ocfs2: Use the right access_* method in ctime update of xattr.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / jffs2 / readinode.c
blob6ca08ad887c09211bf98ab57cb1ec8578bd5d632
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/crc32.h>
17 #include <linux/pagemap.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/compiler.h>
20 #include "nodelist.h"
23 * Check the data CRC of the node.
25 * Returns: 0 if the data CRC is correct;
26 * 1 - if incorrect;
27 * error code if an error occured.
29 static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
31 struct jffs2_raw_node_ref *ref = tn->fn->raw;
32 int err = 0, pointed = 0;
33 struct jffs2_eraseblock *jeb;
34 unsigned char *buffer;
35 uint32_t crc, ofs, len;
36 size_t retlen;
38 BUG_ON(tn->csize == 0);
40 /* Calculate how many bytes were already checked */
41 ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
42 len = tn->csize;
44 if (jffs2_is_writebuffered(c)) {
45 int adj = ofs % c->wbuf_pagesize;
46 if (likely(adj))
47 adj = c->wbuf_pagesize - adj;
49 if (adj >= tn->csize) {
50 dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
51 ref_offset(ref), tn->csize, ofs);
52 goto adj_acc;
55 ofs += adj;
56 len -= adj;
59 dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
60 ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
62 #ifndef __ECOS
63 /* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
64 * adding and jffs2_flash_read_end() interface. */
65 if (c->mtd->point) {
66 err = c->mtd->point(c->mtd, ofs, len, &retlen,
67 (void **)&buffer, NULL);
68 if (!err && retlen < len) {
69 JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
70 c->mtd->unpoint(c->mtd, ofs, retlen);
71 } else if (err)
72 JFFS2_WARNING("MTD point failed: error code %d.\n", err);
73 else
74 pointed = 1; /* succefully pointed to device */
76 #endif
78 if (!pointed) {
79 buffer = kmalloc(len, GFP_KERNEL);
80 if (unlikely(!buffer))
81 return -ENOMEM;
83 /* TODO: this is very frequent pattern, make it a separate
84 * routine */
85 err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
86 if (err) {
87 JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
88 goto free_out;
91 if (retlen != len) {
92 JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
93 err = -EIO;
94 goto free_out;
98 /* Continue calculating CRC */
99 crc = crc32(tn->partial_crc, buffer, len);
100 if(!pointed)
101 kfree(buffer);
102 #ifndef __ECOS
103 else
104 c->mtd->unpoint(c->mtd, ofs, len);
105 #endif
107 if (crc != tn->data_crc) {
108 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
109 ref_offset(ref), tn->data_crc, crc);
110 return 1;
113 adj_acc:
114 jeb = &c->blocks[ref->flash_offset / c->sector_size];
115 len = ref_totlen(c, jeb, ref);
116 /* If it should be REF_NORMAL, it'll get marked as such when
117 we build the fragtree, shortly. No need to worry about GC
118 moving it while it's marked REF_PRISTINE -- GC won't happen
119 till we've finished checking every inode anyway. */
120 ref->flash_offset |= REF_PRISTINE;
122 * Mark the node as having been checked and fix the
123 * accounting accordingly.
125 spin_lock(&c->erase_completion_lock);
126 jeb->used_size += len;
127 jeb->unchecked_size -= len;
128 c->used_size += len;
129 c->unchecked_size -= len;
130 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
131 spin_unlock(&c->erase_completion_lock);
133 return 0;
135 free_out:
136 if(!pointed)
137 kfree(buffer);
138 #ifndef __ECOS
139 else
140 c->mtd->unpoint(c->mtd, ofs, len);
141 #endif
142 return err;
146 * Helper function for jffs2_add_older_frag_to_fragtree().
148 * Checks the node if we are in the checking stage.
150 static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
152 int ret;
154 BUG_ON(ref_obsolete(tn->fn->raw));
156 /* We only check the data CRC of unchecked nodes */
157 if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
158 return 0;
160 dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
161 tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
163 ret = check_node_data(c, tn);
164 if (unlikely(ret < 0)) {
165 JFFS2_ERROR("check_node_data() returned error: %d.\n",
166 ret);
167 } else if (unlikely(ret > 0)) {
168 dbg_readinode("CRC error, mark it obsolete.\n");
169 jffs2_mark_node_obsolete(c, tn->fn->raw);
172 return ret;
175 static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
177 struct rb_node *next;
178 struct jffs2_tmp_dnode_info *tn = NULL;
180 dbg_readinode("root %p, offset %d\n", tn_root, offset);
182 next = tn_root->rb_node;
184 while (next) {
185 tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);
187 if (tn->fn->ofs < offset)
188 next = tn->rb.rb_right;
189 else if (tn->fn->ofs >= offset)
190 next = tn->rb.rb_left;
191 else
192 break;
195 return tn;
199 static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
201 jffs2_mark_node_obsolete(c, tn->fn->raw);
202 jffs2_free_full_dnode(tn->fn);
203 jffs2_free_tmp_dnode_info(tn);
206 * This function is used when we read an inode. Data nodes arrive in
207 * arbitrary order -- they may be older or newer than the nodes which
208 * are already in the tree. Where overlaps occur, the older node can
209 * be discarded as long as the newer passes the CRC check. We don't
210 * bother to keep track of holes in this rbtree, and neither do we deal
211 * with frags -- we can have multiple entries starting at the same
212 * offset, and the one with the smallest length will come first in the
213 * ordering.
