2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <asm/div64.h>
26 #include "extent_map.h"
28 #include "transaction.h"
29 #include "print-tree.h"
31 #include "async-thread.h"
41 struct btrfs_bio_stripe stripes
[];
44 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
45 struct btrfs_root
*root
,
46 struct btrfs_device
*device
);
47 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
49 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
50 (sizeof(struct btrfs_bio_stripe) * (n)))
52 static DEFINE_MUTEX(uuid_mutex
);
53 static LIST_HEAD(fs_uuids
);
55 void btrfs_lock_volumes(void)
57 mutex_lock(&uuid_mutex
);
60 void btrfs_unlock_volumes(void)
62 mutex_unlock(&uuid_mutex
);
65 static void lock_chunks(struct btrfs_root
*root
)
67 mutex_lock(&root
->fs_info
->chunk_mutex
);
70 static void unlock_chunks(struct btrfs_root
*root
)
72 mutex_unlock(&root
->fs_info
->chunk_mutex
);
75 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
77 struct btrfs_device
*device
;
78 WARN_ON(fs_devices
->opened
);
79 while (!list_empty(&fs_devices
->devices
)) {
80 device
= list_entry(fs_devices
->devices
.next
,
81 struct btrfs_device
, dev_list
);
82 list_del(&device
->dev_list
);
89 int btrfs_cleanup_fs_uuids(void)
91 struct btrfs_fs_devices
*fs_devices
;
93 while (!list_empty(&fs_uuids
)) {
94 fs_devices
= list_entry(fs_uuids
.next
,
95 struct btrfs_fs_devices
, list
);
96 list_del(&fs_devices
->list
);
97 free_fs_devices(fs_devices
);
102 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
105 struct btrfs_device
*dev
;
107 list_for_each_entry(dev
, head
, dev_list
) {
108 if (dev
->devid
== devid
&&
109 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
116 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
118 struct btrfs_fs_devices
*fs_devices
;
120 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
121 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
128 * we try to collect pending bios for a device so we don't get a large
129 * number of procs sending bios down to the same device. This greatly
130 * improves the schedulers ability to collect and merge the bios.
132 * But, it also turns into a long list of bios to process and that is sure
133 * to eventually make the worker thread block. The solution here is to
134 * make some progress and then put this work struct back at the end of
135 * the list if the block device is congested. This way, multiple devices
136 * can make progress from a single worker thread.
138 static noinline
int run_scheduled_bios(struct btrfs_device
*device
)
141 struct backing_dev_info
*bdi
;
142 struct btrfs_fs_info
*fs_info
;
146 unsigned long num_run
= 0;
149 bdi
= device
->bdev
->bd_inode
->i_mapping
->backing_dev_info
;
150 fs_info
= device
->dev_root
->fs_info
;
151 limit
= btrfs_async_submit_limit(fs_info
);
152 limit
= limit
* 2 / 3;
155 spin_lock(&device
->io_lock
);
158 /* take all the bios off the list at once and process them
159 * later on (without the lock held). But, remember the
160 * tail and other pointers so the bios can be properly reinserted
161 * into the list if we hit congestion
163 pending
= device
->pending_bios
;
164 tail
= device
->pending_bio_tail
;
165 WARN_ON(pending
&& !tail
);
166 device
->pending_bios
= NULL
;
167 device
->pending_bio_tail
= NULL
;
170 * if pending was null this time around, no bios need processing
171 * at all and we can stop. Otherwise it'll loop back up again
172 * and do an additional check so no bios are missed.
174 * device->running_pending is used to synchronize with the
179 device
->running_pending
= 1;
182 device
->running_pending
= 0;
184 spin_unlock(&device
->io_lock
);
188 pending
= pending
->bi_next
;
190 atomic_dec(&fs_info
->nr_async_bios
);
192 if (atomic_read(&fs_info
->nr_async_bios
) < limit
&&
193 waitqueue_active(&fs_info
->async_submit_wait
))
194 wake_up(&fs_info
->async_submit_wait
);
196 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
198 submit_bio(cur
->bi_rw
, cur
);
203 * we made progress, there is more work to do and the bdi
204 * is now congested. Back off and let other work structs
207 if (pending
&& bdi_write_congested(bdi
) && num_run
> 16 &&
208 fs_info
->fs_devices
->open_devices
> 1) {
209 struct bio
*old_head
;
211 spin_lock(&device
->io_lock
);
213 old_head
= device
->pending_bios
;
214 device
->pending_bios
= pending
;
215 if (device
->pending_bio_tail
)
216 tail
->bi_next
= old_head
;
218 device
->pending_bio_tail
= tail
;
220 device
->running_pending
= 1;
222 spin_unlock(&device
->io_lock
);
223 btrfs_requeue_work(&device
->work
);
230 spin_lock(&device
->io_lock
);
231 if (device
->pending_bios
)
233 spin_unlock(&device
->io_lock
);
238 static void pending_bios_fn(struct btrfs_work
*work
)
240 struct btrfs_device
*device
;
242 device
= container_of(work
, struct btrfs_device
, work
);
243 run_scheduled_bios(device
);
246 static noinline
int device_list_add(const char *path
,
247 struct btrfs_super_block
*disk_super
,
248 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
250 struct btrfs_device
*device
;
251 struct btrfs_fs_devices
*fs_devices
;
252 u64 found_transid
= btrfs_super_generation(disk_super
);
254 fs_devices
= find_fsid(disk_super
->fsid
);
256 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
259 INIT_LIST_HEAD(&fs_devices
->devices
);
260 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
261 list_add(&fs_devices
->list
, &fs_uuids
);
262 memcpy(fs_devices
->fsid
, disk_super
->fsid
, BTRFS_FSID_SIZE
);
263 fs_devices
->latest_devid
= devid
;
264 fs_devices
->latest_trans
= found_transid
;
267 device
= __find_device(&fs_devices
->devices
, devid
,
268 disk_super
->dev_item
.uuid
);
271 if (fs_devices
->opened
)
274 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
276 /* we can safely leave the fs_devices entry around */
279 device
->devid
= devid
;
280 device
->work
.func
= pending_bios_fn
;
281 memcpy(device
->uuid
, disk_super
->dev_item
.uuid
,
283 device
->barriers
= 1;
284 spin_lock_init(&device
->io_lock
);
285 device
->name
= kstrdup(path
, GFP_NOFS
);
290 INIT_LIST_HEAD(&device
->dev_alloc_list
);
291 list_add(&device
->dev_list
, &fs_devices
->devices
);
292 device
->fs_devices
= fs_devices
;
293 fs_devices
->num_devices
++;
296 if (found_transid
> fs_devices
->latest_trans
) {
297 fs_devices
->latest_devid
= devid
;
298 fs_devices
->latest_trans
= found_transid
;
300 *fs_devices_ret
= fs_devices
;
304 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
306 struct btrfs_fs_devices
*fs_devices
;
307 struct btrfs_device
*device
;
308 struct btrfs_device
*orig_dev
;
310 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
312 return ERR_PTR(-ENOMEM
);
314 INIT_LIST_HEAD(&fs_devices
->devices
);
315 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
316 INIT_LIST_HEAD(&fs_devices
->list
);
317 fs_devices
->latest_devid
= orig
->latest_devid
;
318 fs_devices
->latest_trans
= orig
->latest_trans
;
319 memcpy(fs_devices
->fsid
, orig
->fsid
, sizeof(fs_devices
->fsid
));
321 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
322 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
326 device
->name
= kstrdup(orig_dev
->name
, GFP_NOFS
);
330 device
->devid
= orig_dev
->devid
;
331 device
->work
.func
= pending_bios_fn
;
332 memcpy(device
->uuid
, orig_dev
->uuid
, sizeof(device
->uuid
));
333 device
->barriers
= 1;
334 spin_lock_init(&device
->io_lock
);
335 INIT_LIST_HEAD(&device
->dev_list
);
336 INIT_LIST_HEAD(&device
->dev_alloc_list
);
338 list_add(&device
->dev_list
, &fs_devices
->devices
);
339 device
->fs_devices
= fs_devices
;
340 fs_devices
->num_devices
++;
344 free_fs_devices(fs_devices
);
345 return ERR_PTR(-ENOMEM
);
348 int btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
)
350 struct btrfs_device
*device
, *next
;
352 mutex_lock(&uuid_mutex
);
354 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
355 if (device
->in_fs_metadata
)
359 close_bdev_exclusive(device
->bdev
, device
->mode
);
361 fs_devices
->open_devices
--;
363 if (device
->writeable
) {
364 list_del_init(&device
->dev_alloc_list
);
365 device
->writeable
= 0;
366 fs_devices
->rw_devices
--;
368 list_del_init(&device
->dev_list
);
369 fs_devices
->num_devices
--;
374 if (fs_devices
->seed
) {
375 fs_devices
= fs_devices
->seed
;
379 mutex_unlock(&uuid_mutex
);
383 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
385 struct btrfs_device
*device
;
387 if (--fs_devices
->opened
> 0)
390 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
392 close_bdev_exclusive(device
->bdev
, device
->mode
);
393 fs_devices
->open_devices
--;
395 if (device
->writeable
) {
396 list_del_init(&device
->dev_alloc_list
);
397 fs_devices
->rw_devices
--;
401 device
->writeable
= 0;
402 device
