);
3503 ASSERT(log
->l_sectbb_log
== 0);
3505 hbp
= xlog_get_bp(log
, 1);
3506 h_size
= XLOG_BIG_RECORD_BSIZE
;
3511 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3517 memset(rhash
, 0, sizeof(rhash
));
3518 if (tail_blk
<= head_blk
) {
3519 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3520 if ((error
= xlog_bread(log
, blk_no
, hblks
, hbp
)))
3522 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3523 rhead
= (xlog_rec_header_t
*)offset
;
3524 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3528 /* blocks in data section */
3529 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3530 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
);
3533 offset
= xlog_align(log
, blk_no
+ hblks
, bblks
, dbp
);
3534 xlog_unpack_data(rhead
, offset
, log
);
3535 if ((error
= xlog_recover_process_data(log
,
3536 rhash
, rhead
, offset
, pass
)))
3538 blk_no
+= bblks
+ hblks
;
3542 * Perform recovery around the end of the physical log.
3543 * When the head is not on the same cycle number as the tail,
3544 * we can't do a sequential recovery as above.
3547 while (blk_no
< log
->l_logBBsize
) {
3549 * Check for header wrapping around physical end-of-log
3554 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3555 /* Read header in one read */
3556 error
= xlog_bread(log
, blk_no
, hblks
, hbp
);
3559 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3561 /* This LR is split across physical log end */
3562 if (blk_no
!= log
->l_logBBsize
) {
3563 /* some data before physical log end */
3564 ASSERT(blk_no
<= INT_MAX
);
3565 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3566 ASSERT(split_hblks
> 0);
3567 if ((error
= xlog_bread(log
, blk_no
,
3570 offset
= xlog_align(log
, blk_no
,
3574 * Note: this black magic still works with
3575 * large sector sizes (non-512) only because:
3576 * - we increased the buffer size originally
3577 * by 1 sector giving us enough extra space
3578 * for the second read;
3579 * - the log start is guaranteed to be sector
3581 * - we read the log end (LR header start)
3582 * _first_, then the log start (LR header end)
3583 * - order is important.
3585 wrapped_hblks
= hblks
- split_hblks
;
3586 bufaddr
= XFS_BUF_PTR(hbp
);
3587 error
= XFS_BUF_SET_PTR(hbp
,
3588 bufaddr
+ BBTOB(split_hblks
),
3589 BBTOB(hblks
- split_hblks
));
3591 error
= xlog_bread(log
, 0,
3592 wrapped_hblks
, hbp
);
3594 error
= XFS_BUF_SET_PTR(hbp
, bufaddr
,
3599 offset
= xlog_align(log
, 0,
3600 wrapped_hblks
, hbp
);
3602 rhead
= (xlog_rec_header_t
*)offset
;
3603 error
= xlog_valid_rec_header(log
, rhead
,
3604 split_hblks
? blk_no
: 0);
3608 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3611 /* Read in data for log record */
3612 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3613 error
= xlog_bread(log
, blk_no
, bblks
, dbp
);
3616 offset
= xlog_align(log
, blk_no
, bblks
, dbp
);
3618 /* This log record is split across the
3619 * physical end of log */
3622 if (blk_no
!= log
->l_logBBsize
) {
3623 /* some data is before the physical
3625 ASSERT(!wrapped_hblks
);
3626 ASSERT(blk_no
<= INT_MAX
);
3628 log
->l_logBBsize
- (int)blk_no
;
3629 ASSERT(split_bblks
> 0);
3630 if ((error
= xlog_bread(log
, blk_no
,
3633 offset
= xlog_align(log
, blk_no
,
3637 * Note: this black magic still works with
3638 * large sector sizes (non-512) only because:
3639 * - we increased the buffer size originally
3640 * by 1 sector giving us enough extra space
3641 * for the second read;
3642 * - the log start is guaranteed to be sector
3644 * - we read the log end (LR header start)
3645 * _first_, then the log start (LR header end)
3646 * - order is important.