215 * Returns 0 if the node was handled (including marking it obsolete)
216 * < 0 an if error occurred
218 static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
219 struct jffs2_readinode_info *rii,
220 struct jffs2_tmp_dnode_info *tn)
222 uint32_t fn_end = tn->fn->ofs + tn->fn->size;
223 struct jffs2_tmp_dnode_info *this;
225 dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));
227 /* If a node has zero dsize, we only have to keep if it if it might be the
228 node with highest version -- i.e. the one which will end up as f->metadata.
229 Note that such nodes won't be REF_UNCHECKED since there are no data to
230 check anyway. */
231 if (!tn->fn->size) {
232 if (rii->mdata_tn) {
233 if (rii->mdata_tn->version < tn->version) {
234 /* We had a candidate mdata node already */
235 dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
236 jffs2_kill_tn(c, rii->mdata_tn);
237 } else {
238 dbg_readinode("kill new mdata with ver %d (older than existing %d\n",
239 tn->version, rii->mdata_tn->version);
240 jffs2_kill_tn(c, tn);
241 return 0;
244 rii->mdata_tn = tn;
245 dbg_readinode("keep new mdata with ver %d\n", tn->version);
246 return 0;
249 /* Find the earliest node which _may_ be relevant to this one */
250 this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
251 if (this) {
252 /* If the node is coincident with another at a lower address,
253 back up until the other node is found. It may be relevant */
254 while (this->overlapped)
255 this = tn_prev(this);
257 /* First node should never be marked overlapped */
258 BUG_ON(!this);
259 dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
262 while (this) {
263 if (this->fn->ofs > fn_end)
264 break;
265 dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
266 this->version, this->fn->ofs, this->fn->size);
268 if (this->version == tn->version) {
269 /* Version number collision means REF_PRISTINE GC. Accept either of them
270 as long as the CRC is correct. Check the one we have already... */
271 if (!check_tn_node(c, this)) {
272 /* The one we already had was OK. Keep it and throw away the new one */
273 dbg_readinode("Like old node. Throw away new\n");
274 jffs2_kill_tn(c, tn);
275 return 0;
276 } else {
277 /* Who cares if the new one is good; keep it for now anyway. */
278 dbg_readinode("Like new node. Throw away old\n");
279 rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
280 jffs2_kill_tn(c, this);
281 /* Same overlapping from in front and behind */
282 return 0;
285 if (this->version < tn->version &&
286 this->fn->ofs >= tn->fn->ofs &&
287 this->fn->ofs + this->fn->size <= fn_end) {
288 /* New node entirely overlaps 'this' */
289 if (check_tn_node(c, tn)) {
290 dbg_readinode("new node bad CRC\n");
291 jffs2_kill_tn(c, tn);
292 return 0;
294 /* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
295 while (this && this->fn->ofs + this->fn->size <= fn_end) {
296 struct jffs2_tmp_dnode_info *next = tn_next(this);
297 if (this->version < tn->version) {
298 tn_erase(this, &rii->tn_root);
299 dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
300 this->version, this->fn->ofs,
301 this->fn->ofs+this->fn->size);
302 jffs2_kill_tn(c, this);
304 this = next;
306 dbg_readinode("Done killing overlapped nodes\n");
307 continue;
309 if (this->version > tn->version &&
310 this->fn->ofs <= tn->fn->ofs &&
311 this->fn->ofs+this->fn->size >= fn_end) {
312 /* New node entirely overlapped by 'this' */
313 if (!check_tn_node(c, this)) {
314 dbg_readinode("Good CRC on old node. Kill new\n");
315 jffs2_kill_tn(c, tn);
316 return 0;
318 /* ... but 'this' was bad. Replace it... */
319 dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
320 tn_erase(this, &rii->tn_root);
321 jffs2_kill_tn(c, this);
322 break;
325 this = tn_next(this);
328 /* We neither completely obsoleted nor were completely
329 obsoleted by an earlier node. Insert into the tree */
331 struct rb_node *parent;
332 struct rb_node **link = &rii->tn_root.rb_node;
333 struct jffs2_tmp_dnode_info *insert_point = NULL;
335 while (*link) {
336 parent = *link;
337 insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
338 if (tn->fn->ofs > insert_point->fn->ofs)
339 link = &insert_point->rb.rb_right;
340 else if (tn->fn->ofs < insert_point->fn->ofs ||
341 tn->fn->size < insert_point->fn->size)
342 link = &insert_point->rb.rb_left;
343 else
344 link = &insert_point->rb.rb_right;
346 rb_link_node(&tn->rb, &insert_point->rb, link);
347 rb_insert_color(&tn->rb, &rii->tn_root);
350 /* If there's anything behind that overlaps us, note it */
351 this = tn_prev(tn);
352 if (this) {
353 while (1) {
354 if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
355 dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
356 this, this->version, this->fn->ofs,
357 this->fn->ofs+this->fn->size);
358 tn->overlapped = 1;
359 break;
361 if (!this->overlapped)
362 break;
363 this = tn_prev(this);
367 /* If the new node overlaps anything ahead, note it */
368 this = tn_next(tn);
369 while (this && this->fn->ofs < fn_end) {
370 this->overlapped = 1;
371 dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
372 this->version, this->fn->ofs,
373 this->fn->ofs+this->fn->size);
374 this = tn_next(this);
376 return 0;
379 /* Trivial function to remove the last node in the tree. Which by definition
380 has no right-hand -- so can be removed just by making its only child (if