->in_fs_metadata
= 0;
404 WARN_ON(fs_devices
->open_devices
);
405 WARN_ON(fs_devices
->rw_devices
);
406 fs_devices
->opened
= 0;
407 fs_devices
->seeding
= 0;
412 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
414 struct btrfs_fs_devices
*seed_devices
= NULL
;
417 mutex_lock(&uuid_mutex
);
418 ret
= __btrfs_close_devices(fs_devices
);
419 if (!fs_devices
->opened
) {
420 seed_devices
= fs_devices
->seed
;
421 fs_devices
->seed
= NULL
;
423 mutex_unlock(&uuid_mutex
);
425 while (seed_devices
) {
426 fs_devices
= seed_devices
;
427 seed_devices
= fs_devices
->seed
;
428 __btrfs_close_devices(fs_devices
);
429 free_fs_devices(fs_devices
);
434 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
435 fmode_t flags
, void *holder
)
437 struct block_device
*bdev
;
438 struct list_head
*head
= &fs_devices
->devices
;
439 struct btrfs_device
*device
;
440 struct block_device
*latest_bdev
= NULL
;
441 struct buffer_head
*bh
;
442 struct btrfs_super_block
*disk_super
;
443 u64 latest_devid
= 0;
444 u64 latest_transid
= 0;
449 list_for_each_entry(device
, head
, dev_list
) {
455 bdev
= open_bdev_exclusive(device
->name
, flags
, holder
);
457 printk(KERN_INFO
"open %s failed\n", device
->name
);
460 set_blocksize(bdev
, 4096);
462 bh
= btrfs_read_dev_super(bdev
);
466 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
467 devid
= le64_to_cpu(disk_super
->dev_item
.devid
);
468 if (devid
!= device
->devid
)
471 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
475 device
->generation
= btrfs_super_generation(disk_super
);
476 if (!latest_transid
|| device
->generation
> latest_transid
) {
477 latest_devid
= devid
;
478 latest_transid
= device
->generation
;
482 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
483 device
->writeable
= 0;
485 device
->writeable
= !bdev_read_only(bdev
);
490 device
->in_fs_metadata
= 0;
491 device
->mode
= flags
;
493 fs_devices
->open_devices
++;
494 if (device
->writeable
) {
495 fs_devices
->rw_devices
++;
496 list_add(&device
->dev_alloc_list
,
497 &fs_devices
->alloc_list
);
504 close_bdev_exclusive(bdev
, FMODE_READ
);
508 if (fs_devices
->open_devices
== 0) {
512 fs_devices
->seeding
= seeding
;
513 fs_devices
->opened
= 1;
514 fs_devices
->latest_bdev
= latest_bdev
;
515 fs_devices
->latest_devid
= latest_devid
;
516 fs_devices
->latest_trans
= latest_transid
;
517 fs_devices
->total_rw_bytes
= 0;
522 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
523 fmode_t flags
, void *holder
)
527 mutex_lock(&uuid_mutex
);
528 if (fs_devices
->opened
) {
529 fs_devices
->opened
++;
532 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
534 mutex_unlock(&uuid_mutex
);
538 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
539 struct btrfs_fs_devices
**fs_devices_ret
)
541 struct btrfs_super_block
*disk_super
;
542 struct block_device
*bdev
;
543 struct buffer_head
*bh
;
548 mutex_lock(&uuid_mutex
);
550 bdev
= open_bdev_exclusive(path
, flags
, holder
);
557 ret
= set_blocksize(bdev
, 4096);
560 bh
= btrfs_read_dev_super(bdev
);
565 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
566 devid
= le64_to_cpu(disk_super
->dev_item
.devid
);
567 transid
= btrfs_super_generation(disk_super
);
568 if (disk_super
->label
[0])
569 printk(KERN_INFO
"device label %s ", disk_super
->label
);
571 /* FIXME, make a readl uuid parser */
572 printk(KERN_INFO
"device fsid %llx-%llx ",
573 *(unsigned long long *)disk_super
->fsid
,
574 *(unsigned long long *)(disk_super
->fsid
+ 8));
576 printk(KERN_CONT
"devid %llu transid %llu %s\n",
577 (unsigned long long)devid
, (unsigned long long)transid
, path
);
578 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
582 close_bdev_exclusive(bdev
, flags
);
584 mutex_unlock(&uuid_mutex
);
589 * this uses a pretty simple search, the expectation is that it is
590 * called very infrequently and that a given device has a small number
593 static noinline
int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
594 struct btrfs_device
*device
,
595 u64 num_bytes
, u64
*start
)
597 struct btrfs_key key
;
598 struct btrfs_root
*root
= device
->dev_root
;
599 struct btrfs_dev_extent
*dev_extent
= NULL
;
600 struct btrfs_path
*path
;
603 u64 search_start
= 0;
604 u64 search_end
= device
->total_bytes
;
608 struct extent_buffer
*l
;
610 path
= btrfs_alloc_path();
616 /* FIXME use last free of some kind */
618 /* we don't want to overwrite the superblock on the drive,
619 * so we make sure to start at an offset of at least 1MB
621 search_start
= max((u64
)1024 * 1024, search_start
);
623 if (root
->fs_info
->alloc_start
+ num_bytes
<= device
->total_bytes
)
624 search_start
= max(root
->fs_info
->alloc_start
, search_start
);
626 key
.objectid
= device
->devid
;
627 key
.offset
= search_start
;
628 key
.type
= BTRFS_DEV_EXTENT_KEY
;
629 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 0);
632 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
636 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
639 slot
= path
->slots
[0];
640 if (slot
>= btrfs_header_nritems(l
)) {
641 ret
= btrfs_next_leaf(root
, path
);
648 if (search_start
>= search_end
) {
652 *start
= search_start
;
656 *start
= last_byte
> search_start
?
657 last_byte
: search_start
;
658 if (search_end
<= *start
) {
664 btrfs_item_key_to_cpu(l
, &key
, slot
);
666 if (key
.objectid
< device
->devid
)
669 if (key
.objectid
> device
->devid
)
672 if (key
.offset
>= search_start
&& key
.offset
> last_byte
&&
674 if (last_byte
< search_start
)
675 last_byte
= search_start
;
676 hole_size
= key
.offset
- last_byte
;
677 if (key
.offset
> last_byte
&&
678 hole_size
>= num_bytes
) {
683 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
687 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
688 last_byte
= key
.offset
+ btrfs_dev_extent_length(l
, dev_extent
);
694 /* we have to make sure we didn't find an extent that has already
695 * been allocated by the map tree or the original allocation
697 BUG_ON(*start
< search_start
);
699 if (*start
+ num_bytes
> search_end
) {
703 /* check for pending inserts here */
707 btrfs_free_path(path
);
711 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
712 struct btrfs_device
*device
,
716 struct btrfs_path
*path
;
717 struct btrfs_root
*root
= device
->dev_root
;
718 struct btrfs_key key
;
719 struct btrfs_key found_key
;
720 struct extent_buffer
*leaf
= NULL
;
721 struct btrfs_dev_extent
*extent
= NULL
;
723 path
= btrfs_alloc_path();
727 key
.objectid
= device
->devid
;
729 key
.type
= BTRFS_DEV_EXTENT_KEY
;
731 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
733 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
734 BTRFS_DEV_EXTENT_KEY
);
736 leaf
= path
->nodes
[0];
737 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
738 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
739 struct btrfs_dev_extent
);
740 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
741 btrfs_dev_extent_length(leaf
, extent
) < start
);
743 } else if (ret
== 0) {
744 leaf
= path
->nodes
[0];
745 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
746 struct btrfs_dev_extent
);
750 if (device
->bytes_used
> 0)
751 device
->bytes_used
-= btrfs_dev_extent_length(leaf
, extent
);
752 ret
= btrfs_del_item(trans
, root
, path
);
755 btrfs_free_path(path
);
759 int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
760 struct btrfs_device
*device
,
761 u64 chunk_tree
, u64 chunk_objectid
,
762 u64 chunk_offset
, u64 start
, u64 num_bytes
)
765 struct btrfs_path
*path
;
766 struct btrfs_root
*root
= device
->dev_root
;
767 struct btrfs_dev_extent
*extent
;
768 struct extent_buffer
*leaf
;
769 struct btrfs_key key
;
771 WARN_ON(!device
->in_fs_metadata
);
772 path
= btrfs_alloc_path();
776 key
.objectid
= device
->devid
;
778 key
.type
= BTRFS_DEV_EXTENT_KEY
;
779 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
783 leaf
= path
->nodes
[0];
784 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
785 struct btrfs_dev_extent
);
786 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
787 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
788 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
790 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
791 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent
),
794 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
795 btrfs_mark_buffer_dirty(leaf
);
796 btrfs_free_path(path
);
800 static noinline
int find_next_chunk(struct btrfs_root
*root
,
801 u64 objectid
, u64
*offset
)
803 struct btrfs_path
*path
;
805 struct btrfs_key key
;
806 struct btrfs_chunk
*chunk
;
807 struct btrfs_key found_key
;
809 path
= btrfs_alloc_path();
812 key
.objectid
= objectid
;
813 key
.offset
= (u64
)-1;
