Btrfs: fix df regression
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent-tree.c
blob4669c6f8a44dfd7903b7562e1d144e0a0a95920e
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
36 static int update_block_group(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 u64 bytenr, u64 num_bytes, int alloc);
39 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
40 u64 num_bytes, int reserve, int sinfo);
41 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root,
43 u64 bytenr, u64 num_bytes, u64 parent,
44 u64 root_objectid, u64 owner_objectid,
45 u64 owner_offset, int refs_to_drop,
46 struct btrfs_delayed_extent_op *extra_op);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
48 struct extent_buffer *leaf,
49 struct btrfs_extent_item *ei);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root,
52 u64 parent, u64 root_objectid,
53 u64 flags, u64 owner, u64 offset,
54 struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 parent, u64 root_objectid,
58 u64 flags, struct btrfs_disk_key *key,
59 int level, struct btrfs_key *ins);
60 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
61 struct btrfs_root *extent_root, u64 alloc_bytes,
62 u64 flags, int force);
63 static int find_next_key(struct btrfs_path *path, int level,
64 struct btrfs_key *key);
65 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
66 int dump_block_groups);
68 static noinline int
69 block_group_cache_done(struct btrfs_block_group_cache *cache)
71 smp_mb();
72 return cache->cached == BTRFS_CACHE_FINISHED;
75 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
77 return (cache->flags & bits) == bits;
80 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
82 atomic_inc(&cache->count);
85 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
87 if (atomic_dec_and_test(&cache->count)) {
88 WARN_ON(cache->pinned > 0);
89 WARN_ON(cache->reserved > 0);
90 WARN_ON(cache->reserved_pinned > 0);
91 kfree(cache);
96 * this adds the block group to the fs_info rb tree for the block group
97 * cache
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
100 struct btrfs_block_group_cache *block_group)
102 struct rb_node **p;
103 struct rb_node *parent = NULL;
104 struct btrfs_block_group_cache *cache;
106 spin_lock(&info->block_group_cache_lock);
107 p = &info->block_group_cache_tree.rb_node;
109 while (*p) {
110 parent = *p;
111 cache = rb_entry(parent, struct btrfs_block_group_cache,
112 cache_node);
113 if (block_group->key.objectid < cache->key.objectid) {
114 p = &(*p)->rb_left;
115 } else if (block_group->key.objectid > cache->key.objectid) {
116 p = &(*p)->rb_right;
117 } else {
118 spin_unlock(&info->block_group_cache_lock);
119 return -EEXIST;
123 rb_link_node(&block_group->cache_node, parent, p);
124 rb_insert_color(&block_group->cache_node,
125 &info->block_group_cache_tree);
126 spin_unlock(&info->block_group_cache_lock);
128 return 0;
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
135 static struct btrfs_block_group_cache *
136 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
137 int contains)
139 struct btrfs_block_group_cache *cache, *ret = NULL;
140 struct rb_node *n;
141 u64 end, start;
143 spin_lock(&info->block_group_cache_lock);
144 n = info->block_group_cache_tree.rb_node;
146 while (n) {
147 cache = rb_entry(n, struct btrfs_block_group_cache,
148 cache_node);
149 end = cache->key.objectid + cache->key.offset - 1;
150 start = cache->key.objectid;
152 if (bytenr < start) {
153 if (!contains && (!ret || start < ret->key.objectid))
154 ret = cache;
155 n = n->rb_left;
156 } else if (bytenr > start) {
157 if (contains && bytenr <= end) {
158 ret = cache;
159 break;
161 n = n->rb_right;
162 } else {
163 ret = cache;
164 break;
167 if (ret)
168 btrfs_get_block_group(ret);
169 spin_unlock(&info->block_group_cache_lock);
171 return ret;
174 static int add_excluded_extent(struct btrfs_root *root,
175 u64 start, u64 num_bytes)
177 u64 end = start + num_bytes - 1;
178 set_extent_bits(&root->fs_info->freed_extents[0],
179 start, end, EXTENT_UPTODATE, GFP_NOFS);
180 set_extent_bits(&root->fs_info->freed_extents[1],
181 start, end, EXTENT_UPTODATE, GFP_NOFS);
182 return 0;
185 static void free_excluded_extents(struct btrfs_root *root,
186 struct btrfs_block_group_cache *cache)
188 u64 start, end;
190 start = cache->key.objectid;
191 end = start + cache->key.offset - 1;
193 clear_extent_bits(&root->fs_info->freed_extents[0],
194 start, end, EXTENT_UPTODATE, GFP_NOFS);
195 clear_extent_bits(&root->fs_info->freed_extents[1],
196 start, end, EXTENT_UPTODATE, GFP_NOFS);
199 static int exclude_super_stripes(struct btrfs_root *root,
200 struct btrfs_block_group_cache *cache)
202 u64 bytenr;
203 u64 *logical;
204 int stripe_len;
205 int i, nr, ret;
207 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
208 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
209 cache->bytes_super += stripe_len;
210 ret = add_excluded_extent(root, cache->key.objectid,
211 stripe_len);
212 BUG_ON(ret);
215 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
216 bytenr = btrfs_sb_offset(i);
217 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
218 cache->key.objectid, bytenr,
219 0, &logical, &nr, &stripe_len);
220 BUG_ON(ret);
222 while (nr--) {
223 cache->bytes_super += stripe_len;
224 ret = add_excluded_extent(root, logical[nr],
225 stripe_len);
226 BUG_ON(ret);
229 kfree(logical);
231 return 0;
234 static struct btrfs_caching_control *
235 get_caching_control(struct btrfs_block_group_cache *cache)
237 struct btrfs_caching_control *ctl;
239 spin_lock(&cache->lock);
240 if (cache->cached != BTRFS_CACHE_STARTED) {
241 spin_unlock(&cache->lock);
242 return NULL;
245 ctl = cache->caching_ctl;
246 atomic_inc(&ctl->count);
247 spin_unlock(&cache->lock);
248 return ctl;
251 static void put_caching_control(struct btrfs_caching_control *ctl)
253 if (atomic_dec_and_test(&ctl->count))
254 kfree(ctl);
258 * this is only called by cache_block_group, since we could have freed extents
259 * we need to check the pinned_extents for any extents that can't be used yet
260 * since their free space will be released as soon as the transaction commits.
262 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
263 struct btrfs_fs_info *info, u64 start, u64 end)
265 u64 extent_start, extent_end, size, total_added = 0;
266 int ret;
268 while (start < end) {
269 ret = find_first_extent_bit(info->pinned_extents, start,
270 &extent_start, &extent_end,
271 EXTENT_DIRTY | EXTENT_UPTODATE);
272 if (ret)
273 break;
275 if (extent_start <= start) {
276 start = extent_end + 1;
277 } else if (extent_start > start && extent_start < end) {
278 size = extent_start - start;
279 total_added += size;
280 ret = btrfs_add_free_space(block_group, start,
281 size);
282 BUG_ON(ret);
283 start = extent_end + 1;
284 } else {
285 break;
289 if (start < end) {
290 size = end - start;
291 total_added += size;
292 ret = btrfs_add_free_space(block_group, start, size);
293 BUG_ON(ret);
296 return total_added;
299 static int caching_kthread(void *data)
301 struct btrfs_block_group_cache *block_group = data;
302 struct btrfs_fs_info *fs_info = block_group->fs_info;
303 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
304 struct btrfs_root *extent_root = fs_info->extent_root;
305 struct btrfs_path *path;
306 struct extent_buffer *leaf;
307 struct btrfs_key key;
308 u64 total_found = 0;
309 u64 last = 0;
310 u32 nritems;
311 int ret = 0;
313 path = btrfs_alloc_path();
314 if (!path)
315 return -ENOMEM;
317 exclude_super_stripes(extent_root, block_group);
318 spin_lock(&block_group->space_info->lock);
319 block_group->space_info->bytes_readonly += block_group->bytes_super;
320 spin_unlock(&block_group->space_info->lock);
322 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
325 * We don't want to deadlock with somebody trying to allocate a new
326 * extent for the extent root while also trying to search the extent
327 * root to add free space. So we skip locking and search the commit
328 * root, since its read-only
330 path->skip_locking = 1;
331 path->search_commit_root = 1;
332 path->reada = 2;
334 key.objectid = last;
335 key.offset = 0;
336 key.type = BTRFS_EXTENT_ITEM_KEY;
337 again:
338 mutex_lock(&caching_ctl->mutex);
339 /* need to make sure the commit_root doesn't disappear */
340 down_read(&fs_info->extent_commit_sem);
342 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
343 if (ret < 0)
344 goto err;
346 leaf = path->nodes[0];
347 nritems = btrfs_header_nritems(leaf);
349 while (1) {
350 smp_mb();
351 if (fs_info->closing > 1) {
352 last = (u64)-1;
353 break;
356 if (path->slots[0] < nritems) {
357 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
358 } else {
359 ret = find_next_key(path, 0, &key);
360 if (ret)
361 break;
363 caching_ctl->progress = last;
364 btrfs_release_path(extent_root, path);
365 up_read(&fs_info->extent_commit_sem);
366 mutex_unlock(&caching_ctl->mutex);
367 if (btrfs_transaction_in_commit(fs_info))