3648 bufaddr
= XFS_BUF_PTR(dbp
);
3649 error
= XFS_BUF_SET_PTR(dbp
,
3650 bufaddr
+ BBTOB(split_bblks
),
3651 BBTOB(bblks
- split_bblks
));
3653 error
= xlog_bread(log
, wrapped_hblks
,
3654 bblks
- split_bblks
,
3657 error
= XFS_BUF_SET_PTR(dbp
, bufaddr
,
3662 offset
= xlog_align(log
, wrapped_hblks
,
3663 bblks
- split_bblks
, dbp
);
3665 xlog_unpack_data(rhead
, offset
, log
);
3666 if ((error
= xlog_recover_process_data(log
, rhash
,
3667 rhead
, offset
, pass
)))
3672 ASSERT(blk_no
>= log
->l_logBBsize
);
3673 blk_no
-= log
->l_logBBsize
;
3675 /* read first part of physical log */
3676 while (blk_no
< head_blk
) {
3677 if ((error
= xlog_bread(log
, blk_no
, hblks
, hbp
)))
3679 offset
= xlog_align(log
, blk_no
, hblks
, hbp
);
3680 rhead
= (xlog_rec_header_t
*)offset
;
3681 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3684 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3685 if ((error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
)))
3687 offset
= xlog_align(log
, blk_no
+hblks
, bblks
, dbp
);
3688 xlog_unpack_data(rhead
, offset
, log
);
3689 if ((error
= xlog_recover_process_data(log
, rhash
,
3690 rhead
, offset
, pass
)))
3692 blk_no
+= bblks
+ hblks
;
3704 * Do the recovery of the log. We actually do this in two phases.
3705 * The two passes are necessary in order to implement the function
3706 * of cancelling a record written into the log. The first pass
3707 * determines those things which have been cancelled, and the
3708 * second pass replays log items normally except for those which
3709 * have been cancelled. The handling of the replay and cancellations
3710 * takes place in the log item type specific routines.
3712 * The table of items which have cancel records in the log is allocated
3713 * and freed at this level, since only here do we know when all of
3714 * the log recovery has been completed.
3717 xlog_do_log_recovery(
3719 xfs_daddr_t head_blk
,
3720 xfs_daddr_t tail_blk
)
3724 ASSERT(head_blk
!= tail_blk
);
3727 * First do a pass to find all of the cancelled buf log items.
3728 * Store them in the buf_cancel_table for use in the second pass.
3730 log
->l_buf_cancel_table
=
3731 (xfs_buf_cancel_t
**)kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3732 sizeof(xfs_buf_cancel_t
*),
3734 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3735 XLOG_RECOVER_PASS1
);
3737 kmem_free(log
->l_buf_cancel_table
);
3738 log
->l_buf_cancel_table
= NULL
;
3742 * Then do a second pass to actually recover the items in the log.
3743 * When it is complete free the table of buf cancel items.
3745 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3746 XLOG_RECOVER_PASS2
);
3751 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3752 ASSERT(log
->l_buf_cancel_table
[i
] == NULL
);
3756 kmem_free(log
->l_buf_cancel_table
);
3757 log
->l_buf_cancel_table
= NULL
;
3763 * Do the actual recovery
3768 xfs_daddr_t head_blk
,
3769 xfs_daddr_t tail_blk
)
3776 * First replay the images in the log.
3778 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3783 XFS_bflush(log
->l_mp
->m_ddev_targp
);
3786 * If IO errors happened during recovery, bail out.
3788 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3793 * We now update the tail_lsn since much of the recovery has completed
3794 * and there may be space available to use. If there were no extent
3795 * or iunlinks, we can free up the entire log and set the tail_lsn to
3796 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3797 * lsn of the last known good LR on disk. If there are extent frees
3798 * or iunlinks they will have some entries in the AIL; so we look at
3799 * the AIL to determine how to set the tail_lsn.
3801 xlog_assign_tail_lsn(log
->l_mp
);
3804 * Now that we've finished replaying all buffer and inode
3805 * updates, re-read in the superblock.
3807 bp
= xfs_getsb(log
->l_mp
, 0);
3809 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3810 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
3812 XFS_BUF_UNASYNC(bp
);
3813 xfsbdstrat(log
->l_mp
, bp
);
3814 error
= xfs_iowait(bp
);
3816 xfs_ioerror_alert("xlog_do_recover",
3817 log
->l_mp
, bp
, XFS_BUF_ADDR(bp
));
3823 /* Convert superblock from on-disk format */
3824 sbp
= &log
->l_mp
->m_sb
;
3825 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
3826 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3827 ASSERT(xfs_sb_good_version(sbp
));
3830 /* We've re-read the superblock so re-initialize per-cpu counters */
3831 xfs_icsb_reinit_counters(log
->l_mp
);
3833 xlog_recover_check_summary(log
);
3835 /* Normal transactions can now occur */
3836 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3841 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3843 * Return error or zero.