814 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
816 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
822 ret
= btrfs_previous_item(root
, path
, 0, BTRFS_CHUNK_ITEM_KEY
);
826 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
828 if (found_key
.objectid
!= objectid
)
831 chunk
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
833 *offset
= found_key
.offset
+
834 btrfs_chunk_length(path
->nodes
[0], chunk
);
839 btrfs_free_path(path
);
843 static noinline
int find_next_devid(struct btrfs_root
*root
, u64
*objectid
)
846 struct btrfs_key key
;
847 struct btrfs_key found_key
;
848 struct btrfs_path
*path
;
850 root
= root
->fs_info
->chunk_root
;
852 path
= btrfs_alloc_path();
856 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
857 key
.type
= BTRFS_DEV_ITEM_KEY
;
858 key
.offset
= (u64
)-1;
860 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
866 ret
= btrfs_previous_item(root
, path
, BTRFS_DEV_ITEMS_OBJECTID
,
871 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
873 *objectid
= found_key
.offset
+ 1;
877 btrfs_free_path(path
);
882 * the device information is stored in the chunk root
883 * the btrfs_device struct should be fully filled in
885 int btrfs_add_device(struct btrfs_trans_handle
*trans
,
886 struct btrfs_root
*root
,
887 struct btrfs_device
*device
)
890 struct btrfs_path
*path
;
891 struct btrfs_dev_item
*dev_item
;
892 struct extent_buffer
*leaf
;
893 struct btrfs_key key
;
896 root
= root
->fs_info
->chunk_root
;
898 path
= btrfs_alloc_path();
902 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
903 key
.type
= BTRFS_DEV_ITEM_KEY
;
904 key
.offset
= device
->devid
;
906 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
911 leaf
= path
->nodes
[0];
912 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
914 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
915 btrfs_set_device_generation(leaf
, dev_item
, 0);
916 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
917 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
918 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
919 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
920 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
921 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
922 btrfs_set_device_group(leaf
, dev_item
, 0);
923 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
924 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
925 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
927 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
928 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
929 ptr
= (unsigned long)btrfs_device_fsid(dev_item
);
930 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
931 btrfs_mark_buffer_dirty(leaf
);
935 btrfs_free_path(path
);
939 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
940 struct btrfs_device
*device
)
943 struct btrfs_path
*path
;
944 struct btrfs_key key
;
945 struct btrfs_trans_handle
*trans
;
947 root
= root
->fs_info
->chunk_root
;
949 path
= btrfs_alloc_path();
953 trans
= btrfs_start_transaction(root
, 1);
954 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
955 key
.type
= BTRFS_DEV_ITEM_KEY
;
956 key
.offset
= device
->devid
;
959 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
968 ret
= btrfs_del_item(trans
, root
, path
);
972 btrfs_free_path(path
);
974 btrfs_commit_transaction(trans
, root
);
978 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
980 struct btrfs_device
*device
;
981 struct btrfs_device
*next_device
;
982 struct block_device
*bdev
;
983 struct buffer_head
*bh
= NULL
;
984 struct btrfs_super_block
*disk_super
;
991 mutex_lock(&uuid_mutex
);
992 mutex_lock(&root
->fs_info
->volume_mutex
);
994 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
995 root
->fs_info
->avail_system_alloc_bits
|
996 root
->fs_info
->avail_metadata_alloc_bits
;
998 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) &&
999 root
->fs_info
->fs_devices
->rw_devices
<= 4) {
1000 printk(KERN_ERR
"btrfs: unable to go below four devices "
1006 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) &&
1007 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1008 printk(KERN_ERR
"btrfs: unable to go below two "
1009 "devices on raid1\n");
1014 if (strcmp(device_path
, "missing") == 0) {
1015 struct list_head
*devices
;
1016 struct btrfs_device
*tmp
;
1019 devices
= &root
->fs_info
->fs_devices
->devices
;
1020 list_for_each_entry(tmp
, devices
, dev_list
) {
1021 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1030 printk(KERN_ERR
"btrfs: no missing devices found to "
1035 bdev
= open_bdev_exclusive(device_path
, FMODE_READ
,
1036 root
->fs_info
->bdev_holder
);
1038 ret
= PTR_ERR(bdev
);
1042 set_blocksize(bdev
, 4096);
1043 bh
= btrfs_read_dev_super(bdev
);
1048 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1049 devid
= le64_to_cpu(disk_super
->dev_item
.devid
);
1050 dev_uuid
= disk_super
->dev_item
.uuid
;
1051 device
= btrfs_find_device(root
, devid
, dev_uuid
,
1059 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1060 printk(KERN_ERR
"btrfs: unable to remove the only writeable "
1066 if (device
->writeable
) {
1067 list_del_init(&device
->dev_alloc_list
);
1068 root
->fs_info
->fs_devices
->rw_devices
--;
1071 ret
= btrfs_shrink_device(device
, 0);
1075 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1079 device
->in_fs_metadata
= 0;
1080 list_del_init(&device
->dev_list
);
1081 device
->fs_devices
->num_devices
--;
1083 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1084 struct btrfs_device
, dev_list
);
1085 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1086 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1087 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1088 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1091 close_bdev_exclusive(device
->bdev
, device
->mode
);
1092 device
->bdev
= NULL
;
1093 device
->fs_devices
->open_devices
--;
1096 num_devices
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
1097 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
, num_devices
);
1099 if (device
->fs_devices
->open_devices
== 0) {
1100 struct btrfs_fs_devices
*fs_devices
;
1101 fs_devices
= root
->fs_info
->fs_devices
;
1102 while (fs_devices
) {
1103 if (fs_devices
->seed
== device
->fs_devices
)
1105 fs_devices
= fs_devices
->seed
;
1107 fs_devices
->seed
= device
->fs_devices
->seed
;
1108 device
->fs_devices
->seed
= NULL
;
1109 __btrfs_close_devices(device
->fs_devices
);
1110 free_fs_devices(device
->fs_devices
);
1114 * at this point, the device is zero sized. We want to
1115 * remove it from the devices list and zero out the old super
1117 if (device
->writeable
) {
1118 /* make sure this device isn't detected as part of
1121 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1122 set_buffer_dirty(bh
);
1123 sync_dirty_buffer(bh
);
1126 kfree(device
->name
);
1134 close_bdev_exclusive(bdev
, FMODE_READ
);
1136 mutex_unlock(&root
->fs_info
->volume_mutex
);
1137 mutex_unlock(&uuid_mutex
);
1142 * does all the dirty work required for changing file system's UUID.
1144 static int btrfs_prepare_sprout(struct btrfs_trans_handle
*trans
,
1145 struct btrfs_root
*root
)
1147 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1148 struct btrfs_fs_devices
*old_devices
;
1149 struct btrfs_fs_devices
*seed_devices
;
1150 struct btrfs_super_block
*disk_super
= &root
->fs_info
->super_copy
;
1151 struct btrfs_device
*device
;
1154 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1155 if (!fs_devices
->seeding
)
1158 seed_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
1162 old_devices
= clone_fs_devices(fs_devices
);
1163 if (IS_ERR(old_devices
)) {
1164 kfree(seed_devices
);
1165 return PTR_ERR(old_devices
);
1168 list_add(&old_devices
->list
, &fs_uuids
);
1170 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1171 seed_devices
->opened
= 1;
1172 INIT_LIST_HEAD(&seed_devices
->devices
);
1173 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1174 list_splice_init(&fs_devices
->devices
, &seed_devices
->devices
);
1175 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1176 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1177 device
->fs_devices
= seed_devices
;
1180 fs_devices
->seeding
= 0;
1181 fs_devices
->num_devices
= 0;
1182 fs_devices
->open_devices
= 0;
1183 fs_devices
->seed
= seed_devices
;
1185 generate_random_uuid(fs_devices
->fsid
);
1186 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1187 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1188 super_flags
= btrfs_super_flags(disk_super
) &
1189 ~BTRFS_SUPER_FLAG_SEEDING
;
1190 btrfs_set_super_flags(disk_super
, super_flags
);
1196 * strore the expected generation for seed devices in device items.