368 schedule_timeout(1);
369 else
370 cond_resched();
371 goto again;
374 if (key.objectid < block_group->key.objectid) {
375 path->slots[0]++;
376 continue;
379 if (key.objectid >= block_group->key.objectid +
380 block_group->key.offset)
381 break;
383 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
384 total_found += add_new_free_space(block_group,
385 fs_info, last,
386 key.objectid);
387 last = key.objectid + key.offset;
389 if (total_found > (1024 * 1024 * 2)) {
390 total_found = 0;
391 wake_up(&caching_ctl->wait);
394 path->slots[0]++;
396 ret = 0;
398 total_found += add_new_free_space(block_group, fs_info, last,
399 block_group->key.objectid +
400 block_group->key.offset);
401 caching_ctl->progress = (u64)-1;
403 spin_lock(&block_group->lock);
404 block_group->caching_ctl = NULL;
405 block_group->cached = BTRFS_CACHE_FINISHED;
406 spin_unlock(&block_group->lock);
408 err:
409 btrfs_free_path(path);
410 up_read(&fs_info->extent_commit_sem);
412 free_excluded_extents(extent_root, block_group);
414 mutex_unlock(&caching_ctl->mutex);
415 wake_up(&caching_ctl->wait);
417 put_caching_control(caching_ctl);
418 atomic_dec(&block_group->space_info->caching_threads);
419 btrfs_put_block_group(block_group);
421 return 0;
424 static int cache_block_group(struct btrfs_block_group_cache *cache)
426 struct btrfs_fs_info *fs_info = cache->fs_info;
427 struct btrfs_caching_control *caching_ctl;
428 struct task_struct *tsk;
429 int ret = 0;
431 smp_mb();
432 if (cache->cached != BTRFS_CACHE_NO)
433 return 0;
435 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_KERNEL);
436 BUG_ON(!caching_ctl);
438 INIT_LIST_HEAD(&caching_ctl->list);
439 mutex_init(&caching_ctl->mutex);
440 init_waitqueue_head(&caching_ctl->wait);
441 caching_ctl->block_group = cache;
442 caching_ctl->progress = cache->key.objectid;
443 /* one for caching kthread, one for caching block group list */
444 atomic_set(&caching_ctl->count, 2);
446 spin_lock(&cache->lock);
447 if (cache->cached != BTRFS_CACHE_NO) {
448 spin_unlock(&cache->lock);
449 kfree(caching_ctl);
450 return 0;
452 cache->caching_ctl = caching_ctl;
453 cache->cached = BTRFS_CACHE_STARTED;
454 spin_unlock(&cache->lock);
456 down_write(&fs_info->extent_commit_sem);
457 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
458 up_write(&fs_info->extent_commit_sem);
460 atomic_inc(&cache->space_info->caching_threads);
461 btrfs_get_block_group(cache);
463 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
464 cache->key.objectid);
465 if (IS_ERR(tsk)) {
466 ret = PTR_ERR(tsk);
467 printk(KERN_ERR "error running thread %d\n", ret);
468 BUG();
471 return ret;
475 * return the block group that starts at or after bytenr
477 static struct btrfs_block_group_cache *
478 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
480 struct btrfs_block_group_cache *cache;
482 cache = block_group_cache_tree_search(info, bytenr, 0);
484 return cache;
488 * return the block group that contains the given bytenr
490 struct btrfs_block_group_cache *btrfs_lookup_block_group(
491 struct btrfs_fs_info *info,
492 u64 bytenr)
494 struct btrfs_block_group_cache *cache;
496 cache = block_group_cache_tree_search(info, bytenr, 1);
498 return cache;
501 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
502 u64 flags)
504 struct list_head *head = &info->space_info;
505 struct btrfs_space_info *found;
507 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
508 BTRFS_BLOCK_GROUP_METADATA;
510 rcu_read_lock();
511 list_for_each_entry_rcu(found, head, list) {
512 if (found->flags == flags) {
513 rcu_read_unlock();
514 return found;
517 rcu_read_unlock();
518 return NULL;
522 * after adding space to the filesystem, we need to clear the full flags
523 * on all the space infos.
525 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
527 struct list_head *head = &info->space_info;
528 struct btrfs_space_info *found;
530 rcu_read_lock();
531 list_for_each_entry_rcu(found, head, list)
532 found->full = 0;
533 rcu_read_unlock();
536 static u64 div_factor(u64 num, int factor)
538 if (factor == 10)
539 return num;
540 num *= factor;
541 do_div(num, 10);
542 return num;
545 u64 btrfs_find_block_group(struct btrfs_root *root,
546 u64 search_start, u64 search_hint, int owner)
548 struct btrfs_block_group_cache *cache;
549 u64 used;
550 u64 last = max(search_hint, search_start);
551 u64 group_start = 0;
552 int full_search = 0;
553 int factor = 9;
554 int wrapped = 0;
555 again:
556 while (1) {
557 cache = btrfs_lookup_first_block_group(root->fs_info, last);
558 if (!cache)
559 break;
561 spin_lock(&cache->lock);
562 last = cache->key.objectid + cache->key.offset;
563 used = btrfs_block_group_used(&cache->item);
565 if ((full_search || !cache->ro) &&
566 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
567 if (used + cache->pinned + cache->reserved <
568 div_factor(cache->key.offset, factor)) {
569 group_start = cache->key.objectid;
570 spin_unlock(&cache->lock);
571 btrfs_put_block_group(cache);
572 goto found;
575 spin_unlock(&cache->lock);
576 btrfs_put_block_group(cache);
577 cond_resched();
579 if (!wrapped) {
580 last = search_start;
581 wrapped = 1;
582 goto again;
584 if (!full_search && factor < 10) {
585 last = search_start;
586 full_search = 1;
587 factor = 10;
588 goto again;
590 found:
591 return group_start;
594 /* simple helper to search for an existing extent at a given offset */
595 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
597 int ret;
598 struct btrfs_key key;
599 struct btrfs_path *path;
601 path = btrfs_alloc_path();
602 BUG_ON(!path);
603 key.objectid = start;
604 key.offset = len;
605 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
606 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
607 0, 0);
608 btrfs_free_path(path);
609 return ret;
613 * helper function to lookup reference count and flags of extent.
615 * the head node for delayed ref is used to store the sum of all the
616 * reference count modifications queued up in the rbtree. the head
617 * node may also store the extent flags to set. This way you can check
618 * to see what the reference count and extent flags would be if all of
619 * the delayed refs are not processed.
621 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root, u64 bytenr,
623 u64 num_bytes, u64 *refs, u64 *flags)
625 struct btrfs_delayed_ref_head *head;
626 struct btrfs_delayed_ref_root *delayed_refs;
627 struct btrfs_path *path;
628 struct btrfs_extent_item *ei;
629 struct extent_buffer *leaf;
630 struct btrfs_key key;
631 u32 item_size;
632 u64 num_refs;
633 u64 extent_flags;
634 int ret;
636 path = btrfs_alloc_path();
637 if (!path)
638 return -ENOMEM;
640 key.objectid = bytenr;
641 key.type = BTRFS_EXTENT_ITEM_KEY;
642 key.offset = num_bytes;
643 if (!trans) {
644 path->skip_locking = 1;
645 path->search_commit_root = 1;
647 again:
648 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
649 &key, path, 0, 0);
650 if (ret < 0)
651 goto out_free;
653 if (ret == 0) {
654 leaf = path->nodes[0];
655 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
656 if (item_size >= sizeof(*ei)) {
657 ei = btrfs_item_ptr(leaf, path->slots[0],
658 struct btrfs_extent_item);
659 num_refs = btrfs_extent_refs(leaf, ei);
660 extent_flags = btrfs_extent_flags(leaf, ei);
661 } else {
662 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
663 struct btrfs_extent_item_v0 *ei0;
664 BUG_ON(item_size != sizeof(*ei0));
665 ei0 = btrfs_item_ptr(leaf, path->slots[0],
666 struct btrfs_extent_item_v0);
667 num_refs = btrfs_extent_refs_v0(leaf, ei0);
668 /* FIXME: this isn't correct for data */
669 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
670 #else
671 BUG();
672 #endif
674 BUG_ON(num_refs == 0);
675 } else {
676 num_refs = 0;
677 extent_flags = 0;
678 ret = 0;
681 if (!trans)
682 goto out;
684 delayed_refs = &trans->transaction->delayed_refs;
685 spin_lock(&delayed_refs->lock);
686 head = btrfs_find_delayed_ref_head(trans, bytenr);
687 if (head) {
688 if (!mutex_trylock(&head->mutex)) {
689 atomic_inc(&head->node.refs);
690 spin_unlock(&delayed_refs->lock);
692 btrfs_release_path(root->fs_info->extent_root, path);
694 mutex_lock(&head->mutex);
695 mutex_unlock(&head->mutex);
696 btrfs_put_delayed_ref(&head->node);
697 goto again;
699 if (head->extent_op && head->extent_op->update_flags)
700 extent_flags |= head->extent_op->flags_to_set;
701 else
702 BUG_ON(num_refs == 0);
704 num_refs += head->node.ref_mod;
705 mutex_unlock(&head->mutex);
707 spin_unlock(&delayed_refs->lock);
708 out:
709 WARN_ON(num_refs == 0);
710 if (refs)
711 *refs = num_refs;
712 if (flags)
713 *flags = extent_flags;
714 out_free:
715 btrfs_free_path(path);
716 return ret;
720 * Back reference rules. Back refs have three main goals:
722 * 1) differentiate between all holders of references to an extent so that
723 * when a reference is dropped we can make sure it was a valid reference
724 * before freeing the extent.
