2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
21 #include "transaction.h"
24 #include "print-tree.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * stages for the tree walking. The first
39 * stage (0) is to only pin down the blocks we find
40 * the second stage (1) is to make sure that all the inodes
41 * we find in the log are created in the subvolume.
43 * The last stage is to deal with directories and links and extents
44 * and all the other fun semantics
46 #define LOG_WALK_PIN_ONLY 0
47 #define LOG_WALK_REPLAY_INODES 1
48 #define LOG_WALK_REPLAY_ALL 2
50 static int __btrfs_log_inode(struct btrfs_trans_handle
*trans
,
51 struct btrfs_root
*root
, struct inode
*inode
,
53 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
54 struct btrfs_root
*root
,
55 struct btrfs_path
*path
, u64 objectid
);
58 * tree logging is a special write ahead log used to make sure that
59 * fsyncs and O_SYNCs can happen without doing full tree commits.
61 * Full tree commits are expensive because they require commonly
62 * modified blocks to be recowed, creating many dirty pages in the
63 * extent tree an 4x-6x higher write load than ext3.
65 * Instead of doing a tree commit on every fsync, we use the
66 * key ranges and transaction ids to find items for a given file or directory
67 * that have changed in this transaction. Those items are copied into
68 * a special tree (one per subvolume root), that tree is written to disk
69 * and then the fsync is considered complete.
71 * After a crash, items are copied out of the log-tree back into the
72 * subvolume tree. Any file data extents found are recorded in the extent
73 * allocation tree, and the log-tree freed.
75 * The log tree is read three times, once to pin down all the extents it is
76 * using in ram and once, once to create all the inodes logged in the tree
77 * and once to do all the other items.
81 * start a sub transaction and setup the log tree
82 * this increments the log tree writer count to make the people
83 * syncing the tree wait for us to finish
85 static int start_log_trans(struct btrfs_trans_handle
*trans
,
86 struct btrfs_root
*root
)
90 mutex_lock(&root
->log_mutex
);
93 atomic_inc(&root
->log_writers
);
94 mutex_unlock(&root
->log_mutex
);
97 mutex_lock(&root
->fs_info
->tree_log_mutex
);
98 if (!root
->fs_info
->log_root_tree
) {
99 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
102 if (!root
->log_root
) {
103 ret
= btrfs_add_log_tree(trans
, root
);
106 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
108 atomic_inc(&root
->log_writers
);
109 mutex_unlock(&root
->log_mutex
);
114 * returns 0 if there was a log transaction running and we were able
115 * to join, or returns -ENOENT if there were not transactions
118 static int join_running_log_trans(struct btrfs_root
*root
)
126 mutex_lock(&root
->log_mutex
);
127 if (root
->log_root
) {
129 atomic_inc(&root
->log_writers
);
131 mutex_unlock(&root
->log_mutex
);
136 * indicate we're done making changes to the log tree
137 * and wake up anyone waiting to do a sync
139 static int end_log_trans(struct btrfs_root
*root
)
141 if (atomic_dec_and_test(&root
->log_writers
)) {
143 if (waitqueue_active(&root
->log_writer_wait
))
144 wake_up(&root
->log_writer_wait
);
151 * the walk control struct is used to pass state down the chain when
152 * processing the log tree. The stage field tells us which part
153 * of the log tree processing we are currently doing. The others
154 * are state fields used for that specific part
156 struct walk_control
{
157 /* should we free the extent on disk when done? This is used
158 * at transaction commit time while freeing a log tree
162 /* should we write out the extent buffer? This is used
163 * while flushing the log tree to disk during a sync
167 /* should we wait for the extent buffer io to finish? Also used
168 * while flushing the log tree to disk for a sync
172 /* pin only walk, we record which extents on disk belong to the
177 /* what stage of the replay code we're currently in */
180 /* the root we are currently replaying */
181 struct btrfs_root
*replay_dest
;
183 /* the trans handle for the current replay */
184 struct btrfs_trans_handle
*trans
;
186 /* the function that gets used to process blocks we find in the
187 * tree. Note the extent_buffer might not be up to date when it is
188 * passed in, and it must be checked or read if you need the data
191 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
192 struct walk_control
*wc
, u64 gen
);
196 * process_func used to pin down extents, write them or wait on them
198 static int process_one_buffer(struct btrfs_root
*log
,
199 struct extent_buffer
*eb
,
200 struct walk_control
*wc
, u64 gen
)
203 mutex_lock(&log
->fs_info
->pinned_mutex
);
204 btrfs_update_pinned_extents(log
->fs_info
->extent_root
,
205 eb
->start
, eb
->len
, 1);
206 mutex_unlock(&log
->fs_info
->pinned_mutex
);
209 if (btrfs_buffer_uptodate(eb
, gen
)) {
211 btrfs_write_tree_block(eb
);
213 btrfs_wait_tree_block_writeback(eb
);
219 * Item overwrite used by replay and tree logging. eb, slot and key all refer
220 * to the src data we are copying out.
222 * root is the tree we are copying into, and path is a scratch
223 * path for use in this function (it should be released on entry and
224 * will be released on exit).
226 * If the key is already in the destination tree the existing item is
227 * overwritten. If the existing item isn't big enough, it is extended.
228 * If it is too large, it is truncated.
230 * If the key isn't in the destination yet, a new item is inserted.
232 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
233 struct btrfs_root
*root
,
234 struct btrfs_path
*path
,
235 struct extent_buffer
*eb
, int slot
,
236 struct btrfs_key
*key
)
240 u64 saved_i_size
= 0;
241 int save_old_i_size
= 0;
242 unsigned long src_ptr
;
243 unsigned long dst_ptr
;
244 int overwrite_root
= 0;
246 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
249 item_size
= btrfs_item_size_nr(eb
, slot
);
250 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
252 /* look for the key in the destination tree */
253 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
257 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
259 if (dst_size
!= item_size
)
262 if (item_size
== 0) {
263 btrfs_release_path(root
, path
);
266 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
267 src_copy
= kmalloc(item_size
, GFP_NOFS
);
269 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
271 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
272 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
274 ret
= memcmp(dst_copy
, src_copy
, item_size
);
279 * they have the same contents, just return, this saves
280 * us from cowing blocks in the destination tree and doing
281 * extra writes that may not have been done by a previous
285 btrfs_release_path(root
, path
);
291 btrfs_release_path(root
, path
);
292 /* try to insert the key into the destination tree */
293 ret
= btrfs_insert_empty_item(trans
, root
, path
,
296 /* make sure any existing item is the correct size */
297 if (ret
== -EEXIST
) {
299 found_size
= btrfs_item_size_nr(path
->nodes
[0],
301 if (found_size
> item_size
) {
302 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
303 } else if (found_size
< item_size
) {
304 ret
= btrfs_extend_item(trans
, root
, path
,
305 item_size
- found_size
);
311 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
314 /* don't overwrite an existing inode if the generation number
315 * was logged as zero. This is done when the tree logging code
316 * is just logging an inode to make sure it exists after recovery.
318 * Also, don't overwrite i_size on directories during replay.
319 * log replay inserts and removes directory items based on the
320 * state of the tree found in the subvolume, and i_size is modified
323 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
324 struct btrfs_inode_item
*src_item
;
325 struct btrfs_inode_item
*dst_item
;
327 src_item
= (struct btrfs_inode_item
*)src_ptr
;
328 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
330 if (btrfs_inode_generation(eb
, src_item
) == 0)
333 if (overwrite_root
&&
334 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
335 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
337 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
342 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
345 if (save_old_i_size
) {
346 struct btrfs_inode_item
*dst_item
;
347 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
348 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
351 /* make sure the generation is filled in */
352 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
353 struct btrfs_inode_item
*dst_item
;
354 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
355 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
356 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
361 btrfs_mark_buffer_dirty(path
->nodes
[0]);
362 btrfs_release_path(root
, path
);
367 * simple helper to read an inode off the disk from a given root
368 * This can only be called for subvolume roots and not for the log
370 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
374 inode
= btrfs_iget_locked(root
->fs_info
->sb
, objectid
, root
);
375 if (inode
->i_state
& I_NEW
) {
376 BTRFS_I(inode
)->root
= root
;
377 BTRFS_I(inode
)->location
.objectid
= objectid
;
378 BTRFS_I(inode
)->location
.type
= BTRFS_INODE_ITEM_KEY
;
379 BTRFS_I(inode
)->location
.offset
= 0;
380 btrfs_read_locked_inode(inode
);
381 unlock_new_inode(inode
);
384 if (is_bad_inode(inode
)) {
391 /* replays a single extent in 'eb' at 'slot' with 'key' into the
392 * subvolume 'root'. path is released on entry and should be released
395 * extents in the log tree have not been allocated out of the extent
396 * tree yet. So, this completes the allocation, taking a reference
397 * as required if the extent already exists or creating a new extent
398 * if it isn't in the extent allocation tree yet.