1198 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1199 struct btrfs_root
*root
)
1201 struct btrfs_path
*path
;
1202 struct extent_buffer
*leaf
;
1203 struct btrfs_dev_item
*dev_item
;
1204 struct btrfs_device
*device
;
1205 struct btrfs_key key
;
1206 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1207 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1211 path
= btrfs_alloc_path();
1215 root
= root
->fs_info
->chunk_root
;
1216 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1218 key
.type
= BTRFS_DEV_ITEM_KEY
;
1221 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1225 leaf
= path
->nodes
[0];
1227 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1228 ret
= btrfs_next_leaf(root
, path
);
1233 leaf
= path
->nodes
[0];
1234 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1235 btrfs_release_path(root
, path
);
1239 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1240 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1241 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1244 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1245 struct btrfs_dev_item
);
1246 devid
= btrfs_device_id(leaf
, dev_item
);
1247 read_extent_buffer(leaf
, dev_uuid
,
1248 (unsigned long)btrfs_device_uuid(dev_item
),
1250 read_extent_buffer(leaf
, fs_uuid
,
1251 (unsigned long)btrfs_device_fsid(dev_item
),
1253 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
1256 if (device
->fs_devices
->seeding
) {
1257 btrfs_set_device_generation(leaf
, dev_item
,
1258 device
->generation
);
1259 btrfs_mark_buffer_dirty(leaf
);
1267 btrfs_free_path(path
);
1271 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1273 struct btrfs_trans_handle
*trans
;
1274 struct btrfs_device
*device
;
1275 struct block_device
*bdev
;
1276 struct list_head
*devices
;
1277 struct super_block
*sb
= root
->fs_info
->sb
;
1279 int seeding_dev
= 0;
1282 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1285 bdev
= open_bdev_exclusive(device_path
, 0, root
->fs_info
->bdev_holder
);
1289 if (root
->fs_info
->fs_devices
->seeding
) {
1291 down_write(&sb
->s_umount
);
1292 mutex_lock(&uuid_mutex
);
1295 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
1296 mutex_lock(&root
->fs_info
->volume_mutex
);
1298 devices
= &root
->fs_info
->fs_devices
->devices
;
1299 list_for_each_entry(device
, devices
, dev_list
) {
1300 if (device
->bdev
== bdev
) {
1306 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
1308 /* we can safely leave the fs_devices entry around */
1313 device
->name
= kstrdup(device_path
, GFP_NOFS
);
1314 if (!device
->name
) {
1320 ret
= find_next_devid(root
, &device
->devid
);
1326 trans
= btrfs_start_transaction(root
, 1);
1329 device
->barriers
= 1;
1330 device
->writeable
= 1;
1331 device
->work
.func
= pending_bios_fn
;
1332 generate_random_uuid(device
->uuid
);
1333 spin_lock_init(&device
->io_lock
);
1334 device
->generation
= trans
->transid
;
1335 device
->io_width
= root
->sectorsize
;
1336 device
->io_align
= root
->sectorsize
;
1337 device
->sector_size
= root
->sectorsize
;
1338 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
1339 device
->dev_root
= root
->fs_info
->dev_root
;
1340 device
->bdev
= bdev
;
1341 device
->in_fs_metadata
= 1;
1343 set_blocksize(device
->bdev
, 4096);
1346 sb
->s_flags
&= ~MS_RDONLY
;
1347 ret
= btrfs_prepare_sprout(trans
, root
);
1351 device
->fs_devices
= root
->fs_info
->fs_devices
;
1352 list_add(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
1353 list_add(&device
->dev_alloc_list
,
1354 &root
->fs_info
->fs_devices
->alloc_list
);
1355 root
->fs_info
->fs_devices
->num_devices
++;
1356 root
->fs_info
->fs_devices
->open_devices
++;
1357 root
->fs_info
->fs_devices
->rw_devices
++;
1358 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
1360 total_bytes
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
1361 btrfs_set_super_total_bytes(&root
->fs_info
->super_copy
,
1362 total_bytes
+ device
->total_bytes
);
1364 total_bytes
= btrfs_super_num_devices(&root
->fs_info
->super_copy
);
1365 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
,
1369 ret
= init_first_rw_device(trans
, root
, device
);
1371 ret
= btrfs_finish_sprout(trans
, root
);
1374 ret
= btrfs_add_device(trans
, root
, device
);
1377 unlock_chunks(root
);
1378 btrfs_commit_transaction(trans
, root
);
1381 mutex_unlock(&uuid_mutex
);
1382 up_write(&sb
->s_umount
);
1384 ret
= btrfs_relocate_sys_chunks(root
);
1388 mutex_unlock(&root
->fs_info
->volume_mutex
);
1391 close_bdev_exclusive(bdev
, 0);
1393 mutex_unlock(&uuid_mutex
);
1394 up_write(&sb
->s_umount
);
1399 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
1400 struct btrfs_device
*device
)
1403 struct btrfs_path
*path
;
1404 struct btrfs_root
*root
;
1405 struct btrfs_dev_item
*dev_item
;
1406 struct extent_buffer
*leaf
;
1407 struct btrfs_key key
;
1409 root
= device
->dev_root
->fs_info
->chunk_root
;
1411 path
= btrfs_alloc_path();
1415 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1416 key
.type
= BTRFS_DEV_ITEM_KEY
;
1417 key
.offset
= device
->devid
;
1419 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1428 leaf
= path
->nodes
[0];
1429 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1431 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1432 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1433 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1434 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1435 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1436 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1437 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1438 btrfs_mark_buffer_dirty(leaf
);
1441 btrfs_free_path(path
);
1445 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1446 struct btrfs_device
*device
, u64 new_size
)
1448 struct btrfs_super_block
*super_copy
=
1449 &device
->dev_root
->fs_info
->super_copy
;
1450 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1451 u64 diff
= new_size
- device
->total_bytes
;
1453 if (!device
->writeable
)
1455 if (new_size
<= device
->total_bytes
)
1458 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
1459 device
->fs_devices
->total_rw_bytes
+= diff
;
1461 device
->total_bytes
= new_size
;
1462 return btrfs_update_device(trans
, device
);
1465 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1466 struct btrfs_device
*device
, u64 new_size
)
1469 lock_chunks(device
->dev_root
);
1470 ret
= __btrfs_grow_device(trans
, device
, new_size
);
1471 unlock_chunks(device
->dev_root
);
1475 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
1476 struct btrfs_root
*root
,
1477 u64 chunk_tree
, u64 chunk_objectid
,
1481 struct btrfs_path
*path
;
1482 struct btrfs_key key
;
1484 root
= root
->fs_info
->chunk_root
;
1485 path
= btrfs_alloc_path();
1489 key
.objectid
= chunk_objectid
;
1490 key
.offset
= chunk_offset
;
1491 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1493 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1496 ret
= btrfs_del_item(trans
, root
, path
);
1499 btrfs_free_path(path
);
1503 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
1506 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1507 struct btrfs_disk_key
*disk_key
;
1508 struct btrfs_chunk
*chunk
;
1515 struct btrfs_key key
;
1517 array_size
= btrfs_super_sys_array_size(super_copy
);
1519 ptr
= super_copy
->sys_chunk_array
;
1522 while (cur
< array_size
) {
1523 disk_key
= (struct btrfs_disk_key
*)ptr
;
1524 btrfs_disk_key_to_cpu(&key
, disk_key
);
1526 len
= sizeof(*disk_key
);
1528 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
1529 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
1530 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
1531 len
+= btrfs_chunk_item_size(num_stripes
);
1536 if (key
.objectid
== chunk_objectid
&&
1537 key
.offset
== chunk_offset
) {
1538 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
1540 btrfs_set_super_sys_array_size(super_copy
, array_size
);
1549 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
1550 u64 chunk_tree
, u64 chunk_objectid
,
1553 struct extent_map_tree
*em_tree
;
1554 struct btrfs_root
*extent_root
;
1555 struct btrfs_trans_handle
*trans
;
1556 struct extent_map
*em
;
1557 struct map_lookup
*map
;
1561 printk(KERN_INFO
"btrfs relocating chunk %llu\n",
1562 (unsigned long long)chunk_offset
);
1563 root
= root
->fs_info
->chunk_root
;
1564 extent_root
= root
->fs_info
->extent_root
;
1565 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
1567 /* step one, relocate all the extents inside this chunk */
1568 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
1571 trans
= btrfs_start_transaction(root
, 1);
1577 * step two, delete the device extents and the
1578 * chunk tree entries
1580 spin_lock(&em_tree
->lock
);
1581 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
1582 spin_unlock(&em_tree
->lock
);
1584 BUG_ON(em
->start
> chunk_offset
||
1585 em
->start
+ em
->len
< chunk_offset
);
1586 map
= (struct map_lookup
*)em
->bdev
;
1588 for (i
= 0; i
< map
->num_stripes
; i
++) {
1589 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
1590 map
->stripes
[i
].physical
);
1593 if (map
->stripes
[i
].dev
) {
1594 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
1598 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
1603 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1604 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
1608 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
1611 spin_lock(&em_tree
->lock
);
1612 remove_extent_mapping(em_tree
, em
);
1613 spin_unlock(&em_tree
->lock
);
1618 /* once for the tree */
1619 free_extent_map(em
);
1621 free_extent_map(em
);
1623 unlock_chunks(root
);
1624 btrfs_end_transaction(trans
, root
);
1628 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
1630 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
1631 struct btrfs_path
*path
;
1632 struct extent_buffer
*leaf
;
1633 struct btrfs_chunk
*chunk
;
1634 struct btrfs_key key
;
1635 struct btrfs_key found_key
;
1636 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
1640 path
= btrfs_alloc_path();
1644 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1645 key
.offset
= (u64
)-1;
1646 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1649 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1654 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
1661 leaf
= path
->nodes
[0];
1662 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1664 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
1665 struct btrfs_chunk
);
1666 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
1667 btrfs_release_path(chunk_root
, path
);
1669 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1670 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
1676 if (found_key
.offset
== 0)
1678 key
.offset
= found_key
.offset
- 1;
1682 btrfs_free_path(path
);
1686 static u64
div_factor(u64 num
, int factor
)
1695 int btrfs_balance(struct btrfs_root
*dev_root
)
1698 struct list_head
*devices
= &dev_root
->fs_info
->fs_devices
->devices
;
1699 struct btrfs_device
*device
;
1702 struct btrfs_path
*path
;
1703 struct btrfs_key key
;
1704 struct btrfs_chunk
*chunk
;
1705 struct btrfs_root
*chunk_root
= dev_root
->fs_info
->chunk_root
;
1706 struct btrfs_trans_handle
*trans
;
1707 struct btrfs_key found_key
;
1709 if (dev_root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1712 mutex_lock(&dev_root
->fs_info
->volume_mutex
);
1713 dev_root
= dev_root
->fs_info
->dev_root
;
1715 /* step one make some room on all the devices */
1716 list_for_each_entry(device
, devices
, dev_list
) {
1717 old_size
= device
->total_bytes
;
1718 size_to_free
= div_factor(old_size
, 1);
1719 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
1720 if (!device
->writeable
||
1721 device
->total_bytes
- device
->bytes_used
> size_to_free
)
1724 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
1727 trans
= btrfs_start_transaction(dev_root
, 1);
1730 ret
= btrfs_grow_device(trans
, device
, old_size
);
1733 btrfs_end_transaction(trans
, dev_root
);
1736 /* step two, relocate all the chunks */
1737 path
= btrfs_alloc_path();
1740 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1741 key
.offset
= (u64
)-1;
1742 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1745 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1750 * this shouldn't happen, it means the last relocate
1756 ret
= btrfs_previous_item(chunk_root
, path
, 0,
1757 BTRFS_CHUNK_ITEM_KEY
);
1761 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1763 if (found_key
.objectid
!= key
.objectid
)
1766 chunk
= btrfs_item_ptr(path
->nodes
[0],
1768 struct btrfs_chunk
);
1769 key
.offset
= found_key
.offset
;
1770 /* chunk zero is special */
1771 if (key
.offset
== 0)
1774 btrfs_release_path(chunk_root
, path
);
1775 ret
= btrfs_relocate_chunk(chunk_root
,
1776 chunk_root
->root_key
.objectid
,
1783 btrfs_free_path(path
);
1784 mutex_unlock(&dev_root
->fs_info
->volume_mutex
);
1789 * shrinking a device means finding all of the device extents past
1790 * the new size, and then following the back refs to the chunks.