726 * 2) Provide enough information to quickly find the holders of an extent
727 * if we notice a given block is corrupted or bad.
729 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
730 * maintenance. This is actually the same as #2, but with a slightly
731 * different use case.
733 * There are two kinds of back refs. The implicit back refs is optimized
734 * for pointers in non-shared tree blocks. For a given pointer in a block,
735 * back refs of this kind provide information about the block's owner tree
736 * and the pointer's key. These information allow us to find the block by
737 * b-tree searching. The full back refs is for pointers in tree blocks not
738 * referenced by their owner trees. The location of tree block is recorded
739 * in the back refs. Actually the full back refs is generic, and can be
740 * used in all cases the implicit back refs is used. The major shortcoming
741 * of the full back refs is its overhead. Every time a tree block gets
742 * COWed, we have to update back refs entry for all pointers in it.
744 * For a newly allocated tree block, we use implicit back refs for
745 * pointers in it. This means most tree related operations only involve
746 * implicit back refs. For a tree block created in old transaction, the
747 * only way to drop a reference to it is COW it. So we can detect the
748 * event that tree block loses its owner tree's reference and do the
749 * back refs conversion.
751 * When a tree block is COW'd through a tree, there are four cases:
753 * The reference count of the block is one and the tree is the block's
754 * owner tree. Nothing to do in this case.
756 * The reference count of the block is one and the tree is not the
757 * block's owner tree. In this case, full back refs is used for pointers
758 * in the block. Remove these full back refs, add implicit back refs for
759 * every pointers in the new block.
761 * The reference count of the block is greater than one and the tree is
762 * the block's owner tree. In this case, implicit back refs is used for
763 * pointers in the block. Add full back refs for every pointers in the
764 * block, increase lower level extents' reference counts. The original
765 * implicit back refs are entailed to the new block.
767 * The reference count of the block is greater than one and the tree is
768 * not the block's owner tree. Add implicit back refs for every pointer in
769 * the new block, increase lower level extents' reference count.
771 * Back Reference Key composing:
773 * The key objectid corresponds to the first byte in the extent,
774 * The key type is used to differentiate between types of back refs.
775 * There are different meanings of the key offset for different types
776 * of back refs.
778 * File extents can be referenced by:
780 * - multiple snapshots, subvolumes, or different generations in one subvol
781 * - different files inside a single subvolume
782 * - different offsets inside a file (bookend extents in file.c)
784 * The extent ref structure for the implicit back refs has fields for:
786 * - Objectid of the subvolume root
787 * - objectid of the file holding the reference
788 * - original offset in the file
789 * - how many bookend extents
791 * The key offset for the implicit back refs is hash of the first
792 * three fields.
794 * The extent ref structure for the full back refs has field for:
796 * - number of pointers in the tree leaf
798 * The key offset for the implicit back refs is the first byte of
799 * the tree leaf
801 * When a file extent is allocated, The implicit back refs is used.
802 * the fields are filled in:
804 * (root_key.objectid, inode objectid, offset in file, 1)
806 * When a file extent is removed file truncation, we find the
807 * corresponding implicit back refs and check the following fields:
809 * (btrfs_header_owner(leaf), inode objectid, offset in file)
811 * Btree extents can be referenced by:
813 * - Different subvolumes
815 * Both the implicit back refs and the full back refs for tree blocks
816 * only consist of key. The key offset for the implicit back refs is
817 * objectid of block's owner tree. The key offset for the full back refs
818 * is the first byte of parent block.
820 * When implicit back refs is used, information about the lowest key and
821 * level of the tree block are required. These information are stored in
822 * tree block info structure.
825 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
826 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
827 struct btrfs_root *root,
828 struct btrfs_path *path,
829 u64 owner, u32 extra_size)
831 struct btrfs_extent_item *item;
832 struct btrfs_extent_item_v0 *ei0;
833 struct btrfs_extent_ref_v0 *ref0;
834 struct btrfs_tree_block_info *bi;
835 struct extent_buffer *leaf;
836 struct btrfs_key key;
837 struct btrfs_key found_key;
838 u32 new_size = sizeof(*item);
839 u64 refs;
840 int ret;
842 leaf = path->nodes[0];
843 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
845 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
846 ei0 = btrfs_item_ptr(leaf, path->slots[0],
847 struct btrfs_extent_item_v0);
848 refs = btrfs_extent_refs_v0(leaf, ei0);
850 if (owner == (u64)-1) {
851 while (1) {
852 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
853 ret = btrfs_next_leaf(root, path);
854 if (ret < 0)
855 return ret;
856 BUG_ON(ret > 0);
857 leaf = path->nodes[0];
859 btrfs_item_key_to_cpu(leaf, &found_key,
860 path->slots[0]);
861 BUG_ON(key.objectid != found_key.objectid);
862 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
863 path->slots[0]++;
864 continue;
866 ref0 = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_ref_v0);
868 owner = btrfs_ref_objectid_v0(leaf, ref0);
869 break;
872 btrfs_release_path(root, path);
874 if (owner < BTRFS_FIRST_FREE_OBJECTID)
875 new_size += sizeof(*bi);
877 new_size -= sizeof(*ei0);
878 ret = btrfs_search_slot(trans, root, &key, path,
879 new_size + extra_size, 1);
880 if (ret < 0)
881 return ret;
882 BUG_ON(ret);
884 ret = btrfs_extend_item(trans, root, path, new_size);
885 BUG_ON(ret);
887 leaf = path->nodes[0];
888 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
889 btrfs_set_extent_refs(leaf, item, refs);
890 /* FIXME: get real generation */
891 btrfs_set_extent_generation(leaf, item, 0);
892 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
893 btrfs_set_extent_flags(leaf, item,
894 BTRFS_EXTENT_FLAG_TREE_BLOCK |
895 BTRFS_BLOCK_FLAG_FULL_BACKREF);
896 bi = (struct btrfs_tree_block_info *)(item + 1);
897 /* FIXME: get first key of the block */
898 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
899 btrfs_set_tree_block_level(leaf, bi, (int)owner);
900 } else {
901 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
903 btrfs_mark_buffer_dirty(leaf);
904 return 0;
906 #endif
908 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
910 u32 high_crc = ~(u32)0;
911 u32 low_crc = ~(u32)0;
912 __le64 lenum;
914 lenum = cpu_to_le64(root_objectid);
915 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
916 lenum = cpu_to_le64(owner);
917 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
918 lenum = cpu_to_le64(offset);
919 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
921 return ((u64)high_crc << 31) ^ (u64)low_crc;
924 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
925 struct btrfs_extent_data_ref *ref)
927 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
928 btrfs_extent_data_ref_objectid(leaf, ref),
929 btrfs_extent_data_ref_offset(leaf, ref));
932 static int match_extent_data_ref(struct extent_buffer *leaf,
933 struct btrfs_extent_data_ref *ref,
934 u64 root_objectid, u64 owner, u64 offset)
936 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
937 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
938 btrfs_extent_data_ref_offset(leaf, ref) != offset)
939 return 0;
940 return 1;
943 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root,
945 struct btrfs_path *path,
946 u64 bytenr, u64 parent,
947 u64 root_objectid,
948 u64 owner, u64 offset)
950 struct btrfs_key key;
951 struct btrfs_extent_data_ref *ref;
952 struct extent_buffer *leaf;
953 u32 nritems;
954 int ret;
955 int recow;
956 int err = -ENOENT;
958 key.objectid = bytenr;
959 if (parent) {
960 key.type = BTRFS_SHARED_DATA_REF_KEY;
961 key.offset = parent;
962 } else {
963 key.type = BTRFS_EXTENT_DATA_REF_KEY;
964 key.offset = hash_extent_data_ref(root_objectid,
965 owner, offset);
967 again:
968 recow = 0;
969 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
970 if (ret < 0) {
971 err = ret;
972 goto fail;
975 if (parent) {
976 if (!ret)
977 return 0;
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 key.type = BTRFS_EXTENT_REF_V0_KEY;
980 btrfs_release_path(root, path);
981 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
982 if (ret < 0) {
983 err = ret;
984 goto fail;
986 if (!ret)
987 return 0;
988 #endif
989 goto fail;
992 leaf = path->nodes[0];
993 nritems = btrfs_header_nritems(leaf);