400 * The extent is inserted into the file, dropping any existing extents
401 * from the file that overlap the new one.
403 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
404 struct btrfs_root
*root
,
405 struct btrfs_path
*path
,
406 struct extent_buffer
*eb
, int slot
,
407 struct btrfs_key
*key
)
410 u64 mask
= root
->sectorsize
- 1;
413 u64 start
= key
->offset
;
415 struct btrfs_file_extent_item
*item
;
416 struct inode
*inode
= NULL
;
420 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
421 found_type
= btrfs_file_extent_type(eb
, item
);
423 if (found_type
== BTRFS_FILE_EXTENT_REG
||
424 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
425 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
426 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
427 size
= btrfs_file_extent_inline_len(eb
, item
);
428 extent_end
= (start
+ size
+ mask
) & ~mask
;
434 inode
= read_one_inode(root
, key
->objectid
);
441 * first check to see if we already have this extent in the
442 * file. This must be done before the btrfs_drop_extents run
443 * so we don't try to drop this extent.
445 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
449 (found_type
== BTRFS_FILE_EXTENT_REG
||
450 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
451 struct btrfs_file_extent_item cmp1
;
452 struct btrfs_file_extent_item cmp2
;
453 struct btrfs_file_extent_item
*existing
;
454 struct extent_buffer
*leaf
;
456 leaf
= path
->nodes
[0];
457 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
458 struct btrfs_file_extent_item
);
460 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
462 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
466 * we already have a pointer to this exact extent,
467 * we don't have to do anything
469 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
470 btrfs_release_path(root
, path
);
474 btrfs_release_path(root
, path
);
476 saved_nbytes
= inode_get_bytes(inode
);
477 /* drop any overlapping extents */
478 ret
= btrfs_drop_extents(trans
, root
, inode
,
479 start
, extent_end
, start
, &alloc_hint
);
482 if (found_type
== BTRFS_FILE_EXTENT_REG
||
483 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
484 unsigned long dest_offset
;
485 struct btrfs_key ins
;
487 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
490 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
492 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
493 (unsigned long)item
, sizeof(*item
));
495 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
496 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
497 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
499 if (ins
.objectid
> 0) {
502 LIST_HEAD(ordered_sums
);
504 * is this extent already allocated in the extent
505 * allocation tree? If so, just add a reference
507 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
510 ret
= btrfs_inc_extent_ref(trans
, root
,
511 ins
.objectid
, ins
.offset
,
512 path
->nodes
[0]->start
,
513 root
->root_key
.objectid
,
514 trans
->transid
, key
->objectid
);
517 * insert the extent pointer in the extent
520 ret
= btrfs_alloc_logged_extent(trans
, root
,
521 path
->nodes
[0]->start
,
522 root
->root_key
.objectid
,
523 trans
->transid
, key
->objectid
,
527 btrfs_release_path(root
, path
);
529 if (btrfs_file_extent_compression(eb
, item
)) {
530 csum_start
= ins
.objectid
;
531 csum_end
= csum_start
+ ins
.offset
;
533 csum_start
= ins
.objectid
+
534 btrfs_file_extent_offset(eb
, item
);
535 csum_end
= csum_start
+
536 btrfs_file_extent_num_bytes(eb
, item
);
539 ret
= btrfs_lookup_csums_range(root
->log_root
,
540 csum_start
, csum_end
- 1,
543 while (!list_empty(&ordered_sums
)) {
544 struct btrfs_ordered_sum
*sums
;
545 sums
= list_entry(ordered_sums
.next
,
546 struct btrfs_ordered_sum
,
548 ret
= btrfs_csum_file_blocks(trans
,
549 root
->fs_info
->csum_root
,
552 list_del(&sums
->list
);
556 btrfs_release_path(root
, path
);
558 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
559 /* inline extents are easy, we just overwrite them */
560 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
564 inode_set_bytes(inode
, saved_nbytes
);
565 btrfs_update_inode(trans
, root
, inode
);
573 * when cleaning up conflicts between the directory names in the
574 * subvolume, directory names in the log and directory names in the
575 * inode back references, we may have to unlink inodes from directories.
577 * This is a helper function to do the unlink of a specific directory
580 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
581 struct btrfs_root
*root
,
582 struct btrfs_path
*path
,
584 struct btrfs_dir_item
*di
)
589 struct extent_buffer
*leaf
;
590 struct btrfs_key location
;
593 leaf
= path
->nodes
[0];
595 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
596 name_len
= btrfs_dir_name_len(leaf
, di
);
597 name
= kmalloc(name_len
, GFP_NOFS
);
598 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
599 btrfs_release_path(root
, path
);
601 inode
= read_one_inode(root
, location
.objectid
);
604 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
606 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
615 * helper function to see if a given name and sequence number found
616 * in an inode back reference are already in a directory and correctly
617 * point to this inode
619 static noinline
int inode_in_dir(struct btrfs_root
*root
,
620 struct btrfs_path
*path
,
621 u64 dirid
, u64 objectid
, u64 index
,
622 const char *name
, int name_len
)
624 struct btrfs_dir_item
*di
;
625 struct btrfs_key location
;
628 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
629 index
, name
, name_len
, 0);
630 if (di
&& !IS_ERR(di
)) {
631 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
632 if (location
.objectid
!= objectid
)
636 btrfs_release_path(root
, path
);
638 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
639 if (di
&& !IS_ERR(di
)) {
640 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
641 if (location
.objectid
!= objectid
)
647 btrfs_release_path(root
, path
);
652 * helper function to check a log tree for a named back reference in
653 * an inode. This is used to decide if a back reference that is
654 * found in the subvolume conflicts with what we find in the log.
656 * inode backreferences may have multiple refs in a single item,
657 * during replay we process one reference at a time, and we don't
658 * want to delete valid links to a file from the subvolume if that
659 * link is also in the log.
661 static noinline
int backref_in_log(struct btrfs_root
*log
,
662 struct btrfs_key
*key
,
663 char *name
, int namelen
)
665 struct btrfs_path
*path
;
666 struct btrfs_inode_ref
*ref
;
668 unsigned long ptr_end
;
669 unsigned long name_ptr
;
675 path
= btrfs_alloc_path();
676 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
680 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
681 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
682 ptr_end
= ptr
+ item_size
;
683 while (ptr
< ptr_end
) {
684 ref
= (struct btrfs_inode_ref
*)ptr
;
685 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
686 if (found_name_len
== namelen
) {
687 name_ptr
= (unsigned long)(ref
+ 1);
688 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
695 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
698 btrfs_free_path(path
);
704 * replay one inode back reference item found in the log tree.
705 * eb, slot and key refer to the buffer and key found in the log tree.
706 * root is the destination we are replaying into, and path is for temp
707 * use by this function. (it should be released on return).