1791 * The chunk relocation code actually frees the device extent
1793 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
1795 struct btrfs_trans_handle
*trans
;
1796 struct btrfs_root
*root
= device
->dev_root
;
1797 struct btrfs_dev_extent
*dev_extent
= NULL
;
1798 struct btrfs_path
*path
;
1805 struct extent_buffer
*l
;
1806 struct btrfs_key key
;
1807 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1808 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1809 u64 diff
= device
->total_bytes
- new_size
;
1811 if (new_size
>= device
->total_bytes
)
1814 path
= btrfs_alloc_path();
1818 trans
= btrfs_start_transaction(root
, 1);
1828 device
->total_bytes
= new_size
;
1829 if (device
->writeable
)
1830 device
->fs_devices
->total_rw_bytes
-= diff
;
1831 ret
= btrfs_update_device(trans
, device
);
1833 unlock_chunks(root
);
1834 btrfs_end_transaction(trans
, root
);
1837 WARN_ON(diff
> old_total
);
1838 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
1839 unlock_chunks(root
);
1840 btrfs_end_transaction(trans
, root
);
1842 key
.objectid
= device
->devid
;
1843 key
.offset
= (u64
)-1;
1844 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1847 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1851 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
1860 slot
= path
->slots
[0];
1861 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
1863 if (key
.objectid
!= device
->devid
)
1866 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1867 length
= btrfs_dev_extent_length(l
, dev_extent
);
1869 if (key
.offset
+ length
<= new_size
)
1872 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
1873 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
1874 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
1875 btrfs_release_path(root
, path
);
1877 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
1884 btrfs_free_path(path
);
1888 static int btrfs_add_system_chunk(struct btrfs_trans_handle
*trans
,
1889 struct btrfs_root
*root
,
1890 struct btrfs_key
*key
,
1891 struct btrfs_chunk
*chunk
, int item_size
)
1893 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1894 struct btrfs_disk_key disk_key
;
1898 array_size
= btrfs_super_sys_array_size(super_copy
);
1899 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
1902 ptr
= super_copy
->sys_chunk_array
+ array_size
;
1903 btrfs_cpu_key_to_disk(&disk_key
, key
);
1904 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
1905 ptr
+= sizeof(disk_key
);
1906 memcpy(ptr
, chunk
, item_size
);
1907 item_size
+= sizeof(disk_key
);
1908 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
1912 static noinline u64
chunk_bytes_by_type(u64 type
, u64 calc_size
,
1913 int num_stripes
, int sub_stripes
)
1915 if (type
& (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_DUP
))
1917 else if (type
& BTRFS_BLOCK_GROUP_RAID10
)
1918 return calc_size
* (num_stripes
/ sub_stripes
);
1920 return calc_size
* num_stripes
;
1923 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
1924 struct btrfs_root
*extent_root
,
1925 struct map_lookup
**map_ret
,
1926 u64
*num_bytes
, u64
*stripe_size
,
1927 u64 start
, u64 type
)
1929 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
1930 struct btrfs_device
*device
= NULL
;
1931 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
1932 struct list_head
*cur
;
1933 struct map_lookup
*map
= NULL
;
1934 struct extent_map_tree
*em_tree
;
1935 struct extent_map
*em
;
1936 struct list_head private_devs
;
1937 int min_stripe_size
= 1 * 1024 * 1024;
1938 u64 calc_size
= 1024 * 1024 * 1024;
1939 u64 max_chunk_size
= calc_size
;
1944 int num_stripes
= 1;
1945 int min_stripes
= 1;
1946 int sub_stripes
= 0;
1950 int stripe_len
= 64 * 1024;
1952 if ((type
& BTRFS_BLOCK_GROUP_RAID1
) &&
1953 (type
& BTRFS_BLOCK_GROUP_DUP
)) {
1955 type
&= ~BTRFS_BLOCK_GROUP_DUP
;
1957 if (list_empty(&fs_devices
->alloc_list
))
1960 if (type
& (BTRFS_BLOCK_GROUP_RAID0
)) {
1961 num_stripes
= fs_devices
->rw_devices
;
1964 if (type
& (BTRFS_BLOCK_GROUP_DUP
)) {
1968 if (type
& (BTRFS_BLOCK_GROUP_RAID1
)) {
1969 num_stripes
= min_t(u64
, 2, fs_devices
->rw_devices
);
1970 if (num_stripes
< 2)
1974 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
1975 num_stripes
= fs_devices
->rw_devices
;
1976 if (num_stripes
< 4)
1978 num_stripes
&= ~(u32
)1;
1983 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
1984 max_chunk_size
= 10 * calc_size
;
1985 min_stripe_size
= 64 * 1024 * 1024;
1986 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
1987 max_chunk_size
= 4 * calc_size
;
1988 min_stripe_size
= 32 * 1024 * 1024;
1989 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1990 calc_size
= 8 * 1024 * 1024;
1991 max_chunk_size
= calc_size
* 2;
1992 min_stripe_size
= 1 * 1024 * 1024;
1995 /* we don't want a chunk larger than 10% of writeable space */
1996 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
2000 if (!map
|| map
->num_stripes
!= num_stripes
) {
2002 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
2005 map
->num_stripes
= num_stripes
;
2008 if (calc_size
* num_stripes
> max_chunk_size
) {
2009 calc_size
= max_chunk_size
;
2010 do_div(calc_size
, num_stripes
);
2011 do_div(calc_size
, stripe_len
);
2012 calc_size
*= stripe_len
;
2014 /* we don't want tiny stripes */
2015 calc_size
= max_t(u64
, min_stripe_size
, calc_size
);
2017 do_div(calc_size
, stripe_len
);
2018 calc_size
*= stripe_len
;
2020 cur
= fs_devices
->alloc_list
.next
;
2023 if (type
& BTRFS_BLOCK_GROUP_DUP
)
2024 min_free
= calc_size
* 2;
2026 min_free
= calc_size
;
2029 * we add 1MB because we never use the first 1MB of the device, unless
2030 * we've looped, then we are likely allocating the maximum amount of
2031 * space left already
2034 min_free
+= 1024 * 1024;
2036 INIT_LIST_HEAD(&private_devs
);
2037 while (index
< num_stripes
) {
2038 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
2039 BUG_ON(!device
->writeable
);
2040 if (device
->total_bytes
> device
->bytes_used
)
2041 avail
= device
->total_bytes
- device
->bytes_used
;
2046 if (device
->in_fs_metadata
&& avail
>= min_free
) {
2047 ret
= find_free_dev_extent(trans
, device
,
2048 min_free
, &dev_offset
);
2050 list_move_tail(&device
->dev_alloc_list
,
2052 map
->stripes
[index
].dev
= device
;
2053 map
->stripes
[index
].physical
= dev_offset
;
2055 if (type
& BTRFS_BLOCK_GROUP_DUP
) {
2056 map
->stripes
[index
].dev
= device
;
2057 map
->stripes
[index
].physical
=
2058 dev_offset
+ calc_size
;
2062 } else if (device
->in_fs_metadata
&& avail
> max_avail
)
2064 if (cur
== &fs_devices
->alloc_list
)
2067 list_splice(&private_devs
, &fs_devices
->alloc_list
);
2068 if (index
< num_stripes
) {
2069 if (index
>= min_stripes
) {
2070 num_stripes
= index
;
2071 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2072 num_stripes
/= sub_stripes
;
2073 num_stripes
*= sub_stripes
;
2078 if (!looped
&& max_avail
> 0) {
2080 calc_size
= max_avail
;
2086 map
->sector_size
= extent_root
->sectorsize
;
2087 map
->stripe_len
= stripe_len
;
2088 map
->io_align
= stripe_len
;
2089 map
->io_width
= stripe_len
;
2091 map
->num_stripes
= num_stripes
;
2092 map
->sub_stripes
= sub_stripes
;
2095 *stripe_size
= calc_size
;
2096 *num_bytes
= chunk_bytes_by_type(type
, calc_size
,
2097 num_stripes
, sub_stripes
);
2099 em
= alloc_extent_map(GFP_NOFS
);
2104 em
->bdev
= (struct block_device
*)map
;
2106 em
->len
= *num_bytes
;
2107 em
->block_start
= 0;
2108 em
->block_len
= em
->len
;
2110 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
2111 spin_lock(&em_tree
->lock
);
2112 ret
= add_extent_mapping(em_tree
, em
);
2113 spin_unlock(&em_tree
->lock
);
2115 free_extent_map(em
);
2117 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
2118 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2123 while (index
< map
->num_stripes
) {
2124 device
= map
->stripes
[index
].dev
;
2125 dev_offset
= map
->stripes
[index
].physical
;
2127 ret
= btrfs_alloc_dev_extent(trans
, device
,
2128 info
->chunk_root
->root_key
.objectid
,
2129 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2130 start
, dev_offset
, calc_size
);
2138 static int __finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
2139 struct btrfs_root
*extent_root
,
2140 struct map_lookup
*map
, u64 chunk_offset
,
2141 u64 chunk_size
, u64 stripe_size
)
2144 struct btrfs_key key
;
2145 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2146 struct btrfs_device
*device
;