994 while (1) {
995 if (path->slots[0] >= nritems) {
996 ret = btrfs_next_leaf(root, path);
997 if (ret < 0)
998 err = ret;
999 if (ret)
1000 goto fail;
1002 leaf = path->nodes[0];
1003 nritems = btrfs_header_nritems(leaf);
1004 recow = 1;
1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 if (key.objectid != bytenr ||
1009 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1010 goto fail;
1012 ref = btrfs_item_ptr(leaf, path->slots[0],
1013 struct btrfs_extent_data_ref);
1015 if (match_extent_data_ref(leaf, ref, root_objectid,
1016 owner, offset)) {
1017 if (recow) {
1018 btrfs_release_path(root, path);
1019 goto again;
1021 err = 0;
1022 break;
1024 path->slots[0]++;
1026 fail:
1027 return err;
1030 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1031 struct btrfs_root *root,
1032 struct btrfs_path *path,
1033 u64 bytenr, u64 parent,
1034 u64 root_objectid, u64 owner,
1035 u64 offset, int refs_to_add)
1037 struct btrfs_key key;
1038 struct extent_buffer *leaf;
1039 u32 size;
1040 u32 num_refs;
1041 int ret;
1043 key.objectid = bytenr;
1044 if (parent) {
1045 key.type = BTRFS_SHARED_DATA_REF_KEY;
1046 key.offset = parent;
1047 size = sizeof(struct btrfs_shared_data_ref);
1048 } else {
1049 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1050 key.offset = hash_extent_data_ref(root_objectid,
1051 owner, offset);
1052 size = sizeof(struct btrfs_extent_data_ref);
1055 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1056 if (ret && ret != -EEXIST)
1057 goto fail;
1059 leaf = path->nodes[0];
1060 if (parent) {
1061 struct btrfs_shared_data_ref *ref;
1062 ref = btrfs_item_ptr(leaf, path->slots[0],
1063 struct btrfs_shared_data_ref);
1064 if (ret == 0) {
1065 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1066 } else {
1067 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1068 num_refs += refs_to_add;
1069 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1071 } else {
1072 struct btrfs_extent_data_ref *ref;
1073 while (ret == -EEXIST) {
1074 ref = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_data_ref);
1076 if (match_extent_data_ref(leaf, ref, root_objectid,
1077 owner, offset))
1078 break;
1079 btrfs_release_path(root, path);
1080 key.offset++;
1081 ret = btrfs_insert_empty_item(trans, root, path, &key,
1082 size);
1083 if (ret && ret != -EEXIST)
1084 goto fail;
1086 leaf = path->nodes[0];
1088 ref = btrfs_item_ptr(leaf, path->slots[0],
1089 struct btrfs_extent_data_ref);
1090 if (ret == 0) {
1091 btrfs_set_extent_data_ref_root(leaf, ref,
1092 root_objectid);
1093 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1094 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1095 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1096 } else {
1097 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1098 num_refs += refs_to_add;
1099 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1102 btrfs_mark_buffer_dirty(leaf);
1103 ret = 0;
1104 fail:
1105 btrfs_release_path(root, path);
1106 return ret;
1109 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1110 struct btrfs_root *root,
1111 struct btrfs_path *path,
1112 int refs_to_drop)
1114 struct btrfs_key key;
1115 struct btrfs_extent_data_ref *ref1 = NULL;
1116 struct btrfs_shared_data_ref *ref2 = NULL;
1117 struct extent_buffer *leaf;
1118 u32 num_refs = 0;
1119 int ret = 0;
1121 leaf = path->nodes[0];
1122 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1124 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1125 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1126 struct btrfs_extent_data_ref);
1127 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1128 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1129 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1130 struct btrfs_shared_data_ref);
1131 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1132 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1133 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1134 struct btrfs_extent_ref_v0 *ref0;
1135 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1136 struct btrfs_extent_ref_v0);
1137 num_refs = btrfs_ref_count_v0(leaf, ref0);
1138 #endif
1139 } else {
1140 BUG();
1143 BUG_ON(num_refs < refs_to_drop);
1144 num_refs -= refs_to_drop;
1146 if (num_refs == 0) {
1147 ret = btrfs_del_item(trans, root, path);
1148 } else {
1149 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1150 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1151 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1152 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1154 else {
1155 struct btrfs_extent_ref_v0 *ref0;
1156 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1157 struct btrfs_extent_ref_v0);
1158 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1160 #endif
1161 btrfs_mark_buffer_dirty(leaf);
1163 return ret;
1166 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1167 struct btrfs_path *path,
1168 struct btrfs_extent_inline_ref *iref)
1170 struct btrfs_key key;
1171 struct extent_buffer *leaf;
1172 struct btrfs_extent_data_ref *ref1;
1173 struct btrfs_shared_data_ref *ref2;
1174 u32 num_refs = 0;
1176 leaf = path->nodes[0];
1177 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1178 if (iref) {
1179 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1180 BTRFS_EXTENT_DATA_REF_KEY) {
1181 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1182 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1183 } else {
1184 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1185 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1187 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1188 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1190 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1191 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1192 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_shared_data_ref);
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1196 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1197 struct btrfs_extent_ref_v0 *ref0;
1198 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1199 struct btrfs_extent_ref_v0);
1200 num_refs = btrfs_ref_count_v0(leaf, ref0);
1201 #endif
1202 } else {
1203 WARN_ON(1);
1205 return num_refs;
1208 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1209 struct btrfs_root *root,
1210 struct btrfs_path *path,
1211 u64 bytenr, u64 parent,
1212 u64 root_objectid)
1214 struct btrfs_key key;
1215 int ret;
1217 key.objectid = bytenr;
1218 if (parent) {
1219 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1220 key.offset = parent;
1221 } else {
1222 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1223 key.offset = root_objectid;
1226 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1227 if (ret > 0)
1228 ret = -ENOENT;
1229 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1230 if (ret == -ENOENT && parent) {
1231 btrfs_release_path(root, path);
1232 key.type = BTRFS_EXTENT_REF_V0_KEY;
1233 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1234 if (ret > 0)
1235 ret = -ENOENT;
1237 #endif
1238 return ret;
1241 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1242 struct btrfs_root *root,
1243 struct btrfs_path *path,
1244 u64 bytenr, u64 parent,
1245 u64 root_objectid)
1247 struct btrfs_key key;
1248 int ret;
1250 key.objectid = bytenr;
1251 if (parent) {
1252 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1256 key.offset = root_objectid;
1259 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1260 btrfs_release_path(root, path);
1261 return ret;
1264 static inline int extent_ref_type(u64 parent, u64 owner)
1266 int type;
1267 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1268 if (parent > 0)
1269 type = BTRFS_SHARED_BLOCK_REF_KEY;
1270 else
1271 type = BTRFS_TREE_BLOCK_REF_KEY;
1272 } else {
1273 if (parent > 0)
1274 type = BTRFS_SHARED_DATA_REF_KEY;
1275 else
1276 type = BTRFS_EXTENT_DATA_REF_KEY;
1278 return type;
1281 static int find_next_key(struct btrfs_path *path, int level,
1282 struct btrfs_key *key)
1285 for (; level < BTRFS_MAX_LEVEL; level++) {
1286 if (!path->nodes[level])
1287 break;
1288 if (path->slots[level] + 1 >=
1289 btrfs_header_nritems(path->nodes[level]))
1290 continue;
1291 if (level == 0)
1292 btrfs_item_key_to_cpu(path->nodes[level], key,
1293 path->slots[level] + 1);
1294 else
1295 btrfs_node_key_to_cpu(path->nodes[level], key,
1296 path->slots[level] + 1);
1297 return 0;
1299 return 1;
1303 * look for inline back ref. if back ref is found, *ref_ret is set
1304 * to the address of inline back ref, and 0 is returned.
1306 * if back ref isn't found, *ref_ret is set to the address where it
1307 * should be inserted, and -ENOENT is returned.
1309 * if insert is true and there are too many inline back refs, the path
1310 * points to the extent item, and -EAGAIN is returned.
1312 * NOTE: inline back refs are ordered in the same way that back ref
1313 * items in the tree are ordered.