3849 xfs_daddr_t head_blk
, tail_blk
;
3852 /* find the tail of the log */
3853 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3856 if (tail_blk
!= head_blk
) {
3857 /* There used to be a comment here:
3859 * disallow recovery on read-only mounts. note -- mount
3860 * checks for ENOSPC and turns it into an intelligent
3862 * ...but this is no longer true. Now, unless you specify
3863 * NORECOVERY (in which case this function would never be
3864 * called), we just go ahead and recover. We do this all
3865 * under the vfs layer, so we can get away with it unless
3866 * the device itself is read-only, in which case we fail.
3868 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3873 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3874 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3875 log
->l_mp
->m_logname
: "internal");
3877 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3878 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3884 * In the first part of recovery we replay inodes and buffers and build
3885 * up the list of extent free items which need to be processed. Here
3886 * we process the extent free items and clean up the on disk unlinked
3887 * inode lists. This is separated from the first part of recovery so
3888 * that the root and real-time bitmap inodes can be read in from disk in
3889 * between the two stages. This is necessary so that we can free space
3890 * in the real-time portion of the file system.
3893 xlog_recover_finish(
3897 * Now we're ready to do the transactions needed for the
3898 * rest of recovery. Start with completing all the extent
3899 * free intent records and then process the unlinked inode
3900 * lists. At this point, we essentially run in normal mode
3901 * except that we're still performing recovery actions
3902 * rather than accepting new requests.
3904 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3906 error
= xlog_recover_process_efis(log
);
3909 "Failed to recover EFIs on filesystem: %s",
3910 log
->l_mp
->m_fsname
);
3914 * Sync the log to get all the EFIs out of the AIL.
3915 * This isn't absolutely necessary, but it helps in
3916 * case the unlink transactions would have problems
3917 * pushing the EFIs out of the way.
3919 xfs_log_force(log
->l_mp
, (xfs_lsn_t
)0,
3920 (XFS_LOG_FORCE
| XFS_LOG_SYNC
));
3922 xlog_recover_process_iunlinks(log
);
3924 xlog_recover_check_summary(log
);
3927 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3928 log
->l_mp
->m_fsname
, log
->l_mp
->m_logname
?
3929 log
->l_mp
->m_logname
: "internal");
3930 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3933 "!Ending clean XFS mount for filesystem: %s\n",
3934 log
->l_mp
->m_fsname
);
3942 * Read all of the agf and agi counters and check that they
3943 * are consistent with the superblock counters.
3946 xlog_recover_check_summary(
3954 #ifdef XFS_LOUD_RECOVERY
3957 xfs_agnumber_t agno
;
3958 __uint64_t freeblks
;
3968 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3969 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
3971 xfs_fs_cmn_err(CE_ALERT
, mp
,
3972 "xlog_recover_check_summary(agf)"
3973 "agf read failed agno %d error %d",
3976 agfp
= XFS_BUF_TO_AGF(agfbp
);
3977 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
3978 be32_to_cpu(agfp
->agf_flcount
);
3979 xfs_buf_relse(agfbp
);
3982 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3984 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
3986 itotal
+= be32_to_cpu(agi
->agi_count
);
3987 ifree
+= be32_to_cpu(agi
->agi_freecount
);
3988 xfs_buf_relse(agibp
);
3992 sbbp
= xfs_getsb(mp
, 0);
3993 #ifdef XFS_LOUD_RECOVERY
3995 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(sbbp
));
3997 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
3998 sbp
->sb_icount
, itotal
);
4000 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4001 sbp
->sb_ifree
, ifree
);
4003 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4004 sbp
->sb_fdblocks
, freeblks
);
4007 * This is turned off until I account for the allocation
4008 * btree blocks which live in free space.
4010 ASSERT(sbp
->sb_icount
== itotal
);
4011 ASSERT(sbp
->sb_ifree
== ifree
);
4012 ASSERT(sbp
->sb_fdblocks
== freeblks
);
4015 xfs_buf_relse(sbbp
);