381 any) take its place under its parent. */
382 static void eat_last(struct rb_root *root, struct rb_node *node)
384 struct rb_node *parent = rb_parent(node);
385 struct rb_node **link;
387 /* LAST! */
388 BUG_ON(node->rb_right);
390 if (!parent)
391 link = &root->rb_node;
392 else if (node == parent->rb_left)
393 link = &parent->rb_left;
394 else
395 link = &parent->rb_right;
397 *link = node->rb_left;
398 /* Colour doesn't matter now. Only the parent pointer. */
399 if (node->rb_left)
400 node->rb_left->rb_parent_color = node->rb_parent_color;
403 /* We put this in reverse order, so we can just use eat_last */
404 static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
406 struct rb_node **link = &ver_root->rb_node;
407 struct rb_node *parent = NULL;
408 struct jffs2_tmp_dnode_info *this_tn;
410 while (*link) {
411 parent = *link;
412 this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
414 if (tn->version > this_tn->version)
415 link = &parent->rb_left;
416 else
417 link = &parent->rb_right;
419 dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
420 rb_link_node(&tn->rb, parent, link);
421 rb_insert_color(&tn->rb, ver_root);
424 /* Build final, normal fragtree from tn tree. It doesn't matter which order
425 we add nodes to the real fragtree, as long as they don't overlap. And
426 having thrown away the majority of overlapped nodes as we went, there
427 really shouldn't be many sets of nodes which do overlap. If we start at
428 the end, we can use the overlap markers -- we can just eat nodes which
429 aren't overlapped, and when we encounter nodes which _do_ overlap we
430 sort them all into a temporary tree in version order before replaying them. */
431 static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
432 struct jffs2_inode_info *f,
433 struct jffs2_readinode_info *rii)
435 struct jffs2_tmp_dnode_info *pen, *last, *this;
436 struct rb_root ver_root = RB_ROOT;
437 uint32_t high_ver = 0;
439 if (rii->mdata_tn) {
440 dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
441 high_ver = rii->mdata_tn->version;
442 rii->latest_ref = rii->mdata_tn->fn->raw;
444 #ifdef JFFS2_DBG_READINODE_MESSAGES
445 this = tn_last(&rii->tn_root);
446 while (this) {
447 dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
448 this->fn->ofs+this->fn->size, this->overlapped);
449 this = tn_prev(this);
451 #endif
452 pen = tn_last(&rii->tn_root);
453 while ((last = pen)) {
454 pen = tn_prev(last);
456 eat_last(&rii->tn_root, &last->rb);
457 ver_insert(&ver_root, last);
459 if (unlikely(last->overlapped))
460 continue;
462 /* Now we have a bunch of nodes in reverse version
463 order, in the tree at ver_root. Most of the time,
464 there'll actually be only one node in the 'tree',
465 in fact. */
466 this = tn_last(&ver_root);
468 while (this) {
469 struct jffs2_tmp_dnode_info *vers_next;
470 int ret;
471 vers_next = tn_prev(this);
472 eat_last(&ver_root, &this->rb);
473 if (check_tn_node(c, this)) {
474 dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
475 this->version, this->fn->ofs,
476 this->fn->ofs+this->fn->size);
477 jffs2_kill_tn(c, this);
478 } else {
479 if (this->version > high_ver) {
480 /* Note that this is different from the other
481 highest_version, because this one is only
482 counting _valid_ nodes which could give the
483 latest inode metadata */
484 high_ver = this->version;
485 rii->latest_ref = this->fn->raw;
487 dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
488 this, this->version, this->fn->ofs,
489 this->fn->ofs+this->fn->size, this->overlapped);
491 ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
492 if (ret) {
493 /* Free the nodes in vers_root; let the caller
494 deal with the rest */
495 JFFS2_ERROR("Add node to tree failed %d\n", ret);
496 while (1) {
497 vers_next = tn_prev(this);
498 if (check_tn_node(c, this))
499 jffs2_mark_node_obsolete(c, this->fn->raw);
500 jffs2_free_full_dnode(this->fn);
501 jffs2_free_tmp_dnode_info(this);
502 this = vers_next;
503 if (!this)
504 break;
505 eat_last(&ver_root, &vers_next->rb);
507 return ret;
509 jffs2_free_tmp_dnode_info(this);
511 this = vers_next;
514 return 0;
517 static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
519 struct rb_node *this;
520 struct jffs2_tmp_dnode_info *tn;
522 this = list->rb_node;
524 /* Now at bottom of tree */
525 while (this) {
526 if (this->rb_left)
527 this = this->rb_left;
528 else if (this->rb_right)
529 this = this->rb_right;
530 else {
531 tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb);
532 jffs2_free_full_dnode(tn->fn);
533 jffs2_free_tmp_dnode_info(tn);
535 this = rb_parent(this);
536 if (!this)
537 break;
539 if (this->rb_left == &tn->rb)
540 this->rb_left = NULL;
541 else if (this->rb_right == &tn->rb)
542 this->rb_right = NULL;
543 else BUG();
546 list->rb_node = NULL;
549 static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
551 struct jffs2_full_dirent *next;
553 while (fd) {
554 next = fd->next;
555 jffs2_free_full_dirent(fd);
556 fd = next;
560 /* Returns first valid node after 'ref'. May return 'ref' */
561 static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
563 while (ref && ref->next_in_ino) {
564 if (!ref_obsolete(ref))
565 return ref;
566 dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
567 ref = ref->next_in_ino;
569 return NULL;
573 * Helper function for jffs2_get_inode_nodes().