2147 struct btrfs_chunk
*chunk
;
2148 struct btrfs_stripe
*stripe
;
2149 size_t item_size
= btrfs_chunk_item_size(map
->num_stripes
);
2153 chunk
= kzalloc(item_size
, GFP_NOFS
);
2158 while (index
< map
->num_stripes
) {
2159 device
= map
->stripes
[index
].dev
;
2160 device
->bytes_used
+= stripe_size
;
2161 ret
= btrfs_update_device(trans
, device
);
2167 stripe
= &chunk
->stripe
;
2168 while (index
< map
->num_stripes
) {
2169 device
= map
->stripes
[index
].dev
;
2170 dev_offset
= map
->stripes
[index
].physical
;
2172 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
2173 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
2174 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
2179 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
2180 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
2181 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
2182 btrfs_set_stack_chunk_type(chunk
, map
->type
);
2183 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
2184 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
2185 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
2186 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
2187 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
2189 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2190 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2191 key
.offset
= chunk_offset
;
2193 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
2196 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2197 ret
= btrfs_add_system_chunk(trans
, chunk_root
, &key
, chunk
,
2206 * Chunk allocation falls into two parts. The first part does works
2207 * that make the new allocated chunk useable, but not do any operation
2208 * that modifies the chunk tree. The second part does the works that
2209 * require modifying the chunk tree. This division is important for the
2210 * bootstrap process of adding storage to a seed btrfs.
2212 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2213 struct btrfs_root
*extent_root
, u64 type
)
2218 struct map_lookup
*map
;
2219 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2222 ret
= find_next_chunk(chunk_root
, BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2227 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2228 &stripe_size
, chunk_offset
, type
);
2232 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2233 chunk_size
, stripe_size
);
2238 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
2239 struct btrfs_root
*root
,
2240 struct btrfs_device
*device
)
2243 u64 sys_chunk_offset
;
2247 u64 sys_stripe_size
;
2249 struct map_lookup
*map
;
2250 struct map_lookup
*sys_map
;
2251 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2252 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2255 ret
= find_next_chunk(fs_info
->chunk_root
,
2256 BTRFS_FIRST_CHUNK_TREE_OBJECTID
, &chunk_offset
);
2259 alloc_profile
= BTRFS_BLOCK_GROUP_METADATA
|
2260 (fs_info
->metadata_alloc_profile
&
2261 fs_info
->avail_metadata_alloc_bits
);
2262 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2264 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2265 &stripe_size
, chunk_offset
, alloc_profile
);
2268 sys_chunk_offset
= chunk_offset
+ chunk_size
;
2270 alloc_profile
= BTRFS_BLOCK_GROUP_SYSTEM
|
2271 (fs_info
->system_alloc_profile
&
2272 fs_info
->avail_system_alloc_bits
);
2273 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2275 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &sys_map
,
2276 &sys_chunk_size
, &sys_stripe_size
,
2277 sys_chunk_offset
, alloc_profile
);
2280 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
2284 * Modifying chunk tree needs allocating new blocks from both
2285 * system block group and metadata block group. So we only can
2286 * do operations require modifying the chunk tree after both
2287 * block groups were created.
2289 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2290 chunk_size
, stripe_size
);
2293 ret
= __finish_chunk_alloc(trans
, extent_root
, sys_map
,
2294 sys_chunk_offset
, sys_chunk_size
,
2300 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
2302 struct extent_map
*em
;
2303 struct map_lookup
*map
;
2304 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
2308 spin_lock(&map_tree
->map_tree
.lock
);
2309 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2310 spin_unlock(&map_tree
->map_tree
.lock
);
2314 map
= (struct map_lookup
*)em
->bdev
;
2315 for (i
= 0; i
< map
->num_stripes
; i
++) {
2316 if (!map
->stripes
[i
].dev
->writeable
) {
2321 free_extent_map(em
);
2325 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
2327 extent_map_tree_init(&tree
->map_tree
, GFP_NOFS
);
2330 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
2332 struct extent_map
*em
;
2335 spin_lock(&tree
->map_tree
.lock
);
2336 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
2338 remove_extent_mapping(&tree
->map_tree
, em
);
2339 spin_unlock(&tree
->map_tree
.lock
);
2344 free_extent_map(em
);
2345 /* once for the tree */
2346 free_extent_map(em
);
2350 int btrfs_num_copies(struct btrfs_mapping_tree
*map_tree
, u64 logical
, u64 len
)
2352 struct extent_map
*em
;
2353 struct map_lookup
*map
;
2354 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2357 spin_lock(&em_tree
->lock
);
2358 em
= lookup_extent_mapping(em_tree
, logical
, len
);
2359 spin_unlock(&em_tree
->lock
);
2362 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2363 map
= (struct map_lookup
*)em
->bdev
;
2364 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
2365 ret
= map
->num_stripes
;
2366 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2367 ret
= map
->sub_stripes
;
2370 free_extent_map(em
);
2374 static int find_live_mirror(struct map_lookup
*map
, int first
, int num
,
2378 if (map
->stripes
[optimal
].dev
->bdev
)
2380 for (i
= first
; i
< first
+ num
; i
++) {
2381 if (map
->stripes
[i
].dev
->bdev
)
2384 /* we couldn't find one that doesn't fail. Just return something
2385 * and the io error handling code will clean up eventually
2390 static int __btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2391 u64 logical
, u64
*length
,
2392 struct btrfs_multi_bio
**multi_ret
,
2393 int mirror_num
, struct page
*unplug_page
)
2395 struct extent_map
*em
;
2396 struct map_lookup
*map
;
2397 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2401 int stripes_allocated
= 8;
2402 int stripes_required
= 1;
2407 struct btrfs_multi_bio
*multi
= NULL
;
2409 if (multi_ret
&& !(rw
& (1 << BIO_RW
)))
2410 stripes_allocated
= 1;
2413 multi
= kzalloc(btrfs_multi_bio_size(stripes_allocated
),
2418 atomic_set(&multi
->error
, 0);
2421 spin_lock(&em_tree
->lock
);
2422 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
2423 spin_unlock(&em_tree
->lock
);
2425 if (!em
&& unplug_page
)
2429 printk(KERN_CRIT
"unable to find logical %llu len %llu\n",
2430 (unsigned long long)logical
,
2431 (unsigned long long)*length
);
2435 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2436 map
= (struct map_lookup
*)em
->bdev
;
2437 offset
= logical
- em
->start
;
2439 if (mirror_num
> map
->num_stripes
)
2442 /* if our multi bio struct is too small, back off and try again */
2443 if (rw
& (1 << BIO_RW
)) {
2444 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
2445 BTRFS_BLOCK_GROUP_DUP
)) {
2446 stripes_required
= map
->num_stripes
;
2448 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2449 stripes_required
= map
->sub_stripes
;
2453 if (multi_ret
&& rw
== WRITE
&&
2454 stripes_allocated
< stripes_required
) {
2455 stripes_allocated
= map
->num_stripes
;
2456 free_extent_map(em
);
2462 * stripe_nr counts the total number of stripes we have to stride
2463 * to get to this block
2465 do_div(stripe_nr
, map
->stripe_len
);
2467 stripe_offset
= stripe_nr
* map
->stripe_len
;
2468 BUG_ON(offset
< stripe_offset
);
2470 /* stripe_offset is the offset of this block in its stripe*/
2471 stripe_offset
= offset
- stripe_offset
;
2473 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
|
2474 BTRFS_BLOCK_GROUP_RAID10
|
2475 BTRFS_BLOCK_GROUP_DUP
)) {
2476 /* we limit the length of each bio to what fits in a stripe */
2477 *length
= min_t(u64
, em
->len
- offset
,
2478 map
->stripe_len
- stripe_offset
);
2480 *length
= em
->len
- offset
;
2483 if (!multi_ret
&& !unplug_page
)
2488 if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
2489 if (unplug_page
|| (rw
& (1 << BIO_RW
)))
2490 num_stripes
= map
->num_stripes
;