709 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
710 struct btrfs_root
*root
,
711 struct btrfs_root
*log
,
712 struct btrfs_path
*path
,
713 struct extent_buffer
*eb
, int slot
,
714 struct btrfs_key
*key
)
718 struct btrfs_key location
;
719 struct btrfs_inode_ref
*ref
;
720 struct btrfs_dir_item
*di
;
724 unsigned long ref_ptr
;
725 unsigned long ref_end
;
727 location
.objectid
= key
->objectid
;
728 location
.type
= BTRFS_INODE_ITEM_KEY
;
732 * it is possible that we didn't log all the parent directories
733 * for a given inode. If we don't find the dir, just don't
734 * copy the back ref in. The link count fixup code will take
737 dir
= read_one_inode(root
, key
->offset
);
741 inode
= read_one_inode(root
, key
->objectid
);
744 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
745 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
748 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
750 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
751 name
= kmalloc(namelen
, GFP_NOFS
);
754 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
756 /* if we already have a perfect match, we're done */
757 if (inode_in_dir(root
, path
, dir
->i_ino
, inode
->i_ino
,
758 btrfs_inode_ref_index(eb
, ref
),
764 * look for a conflicting back reference in the metadata.
765 * if we find one we have to unlink that name of the file
766 * before we add our new link. Later on, we overwrite any
767 * existing back reference, and we don't want to create
768 * dangling pointers in the directory.
771 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
775 struct btrfs_inode_ref
*victim_ref
;
777 unsigned long ptr_end
;
778 struct extent_buffer
*leaf
= path
->nodes
[0];
780 /* are we trying to overwrite a back ref for the root directory
781 * if so, just jump out, we're done
783 if (key
->objectid
== key
->offset
)
786 /* check all the names in this back reference to see
787 * if they are in the log. if so, we allow them to stay
788 * otherwise they must be unlinked as a conflict
790 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
791 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
792 while (ptr
< ptr_end
) {
793 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
794 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
796 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
797 BUG_ON(!victim_name
);
799 read_extent_buffer(leaf
, victim_name
,
800 (unsigned long)(victim_ref
+ 1),
803 if (!backref_in_log(log
, key
, victim_name
,
805 btrfs_inc_nlink(inode
);
806 btrfs_release_path(root
, path
);
807 ret
= btrfs_unlink_inode(trans
, root
, dir
,
811 btrfs_release_path(root
, path
);
815 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
819 btrfs_release_path(root
, path
);
821 /* look for a conflicting sequence number */
822 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
823 btrfs_inode_ref_index(eb
, ref
),
825 if (di
&& !IS_ERR(di
)) {
826 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
829 btrfs_release_path(root
, path
);
832 /* look for a conflicting name */
833 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
835 if (di
&& !IS_ERR(di
)) {
836 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
839 btrfs_release_path(root
, path
);
841 /* insert our name */
842 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
843 btrfs_inode_ref_index(eb
, ref
));
846 btrfs_update_inode(trans
, root
, inode
);
849 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
851 if (ref_ptr
< ref_end
)
854 /* finally write the back reference in the inode */
855 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
859 btrfs_release_path(root
, path
);
866 * There are a few corners where the link count of the file can't
867 * be properly maintained during replay. So, instead of adding
868 * lots of complexity to the log code, we just scan the backrefs
869 * for any file that has been through replay.
871 * The scan will update the link count on the inode to reflect the
872 * number of back refs found. If it goes down to zero, the iput
873 * will free the inode.
875 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
876 struct btrfs_root
*root
,
879 struct btrfs_path
*path
;
881 struct btrfs_key key
;
884 unsigned long ptr_end
;
887 key
.objectid
= inode
->i_ino
;
888 key
.type
= BTRFS_INODE_REF_KEY
;
889 key
.offset
= (u64
)-1;
891 path
= btrfs_alloc_path();
894 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
898 if (path
->slots
[0] == 0)
902 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
904 if (key
.objectid
!= inode
->i_ino
||
905 key
.type
!= BTRFS_INODE_REF_KEY
)
907 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
908 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
910 while (ptr
< ptr_end
) {
911 struct btrfs_inode_ref
*ref
;
913 ref
= (struct btrfs_inode_ref
*)ptr
;
914 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
916 ptr
= (unsigned long)(ref
+ 1) + name_len
;
923 btrfs_release_path(root
, path
);
925 btrfs_free_path(path
);
926 if (nlink
!= inode
->i_nlink
) {
927 inode
->i_nlink
= nlink
;
928 btrfs_update_inode(trans
, root
, inode
);
930 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
935 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
936 struct btrfs_root
*root
,
937 struct btrfs_path
*path
)
940 struct btrfs_key key
;
943 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
944 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
945 key
.offset
= (u64
)-1;
947 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
952 if (path
->slots
[0] == 0)
957 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
958 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
959 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
962 ret
= btrfs_del_item(trans
, root
, path
);
965 btrfs_release_path(root
, path
);
966 inode
= read_one_inode(root
, key
.offset
);
969 ret
= fixup_inode_link_count(trans
, root
, inode
);
978 btrfs_release_path(root
, path
);
984 * record a given inode in the fixup dir so we can check its link
985 * count when replay is done. The link count is incremented here
986 * so the inode won't go away until we check it
988 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
989 struct btrfs_root
*root
,
990 struct btrfs_path
*path
,
993 struct btrfs_key key
;
997 inode
= read_one_inode(root
, objectid
);
1000 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1001 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1002 key
.offset
= objectid
;
1004 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1006 btrfs_release_path(root
, path
);
1008 btrfs_inc_nlink(inode
);
1009 btrfs_update_inode(trans
, root
, inode
);
1010 } else if (ret
== -EEXIST
) {
1021 * when replaying the log for a directory, we only insert names
1022 * for inodes that actually exist. This means an fsync on a directory
1023 * does not implicitly fsync all the new files in it
1025 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1026 struct btrfs_root
*root
,
1027 struct btrfs_path
*path
,
1028 u64 dirid
, u64 index
,
1029 char *name
, int name_len
, u8 type
,
1030 struct btrfs_key
*location
)
1032 struct inode
*inode
;
1036 inode
= read_one_inode(root
, location
->objectid
);
1040 dir
= read_one_inode(root
, dirid
);
1045 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1047 /* FIXME, put inode into FIXUP list */
1055 * take a single entry in a log directory item and replay it into
1058 * if a conflicting item exists in the subdirectory already,
1059 * the inode it points to is unlinked and put into the link count
1062 * If a name from the log points to a file or directory that does
1063 * not exist in the FS, it is skipped. fsyncs on directories
1064 * do not force down inodes inside that directory, just changes to the
1065 * names or unlinks in a directory.
1067 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1068 struct btrfs_root
*root
,
1069 struct btrfs_path
*path
,
1070 struct extent_buffer
*eb
,
1071 struct btrfs_dir_item
*di
,
1072 struct btrfs_key
*key
)
1076 struct btrfs_dir_item
*dst_di
;
1077 struct btrfs_key found_key
;
1078 struct btrfs_key log_key
;
1084 dir
= read_one_inode(root
, key
->objectid
);
1087 name_len
= btrfs_dir_name_len(eb
, di
);
1088 name
= kmalloc(name_len
, GFP_NOFS
);
1089 log_type
= btrfs_dir_type(eb
, di
);
1090 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1093 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1094 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1099 btrfs_release_path(root
, path
);
1101 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1102 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1104 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1105 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1112 if (!dst_di
|| IS_ERR(dst_di
)) {
1113 /* we need a sequence number to insert, so we only
1114 * do inserts for the BTRFS_DIR_INDEX_KEY types
1116 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1121 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1122 /* the existing item matches the logged item */
1123 if (found_key
.objectid
== log_key
.objectid
&&
1124 found_key
.type
== log_key
.type
&&
1125 found_key
.offset
== log_key
.offset
&&
1126 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1131 * don't drop the conflicting directory entry if the inode
1132 * for the new entry doesn't exist
1137 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1140 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1143 btrfs_release_path(root
, path
);
1149 btrfs_release_path(root
, path
);
1150 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1151 name
, name_len
, log_type
, &log_key
);
1153 if (ret
&& ret
!= -ENOENT
)
1159 * find all the names in a directory item and reconcile them into
1160 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1161 * one name in a directory item, but the same code gets used for
1162 * both directory index types
1164 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1165 struct btrfs_root
*root
,
1166 struct btrfs_path
*path
,
1167 struct extent_buffer
*eb
, int slot
,
1168 struct btrfs_key
*key
)
1171 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1172 struct btrfs_dir_item
*di
;
1175 unsigned long ptr_end
;
1177 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1178 ptr_end
= ptr
+ item_size
;
1179 while (ptr
< ptr_end
) {
1180 di
= (struct btrfs_dir_item
*)ptr
;
1181 name_len
= btrfs_dir_name_len(eb
, di
);
1182 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1184 ptr
= (unsigned long)(di
+ 1);
1191 * directory replay has two parts. There are the standard directory
1192 * items in the log copied from the subvolume, and range items
1193 * created in the log while the subvolume was logged.