574 * It is called every time an directory entry node is found.
576 * Returns: 0 on success;
577 * negative error code on failure.
579 static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
580 struct jffs2_raw_dirent *rd, size_t read,
581 struct jffs2_readinode_info *rii)
583 struct jffs2_full_dirent *fd;
584 uint32_t crc;
586 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
587 BUG_ON(ref_obsolete(ref));
589 crc = crc32(0, rd, sizeof(*rd) - 8);
590 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
591 JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
592 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
593 jffs2_mark_node_obsolete(c, ref);
594 return 0;
597 /* If we've never checked the CRCs on this node, check them now */
598 if (ref_flags(ref) == REF_UNCHECKED) {
599 struct jffs2_eraseblock *jeb;
600 int len;
602 /* Sanity check */
603 if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
604 JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
605 ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
606 jffs2_mark_node_obsolete(c, ref);
607 return 0;
610 jeb = &c->blocks[ref->flash_offset / c->sector_size];
611 len = ref_totlen(c, jeb, ref);
613 spin_lock(&c->erase_completion_lock);
614 jeb->used_size += len;
615 jeb->unchecked_size -= len;
616 c->used_size += len;
617 c->unchecked_size -= len;
618 ref->flash_offset = ref_offset(ref) | dirent_node_state(rd);
619 spin_unlock(&c->erase_completion_lock);
622 fd = jffs2_alloc_full_dirent(rd->nsize + 1);
623 if (unlikely(!fd))
624 return -ENOMEM;
626 fd->raw = ref;
627 fd->version = je32_to_cpu(rd->version);
628 fd->ino = je32_to_cpu(rd->ino);
629 fd->type = rd->type;
631 if (fd->version > rii->highest_version)
632 rii->highest_version = fd->version;
634 /* Pick out the mctime of the latest dirent */
635 if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
636 rii->mctime_ver = fd->version;
637 rii->latest_mctime = je32_to_cpu(rd->mctime);
641 * Copy as much of the name as possible from the raw
642 * dirent we've already read from the flash.
644 if (read > sizeof(*rd))
645 memcpy(&fd->name[0], &rd->name[0],
646 min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
648 /* Do we need to copy any more of the name directly from the flash? */
649 if (rd->nsize + sizeof(*rd) > read) {
650 /* FIXME: point() */
651 int err;
652 int already = read - sizeof(*rd);
654 err = jffs2_flash_read(c, (ref_offset(ref)) + read,
655 rd->nsize - already, &read, &fd->name[already]);
656 if (unlikely(read != rd->nsize - already) && likely(!err))
657 return -EIO;
659 if (unlikely(err)) {
660 JFFS2_ERROR("read remainder of name: error %d\n", err);
661 jffs2_free_full_dirent(fd);
662 return -EIO;
666 fd->nhash = full_name_hash(fd->name, rd->nsize);
667 fd->next = NULL;
668 fd->name[rd->nsize] = '\0';
671 * Wheee. We now have a complete jffs2_full_dirent structure, with
672 * the name in it and everything. Link it into the list
674 jffs2_add_fd_to_list(c, fd, &rii->fds);
676 return 0;
680 * Helper function for jffs2_get_inode_nodes().
681 * It is called every time an inode node is found.
683 * Returns: 0 on success (possibly after marking a bad node obsolete);
684 * negative error code on failure.
686 static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
687 struct jffs2_raw_inode *rd, int rdlen,
688 struct jffs2_readinode_info *rii)
690 struct jffs2_tmp_dnode_info *tn;
691 uint32_t len, csize;
692 int ret = 0;
693 uint32_t crc;
695 /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
696 BUG_ON(ref_obsolete(ref));
698 crc = crc32(0, rd, sizeof(*rd) - 8);
699 if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
700 JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
701 ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
702 jffs2_mark_node_obsolete(c, ref);
703 return 0;
706 tn = jffs2_alloc_tmp_dnode_info();
707 if (!tn) {
708 JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
709 return -ENOMEM;
712 tn->partial_crc = 0;
713 csize = je32_to_cpu(rd->csize);
715 /* If we've never checked the CRCs on this node, check them now */
716 if (ref_flags(ref) == REF_UNCHECKED) {
718 /* Sanity checks */
719 if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
720 unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
721 JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
722 jffs2_dbg_dump_node(c, ref_offset(ref));
723 jffs2_mark_node_obsolete(c, ref);
724 goto free_out;
727 if (jffs2_is_writebuffered(c) && csize != 0) {
728 /* At this point we are supposed to check the data CRC
729 * of our unchecked node. But thus far, we do not
730 * know whether the node is valid or obsolete. To
731 * figure this out, we need to walk all the nodes of
732 * the inode and build the inode fragtree. We don't
733 * want to spend time checking data of nodes which may
734 * later be found to be obsolete. So we put off the full
735 * data CRC checking until we have read all the inode
736 * nodes and have started building the fragtree.