2491 else if (mirror_num
)
2492 stripe_index
= mirror_num
- 1;
2494 stripe_index
= find_live_mirror(map
, 0,
2496 current
->pid
% map
->num_stripes
);
2499 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
2500 if (rw
& (1 << BIO_RW
))
2501 num_stripes
= map
->num_stripes
;
2502 else if (mirror_num
)
2503 stripe_index
= mirror_num
- 1;
2505 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2506 int factor
= map
->num_stripes
/ map
->sub_stripes
;
2508 stripe_index
= do_div(stripe_nr
, factor
);
2509 stripe_index
*= map
->sub_stripes
;
2511 if (unplug_page
|| (rw
& (1 << BIO_RW
)))
2512 num_stripes
= map
->sub_stripes
;
2513 else if (mirror_num
)
2514 stripe_index
+= mirror_num
- 1;
2516 stripe_index
= find_live_mirror(map
, stripe_index
,
2517 map
->sub_stripes
, stripe_index
+
2518 current
->pid
% map
->sub_stripes
);
2522 * after this do_div call, stripe_nr is the number of stripes
2523 * on this device we have to walk to find the data, and
2524 * stripe_index is the number of our device in the stripe array
2526 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
2528 BUG_ON(stripe_index
>= map
->num_stripes
);
2530 for (i
= 0; i
< num_stripes
; i
++) {
2532 struct btrfs_device
*device
;
2533 struct backing_dev_info
*bdi
;
2535 device
= map
->stripes
[stripe_index
].dev
;
2537 bdi
= blk_get_backing_dev_info(device
->bdev
);
2538 if (bdi
->unplug_io_fn
)
2539 bdi
->unplug_io_fn(bdi
, unplug_page
);
2542 multi
->stripes
[i
].physical
=
2543 map
->stripes
[stripe_index
].physical
+
2544 stripe_offset
+ stripe_nr
* map
->stripe_len
;
2545 multi
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
2551 multi
->num_stripes
= num_stripes
;
2552 multi
->max_errors
= max_errors
;
2555 free_extent_map(em
);
2559 int btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2560 u64 logical
, u64
*length
,
2561 struct btrfs_multi_bio
**multi_ret
, int mirror_num
)
2563 return __btrfs_map_block(map_tree
, rw
, logical
, length
, multi_ret
,
2567 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
2568 u64 chunk_start
, u64 physical
, u64 devid
,
2569 u64
**logical
, int *naddrs
, int *stripe_len
)
2571 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2572 struct extent_map
*em
;
2573 struct map_lookup
*map
;
2580 spin_lock(&em_tree
->lock
);
2581 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
2582 spin_unlock(&em_tree
->lock
);
2584 BUG_ON(!em
|| em
->start
!= chunk_start
);
2585 map
= (struct map_lookup
*)em
->bdev
;
2588 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2589 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
2590 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
2591 do_div(length
, map
->num_stripes
);
2593 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
2596 for (i
= 0; i
< map
->num_stripes
; i
++) {
2597 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
2599 if (map
->stripes
[i
].physical
> physical
||
2600 map
->stripes
[i
].physical
+ length
<= physical
)
2603 stripe_nr
= physical
- map
->stripes
[i
].physical
;
2604 do_div(stripe_nr
, map
->stripe_len
);
2606 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2607 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2608 do_div(stripe_nr
, map
->sub_stripes
);
2609 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2610 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2612 bytenr
= chunk_start
+ stripe_nr
* map
->stripe_len
;
2613 WARN_ON(nr
>= map
->num_stripes
);
2614 for (j
= 0; j
< nr
; j
++) {
2615 if (buf
[j
] == bytenr
)
2619 WARN_ON(nr
>= map
->num_stripes
);
2624 for (i
= 0; i
> nr
; i
++) {
2625 struct btrfs_multi_bio
*multi
;
2626 struct btrfs_bio_stripe
*stripe
;
2630 ret
= btrfs_map_block(map_tree
, WRITE
, buf
[i
],
2631 &length
, &multi
, 0);
2634 stripe
= multi
->stripes
;
2635 for (j
= 0; j
< multi
->num_stripes
; j
++) {
2636 if (stripe
->physical
>= physical
&&
2637 physical
< stripe
->physical
+ length
)
2640 BUG_ON(j
>= multi
->num_stripes
);
2646 *stripe_len
= map
->stripe_len
;
2648 free_extent_map(em
);
2652 int btrfs_unplug_page(struct btrfs_mapping_tree
*map_tree
,
2653 u64 logical
, struct page
*page
)
2655 u64 length
= PAGE_CACHE_SIZE
;
2656 return __btrfs_map_block(map_tree
, READ
, logical
, &length
,
2660 static void end_bio_multi_stripe(struct bio
*bio
, int err
)
2662 struct btrfs_multi_bio
*multi
= bio
->bi_private
;
2663 int is_orig_bio
= 0;
2666 atomic_inc(&multi
->error
);
2668 if (bio
== multi
->orig_bio
)
2671 if (atomic_dec_and_test(&multi
->stripes_pending
)) {
2674 bio
= multi
->orig_bio
;
2676 bio
->bi_private
= multi
->private;
2677 bio
->bi_end_io
= multi
->end_io
;
2678 /* only send an error to the higher layers if it is
2679 * beyond the tolerance of the multi-bio
2681 if (atomic_read(&multi
->error
) > multi
->max_errors
) {
2685 * this bio is actually up to date, we didn't
2686 * go over the max number of errors
2688 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2693 bio_endio(bio
, err
);
2694 } else if (!is_orig_bio
) {
2699 struct async_sched
{
2702 struct btrfs_fs_info
*info
;
2703 struct btrfs_work work
;
2707 * see run_scheduled_bios for a description of why bios are collected for
2710 * This will add one bio to the pending list for a device and make sure
2711 * the work struct is scheduled.
2713 static noinline
int schedule_bio(struct btrfs_root
*root
,
2714 struct btrfs_device
*device
,
2715 int rw
, struct bio
*bio
)
2717 int should_queue
= 1;
2719 /* don't bother with additional async steps for reads, right now */
2720 if (!(rw
& (1 << BIO_RW
))) {
2722 submit_bio(rw
, bio
);
2728 * nr_async_bios allows us to reliably return congestion to the
2729 * higher layers. Otherwise, the async bio makes it appear we have
2730 * made progress against dirty pages when we've really just put it
2731 * on a queue for later
2733 atomic_inc(&root
->fs_info
->nr_async_bios
);
2734 WARN_ON(bio
->bi_next
);
2735 bio
->bi_next
= NULL
;
2738 spin_lock(&device
->io_lock
);
2740 if (device
->pending_bio_tail
)
2741 device
->pending_bio_tail
->bi_next
= bio
;
2743 device
->pending_bio_tail
= bio
;
2744 if (!device
->pending_bios
)
2745 device
->pending_bios
= bio
;
2746 if (device
->running_pending
)
2749 spin_unlock(&device
->io_lock
);
2752 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
2757 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
2758 int mirror_num
, int async_submit
)
2760 struct btrfs_mapping_tree
*map_tree
;
2761 struct btrfs_device
*dev
;
2762 struct bio
*first_bio
= bio
;
2763 u64 logical
= (u64
)bio
->bi_sector
<< 9;
2766 struct btrfs_multi_bio
*multi
= NULL
;
2771 length
= bio
->bi_size
;
2772 map_tree
= &root
->fs_info
->mapping_tree
;
2773 map_length
= length
;
2775 ret
= btrfs_map_block(map_tree
, rw
, logical
, &map_length
, &multi
,
2779 total_devs
= multi
->num_stripes
;
2780 if (map_length
< length
) {
2781 printk(KERN_CRIT
"mapping failed logical %llu bio len %llu "
2782 "len %llu\n", (unsigned long long)logical
,
2783 (unsigned long long)length
,
2784 (unsigned long long)map_length
);
2787 multi
->end_io
= first_bio
->bi_end_io
;
2788 multi
->private = first_bio
->bi_private
;
2789 multi
->orig_bio
= first_bio
;
2790 atomic_set(&multi
->stripes_pending
, multi
->num_stripes
);
2792 while (dev_nr
< total_devs
) {
2793 if (total_devs
> 1) {
2794 if (dev_nr
< total_devs
- 1) {
2795 bio
= bio_clone(first_bio
, GFP_NOFS
);
2800 bio
->bi_private
= multi
;
2801 bio
->bi_end_io
= end_bio_multi_stripe
;
2803 bio
->bi_sector
= multi
->stripes
[dev_nr
].physical
>> 9;
2804 dev
= multi
->stripes
[dev_nr
].dev
;
2805 BUG_ON(rw
== WRITE
&& !dev
->writeable
);
2806 if (dev
&& dev
->bdev
) {
2807 bio
->bi_bdev
= dev
->bdev
;
2809 schedule_bio(root
, dev
, rw
, bio
);
2811 submit_bio(rw
, bio
);
2813 bio
->bi_bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
2814 bio
->bi_sector
= logical
>> 9;
2815 bio_endio(bio
, -EIO
);
2819 if (total_devs
== 1)
2824 struct btrfs_device
*btrfs_find_device(struct btrfs_root
*root
, u64 devid
,
2827 struct btrfs_device
*device
;
2828 struct btrfs_fs_devices
*cur_devices
;
2830 cur_devices
= root
->fs_info
->fs_devices
;
2831 while (cur_devices
) {
2833 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
2834 device
= __find_device(&cur_devices
->devices
,
2839 cur_devices
= cur_devices
->seed
;
2844 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
2845 u64 devid
, u8
*dev_uuid
)
2847 struct btrfs_device
*device
;