1195 * The range items tell us which parts of the key space the log
1196 * is authoritative for. During replay, if a key in the subvolume
1197 * directory is in a logged range item, but not actually in the log
1198 * that means it was deleted from the directory before the fsync
1199 * and should be removed.
1201 static noinline
int find_dir_range(struct btrfs_root
*root
,
1202 struct btrfs_path
*path
,
1203 u64 dirid
, int key_type
,
1204 u64
*start_ret
, u64
*end_ret
)
1206 struct btrfs_key key
;
1208 struct btrfs_dir_log_item
*item
;
1212 if (*start_ret
== (u64
)-1)
1215 key
.objectid
= dirid
;
1216 key
.type
= key_type
;
1217 key
.offset
= *start_ret
;
1219 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1223 if (path
->slots
[0] == 0)
1228 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1230 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1234 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1235 struct btrfs_dir_log_item
);
1236 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1238 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1240 *start_ret
= key
.offset
;
1241 *end_ret
= found_end
;
1246 /* check the next slot in the tree to see if it is a valid item */
1247 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1248 if (path
->slots
[0] >= nritems
) {
1249 ret
= btrfs_next_leaf(root
, path
);
1256 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1258 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1262 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1263 struct btrfs_dir_log_item
);
1264 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1265 *start_ret
= key
.offset
;
1266 *end_ret
= found_end
;
1269 btrfs_release_path(root
, path
);
1274 * this looks for a given directory item in the log. If the directory
1275 * item is not in the log, the item is removed and the inode it points
1278 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1279 struct btrfs_root
*root
,
1280 struct btrfs_root
*log
,
1281 struct btrfs_path
*path
,
1282 struct btrfs_path
*log_path
,
1284 struct btrfs_key
*dir_key
)
1287 struct extent_buffer
*eb
;
1290 struct btrfs_dir_item
*di
;
1291 struct btrfs_dir_item
*log_di
;
1294 unsigned long ptr_end
;
1296 struct inode
*inode
;
1297 struct btrfs_key location
;
1300 eb
= path
->nodes
[0];
1301 slot
= path
->slots
[0];
1302 item_size
= btrfs_item_size_nr(eb
, slot
);
1303 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1304 ptr_end
= ptr
+ item_size
;
1305 while (ptr
< ptr_end
) {
1306 di
= (struct btrfs_dir_item
*)ptr
;
1307 name_len
= btrfs_dir_name_len(eb
, di
);
1308 name
= kmalloc(name_len
, GFP_NOFS
);
1313 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1316 if (dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1317 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1320 } else if (dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1321 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1327 if (!log_di
|| IS_ERR(log_di
)) {
1328 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1329 btrfs_release_path(root
, path
);
1330 btrfs_release_path(log
, log_path
);
1331 inode
= read_one_inode(root
, location
.objectid
);
1334 ret
= link_to_fixup_dir(trans
, root
,
1335 path
, location
.objectid
);
1337 btrfs_inc_nlink(inode
);
1338 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1344 /* there might still be more names under this key
1345 * check and repeat if required
1347 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1354 btrfs_release_path(log
, log_path
);
1357 ptr
= (unsigned long)(di
+ 1);
1362 btrfs_release_path(root
, path
);
1363 btrfs_release_path(log
, log_path
);
1368 * deletion replay happens before we copy any new directory items
1369 * out of the log or out of backreferences from inodes. It
1370 * scans the log to find ranges of keys that log is authoritative for,
1371 * and then scans the directory to find items in those ranges that are
1372 * not present in the log.
1374 * Anything we don't find in the log is unlinked and removed from the
1377 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1378 struct btrfs_root
*root
,
1379 struct btrfs_root
*log
,
1380 struct btrfs_path
*path
,
1385 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1387 struct btrfs_key dir_key
;
1388 struct btrfs_key found_key
;
1389 struct btrfs_path
*log_path
;
1392 dir_key
.objectid
= dirid
;
1393 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1394 log_path
= btrfs_alloc_path();
1398 dir
= read_one_inode(root
, dirid
);
1399 /* it isn't an error if the inode isn't there, that can happen
1400 * because we replay the deletes before we copy in the inode item
1404 btrfs_free_path(log_path
);
1411 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1412 &range_start
, &range_end
);
1416 dir_key
.offset
= range_start
;
1419 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1424 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1425 if (path
->slots
[0] >= nritems
) {
1426 ret
= btrfs_next_leaf(root
, path
);
1430 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1432 if (found_key
.objectid
!= dirid
||
1433 found_key
.type
!= dir_key
.type
)
1436 if (found_key
.offset
> range_end
)
1439 ret
= check_item_in_log(trans
, root
, log
, path
,
1440 log_path
, dir
, &found_key
);
1442 if (found_key
.offset
== (u64
)-1)
1444 dir_key
.offset
= found_key
.offset
+ 1;
1446 btrfs_release_path(root
, path
);
1447 if (range_end
== (u64
)-1)
1449 range_start
= range_end
+ 1;
1454 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1455 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1456 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1457 btrfs_release_path(root
, path
);
1461 btrfs_release_path(root
, path
);
1462 btrfs_free_path(log_path
);
1468 * the process_func used to replay items from the log tree. This
1469 * gets called in two different stages. The first stage just looks
1470 * for inodes and makes sure they are all copied into the subvolume.