738 * The fragtree is being built starting with nodes
739 * having the highest version number, so we'll be able
740 * to detect whether a node is valid (i.e., it is not
741 * overlapped by a node with higher version) or not.
742 * And we'll be able to check only those nodes, which
743 * are not obsolete.
745 * Of course, this optimization only makes sense in case
746 * of NAND flashes (or other flashes with
747 * !jffs2_can_mark_obsolete()), since on NOR flashes
748 * nodes are marked obsolete physically.
750 * Since NAND flashes (or other flashes with
751 * jffs2_is_writebuffered(c)) are anyway read by
752 * fractions of c->wbuf_pagesize, and we have just read
753 * the node header, it is likely that the starting part
754 * of the node data is also read when we read the
755 * header. So we don't mind to check the CRC of the
756 * starting part of the data of the node now, and check
757 * the second part later (in jffs2_check_node_data()).
758 * Of course, we will not need to re-read and re-check
759 * the NAND page which we have just read. This is why we
760 * read the whole NAND page at jffs2_get_inode_nodes(),
761 * while we needed only the node header.
763 unsigned char *buf;
765 /* 'buf' will point to the start of data */
766 buf = (unsigned char *)rd + sizeof(*rd);
767 /* len will be the read data length */
768 len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
769 tn->partial_crc = crc32(0, buf, len);
771 dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);
773 /* If we actually calculated the whole data CRC
774 * and it is wrong, drop the node. */
775 if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
776 JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
777 ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
778 jffs2_mark_node_obsolete(c, ref);
779 goto free_out;
782 } else if (csize == 0) {
784 * We checked the header CRC. If the node has no data, adjust
785 * the space accounting now. For other nodes this will be done
786 * later either when the node is marked obsolete or when its
787 * data is checked.
789 struct jffs2_eraseblock *jeb;
791 dbg_readinode("the node has no data.\n");
792 jeb = &c->blocks[ref->flash_offset / c->sector_size];
793 len = ref_totlen(c, jeb, ref);
795 spin_lock(&c->erase_completion_lock);
796 jeb->used_size += len;
797 jeb->unchecked_size -= len;
798 c->used_size += len;
799 c->unchecked_size -= len;
800 ref->flash_offset = ref_offset(ref) | REF_NORMAL;
801 spin_unlock(&c->erase_completion_lock);
805 tn->fn = jffs2_alloc_full_dnode();
806 if (!tn->fn) {
807 JFFS2_ERROR("alloc fn failed\n");
808 ret = -ENOMEM;
809 goto free_out;
812 tn->version = je32_to_cpu(rd->version);
813 tn->fn->ofs = je32_to_cpu(rd->offset);
814 tn->data_crc = je32_to_cpu(rd->data_crc);
815 tn->csize = csize;
816 tn->fn->raw = ref;
817 tn->overlapped = 0;
819 if (tn->version > rii->highest_version)
820 rii->highest_version = tn->version;
822 /* There was a bug where we wrote hole nodes out with
823 csize/dsize swapped. Deal with it */
824 if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
825 tn->fn->size = csize;
826 else // normal case...
827 tn->fn->size = je32_to_cpu(rd->dsize);
829 dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
830 ref_offset(ref), je32_to_cpu(rd->version),
831 je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);
833 ret = jffs2_add_tn_to_tree(c, rii, tn);
835 if (ret) {
836 jffs2_free_full_dnode(tn->fn);
837 free_out:
838 jffs2_free_tmp_dnode_info(tn);
839 return ret;
841 #ifdef JFFS2_DBG_READINODE2_MESSAGES
842 dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version));
843 tn = tn_first(&rii->tn_root);
844 while (tn) {
845 dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n",
846 tn, tn->version, tn->fn->ofs,
847 tn->fn->ofs+tn->fn->size, tn->overlapped);
848 tn = tn_next(tn);
850 #endif
851 return 0;
855 * Helper function for jffs2_get_inode_nodes().
856 * It is called every time an unknown node is found.
858 * Returns: 0 on success;
859 * negative error code on failure.
861 static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
863 /* We don't mark unknown nodes as REF_UNCHECKED */
864 if (ref_flags(ref) == REF_UNCHECKED) {
865 JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
866 ref_offset(ref));
867 JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
868 je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
869 je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
870 jffs2_mark_node_obsolete(c, ref);
871 return 0;
874 un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
876 switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
878 case JFFS2_FEATURE_INCOMPAT:
879 JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
880 je16_to_cpu(un->nodetype), ref_offset(ref));
881 /* EEP */
882 BUG();
883 break;
885 case JFFS2_FEATURE_ROCOMPAT:
886 JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
887 je16_to_cpu(un->nodetype), ref_offset(ref));
888 BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
889 break;
891 case JFFS2_FEATURE_RWCOMPAT_COPY:
892 JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
893 je16_to_cpu(un->nodetype), ref_offset(ref));
894 break;
896 case JFFS2_FEATURE_RWCOMPAT_DELETE:
897 JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
898 je16_to_cpu(un->nodetype), ref_offset(ref));
899 jffs2_mark_node_obsolete(c, ref);
900 return 0;
903 return 0;
907 * Helper function for jffs2_get_inode_nodes().
908 * The function detects whether more data should be read and reads it if yes.