2848 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2850 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
2853 list_add(&device
->dev_list
,
2854 &fs_devices
->devices
);
2855 device
->barriers
= 1;
2856 device
->dev_root
= root
->fs_info
->dev_root
;
2857 device
->devid
= devid
;
2858 device
->work
.func
= pending_bios_fn
;
2859 device
->fs_devices
= fs_devices
;
2860 fs_devices
->num_devices
++;
2861 spin_lock_init(&device
->io_lock
);
2862 INIT_LIST_HEAD(&device
->dev_alloc_list
);
2863 memcpy(device
->uuid
, dev_uuid
, BTRFS_UUID_SIZE
);
2867 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
2868 struct extent_buffer
*leaf
,
2869 struct btrfs_chunk
*chunk
)
2871 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
2872 struct map_lookup
*map
;
2873 struct extent_map
*em
;
2877 u8 uuid
[BTRFS_UUID_SIZE
];
2882 logical
= key
->offset
;
2883 length
= btrfs_chunk_length(leaf
, chunk
);
2885 spin_lock(&map_tree
->map_tree
.lock
);
2886 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
2887 spin_unlock(&map_tree
->map_tree
.lock
);
2889 /* already mapped? */
2890 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
2891 free_extent_map(em
);
2894 free_extent_map(em
);
2897 em
= alloc_extent_map(GFP_NOFS
);
2900 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2901 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
2903 free_extent_map(em
);
2907 em
->bdev
= (struct block_device
*)map
;
2908 em
->start
= logical
;
2910 em
->block_start
= 0;
2911 em
->block_len
= em
->len
;
2913 map
->num_stripes
= num_stripes
;
2914 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
2915 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
2916 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
2917 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
2918 map
->type
= btrfs_chunk_type(leaf
, chunk
);
2919 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
2920 for (i
= 0; i
< num_stripes
; i
++) {
2921 map
->stripes
[i
].physical
=
2922 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
2923 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
2924 read_extent_buffer(leaf
, uuid
, (unsigned long)
2925 btrfs_stripe_dev_uuid_nr(chunk
, i
),
2927 map
->stripes
[i
].dev
= btrfs_find_device(root
, devid
, uuid
,
2929 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
2931 free_extent_map(em
);
2934 if (!map
->stripes
[i
].dev
) {
2935 map
->stripes
[i
].dev
=
2936 add_missing_dev(root
, devid
, uuid
);
2937 if (!map
->stripes
[i
].dev
) {
2939 free_extent_map(em
);
2943 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
2946 spin_lock(&map_tree
->map_tree
.lock
);
2947 ret
= add_extent_mapping(&map_tree
->map_tree
, em
);
2948 spin_unlock(&map_tree
->map_tree
.lock
);
2950 free_extent_map(em
);
2955 static int fill_device_from_item(struct extent_buffer
*leaf
,
2956 struct btrfs_dev_item
*dev_item
,
2957 struct btrfs_device
*device
)
2961 device
->devid
= btrfs_device_id(leaf
, dev_item
);
2962 device
->total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
2963 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
2964 device
->type
= btrfs_device_type(leaf
, dev_item
);
2965 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
2966 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
2967 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
2969 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
2970 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
2975 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
2977 struct btrfs_fs_devices
*fs_devices
;
2980 mutex_lock(&uuid_mutex
);
2982 fs_devices
= root
->fs_info
->fs_devices
->seed
;
2983 while (fs_devices
) {
2984 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
2988 fs_devices
= fs_devices
->seed
;
2991 fs_devices
= find_fsid(fsid
);
2997 fs_devices
= clone_fs_devices(fs_devices
);
2998 if (IS_ERR(fs_devices
)) {
2999 ret
= PTR_ERR(fs_devices
);
3003 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
3004 root
->fs_info
->bdev_holder
);
3008 if (!fs_devices
->seeding
) {
3009 __btrfs_close_devices(fs_devices
);
3010 free_fs_devices(fs_devices
);
3015 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
3016 root
->fs_info
->fs_devices
->seed
= fs_devices
;
3018 mutex_unlock(&uuid_mutex
);
3022 static int read_one_dev(struct btrfs_root
*root
,
3023 struct extent_buffer
*leaf
,
3024 struct btrfs_dev_item
*dev_item
)
3026 struct btrfs_device
*device
;
3029 u8 fs_uuid
[BTRFS_UUID_SIZE
];
3030 u8 dev_uuid
[BTRFS_UUID_SIZE
];
3032 devid
= btrfs_device_id(leaf
, dev_item
);
3033 read_extent_buffer(leaf
, dev_uuid
,
3034 (unsigned long)btrfs_device_uuid(dev_item
),
3036 read_extent_buffer(leaf
, fs_uuid
,
3037 (unsigned long)btrfs_device_fsid(dev_item
),
3040 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
3041 ret
= open_seed_devices(root
, fs_uuid
);
3042 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
3046 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
3047 if (!device
|| !device
->bdev
) {
3048 if (!btrfs_test_opt(root
, DEGRADED
))
3052 printk(KERN_WARNING
"warning devid %llu missing\n",
3053 (unsigned long long)devid
);
3054 device
= add_missing_dev(root
, devid
, dev_uuid
);
3060 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
3061 BUG_ON(device
->writeable
);
3062 if (device
->generation
!=
3063 btrfs_device_generation(leaf
, dev_item
))
3067 fill_device_from_item(leaf
, dev_item
, device
);
3068 device
->dev_root
= root
->fs_info
->dev_root
;
3069 device
->in_fs_metadata
= 1;
3070 if (device
->writeable
)
3071 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
3076 int btrfs_read_super_device(struct btrfs_root
*root
, struct extent_buffer
*buf
)
3078 struct btrfs_dev_item
*dev_item
;
3080 dev_item
= (struct btrfs_dev_item
*)offsetof(struct btrfs_super_block
,
3082 return read_one_dev(root
, buf
, dev_item
);
3085 int btrfs_read_sys_array(struct btrfs_root
*root
)
3087 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
3088 struct extent_buffer
*sb
;
3089 struct btrfs_disk_key
*disk_key
;
3090 struct btrfs_chunk
*chunk
;
3092 unsigned long sb_ptr
;
3098 struct btrfs_key key
;
3100 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
3101 BTRFS_SUPER_INFO_SIZE
);
3104 btrfs_set_buffer_uptodate(sb
);
3105 btrfs_set_buffer_lockdep_class(sb
, 0);
3107 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
3108 array_size
= btrfs_super_sys_array_size(super_copy
);
3110 ptr
= super_copy
->sys_chunk_array
;
3111 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
3114 while (cur
< array_size
) {
3115 disk_key
= (struct btrfs_disk_key
*)ptr
;
3116 btrfs_disk_key_to_cpu(&key
, disk_key
);
3118 len
= sizeof(*disk_key
); ptr
+= len
;
3122 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3123 chunk
= (struct btrfs_chunk
*)sb_ptr
;
3124 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
3127 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
3128 len
= btrfs_chunk_item_size(num_stripes
);
3137 free_extent_buffer(sb
);
3141 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
3143 struct btrfs_path
*path
;
3144 struct extent_buffer
*leaf
;
3145 struct btrfs_key key
;
3146 struct btrfs_key found_key
;
3150 root
= root
->fs_info
->chunk_root
;
3152 path
= btrfs_alloc_path();
3156 /* first we search for all of the device items, and then we
3157 * read in all of the chunk items. This way we can create chunk
3158 * mappings that reference all of the devices that are afound
3160 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
3164 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3166 leaf
= path
->nodes
[0];
3167 slot
= path
->slots
[0];
3168 if (slot
>= btrfs_header_nritems(leaf
)) {
3169 ret
= btrfs_next_leaf(root
, path
);
3176 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3177 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3178 if (found_key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
)
3180 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
3181 struct btrfs_dev_item
*dev_item
;
3182 dev_item
= btrfs_item_ptr(leaf
, slot
,
3183 struct btrfs_dev_item
);
3184 ret
= read_one_dev(root
, leaf
, dev_item
);
3188 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3189 struct btrfs_chunk
*chunk
;
3190 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3191 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
3197 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3199 btrfs_release_path(root
, path
);
3204 btrfs_free_path(path
);