1472 * The second stage copies all the other item types from the log into
1473 * the subvolume. The two stage approach is slower, but gets rid of
1474 * lots of complexity around inodes referencing other inodes that exist
1475 * only in the log (references come from either directory items or inode
1478 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1479 struct walk_control
*wc
, u64 gen
)
1482 struct btrfs_path
*path
;
1483 struct btrfs_root
*root
= wc
->replay_dest
;
1484 struct btrfs_key key
;
1490 btrfs_read_buffer(eb
, gen
);
1492 level
= btrfs_header_level(eb
);
1497 path
= btrfs_alloc_path();
1500 nritems
= btrfs_header_nritems(eb
);
1501 for (i
= 0; i
< nritems
; i
++) {
1502 btrfs_item_key_to_cpu(eb
, &key
, i
);
1503 item_size
= btrfs_item_size_nr(eb
, i
);
1505 /* inode keys are done during the first stage */
1506 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1507 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1508 struct inode
*inode
;
1509 struct btrfs_inode_item
*inode_item
;
1512 inode_item
= btrfs_item_ptr(eb
, i
,
1513 struct btrfs_inode_item
);
1514 mode
= btrfs_inode_mode(eb
, inode_item
);
1515 if (S_ISDIR(mode
)) {
1516 ret
= replay_dir_deletes(wc
->trans
,
1517 root
, log
, path
, key
.objectid
);
1520 ret
= overwrite_item(wc
->trans
, root
, path
,
1524 /* for regular files, truncate away
1525 * extents past the new EOF
1527 if (S_ISREG(mode
)) {
1528 inode
= read_one_inode(root
,
1532 ret
= btrfs_truncate_inode_items(wc
->trans
,
1533 root
, inode
, inode
->i_size
,
1534 BTRFS_EXTENT_DATA_KEY
);
1538 ret
= link_to_fixup_dir(wc
->trans
, root
,
1539 path
, key
.objectid
);
1542 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1545 /* these keys are simply copied */
1546 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1547 ret
= overwrite_item(wc
->trans
, root
, path
,
1550 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1551 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1553 BUG_ON(ret
&& ret
!= -ENOENT
);
1554 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1555 ret
= replay_one_extent(wc
->trans
, root
, path
,
1558 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1559 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1560 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1565 btrfs_free_path(path
);
1569 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1570 struct btrfs_root
*root
,
1571 struct btrfs_path
*path
, int *level
,
1572 struct walk_control
*wc
)
1578 struct extent_buffer
*next
;
1579 struct extent_buffer
*cur
;
1580 struct extent_buffer
*parent
;
1584 WARN_ON(*level
< 0);
1585 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1587 while (*level
> 0) {
1588 WARN_ON(*level
< 0);
1589 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1590 cur
= path
->nodes
[*level
];
1592 if (btrfs_header_level(cur
) != *level
)
1595 if (path
->slots
[*level
] >=
1596 btrfs_header_nritems(cur
))
1599 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1600 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1601 blocksize
= btrfs_level_size(root
, *level
- 1);
1603 parent
= path
->nodes
[*level
];
1604 root_owner
= btrfs_header_owner(parent
);
1605 root_gen
= btrfs_header_generation(parent
);
1607 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1609 wc
->process_func(root
, next
, wc
, ptr_gen
);
1612 path
->slots
[*level
]++;
1614 btrfs_read_buffer(next
, ptr_gen
);
1616 btrfs_tree_lock(next
);
1617 clean_tree_block(trans
, root
, next
);
1618 btrfs_set_lock_blocking(next
);
1619 btrfs_wait_tree_block_writeback(next
);
1620 btrfs_tree_unlock(next
);
1622 ret
= btrfs_drop_leaf_ref(trans
, root
, next
);
1625 WARN_ON(root_owner
!=
1626 BTRFS_TREE_LOG_OBJECTID
);
1627 ret
= btrfs_free_reserved_extent(root
,
1631 free_extent_buffer(next
);
1634 btrfs_read_buffer(next
, ptr_gen
);
1636 WARN_ON(*level
<= 0);
1637 if (path
->nodes
[*level
-1])
1638 free_extent_buffer(path
->nodes
[*level
-1]);
1639 path
->nodes
[*level
-1] = next
;
1640 *level
= btrfs_header_level(next
);
1641 path
->slots
[*level
] = 0;
1644 WARN_ON(*level
< 0);
1645 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1647 if (path
->nodes
[*level
] == root
->node
)
1648 parent
= path
->nodes
[*level
];
1650 parent
= path
->nodes
[*level
+ 1];
1652 bytenr
= path
->nodes
[*level
]->start
;
1654 blocksize
= btrfs_level_size(root
, *level
);
1655 root_owner
= btrfs_header_owner(parent
);
1656 root_gen
= btrfs_header_generation(parent
);
1658 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1659 btrfs_header_generation(path
->nodes
[*level
]));
1662 next
= path
->nodes
[*level
];
1663 btrfs_tree_lock(next
);
1664 clean_tree_block(trans
, root
, next
);
1665 btrfs_set_lock_blocking(next
);
1666 btrfs_wait_tree_block_writeback(next
);
1667 btrfs_tree_unlock(next
);
1670 ret
= btrfs_drop_leaf_ref(trans
, root
, next
);
1673 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1674 ret
= btrfs_free_reserved_extent(root
, bytenr
, blocksize
);
1677 free_extent_buffer(path
->nodes
[*level
]);
1678 path
->nodes
[*level
] = NULL
;
1685 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1686 struct btrfs_root
*root
,
1687 struct btrfs_path
*path
, int *level
,
1688 struct walk_control
*wc
)
1696 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1697 slot
= path
->slots
[i
];
1698 if (slot
< btrfs_header_nritems(path
->nodes
[i
]) - 1) {
1699 struct extent_buffer
*node
;
1700 node
= path
->nodes
[i
];
1703 WARN_ON(*level
== 0);
1706 struct extent_buffer
*parent
;
1707 if (path
->nodes
[*level
] == root
->node
)
1708 parent
= path
->nodes
[*level
];
1710 parent
= path
->nodes
[*level
+ 1];
1712 root_owner
= btrfs_header_owner(parent
);
1713 root_gen
= btrfs_header_generation(parent
);
1714 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1715 btrfs_header_generation(path
->nodes
[*level
]));
1717 struct extent_buffer
*next
;
1719 next
= path
->nodes
[*level
];
1721 btrfs_tree_lock(next
);
1722 clean_tree_block(trans
, root
, next
);
1723 btrfs_set_lock_blocking(next
);
1724 btrfs_wait_tree_block_writeback(next
);
1725 btrfs_tree_unlock(next
);
1728 ret
= btrfs_drop_leaf_ref(trans
, root
,
1733 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1734 ret
= btrfs_free_reserved_extent(root
,
1735 path
->nodes
[*level
]->start
,
1736 path
->nodes
[*level
]->len
);
1739 free_extent_buffer(path
->nodes
[*level
]);
1740 path
->nodes
[*level
] = NULL
;
1748 * drop the reference count on the tree rooted at 'snap'. This traverses
1749 * the tree freeing any blocks that have a ref count of zero after being
1752 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1753 struct btrfs_root
*log
, struct walk_control
*wc
)
1758 struct btrfs_path
*path
;
1762 path
= btrfs_alloc_path();
1765 level
= btrfs_header_level(log
->node
);
1767 path
->nodes
[level
] = log
->node
;
1768 extent_buffer_get(log
->node
);
1769 path
->slots
[level
] = 0;
1772 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1778 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1785 /* was the root node processed? if not, catch it here */
1786 if (path
->nodes
[orig_level
]) {
1787 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1788 btrfs_header_generation(path
->nodes
[orig_level
]));
1790 struct extent_buffer
*next
;
1792 next
= path
->nodes
[orig_level
];
1794 btrfs_tree_lock(next
);
1795 clean_tree_block(trans
, log
, next
);
1796 btrfs_set_lock_blocking(next
);
1797 btrfs_wait_tree_block_writeback(next
);
1798 btrfs_tree_unlock(next
);
1800 if (orig_level
== 0) {
1801 ret
= btrfs_drop_leaf_ref(trans
, log
,
1805 WARN_ON(log
->root_key
.objectid
!=
1806 BTRFS_TREE_LOG_OBJECTID
);
1807 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1813 for (i
= 0; i
<= orig_level
; i
++) {
1814 if (path
->nodes
[i
]) {
1815 free_extent_buffer(path
->nodes
[i
]);
1816 path
->nodes
[i
] = NULL
;
1819 btrfs_free_path(path
);
1824 * helper function to update the item for a given subvolumes log root
1825 * in the tree of log roots
1827 static int update_log_root(struct btrfs_trans_handle
*trans
,
1828 struct btrfs_root
*log
)
1832 if (log
->log_transid
== 1) {
1833 /* insert root item on the first sync */
1834 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1835 &log
->root_key
, &log
->root_item
);
1837 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1838 &log
->root_key
, &log
->root_item
);
1843 static int wait_log_commit(struct btrfs_root
*root
, unsigned long transid
)
1846 int index
= transid
% 2;
1849 * we only allow two pending log transactions at a time,
1850 * so we know that if ours is more than 2 older than the
1851 * current transaction, we're done
1854 prepare_to_wait(&root
->log_commit_wait
[index
],
1855 &wait
, TASK_UNINTERRUPTIBLE
);
1856 mutex_unlock(&root
->log_mutex
);
1857 if (root
->log_transid
< transid
+ 2 &&
1858 atomic_read(&root
->log_commit
[index
]))
1860 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1861 mutex_lock(&root
->log_mutex
);
1862 } while (root
->log_transid
< transid
+ 2 &&
1863 atomic_read(&root
->log_commit
[index
]));
1867 static int wait_for_writer(struct btrfs_root
*root
)
1870 while (atomic_read(&root
->log_writers
)) {
1871 prepare_to_wait(&root
->log_writer_wait
,
1872 &wait
, TASK_UNINTERRUPTIBLE
);
1873 mutex_unlock(&root
->log_mutex
);
1874 if (atomic_read(&root
->log_writers
))
1876 mutex_lock(&root
->log_mutex
);
1877 finish_wait(&root
->log_writer_wait
, &wait
);
1883 * btrfs_sync_log does sends a given tree log down to the disk and
1884 * updates the super blocks to record it. When this call is done,
1885 * you know that any inodes previously logged are safely on disk
1887 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1888 struct btrfs_root
*root
)
1893 struct btrfs_root
*log
= root
->log_root
;
1894 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1896 mutex_lock(&root
->log_mutex
);
1897 index1
= root
->log_transid
% 2;
1898 if (atomic_read(&root
->log_commit
[index1
])) {
1899 wait_log_commit(root
, root
->log_transid
);
1900 mutex_unlock(&root
->log_mutex
);
1903 atomic_set(&root
->log_commit
[index1
], 1);
1905 /* wait for previous tree log sync to complete */
1906 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
1907 wait_log_commit(root
, root
->log_transid
- 1);
1910 unsigned long batch
= root
->log_batch
;
1911 mutex_unlock(&root
->log_mutex
);
1912 schedule_timeout_uninterruptible(1);
1913 mutex_lock(&root
->log_mutex
);
1914 wait_for_writer(root
);
1915 if (batch
== root
->log_batch
)
1919 ret
= btrfs_write_and_wait_marked_extents(log
, &log
->dirty_log_pages
);
1922 btrfs_set_root_bytenr(&log
->root_item
, log
->node
->start
);
1923 btrfs_set_root_generation(&log
->root_item
, trans
->transid
);
1924 btrfs_set_root_level(&log
->root_item
, btrfs_header_level(log
->node
));
1926 root
->log_batch
= 0;
1927 root
->log_transid
++;
1928 log
->log_transid
= root
->log_transid
;
1931 * log tree has been flushed to disk, new modifications of
1932 * the log will be written to new positions. so it's safe to
1933 * allow log writers to go in.