910 * Returns: 0 on succes;
911 * negative error code on failure.
913 static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
914 int needed_len, int *rdlen, unsigned char *buf)
916 int err, to_read = needed_len - *rdlen;
917 size_t retlen;
918 uint32_t offs;
920 if (jffs2_is_writebuffered(c)) {
921 int rem = to_read % c->wbuf_pagesize;
923 if (rem)
924 to_read += c->wbuf_pagesize - rem;
927 /* We need to read more data */
928 offs = ref_offset(ref) + *rdlen;
930 dbg_readinode("read more %d bytes\n", to_read);
932 err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
933 if (err) {
934 JFFS2_ERROR("can not read %d bytes from 0x%08x, "
935 "error code: %d.\n", to_read, offs, err);
936 return err;
939 if (retlen < to_read) {
940 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
941 offs, retlen, to_read);
942 return -EIO;
945 *rdlen += to_read;
946 return 0;
949 /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
950 with this ino. Perform a preliminary ordering on data nodes, throwing away
951 those which are completely obsoleted by newer ones. The naïve approach we
952 use to take of just returning them _all_ in version order will cause us to
953 run out of memory in certain degenerate cases. */
954 static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
955 struct jffs2_readinode_info *rii)
957 struct jffs2_raw_node_ref *ref, *valid_ref;
958 unsigned char *buf = NULL;
959 union jffs2_node_union *node;
960 size_t retlen;
961 int len, err;
963 rii->mctime_ver = 0;
965 dbg_readinode("ino #%u\n", f->inocache->ino);
967 /* FIXME: in case of NOR and available ->point() this
968 * needs to be fixed. */
969 len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
970 buf = kmalloc(len, GFP_KERNEL);
971 if (!buf)
972 return -ENOMEM;
974 spin_lock(&c->erase_completion_lock);
975 valid_ref = jffs2_first_valid_node(f->inocache->nodes);
976 if (!valid_ref && f->inocache->ino != 1)
977 JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
978 while (valid_ref) {
979 /* We can hold a pointer to a non-obsolete node without the spinlock,
980 but _obsolete_ nodes may disappear at any time, if the block
981 they're in gets erased. So if we mark 'ref' obsolete while we're
982 not holding the lock, it can go away immediately. For that reason,
983 we find the next valid node first, before processing 'ref'.
985 ref = valid_ref;
986 valid_ref = jffs2_first_valid_node(ref->next_in_ino);
987 spin_unlock(&c->erase_completion_lock);
989 cond_resched();
992 * At this point we don't know the type of the node we're going
993 * to read, so we do not know the size of its header. In order
994 * to minimize the amount of flash IO we assume the header is
995 * of size = JFFS2_MIN_NODE_HEADER.
997 len = JFFS2_MIN_NODE_HEADER;
998 if (jffs2_is_writebuffered(c)) {
999 int end, rem;
1002 * We are about to read JFFS2_MIN_NODE_HEADER bytes,
1003 * but this flash has some minimal I/O unit. It is
1004 * possible that we'll need to read more soon, so read
1005 * up to the next min. I/O unit, in order not to
1006 * re-read the same min. I/O unit twice.
1008 end = ref_offset(ref) + len;
1009 rem = end % c->wbuf_pagesize;
1010 if (rem)
1011 end += c->wbuf_pagesize - rem;
1012 len = end - ref_offset(ref);
1015 dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));
1017 /* FIXME: point() */
1018 err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
1019 if (err) {
1020 JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err);
1021 goto free_out;
1024 if (retlen < len) {
1025 JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
1026 err = -EIO;
1027 goto free_out;
1030 node = (union jffs2_node_union *)buf;
1032 /* No need to mask in the valid bit; it shouldn't be invalid */
1033 if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
1034 JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
1035 ref_offset(ref), je16_to_cpu(node->u.magic),
1036 je16_to_cpu(node->u.nodetype),
1037 je32_to_cpu(node->u.totlen),
1038 je32_to_cpu(node->u.hdr_crc));
1039 jffs2_dbg_dump_node(c, ref_offset(ref));
1040 jffs2_mark_node_obsolete(c, ref);
1041 goto cont;
1043 if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
1044 /* Not a JFFS2 node, whinge and move on */
1045 JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
1046 je16_to_cpu(node->u.magic), ref_offset(ref));
1047 jffs2_mark_node_obsolete(c, ref);
1048 goto cont;
1051 switch (je16_to_cpu(node->u.nodetype)) {
1053 case JFFS2_NODETYPE_DIRENT:
1055 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) &&
1056 len < sizeof(struct jffs2_raw_dirent)) {
1057 err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
1058 if (unlikely(err))
1059 goto free_out;
1062 err = read_direntry(c, ref, &node->d, retlen, rii);
1063 if (unlikely(err))
1064 goto free_out;
1066 break;
1068 case JFFS2_NODETYPE_INODE:
1070 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) &&