1315 static noinline_for_stack
1316 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1317 struct btrfs_root *root,
1318 struct btrfs_path *path,
1319 struct btrfs_extent_inline_ref **ref_ret,
1320 u64 bytenr, u64 num_bytes,
1321 u64 parent, u64 root_objectid,
1322 u64 owner, u64 offset, int insert)
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_item *ei;
1327 struct btrfs_extent_inline_ref *iref;
1328 u64 flags;
1329 u64 item_size;
1330 unsigned long ptr;
1331 unsigned long end;
1332 int extra_size;
1333 int type;
1334 int want;
1335 int ret;
1336 int err = 0;
1338 key.objectid = bytenr;
1339 key.type = BTRFS_EXTENT_ITEM_KEY;
1340 key.offset = num_bytes;
1342 want = extent_ref_type(parent, owner);
1343 if (insert) {
1344 extra_size = btrfs_extent_inline_ref_size(want);
1345 path->keep_locks = 1;
1346 } else
1347 extra_size = -1;
1348 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1349 if (ret < 0) {
1350 err = ret;
1351 goto out;
1353 BUG_ON(ret);
1355 leaf = path->nodes[0];
1356 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 if (item_size < sizeof(*ei)) {
1359 if (!insert) {
1360 err = -ENOENT;
1361 goto out;
1363 ret = convert_extent_item_v0(trans, root, path, owner,
1364 extra_size);
1365 if (ret < 0) {
1366 err = ret;
1367 goto out;
1369 leaf = path->nodes[0];
1370 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1372 #endif
1373 BUG_ON(item_size < sizeof(*ei));
1375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1376 flags = btrfs_extent_flags(leaf, ei);
1378 ptr = (unsigned long)(ei + 1);
1379 end = (unsigned long)ei + item_size;
1381 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1382 ptr += sizeof(struct btrfs_tree_block_info);
1383 BUG_ON(ptr > end);
1384 } else {
1385 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1388 err = -ENOENT;
1389 while (1) {
1390 if (ptr >= end) {
1391 WARN_ON(ptr > end);
1392 break;
1394 iref = (struct btrfs_extent_inline_ref *)ptr;
1395 type = btrfs_extent_inline_ref_type(leaf, iref);
1396 if (want < type)
1397 break;
1398 if (want > type) {
1399 ptr += btrfs_extent_inline_ref_size(type);
1400 continue;
1403 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 struct btrfs_extent_data_ref *dref;
1405 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1406 if (match_extent_data_ref(leaf, dref, root_objectid,
1407 owner, offset)) {
1408 err = 0;
1409 break;
1411 if (hash_extent_data_ref_item(leaf, dref) <
1412 hash_extent_data_ref(root_objectid, owner, offset))
1413 break;
1414 } else {
1415 u64 ref_offset;
1416 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1417 if (parent > 0) {
1418 if (parent == ref_offset) {
1419 err = 0;
1420 break;
1422 if (ref_offset < parent)
1423 break;
1424 } else {
1425 if (root_objectid == ref_offset) {
1426 err = 0;
1427 break;
1429 if (ref_offset < root_objectid)
1430 break;
1433 ptr += btrfs_extent_inline_ref_size(type);
1435 if (err == -ENOENT && insert) {
1436 if (item_size + extra_size >=
1437 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1438 err = -EAGAIN;
1439 goto out;
1442 * To add new inline back ref, we have to make sure
1443 * there is no corresponding back ref item.
1444 * For simplicity, we just do not add new inline back
1445 * ref if there is any kind of item for this block
1447 if (find_next_key(path, 0, &key) == 0 &&
1448 key.objectid == bytenr &&
1449 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1450 err = -EAGAIN;
1451 goto out;
1454 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1455 out:
1456 if (insert) {
1457 path->keep_locks = 0;
1458 btrfs_unlock_up_safe(path, 1);
1460 return err;
1464 * helper to add new inline back ref
1466 static noinline_for_stack
1467 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1468 struct btrfs_root *root,
1469 struct btrfs_path *path,
1470 struct btrfs_extent_inline_ref *iref,
1471 u64 parent, u64 root_objectid,
1472 u64 owner, u64 offset, int refs_to_add,
1473 struct btrfs_delayed_extent_op *extent_op)
1475 struct extent_buffer *leaf;
1476 struct btrfs_extent_item *ei;
1477 unsigned long ptr;
1478 unsigned long end;
1479 unsigned long item_offset;
1480 u64 refs;
1481 int size;
1482 int type;
1483 int ret;
1485 leaf = path->nodes[0];
1486 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1487 item_offset = (unsigned long)iref - (unsigned long)ei;
1489 type = extent_ref_type(parent, owner);
1490 size = btrfs_extent_inline_ref_size(type);
1492 ret = btrfs_extend_item(trans, root, path, size);
1493 BUG_ON(ret);
1495 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1496 refs = btrfs_extent_refs(leaf, ei);
1497 refs += refs_to_add;
1498 btrfs_set_extent_refs(leaf, ei, refs);
1499 if (extent_op)
1500 __run_delayed_extent_op(extent_op, leaf, ei);
1502 ptr = (unsigned long)ei + item_offset;
1503 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1504 if (ptr < end - size)
1505 memmove_extent_buffer(leaf, ptr + size, ptr,
1506 end - size - ptr);
1508 iref = (struct btrfs_extent_inline_ref *)ptr;
1509 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1510 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1511 struct btrfs_extent_data_ref *dref;
1512 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1513 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1514 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1515 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1516 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1517 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1518 struct btrfs_shared_data_ref *sref;
1519 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1520 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1521 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1522 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1523 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1524 } else {
1525 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1527 btrfs_mark_buffer_dirty(leaf);
1528 return 0;
1531 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1532 struct btrfs_root *root,
1533 struct btrfs_path *path,
1534 struct btrfs_extent_inline_ref **ref_ret,
1535 u64 bytenr, u64 num_bytes, u64 parent,
1536 u64 root_objectid, u64 owner, u64 offset)
1538 int ret;
1540 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1541 bytenr, num_bytes, parent,
1542 root_objectid, owner, offset, 0);
1543 if (ret != -ENOENT)
1544 return ret;
1546 btrfs_release_path(root, path);
1547 *ref_ret = NULL;
1549 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1550 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1551 root_objectid);
1552 } else {
1553 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1554 root_objectid, owner, offset);
1556 return ret;
1560 * helper to update/remove inline back ref
1562 static noinline_for_stack
1563 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1564 struct btrfs_root *root,
1565 struct btrfs_path *path,
1566 struct btrfs_extent_inline_ref *iref,
1567 int refs_to_mod,
1568 struct btrfs_delayed_extent_op *extent_op)
1570 struct extent_buffer *leaf;
1571 struct btrfs_extent_item *ei;
1572 struct btrfs_extent_data_ref *dref = NULL;
1573 struct btrfs_shared_data_ref *sref = NULL;
1574 unsigned long ptr;
1575 unsigned long end;
1576 u32 item_size;
1577 int size;
1578 int type;
1579 int ret;
1580 u64 refs;
1582 leaf = path->nodes[0];
1583 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1584 refs = btrfs_extent_refs(leaf, ei);
1585 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1586 refs += refs_to_mod;
1587 btrfs_set_extent_refs(leaf, ei, refs);
1588 if (extent_op)
1589 __run_delayed_extent_op(extent_op, leaf, ei);
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1593 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1594 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1595 refs = btrfs_extent_data_ref_count(leaf, dref);
1596 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1597 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1598 refs = btrfs_shared_data_ref_count(leaf, sref);
1599 } else {
1600 refs = 1;
1601 BUG_ON(refs_to_mod != -1);
1604 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1605 refs += refs_to_mod;
1607 if (refs > 0) {
1608 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1609 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1610 else
1611 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1612 } else {
1613 size = btrfs_extent_inline_ref_size(type);
1614 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1615 ptr = (unsigned long)iref;
1616 end = (unsigned long)ei + item_size;
1617 if (ptr + size < end)
1618 memmove_extent_buffer(leaf, ptr, ptr + size,
1619 end - ptr - size);
1620 item_size -= size;
1621 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1622 BUG_ON(ret);
1624 btrfs_mark_buffer_dirty(leaf);
1625 return 0;
1628 static noinline_for_stack
1629 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1630 struct btrfs_root *root,
1631 struct btrfs_path *path,
1632 u64 bytenr, u64 num_bytes, u64 parent,
1633 u64 root_objectid, u64 owner,
1634 u64 offset, int refs_to_add,
1635 struct btrfs_delayed_extent_op *extent_op)
1637 struct btrfs_extent_inline_ref *iref;
1638 int ret;
1640 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1641 bytenr, num_bytes, parent,
1642 root_objectid, owner, offset, 1);
1643 if (ret == 0) {
1644 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1645 ret = update_inline_extent_backref(trans, root, path, iref,
1646 refs_to_add, extent_op);
1647 } else if (ret == -ENOENT) {
1648 ret = setup_inline_extent_backref(trans, root, path, iref,
1649 parent, root_objectid,
1650 owner, offset, refs_to_add,
1651 extent_op);
1653 return ret;
1656 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1657 struct btrfs_root *root,
1658 struct btrfs_path *path,
1659 u64 bytenr, u64 parent, u64 root_objectid,
1660 u64 owner, u64 offset, int refs_to_add)
1662 int ret;
1663 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1664 BUG_ON(refs_to_add != 1);
1665 ret = insert_tree_block_ref(trans, root, path, bytenr,
1666 parent, root_objectid);
1667 } else {
1668 ret = insert_extent_data_ref(trans, root, path, bytenr,