1935 mutex_unlock(&root
->log_mutex
);
1937 mutex_lock(&log_root_tree
->log_mutex
);
1938 log_root_tree
->log_batch
++;
1939 atomic_inc(&log_root_tree
->log_writers
);
1940 mutex_unlock(&log_root_tree
->log_mutex
);
1942 ret
= update_log_root(trans
, log
);
1945 mutex_lock(&log_root_tree
->log_mutex
);
1946 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
1948 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
1949 wake_up(&log_root_tree
->log_writer_wait
);
1952 index2
= log_root_tree
->log_transid
% 2;
1953 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
1954 wait_log_commit(log_root_tree
, log_root_tree
->log_transid
);
1955 mutex_unlock(&log_root_tree
->log_mutex
);
1958 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
1960 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2]))
1961 wait_log_commit(log_root_tree
, log_root_tree
->log_transid
- 1);
1963 wait_for_writer(log_root_tree
);
1965 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
1966 &log_root_tree
->dirty_log_pages
);
1969 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
1970 log_root_tree
->node
->start
);
1971 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
1972 btrfs_header_level(log_root_tree
->node
));
1974 log_root_tree
->log_batch
= 0;
1975 log_root_tree
->log_transid
++;
1978 mutex_unlock(&log_root_tree
->log_mutex
);
1981 * nobody else is going to jump in and write the the ctree
1982 * super here because the log_commit atomic below is protecting
1983 * us. We must be called with a transaction handle pinning
1984 * the running transaction open, so a full commit can't hop
1985 * in and cause problems either.
1987 write_ctree_super(trans
, root
->fs_info
->tree_root
, 2);
1989 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
1991 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
1992 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
1994 atomic_set(&root
->log_commit
[index1
], 0);
1996 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
1997 wake_up(&root
->log_commit_wait
[index1
]);
2001 /* * free all the extents used by the tree log. This should be called
2002 * at commit time of the full transaction
2004 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2007 struct btrfs_root
*log
;
2011 struct walk_control wc
= {
2013 .process_func
= process_one_buffer
2016 if (!root
->log_root
|| root
->fs_info
->log_root_recovering
)
2019 log
= root
->log_root
;
2020 ret
= walk_log_tree(trans
, log
, &wc
);
2024 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2025 0, &start
, &end
, EXTENT_DIRTY
);
2029 clear_extent_dirty(&log
->dirty_log_pages
,
2030 start
, end
, GFP_NOFS
);
2033 if (log
->log_transid
> 0) {
2034 ret
= btrfs_del_root(trans
, root
->fs_info
->log_root_tree
,
2038 root
->log_root
= NULL
;
2039 free_extent_buffer(log
->node
);
2045 * If both a file and directory are logged, and unlinks or renames are
2046 * mixed in, we have a few interesting corners:
2048 * create file X in dir Y
2049 * link file X to X.link in dir Y
2051 * unlink file X but leave X.link
2054 * After a crash we would expect only X.link to exist. But file X
2055 * didn't get fsync'd again so the log has back refs for X and X.link.
2057 * We solve this by removing directory entries and inode backrefs from the
2058 * log when a file that was logged in the current transaction is
2059 * unlinked. Any later fsync will include the updated log entries, and
2060 * we'll be able to reconstruct the proper directory items from backrefs.
2062 * This optimizations allows us to avoid relogging the entire inode
2063 * or the entire directory.
2065 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2066 struct btrfs_root
*root
,
2067 const char *name
, int name_len
,
2068 struct inode
*dir
, u64 index
)
2070 struct btrfs_root
*log
;
2071 struct btrfs_dir_item
*di
;
2072 struct btrfs_path
*path
;
2076 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2079 ret
= join_running_log_trans(root
);
2083 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2085 log
= root
->log_root
;
2086 path
= btrfs_alloc_path();
2087 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir
->i_ino
,
2088 name
, name_len
, -1);
2089 if (di
&& !IS_ERR(di
)) {
2090 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2091 bytes_del
+= name_len
;
2094 btrfs_release_path(log
, path
);
2095 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir
->i_ino
,
2096 index
, name
, name_len
, -1);
2097 if (di
&& !IS_ERR(di
)) {
2098 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2099 bytes_del
+= name_len
;
2103 /* update the directory size in the log to reflect the names
2107 struct btrfs_key key
;
2109 key
.objectid
= dir
->i_ino
;
2111 key
.type
= BTRFS_INODE_ITEM_KEY
;
2112 btrfs_release_path(log
, path
);
2114 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2116 struct btrfs_inode_item
*item
;
2119 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2120 struct btrfs_inode_item
);
2121 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2122 if (i_size
> bytes_del
)
2123 i_size
-= bytes_del
;
2126 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2127 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2130 btrfs_release_path(log
, path
);
2133 btrfs_free_path(path
);
2134 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2135 end_log_trans(root
);
2140 /* see comments for btrfs_del_dir_entries_in_log */
2141 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2142 struct btrfs_root
*root
,
2143 const char *name
, int name_len
,
2144 struct inode
*inode
, u64 dirid
)
2146 struct btrfs_root
*log
;
2150 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2153 ret
= join_running_log_trans(root
);
2156 log
= root
->log_root
;
2157 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2159 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, inode
->i_ino
,
2161 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2162 end_log_trans(root
);
2168 * creates a range item in the log for 'dirid'. first_offset and
2169 * last_offset tell us which parts of the key space the log should
2170 * be considered authoritative for.