1071 len < sizeof(struct jffs2_raw_inode)) {
1072 err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
1073 if (unlikely(err))
1074 goto free_out;
1077 err = read_dnode(c, ref, &node->i, len, rii);
1078 if (unlikely(err))
1079 goto free_out;
1081 break;
1083 default:
1084 if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) &&
1085 len < sizeof(struct jffs2_unknown_node)) {
1086 err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
1087 if (unlikely(err))
1088 goto free_out;
1091 err = read_unknown(c, ref, &node->u);
1092 if (unlikely(err))
1093 goto free_out;
1096 cont:
1097 spin_lock(&c->erase_completion_lock);
1100 spin_unlock(&c->erase_completion_lock);
1101 kfree(buf);
1103 f->highest_version = rii->highest_version;
1105 dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
1106 f->inocache->ino, rii->highest_version, rii->latest_mctime,
1107 rii->mctime_ver);
1108 return 0;
1110 free_out:
1111 jffs2_free_tmp_dnode_info_list(&rii->tn_root);
1112 jffs2_free_full_dirent_list(rii->fds);
1113 rii->fds = NULL;
1114 kfree(buf);
1115 return err;
1118 static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
1119 struct jffs2_inode_info *f,
1120 struct jffs2_raw_inode *latest_node)
1122 struct jffs2_readinode_info rii;
1123 uint32_t crc, new_size;
1124 size_t retlen;
1125 int ret;
1127 dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino,
1128 f->inocache->pino_nlink);
1130 memset(&rii, 0, sizeof(rii));
1132 /* Grab all nodes relevant to this ino */
1133 ret = jffs2_get_inode_nodes(c, f, &rii);
1135 if (ret) {
1136 JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
1137 if (f->inocache->state == INO_STATE_READING)
1138 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1139 return ret;
1142 ret = jffs2_build_inode_fragtree(c, f, &rii);
1143 if (ret) {
1144 JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
1145 f->inocache->ino, ret);
1146 if (f->inocache->state == INO_STATE_READING)
1147 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1148 jffs2_free_tmp_dnode_info_list(&rii.tn_root);
1149 /* FIXME: We could at least crc-check them all */
1150 if (rii.mdata_tn) {
1151 jffs2_free_full_dnode(rii.mdata_tn->fn);
1152 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1153 rii.mdata_tn = NULL;
1155 return ret;
1158 if (rii.mdata_tn) {
1159 if (rii.mdata_tn->fn->raw == rii.latest_ref) {
1160 f->metadata = rii.mdata_tn->fn;
1161 jffs2_free_tmp_dnode_info(rii.mdata_tn);
1162 } else {
1163 jffs2_kill_tn(c, rii.mdata_tn);
1165 rii.mdata_tn = NULL;
1168 f->dents = rii.fds;
1170 jffs2_dbg_fragtree_paranoia_check_nolock(f);
1172 if (unlikely(!rii.latest_ref)) {
1173 /* No data nodes for this inode. */
1174 if (f->inocache->ino != 1) {
1175 JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
1176 if (!rii.fds) {
1177 if (f->inocache->state == INO_STATE_READING)
1178 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1179 return -EIO;
1181 JFFS2_NOTICE("but it has children so we fake some modes for it\n");
1183 latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
1184 latest_node->version = cpu_to_je32(0);
1185 latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
1186 latest_node->isize = cpu_to_je32(0);
1187 latest_node->gid = cpu_to_je16(0);
1188 latest_node->uid = cpu_to_je16(0);
1189 if (f->inocache->state == INO_STATE_READING)
1190 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1191 return 0;
1194 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
1195 if (ret || retlen != sizeof(*latest_node)) {
1196 JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
1197 ret, retlen, sizeof(*latest_node));
1198 /* FIXME: If this fails, there seems to be a memory leak. Find it. */
1199 mutex_unlock(&f->sem);
1200 jffs2_do_clear_inode(c, f);
1201 return ret?ret:-EIO;
1204 crc = crc32(0, latest_node, sizeof(*latest_node)-8);
1205 if (crc != je32_to_cpu(latest_node->node_crc)) {
1206 JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
1207 f->inocache->ino, ref_offset(rii.latest_ref));
1208 mutex_unlock(&f->sem);
1209 jffs2_do_clear_inode(c, f);
1210 return -EIO;
1213 switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
1214 case S_IFDIR:
1215 if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
1216 /* The times in the latest_node are actually older than
1217 mctime in the latest dirent. Cheat. */
1218 latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
1220 break;
1223 case S_IFREG:
1224 /* If it was a regular file, truncate it to the latest node's isize */
1225 new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
1226 if (new_size != je32_to_cpu(latest_node->isize)) {
1227 JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n",
1228 f->inocache->ino, je32_to_cpu(latest_node->isize), new_size);
1229 latest_node->isize = cpu_to_je32(new_size);
1231 break;
1233 case S_IFLNK:
1234 /* Hack to work around broken isize in old symlink code.