1669 parent, root_objectid,
1670 owner, offset, refs_to_add);
1672 return ret;
1675 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1676 struct btrfs_root *root,
1677 struct btrfs_path *path,
1678 struct btrfs_extent_inline_ref *iref,
1679 int refs_to_drop, int is_data)
1681 int ret;
1683 BUG_ON(!is_data && refs_to_drop != 1);
1684 if (iref) {
1685 ret = update_inline_extent_backref(trans, root, path, iref,
1686 -refs_to_drop, NULL);
1687 } else if (is_data) {
1688 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1689 } else {
1690 ret = btrfs_del_item(trans, root, path);
1692 return ret;
1695 static void btrfs_issue_discard(struct block_device *bdev,
1696 u64 start, u64 len)
1698 blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_KERNEL,
1699 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
1702 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1703 u64 num_bytes)
1705 int ret;
1706 u64 map_length = num_bytes;
1707 struct btrfs_multi_bio *multi = NULL;
1709 if (!btrfs_test_opt(root, DISCARD))
1710 return 0;
1712 /* Tell the block device(s) that the sectors can be discarded */
1713 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
1714 bytenr, &map_length, &multi, 0);
1715 if (!ret) {
1716 struct btrfs_bio_stripe *stripe = multi->stripes;
1717 int i;
1719 if (map_length > num_bytes)
1720 map_length = num_bytes;
1722 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1723 btrfs_issue_discard(stripe->dev->bdev,
1724 stripe->physical,
1725 map_length);
1727 kfree(multi);
1730 return ret;
1733 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1734 struct btrfs_root *root,
1735 u64 bytenr, u64 num_bytes, u64 parent,
1736 u64 root_objectid, u64 owner, u64 offset)
1738 int ret;
1739 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1740 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1742 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1743 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1744 parent, root_objectid, (int)owner,
1745 BTRFS_ADD_DELAYED_REF, NULL);
1746 } else {
1747 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1748 parent, root_objectid, owner, offset,
1749 BTRFS_ADD_DELAYED_REF, NULL);
1751 return ret;
1754 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 u64 bytenr, u64 num_bytes,
1757 u64 parent, u64 root_objectid,
1758 u64 owner, u64 offset, int refs_to_add,
1759 struct btrfs_delayed_extent_op *extent_op)
1761 struct btrfs_path *path;
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *item;
1764 u64 refs;
1765 int ret;
1766 int err = 0;
1768 path = btrfs_alloc_path();
1769 if (!path)
1770 return -ENOMEM;
1772 path->reada = 1;
1773 path->leave_spinning = 1;
1774 /* this will setup the path even if it fails to insert the back ref */
1775 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1776 path, bytenr, num_bytes, parent,
1777 root_objectid, owner, offset,
1778 refs_to_add, extent_op);
1779 if (ret == 0)
1780 goto out;
1782 if (ret != -EAGAIN) {
1783 err = ret;
1784 goto out;
1787 leaf = path->nodes[0];
1788 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1789 refs = btrfs_extent_refs(leaf, item);
1790 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1791 if (extent_op)
1792 __run_delayed_extent_op(extent_op, leaf, item);
1794 btrfs_mark_buffer_dirty(leaf);
1795 btrfs_release_path(root->fs_info->extent_root, path);
1797 path->reada = 1;
1798 path->leave_spinning = 1;
1800 /* now insert the actual backref */
1801 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1802 path, bytenr, parent, root_objectid,
1803 owner, offset, refs_to_add);
1804 BUG_ON(ret);
1805 out:
1806 btrfs_free_path(path);
1807 return err;
1810 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root,
1812 struct btrfs_delayed_ref_node *node,
1813 struct btrfs_delayed_extent_op *extent_op,
1814 int insert_reserved)
1816 int ret = 0;
1817 struct btrfs_delayed_data_ref *ref;
1818 struct btrfs_key ins;
1819 u64 parent = 0;
1820 u64 ref_root = 0;
1821 u64 flags = 0;
1823 ins.objectid = node->bytenr;
1824 ins.offset = node->num_bytes;
1825 ins.type = BTRFS_EXTENT_ITEM_KEY;
1827 ref = btrfs_delayed_node_to_data_ref(node);
1828 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1829 parent = ref->parent;
1830 else
1831 ref_root = ref->root;
1833 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1834 if (extent_op) {
1835 BUG_ON(extent_op->update_key);
1836 flags |= extent_op->flags_to_set;
1838 ret = alloc_reserved_file_extent(trans, root,
1839 parent, ref_root, flags,
1840 ref->objectid, ref->offset,
1841 &ins, node->ref_mod);
1842 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1843 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1844 node->num_bytes, parent,
1845 ref_root, ref->objectid,
1846 ref->offset, node->ref_mod,
1847 extent_op);
1848 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1849 ret = __btrfs_free_extent(trans, root, node->bytenr,
1850 node->num_bytes, parent,
1851 ref_root, ref->objectid,
1852 ref->offset, node->ref_mod,
1853 extent_op);
1854 } else {
1855 BUG();
1857 return ret;
1860 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1861 struct extent_buffer *leaf,
1862 struct btrfs_extent_item *ei)
1864 u64 flags = btrfs_extent_flags(leaf, ei);
1865 if (extent_op->update_flags) {
1866 flags |= extent_op->flags_to_set;
1867 btrfs_set_extent_flags(leaf, ei, flags);
1870 if (extent_op->update_key) {
1871 struct btrfs_tree_block_info *bi;
1872 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1873 bi = (struct btrfs_tree_block_info *)(ei + 1);
1874 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1878 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1879 struct btrfs_root *root,
1880 struct btrfs_delayed_ref_node *node,
1881 struct btrfs_delayed_extent_op *extent_op)
1883 struct btrfs_key key;
1884 struct btrfs_path *path;
1885 struct btrfs_extent_item *ei;
1886 struct extent_buffer *leaf;
1887 u32 item_size;
1888 int ret;
1889 int err = 0;
1891 path = btrfs_alloc_path();
1892 if (!path)
1893 return -ENOMEM;
1895 key.objectid = node->bytenr;
1896 key.type = BTRFS_EXTENT_ITEM_KEY;
1897 key.offset = node->num_bytes;
1899 path->reada = 1;
1900 path->leave_spinning = 1;
1901 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1902 path, 0, 1);
1903 if (ret < 0) {
1904 err = ret;
1905 goto out;
1907 if (ret > 0) {
1908 err = -EIO;
1909 goto out;
1912 leaf = path->nodes[0];
1913 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1914 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1915 if (item_size < sizeof(*ei)) {
1916 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1917 path, (u64)-1, 0);
1918 if (ret < 0) {
1919 err = ret;
1920 goto out;
1922 leaf = path->nodes[0];
1923 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1925 #endif
1926 BUG_ON(item_size < sizeof(*ei));
1927 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1928 __run_delayed_extent_op(extent_op, leaf, ei);
1930 btrfs_mark_buffer_dirty(leaf);
1931 out:
1932 btrfs_free_path(path);
1933 return err;
1936 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1937 struct btrfs_root *root,
1938 struct btrfs_delayed_ref_node *node,
1939 struct btrfs_delayed_extent_op *extent_op,
1940 int insert_reserved)
1942 int ret = 0;
1943 struct btrfs_delayed_tree_ref *ref;
1944 struct btrfs_key ins;
1945 u64 parent = 0;
1946 u64 ref_root = 0;
1948 ins.objectid = node->bytenr;
1949 ins.offset = node->num_bytes;
1950 ins.type = BTRFS_EXTENT_ITEM_KEY;
1952 ref = btrfs_delayed_node_to_tree_ref(node);
1953 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1954 parent = ref->parent;
1955 else
1956 ref_root = ref->root;
1958 BUG_ON(node->ref_mod != 1);
1959 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1960 BUG_ON(!extent_op || !extent_op->update_flags ||
1961 !extent_op->update_key);
1962 ret = alloc_reserved_tree_block(trans, root,
1963 parent, ref_root,
1964 extent_op->flags_to_set,
1965 &extent_op->key,
1966 ref->level, &ins);
1967 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1968 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1969 node->num_bytes, parent, ref_root,
1970 ref->level, 0, 1, extent_op);
1971 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1972 ret = __btrfs_free_extent(trans, root, node->bytenr,
1973 node->num_bytes, parent, ref_root,
1974 ref->level, 0, 1, extent_op);
1975 } else {
1976 BUG();
1978 return ret;
1981 /* helper function to actually process a single delayed ref entry */
1982 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1983 struct btrfs_root *root,
1984 struct btrfs_delayed_ref_node *node,
1985 struct btrfs_delayed_extent_op *extent_op,
1986 int insert_reserved)
1988 int ret;
1989 if (btrfs_delayed_ref_is_head(node)) {
1990 struct btrfs_delayed_ref_head *head;
1992 * we've hit the end of the chain and we were supposed
1993 * to insert this extent into the tree. But, it got
1994 * deleted before we ever needed to insert it, so all
1995 * we have to do is clean up the accounting
1997 BUG_ON(extent_op);
1998 head = btrfs_delayed_node_to_head(node);
1999 if (insert_reserved) {
2000 btrfs_pin_extent(root, node->bytenr,
2001 node->num_bytes, 1);
2002 if (head->is_data) {
2003 ret = btrfs_del_csums(trans, root,
2004 node->bytenr,
2005 node->num_bytes);
2006 BUG_ON(ret);
2009 mutex_unlock(&head->mutex);
2010 return 0;
2013 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2014 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2015 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2016 insert_reserved);
2017 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2018 node->type == BTRFS_SHARED_DATA_REF_KEY)
2019 ret = run_delayed_data_ref(trans, root, node, extent_op,
2020 insert_reserved);
2021 else
2022 BUG();
2023 return ret;
2026 static noinline struct btrfs_delayed_ref_node *
2027 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2029 struct rb_node *node;
2030 struct btrfs_delayed_ref_node *ref;
2031 int action = BTRFS_ADD_DELAYED_REF;
2032 again:
2034 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2035 * this prevents ref count from going down to zero when
2036 * there still are pending delayed ref.