2172 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2173 struct btrfs_root
*log
,
2174 struct btrfs_path
*path
,
2175 int key_type
, u64 dirid
,
2176 u64 first_offset
, u64 last_offset
)
2179 struct btrfs_key key
;
2180 struct btrfs_dir_log_item
*item
;
2182 key
.objectid
= dirid
;
2183 key
.offset
= first_offset
;
2184 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2185 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2187 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2188 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2191 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2192 struct btrfs_dir_log_item
);
2193 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2194 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2195 btrfs_release_path(log
, path
);
2200 * log all the items included in the current transaction for a given
2201 * directory. This also creates the range items in the log tree required
2202 * to replay anything deleted before the fsync
2204 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2205 struct btrfs_root
*root
, struct inode
*inode
,
2206 struct btrfs_path
*path
,
2207 struct btrfs_path
*dst_path
, int key_type
,
2208 u64 min_offset
, u64
*last_offset_ret
)
2210 struct btrfs_key min_key
;
2211 struct btrfs_key max_key
;
2212 struct btrfs_root
*log
= root
->log_root
;
2213 struct extent_buffer
*src
;
2217 u64 first_offset
= min_offset
;
2218 u64 last_offset
= (u64
)-1;
2220 log
= root
->log_root
;
2221 max_key
.objectid
= inode
->i_ino
;
2222 max_key
.offset
= (u64
)-1;
2223 max_key
.type
= key_type
;
2225 min_key
.objectid
= inode
->i_ino
;
2226 min_key
.type
= key_type
;
2227 min_key
.offset
= min_offset
;
2229 path
->keep_locks
= 1;
2231 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2232 path
, 0, trans
->transid
);
2235 * we didn't find anything from this transaction, see if there
2236 * is anything at all
2238 if (ret
!= 0 || min_key
.objectid
!= inode
->i_ino
||
2239 min_key
.type
!= key_type
) {
2240 min_key
.objectid
= inode
->i_ino
;
2241 min_key
.type
= key_type
;
2242 min_key
.offset
= (u64
)-1;
2243 btrfs_release_path(root
, path
);
2244 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2246 btrfs_release_path(root
, path
);
2249 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2251 /* if ret == 0 there are items for this type,
2252 * create a range to tell us the last key of this type.
2253 * otherwise, there are no items in this directory after
2254 * *min_offset, and we create a range to indicate that.
2257 struct btrfs_key tmp
;
2258 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2260 if (key_type
== tmp
.type
)
2261 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2266 /* go backward to find any previous key */
2267 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2269 struct btrfs_key tmp
;
2270 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2271 if (key_type
== tmp
.type
) {
2272 first_offset
= tmp
.offset
;
2273 ret
= overwrite_item(trans
, log
, dst_path
,
2274 path
->nodes
[0], path
->slots
[0],
2278 btrfs_release_path(root
, path
);
2280 /* find the first key from this transaction again */
2281 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2288 * we have a block from this transaction, log every item in it
2289 * from our directory
2292 struct btrfs_key tmp
;
2293 src
= path
->nodes
[0];
2294 nritems
= btrfs_header_nritems(src
);
2295 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2296 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2298 if (min_key
.objectid
!= inode
->i_ino
||
2299 min_key
.type
!= key_type
)
2301 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2305 path
->slots
[0] = nritems
;
2308 * look ahead to the next item and see if it is also
2309 * from this directory and from this transaction
2311 ret
= btrfs_next_leaf(root
, path
);
2313 last_offset
= (u64
)-1;
2316 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2317 if (tmp
.objectid
!= inode
->i_ino
|| tmp
.type
!= key_type
) {
2318 last_offset
= (u64
)-1;
2321 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2322 ret
= overwrite_item(trans
, log
, dst_path
,
2323 path
->nodes
[0], path
->slots
[0],
2327 last_offset
= tmp
.offset
;
2332 *last_offset_ret
= last_offset
;
2333 btrfs_release_path(root
, path
);
2334 btrfs_release_path(log
, dst_path
);
2336 /* insert the log range keys to indicate where the log is valid */
2337 ret
= insert_dir_log_key(trans
, log
, path
, key_type
, inode
->i_ino
,
2338 first_offset
, last_offset
);
2344 * logging directories is very similar to logging inodes, We find all the items
2345 * from the current transaction and write them to the log.
2347 * The recovery code scans the directory in the subvolume, and if it finds a
2348 * key in the range logged that is not present in the log tree, then it means
2349 * that dir entry was unlinked during the transaction.
2351 * In order for that scan to work, we must include one key smaller than
2352 * the smallest logged by this transaction and one key larger than the largest
2353 * key logged by this transaction.
2355 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2356 struct btrfs_root
*root
, struct inode
*inode
,
2357 struct btrfs_path
*path
,
2358 struct btrfs_path
*dst_path
)
2363 int key_type
= BTRFS_DIR_ITEM_KEY
;
2369 ret
= log_dir_items(trans
, root
, inode
, path
,
2370 dst_path
, key_type
, min_key
,
2373 if (max_key
== (u64
)-1)
2375 min_key
= max_key
+ 1;
2378 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2379 key_type
= BTRFS_DIR_INDEX_KEY
;
2386 * a helper function to drop items from the log before we relog an
2387 * inode. max_key_type indicates the highest item type to remove.
2388 * This cannot be run for file data extents because it does not
2389 * free the extents they point to.
2391 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2392 struct btrfs_root
*log
,
2393 struct btrfs_path
*path
,
2394 u64 objectid
, int max_key_type
)
2397 struct btrfs_key key
;
2398 struct btrfs_key found_key
;
2400 key
.objectid
= objectid
;
2401 key
.type
= max_key_type
;
2402 key
.offset
= (u64
)-1;
2405 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2410 if (path
->slots
[0] == 0)
2414 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2417 if (found_key
.objectid
!= objectid
)
2420 ret
= btrfs_del_item(trans
, log
, path
);
2422 btrfs_release_path(log
, path
);
2424 btrfs_release_path(log
, path
);
2428 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2429 struct btrfs_root
*log
,
2430 struct btrfs_path
*dst_path
,
2431 struct extent_buffer
*src
,
2432 int start_slot
, int nr
, int inode_only
)
2434 unsigned long src_offset
;
2435 unsigned long dst_offset
;
2436 struct btrfs_file_extent_item
*extent
;
2437 struct btrfs_inode_item
*inode_item
;
2439 struct btrfs_key
*ins_keys
;
2443 struct list_head ordered_sums
;
2445 INIT_LIST_HEAD(&ordered_sums
);
2447 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2448 nr
* sizeof(u32
), GFP_NOFS
);
2449 ins_sizes
= (u32
*)ins_data
;
2450 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2452 for (i
= 0; i
< nr
; i
++) {
2453 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2454 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2456 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2457 ins_keys
, ins_sizes
, nr
);
2460 for (i
= 0; i
< nr
; i
++) {
2461 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2462 dst_path
->slots
[0]);
2464 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2466 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2467 src_offset
, ins_sizes
[i
]);
2469 if (inode_only
== LOG_INODE_EXISTS
&&
2470 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2471 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2473 struct btrfs_inode_item
);
2474 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2476 /* set the generation to zero so the recover code
2477 * can tell the difference between an logging
2478 * just to say 'this inode exists' and a logging
2479 * to say 'update this inode with these values'
2481 btrfs_set_inode_generation(dst_path
->nodes
[0],
2484 /* take a reference on file data extents so that truncates
2485 * or deletes of this inode don't have to relog the inode
2488 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2490 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2491 struct btrfs_file_extent_item
);
2493 found_type
= btrfs_file_extent_type(src
, extent
);
2494 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2495 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2496 u64 ds
= btrfs_file_extent_disk_bytenr(src
,
2498 u64 dl
= btrfs_file_extent_disk_num_bytes(src
,
2500 u64 cs
= btrfs_file_extent_offset(src
, extent
);
2501 u64 cl
= btrfs_file_extent_num_bytes(src
,
2503 if (btrfs_file_extent_compression(src
,
2508 /* ds == 0 is a hole */
2510 ret
= btrfs_inc_extent_ref(trans
, log
,
2512 dst_path
->nodes
[0]->start
,
2513 BTRFS_TREE_LOG_OBJECTID
,
2515 ins_keys
[i
].objectid
);
2517 ret
= btrfs_lookup_csums_range(
2518 log
->fs_info
->csum_root
,
2519 ds
+ cs
, ds
+ cs
+ cl
- 1,
2525 dst_path
->slots
[0]++;
2528 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2529 btrfs_release_path(log
, dst_path
);
2533 * we have to do this after the loop above to avoid changing the
2534 * log tree while trying to change the log tree.