1235 Remove this when dwmw2 comes to his senses and stops
1236 symlinks from being an entirely gratuitous special
1237 case. */
1238 if (!je32_to_cpu(latest_node->isize))
1239 latest_node->isize = latest_node->dsize;
1241 if (f->inocache->state != INO_STATE_CHECKING) {
1242 /* Symlink's inode data is the target path. Read it and
1243 * keep in RAM to facilitate quick follow symlink
1244 * operation. */
1245 f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL);
1246 if (!f->target) {
1247 JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize));
1248 mutex_unlock(&f->sem);
1249 jffs2_do_clear_inode(c, f);
1250 return -ENOMEM;
1253 ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
1254 je32_to_cpu(latest_node->csize), &retlen, (char *)f->target);
1256 if (ret || retlen != je32_to_cpu(latest_node->csize)) {
1257 if (retlen != je32_to_cpu(latest_node->csize))
1258 ret = -EIO;
1259 kfree(f->target);
1260 f->target = NULL;
1261 mutex_unlock(&f->sem);
1262 jffs2_do_clear_inode(c, f);
1263 return -ret;
1266 f->target[je32_to_cpu(latest_node->csize)] = '\0';
1267 dbg_readinode("symlink's target '%s' cached\n", f->target);
1270 /* fall through... */
1272 case S_IFBLK:
1273 case S_IFCHR:
1274 /* Certain inode types should have only one data node, and it's
1275 kept as the metadata node */
1276 if (f->metadata) {
1277 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
1278 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1279 mutex_unlock(&f->sem);
1280 jffs2_do_clear_inode(c, f);
1281 return -EIO;
1283 if (!frag_first(&f->fragtree)) {
1284 JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
1285 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1286 mutex_unlock(&f->sem);
1287 jffs2_do_clear_inode(c, f);
1288 return -EIO;
1290 /* ASSERT: f->fraglist != NULL */
1291 if (frag_next(frag_first(&f->fragtree))) {
1292 JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
1293 f->inocache->ino, jemode_to_cpu(latest_node->mode));
1294 /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
1295 mutex_unlock(&f->sem);
1296 jffs2_do_clear_inode(c, f);
1297 return -EIO;
1299 /* OK. We're happy */
1300 f->metadata = frag_first(&f->fragtree)->node;
1301 jffs2_free_node_frag(frag_first(&f->fragtree));
1302 f->fragtree = RB_ROOT;
1303 break;
1305 if (f->inocache->state == INO_STATE_READING)
1306 jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1308 return 0;
1311 /* Scan the list of all nodes present for this ino, build map of versions, etc. */
1312 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
1313 uint32_t ino, struct jffs2_raw_inode *latest_node)
1315 dbg_readinode("read inode #%u\n", ino);
1317 retry_inocache:
1318 spin_lock(&c->inocache_lock);
1319 f->inocache = jffs2_get_ino_cache(c, ino);
1321 if (f->inocache) {
1322 /* Check its state. We may need to wait before we can use it */
1323 switch(f->inocache->state) {
1324 case INO_STATE_UNCHECKED:
1325 case INO_STATE_CHECKEDABSENT:
1326 f->inocache->state = INO_STATE_READING;
1327 break;
1329 case INO_STATE_CHECKING:
1330 case INO_STATE_GC:
1331 /* If it's in either of these states, we need
1332 to wait for whoever's got it to finish and
1333 put it back. */
1334 dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
1335 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
1336 goto retry_inocache;
1338 case INO_STATE_READING:
1339 case INO_STATE_PRESENT:
1340 /* Eep. This should never happen. It can
1341 happen if Linux calls read_inode() again
1342 before clear_inode() has finished though. */
1343 JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
1344 /* Fail. That's probably better than allowing it to succeed */
1345 f->inocache = NULL;
1346 break;
1348 default:
1349 BUG();
1352 spin_unlock(&c->inocache_lock);
1354 if (!f->inocache && ino == 1) {
1355 /* Special case - no root inode on medium */
1356 f->inocache = jffs2_alloc_inode_cache();
1357 if (!f->inocache) {
1358 JFFS2_ERROR("cannot allocate inocache for root inode\n");
1359 return -ENOMEM;
1361 dbg_readinode("creating inocache for root inode\n");
1362 memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
1363 f->inocache->ino = f->inocache->pino_nlink = 1;
1364 f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
1365 f->inocache->state = INO_STATE_READING;
1366 jffs2_add_ino_cache(c, f->inocache);
1368 if (!f->inocache) {
1369 JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino);
1370 return -ENOENT;
1373 return jffs2_do_read_inode_internal(c, f, latest_node);
1376 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
1378 struct jffs2_raw_inode n;
1379 struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
1380 int ret;
1382 if (!f)
1383 return -ENOMEM;
1385 mutex_init(&f->sem);
1386 mutex_lock(&f->sem);
1387 f->inocache = ic;
1389 ret = jffs2_do_read_inode_internal(c, f, &n);
1390 if (!ret) {
1391 mutex_unlock(&f->sem);
1392 jffs2_do_clear_inode(c, f);
1394 kfree (f);
1395 return ret;
1398 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
1400 struct jffs2_full_dirent *fd, *fds;
1401 int deleted;
1403 jffs2_clear_acl(f);
1404 jffs2_xattr_delete_inode(c, f->inocache);
1405 mutex_lock(&f->sem);
1406 deleted = f->inocache && !f->inocache->pino_nlink;
1408 if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
1409 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
1411 if (f->metadata) {
1412 if (deleted)
1413 jffs2_mark_node_obsolete(c, f->metadata->raw);
1414 jffs2_free_full_dnode(f->metadata);
1417 jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
1419 if (f->target) {
1420 kfree(f->target);
1421 f->target = NULL;
1424 fds = f->dents;
1425 while(fds) {
1426 fd = fds;
1427 fds = fd->next;
1428 jffs2_free_full_dirent(fd);
1431 if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
1432 jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1433 if (f->inocache->nodes == (void *)f->inocache)
1434 jffs2_del_ino_cache(c, f->inocache);
1437 mutex_unlock(&f->sem);