2038 node = rb_prev(&head->node.rb_node);
2039 while (1) {
2040 if (!node)
2041 break;
2042 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2043 rb_node);
2044 if (ref->bytenr != head->node.bytenr)
2045 break;
2046 if (ref->action == action)
2047 return ref;
2048 node = rb_prev(node);
2050 if (action == BTRFS_ADD_DELAYED_REF) {
2051 action = BTRFS_DROP_DELAYED_REF;
2052 goto again;
2054 return NULL;
2057 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2058 struct btrfs_root *root,
2059 struct list_head *cluster)
2061 struct btrfs_delayed_ref_root *delayed_refs;
2062 struct btrfs_delayed_ref_node *ref;
2063 struct btrfs_delayed_ref_head *locked_ref = NULL;
2064 struct btrfs_delayed_extent_op *extent_op;
2065 int ret;
2066 int count = 0;
2067 int must_insert_reserved = 0;
2069 delayed_refs = &trans->transaction->delayed_refs;
2070 while (1) {
2071 if (!locked_ref) {
2072 /* pick a new head ref from the cluster list */
2073 if (list_empty(cluster))
2074 break;
2076 locked_ref = list_entry(cluster->next,
2077 struct btrfs_delayed_ref_head, cluster);
2079 /* grab the lock that says we are going to process
2080 * all the refs for this head */
2081 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2084 * we may have dropped the spin lock to get the head
2085 * mutex lock, and that might have given someone else
2086 * time to free the head. If that's true, it has been
2087 * removed from our list and we can move on.
2089 if (ret == -EAGAIN) {
2090 locked_ref = NULL;
2091 count++;
2092 continue;
2097 * record the must insert reserved flag before we
2098 * drop the spin lock.
2100 must_insert_reserved = locked_ref->must_insert_reserved;
2101 locked_ref->must_insert_reserved = 0;
2103 extent_op = locked_ref->extent_op;
2104 locked_ref->extent_op = NULL;
2107 * locked_ref is the head node, so we have to go one
2108 * node back for any delayed ref updates
2110 ref = select_delayed_ref(locked_ref);
2111 if (!ref) {
2112 /* All delayed refs have been processed, Go ahead
2113 * and send the head node to run_one_delayed_ref,
2114 * so that any accounting fixes can happen
2116 ref = &locked_ref->node;
2118 if (extent_op && must_insert_reserved) {
2119 kfree(extent_op);
2120 extent_op = NULL;
2123 if (extent_op) {
2124 spin_unlock(&delayed_refs->lock);
2126 ret = run_delayed_extent_op(trans, root,
2127 ref, extent_op);
2128 BUG_ON(ret);
2129 kfree(extent_op);
2131 cond_resched();
2132 spin_lock(&delayed_refs->lock);
2133 continue;
2136 list_del_init(&locked_ref->cluster);
2137 locked_ref = NULL;
2140 ref->in_tree = 0;
2141 rb_erase(&ref->rb_node, &delayed_refs->root);
2142 delayed_refs->num_entries--;
2144 spin_unlock(&delayed_refs->lock);
2146 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2147 must_insert_reserved);
2148 BUG_ON(ret);
2150 btrfs_put_delayed_ref(ref);
2151 kfree(extent_op);
2152 count++;
2154 cond_resched();
2155 spin_lock(&delayed_refs->lock);
2157 return count;
2161 * this starts processing the delayed reference count updates and
2162 * extent insertions we have queued up so far. count can be
2163 * 0, which means to process everything in the tree at the start
2164 * of the run (but not newly added entries), or it can be some target
2165 * number you'd like to process.
2167 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root, unsigned long count)
2170 struct rb_node *node;
2171 struct btrfs_delayed_ref_root *delayed_refs;
2172 struct btrfs_delayed_ref_node *ref;
2173 struct list_head cluster;
2174 int ret;
2175 int run_all = count == (unsigned long)-1;
2176 int run_most = 0;
2178 if (root == root->fs_info->extent_root)
2179 root = root->fs_info->tree_root;
2181 delayed_refs = &trans->transaction->delayed_refs;
2182 INIT_LIST_HEAD(&cluster);
2183 again:
2184 spin_lock(&delayed_refs->lock);
2185 if (count == 0) {
2186 count = delayed_refs->num_entries * 2;
2187 run_most = 1;
2189 while (1) {
2190 if (!(run_all || run_most) &&
2191 delayed_refs->num_heads_ready < 64)
2192 break;
2195 * go find something we can process in the rbtree. We start at
2196 * the beginning of the tree, and then build a cluster
2197 * of refs to process starting at the first one we are able to
2198 * lock
2200 ret = btrfs_find_ref_cluster(trans, &cluster,
2201 delayed_refs->run_delayed_start);
2202 if (ret)
2203 break;
2205 ret = run_clustered_refs(trans, root, &cluster);
2206 BUG_ON(ret < 0);
2208 count -= min_t(unsigned long, ret, count);
2210 if (count == 0)
2211 break;
2214 if (run_all) {
2215 node = rb_first(&delayed_refs->root);
2216 if (!node)
2217 goto out;
2218 count = (unsigned long)-1;
2220 while (node) {
2221 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2222 rb_node);
2223 if (btrfs_delayed_ref_is_head(ref)) {
2224 struct btrfs_delayed_ref_head *head;
2226 head = btrfs_delayed_node_to_head(ref);
2227 atomic_inc(&ref->refs);
2229 spin_unlock(&delayed_refs->lock);
2230 mutex_lock(&head->mutex);
2231 mutex_unlock(&head->mutex);
2233 btrfs_put_delayed_ref(ref);
2234 cond_resched();
2235 goto again;
2237 node = rb_next(node);
2239 spin_unlock(&delayed_refs->lock);
2240 schedule_timeout(1);
2241 goto again;
2243 out:
2244 spin_unlock(&delayed_refs->lock);
2245 return 0;
2248 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2249 struct btrfs_root *root,
2250 u64 bytenr, u64 num_bytes, u64 flags,
2251 int is_data)
2253 struct btrfs_delayed_extent_op *extent_op;
2254 int ret;
2256 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2257 if (!extent_op)
2258 return -ENOMEM;
2260 extent_op->flags_to_set = flags;
2261 extent_op->update_flags = 1;
2262 extent_op->update_key = 0;
2263 extent_op->is_data = is_data ? 1 : 0;
2265 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2266 if (ret)
2267 kfree(extent_op);
2268 return ret;
2271 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2272 struct btrfs_root *root,
2273 struct btrfs_path *path,
2274 u64 objectid, u64 offset, u64 bytenr)
2276 struct btrfs_delayed_ref_head *head;
2277 struct btrfs_delayed_ref_node *ref;
2278 struct btrfs_delayed_data_ref *data_ref;
2279 struct btrfs_delayed_ref_root *delayed_refs;
2280 struct rb_node *node;
2281 int ret = 0;
2283 ret = -ENOENT;
2284 delayed_refs = &trans->transaction->delayed_refs;
2285 spin_lock(&delayed_refs->lock);
2286 head = btrfs_find_delayed_ref_head(trans, bytenr);
2287 if (!head)
2288 goto out;
2290 if (!mutex_trylock(&head->mutex)) {
2291 atomic_inc(&head->node.refs);
2292 spin_unlock(&delayed_refs->lock);
2294 btrfs_release_path(root->fs_info->extent_root, path);
2296 mutex_lock(&head->mutex);
2297 mutex_unlock(&head->mutex);
2298 btrfs_put_delayed_ref(&head->node);
2299 return -EAGAIN;
2302 node = rb_prev(&head->node.rb_node);
2303 if (!node)
2304 goto out_unlock;
2306 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2308 if (ref->bytenr != bytenr)
2309 goto out_unlock;
2311 ret = 1;
2312 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2313 goto out_unlock;
2315 data_ref = btrfs_delayed_node_to_data_ref(ref);
2317 node = rb_prev(node);
2318 if (node) {
2319 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2320 if (ref->bytenr == bytenr)
2321 goto out_unlock;
2324 if (data_ref->root != root->root_key.objectid ||
2325 data_ref->objectid != objectid || data_ref->offset != offset)
2326 goto out_unlock;
2328 ret = 0;
2329 out_unlock:
2330 mutex_unlock(&head->mutex);
2331 out:
2332 spin_unlock(&delayed_refs->lock);
2333 return ret;
2336 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2337 struct btrfs_root *root,
2338 struct btrfs_path *path,
2339 u64 objectid, u64 offset, u64 bytenr)
2341 struct btrfs_root *extent_root = root->fs_info->extent_root;
2342 struct extent_buffer *leaf;
2343 struct btrfs_extent_data_ref *ref;
2344 struct btrfs_extent_inline_ref *iref;
2345 struct btrfs_extent_item *ei;
2346 struct btrfs_key key;
2347 u32 item_size;
2348 int ret;
2350 key.objectid = bytenr;
2351 key.offset = (u64)-1;
2352 key.type = BTRFS_EXTENT_ITEM_KEY;
2354 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2355 if (ret < 0)
2356 goto out;
2357 BUG_ON(ret == 0);
2359 ret = -ENOENT;
2360 if (path->slots[0] == 0)
2361 goto out;
2363 path->slots[0]--;
2364 leaf = path->nodes[0];
2365 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2367 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2368 goto out;
2370 ret = 1;
2371 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2372 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2373 if (item_size < sizeof(*ei)) {