2536 while (!list_empty(&ordered_sums
)) {
2537 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2538 struct btrfs_ordered_sum
,
2540 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2542 list_del(&sums
->list
);
2548 /* log a single inode in the tree log.
2549 * At least one parent directory for this inode must exist in the tree
2550 * or be logged already.
2552 * Any items from this inode changed by the current transaction are copied
2553 * to the log tree. An extra reference is taken on any extents in this
2554 * file, allowing us to avoid a whole pile of corner cases around logging
2555 * blocks that have been removed from the tree.
2557 * See LOG_INODE_ALL and related defines for a description of what inode_only
2560 * This handles both files and directories.
2562 static int __btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2563 struct btrfs_root
*root
, struct inode
*inode
,
2566 struct btrfs_path
*path
;
2567 struct btrfs_path
*dst_path
;
2568 struct btrfs_key min_key
;
2569 struct btrfs_key max_key
;
2570 struct btrfs_root
*log
= root
->log_root
;
2571 struct extent_buffer
*src
= NULL
;
2575 int ins_start_slot
= 0;
2578 log
= root
->log_root
;
2580 path
= btrfs_alloc_path();
2581 dst_path
= btrfs_alloc_path();
2583 min_key
.objectid
= inode
->i_ino
;
2584 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2587 max_key
.objectid
= inode
->i_ino
;
2588 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2589 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2591 max_key
.type
= (u8
)-1;
2592 max_key
.offset
= (u64
)-1;
2595 * if this inode has already been logged and we're in inode_only
2596 * mode, we don't want to delete the things that have already
2597 * been written to the log.
2599 * But, if the inode has been through an inode_only log,
2600 * the logged_trans field is not set. This allows us to catch
2601 * any new names for this inode in the backrefs by logging it
2604 if (inode_only
== LOG_INODE_EXISTS
&&
2605 BTRFS_I(inode
)->logged_trans
== trans
->transid
) {
2606 btrfs_free_path(path
);
2607 btrfs_free_path(dst_path
);
2610 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2613 * a brute force approach to making sure we get the most uptodate
2614 * copies of everything.
2616 if (S_ISDIR(inode
->i_mode
)) {
2617 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2619 if (inode_only
== LOG_INODE_EXISTS
)
2620 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2621 ret
= drop_objectid_items(trans
, log
, path
,
2622 inode
->i_ino
, max_key_type
);
2624 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2627 path
->keep_locks
= 1;
2631 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2632 path
, 0, trans
->transid
);
2636 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2637 if (min_key
.objectid
!= inode
->i_ino
)
2639 if (min_key
.type
> max_key
.type
)
2642 src
= path
->nodes
[0];
2643 size
= btrfs_item_size_nr(src
, path
->slots
[0]);
2644 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2647 } else if (!ins_nr
) {
2648 ins_start_slot
= path
->slots
[0];
2653 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2654 ins_nr
, inode_only
);
2657 ins_start_slot
= path
->slots
[0];
2660 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2662 if (path
->slots
[0] < nritems
) {
2663 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2668 ret
= copy_items(trans
, log
, dst_path
, src
,
2670 ins_nr
, inode_only
);
2674 btrfs_release_path(root
, path
);
2676 if (min_key
.offset
< (u64
)-1)
2678 else if (min_key
.type
< (u8
)-1)
2680 else if (min_key
.objectid
< (u64
)-1)
2686 ret
= copy_items(trans
, log
, dst_path
, src
,
2688 ins_nr
, inode_only
);
2693 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2694 btrfs_release_path(root
, path
);
2695 btrfs_release_path(log
, dst_path
);
2696 BTRFS_I(inode
)->log_dirty_trans
= 0;
2697 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2700 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2701 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2703 btrfs_free_path(path
);
2704 btrfs_free_path(dst_path
);
2709 int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2710 struct btrfs_root
*root
, struct inode
*inode
,
2715 start_log_trans(trans
, root
);
2716 ret
= __btrfs_log_inode(trans
, root
, inode
, inode_only
);
2717 end_log_trans(root
);
2722 * helper function around btrfs_log_inode to make sure newly created
2723 * parent directories also end up in the log. A minimal inode and backref
2724 * only logging is done of any parent directories that are older than
2725 * the last committed transaction
2727 int btrfs_log_dentry(struct btrfs_trans_handle
*trans
,
2728 struct btrfs_root
*root
, struct dentry
*dentry
)
2730 int inode_only
= LOG_INODE_ALL
;
2731 struct super_block
*sb
;
2734 start_log_trans(trans
, root
);
2735 sb
= dentry
->d_inode
->i_sb
;
2737 ret
= __btrfs_log_inode(trans
, root
, dentry
->d_inode
,
2740 inode_only
= LOG_INODE_EXISTS
;
2742 dentry
= dentry
->d_parent
;
2743 if (!dentry
|| !dentry
->d_inode
|| sb
!= dentry
->d_inode
->i_sb
)
2746 if (BTRFS_I(dentry
->d_inode
)->generation
<=
2747 root
->fs_info
->last_trans_committed
)
2750 end_log_trans(root
);
2755 * it is not safe to log dentry if the chunk root has added new
2756 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2757 * If this returns 1, you must commit the transaction to safely get your
2760 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
2761 struct btrfs_root
*root
, struct dentry
*dentry
)
2764 gen
= root
->fs_info
->last_trans_new_blockgroup
;
2765 if (gen
> root
->fs_info
->last_trans_committed
)
2768 return btrfs_log_dentry(trans
, root
, dentry
);
2772 * should be called during mount to recover any replay any log trees
2775 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
2778 struct btrfs_path
*path
;
2779 struct btrfs_trans_handle
*trans
;
2780 struct btrfs_key key
;
2781 struct btrfs_key found_key
;
2782 struct btrfs_key tmp_key
;
2783 struct btrfs_root
*log
;
2784 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
2786 struct walk_control wc
= {
2787 .process_func
= process_one_buffer
,
2791 fs_info
->log_root_recovering
= 1;
2792 path
= btrfs_alloc_path();
2795 trans
= btrfs_start_transaction(fs_info
->tree_root
, 1);
2800 walk_log_tree(trans
, log_root_tree
, &wc
);
2803 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
2804 key
.offset
= (u64
)-1;
2805 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
2808 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
2812 if (path
->slots
[0] == 0)
2816 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2818 btrfs_release_path(log_root_tree
, path
);
2819 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
2822 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
2827 tmp_key
.objectid
= found_key
.offset
;
2828 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
2829 tmp_key
.offset
= (u64
)-1;
2831 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
2832 BUG_ON(!wc
.replay_dest
);
2834 wc
.replay_dest
->log_root
= log
;
2835 mutex_lock(&fs_info
->trans_mutex
);
2836 btrfs_record_root_in_trans(wc
.replay_dest
);
2837 mutex_unlock(&fs_info
->trans_mutex
);
2838 ret
= walk_log_tree(trans
, log
, &wc
);
2841 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
2842 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
2846 ret
= btrfs_find_highest_inode(wc
.replay_dest
, &highest_inode
);
2848 wc
.replay_dest
->highest_inode
= highest_inode
;
2849 wc
.replay_dest
->last_inode_alloc
= highest_inode
;
2852 key
.offset
= found_key
.offset
- 1;
2853 wc
.replay_dest
->log_root
= NULL
;
2854 free_extent_buffer(log
->node
);
2857 if (found_key
.offset
== 0)
2860 btrfs_release_path(log_root_tree
, path
);
2862 /* step one is to pin it all, step two is to replay just inodes */
2865 wc
.process_func
= replay_one_buffer
;
2866 wc
.stage
= LOG_WALK_REPLAY_INODES
;
2869 /* step three is to replay everything */
2870 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
2875 btrfs_free_path(path
);
2877 free_extent_buffer(log_root_tree
->node
);
2878 log_root_tree
->log_root
= NULL
;
2879 fs_info
->log_root_recovering
= 0;
2881 /* step 4: commit the transaction, which also unpins the blocks */
2882 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
2884 kfree(log_root_tree
);