2374 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2375 goto out;
2377 #endif
2378 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2380 if (item_size != sizeof(*ei) +
2381 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2382 goto out;
2384 if (btrfs_extent_generation(leaf, ei) <=
2385 btrfs_root_last_snapshot(&root->root_item))
2386 goto out;
2388 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2389 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2390 BTRFS_EXTENT_DATA_REF_KEY)
2391 goto out;
2393 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2394 if (btrfs_extent_refs(leaf, ei) !=
2395 btrfs_extent_data_ref_count(leaf, ref) ||
2396 btrfs_extent_data_ref_root(leaf, ref) !=
2397 root->root_key.objectid ||
2398 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2399 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2400 goto out;
2402 ret = 0;
2403 out:
2404 return ret;
2407 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2408 struct btrfs_root *root,
2409 u64 objectid, u64 offset, u64 bytenr)
2411 struct btrfs_path *path;
2412 int ret;
2413 int ret2;
2415 path = btrfs_alloc_path();
2416 if (!path)
2417 return -ENOENT;
2419 do {
2420 ret = check_committed_ref(trans, root, path, objectid,
2421 offset, bytenr);
2422 if (ret && ret != -ENOENT)
2423 goto out;
2425 ret2 = check_delayed_ref(trans, root, path, objectid,
2426 offset, bytenr);
2427 } while (ret2 == -EAGAIN);
2429 if (ret2 && ret2 != -ENOENT) {
2430 ret = ret2;
2431 goto out;
2434 if (ret != -ENOENT || ret2 != -ENOENT)
2435 ret = 0;
2436 out:
2437 btrfs_free_path(path);
2438 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2439 WARN_ON(ret > 0);
2440 return ret;
2443 #if 0
2444 int btrfs_cache_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2445 struct extent_buffer *buf, u32 nr_extents)
2447 struct btrfs_key key;
2448 struct btrfs_file_extent_item *fi;
2449 u64 root_gen;
2450 u32 nritems;
2451 int i;
2452 int level;
2453 int ret = 0;
2454 int shared = 0;
2456 if (!root->ref_cows)
2457 return 0;
2459 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2460 shared = 0;
2461 root_gen = root->root_key.offset;
2462 } else {
2463 shared = 1;
2464 root_gen = trans->transid - 1;
2467 level = btrfs_header_level(buf);
2468 nritems = btrfs_header_nritems(buf);
2470 if (level == 0) {
2471 struct btrfs_leaf_ref *ref;
2472 struct btrfs_extent_info *info;
2474 ref = btrfs_alloc_leaf_ref(root, nr_extents);
2475 if (!ref) {
2476 ret = -ENOMEM;
2477 goto out;
2480 ref->root_gen = root_gen;
2481 ref->bytenr = buf->start;
2482 ref->owner = btrfs_header_owner(buf);
2483 ref->generation = btrfs_header_generation(buf);
2484 ref->nritems = nr_extents;
2485 info = ref->extents;
2487 for (i = 0; nr_extents > 0 && i < nritems; i++) {
2488 u64 disk_bytenr;
2489 btrfs_item_key_to_cpu(buf, &key, i);
2490 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2491 continue;
2492 fi = btrfs_item_ptr(buf, i,
2493 struct btrfs_file_extent_item);
2494 if (btrfs_file_extent_type(buf, fi) ==
2495 BTRFS_FILE_EXTENT_INLINE)
2496 continue;
2497 disk_bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2498 if (disk_bytenr == 0)
2499 continue;
2501 info->bytenr = disk_bytenr;
2502 info->num_bytes =
2503 btrfs_file_extent_disk_num_bytes(buf, fi);
2504 info->objectid = key.objectid;
2505 info->offset = key.offset;
2506 info++;
2509 ret = btrfs_add_leaf_ref(root, ref, shared);
2510 if (ret == -EEXIST && shared) {
2511 struct btrfs_leaf_ref *old;
2512 old = btrfs_lookup_leaf_ref(root, ref->bytenr);
2513 BUG_ON(!old);
2514 btrfs_remove_leaf_ref(root, old);
2515 btrfs_free_leaf_ref(root, old);
2516 ret = btrfs_add_leaf_ref(root, ref, shared);
2518 WARN_ON(ret);
2519 btrfs_free_leaf_ref(root, ref);
2521 out:
2522 return ret;
2525 /* when a block goes through cow, we update the reference counts of
2526 * everything that block points to. The internal pointers of the block
2527 * can be in just about any order, and it is likely to have clusters of
2528 * things that are close together and clusters of things that are not.
2530 * To help reduce the seeks that come with updating all of these reference
2531 * counts, sort them by byte number before actual updates are done.
2533 * struct refsort is used to match byte number to slot in the btree block.
2534 * we sort based on the byte number and then use the slot to actually
2535 * find the item.
2537 * struct refsort is smaller than strcut btrfs_item and smaller than
2538 * struct btrfs_key_ptr. Since we're currently limited to the page size
2539 * for a btree block, there's no way for a kmalloc of refsorts for a
2540 * single node to be bigger than a page.
2542 struct refsort {
2543 u64 bytenr;
2544 u32 slot;
2548 * for passing into sort()
2550 static int refsort_cmp(const void *a_void, const void *b_void)
2552 const struct refsort *a = a_void;
2553 const struct refsort *b = b_void;
2555 if (a->bytenr < b->bytenr)
2556 return -1;
2557 if (a->bytenr > b->bytenr)
2558 return 1;
2559 return 0;
2561 #endif
2563 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2564 struct btrfs_root *root,
2565 struct extent_buffer *buf,
2566 int full_backref, int inc)
2568 u64 bytenr;
2569 u64 num_bytes;
2570 u64 parent;
2571 u64 ref_root;
2572 u32 nritems;
2573 struct btrfs_key key;
2574 struct btrfs_file_extent_item *fi;
2575 int i;
2576 int level;
2577 int ret = 0;
2578 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2579 u64, u64, u64, u64, u64, u64);
2581 ref_root = btrfs_header_owner(buf);
2582 nritems = btrfs_header_nritems(buf);
2583 level = btrfs_header_level(buf);
2585 if (!root->ref_cows && level == 0)
2586 return 0;
2588 if (inc)
2589 process_func = btrfs_inc_extent_ref;
2590 else
2591 process_func = btrfs_free_extent;
2593 if (full_backref)
2594 parent = buf->start;
2595 else
2596 parent = 0;
2598 for (i = 0; i < nritems; i++) {
2599 if (level == 0) {
2600 btrfs_item_key_to_cpu(buf, &key, i);
2601 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2602 continue;
2603 fi = btrfs_item_ptr(buf, i,
2604 struct btrfs_file_extent_item);
2605 if (btrfs_file_extent_type(buf, fi) ==
2606 BTRFS_FILE_EXTENT_INLINE)
2607 continue;
2608 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2609 if (bytenr == 0)
2610 continue;
2612 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2613 key.offset -= btrfs_file_extent_offset(buf, fi);
2614 ret = process_func(trans, root, bytenr, num_bytes,
2615 parent, ref_root, key.objectid,
2616 key.offset);
2617 if (ret)
2618 goto fail;
2619 } else {
2620 bytenr = btrfs_node_blockptr(buf, i);
2621 num_bytes = btrfs_level_size(root, level - 1);
2622 ret = process_func(trans, root, bytenr, num_bytes,
2623 parent, ref_root, level - 1, 0);
2624 if (ret)
2625 goto fail;
2628 return 0;
2629 fail:
2630 BUG();
2631 return ret;
2634 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2635 struct extent_buffer *buf, int full_backref)
2637 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2640 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2641 struct extent_buffer *buf, int full_backref)
2643 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2646 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2647 struct btrfs_root *root,
2648 struct btrfs_path *path,
2649 struct btrfs_block_group_cache *cache)
2651 int ret;
2652 struct btrfs_root *extent_root = root->fs_info->extent_root;
2653 unsigned long bi;
2654 struct extent_buffer *leaf;
2656 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2657 if (ret < 0)
2658 goto fail;
2659 BUG_ON(ret);
2661 leaf = path->nodes[0];
2662 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2663 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2664 btrfs_mark_buffer_dirty(leaf);
2665 btrfs_release_path(extent_root, path);
2666 fail:
2667 if (ret)
2668 return ret;
2669 return 0;
2673 static struct btrfs_block_group_cache *
2674 next_block_group(struct btrfs_root *root,
2675 struct btrfs_block_group_cache *cache)
2677 struct rb_node *node;
2678 spin_lock(&root->fs_info->block_group_cache_lock);
2679 node = rb_next(&cache->cache_node);
2680 btrfs_put_block_group(cache);
2681 if (node) {
2682 cache = rb_entry(node, struct btrfs_block_group_cache,
2683 cache_node);
2684 btrfs_get_block_group(cache);
2685 } else
2686 cache = NULL;
2687 spin_unlock(&root->fs_info->block_group_cache_lock);
2688 return cache;
2691 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2692 struct btrfs_root *root)
2694 struct btrfs_block_group_cache *cache;
2695 int err = 0;
2696 struct btrfs_path *path;
2697 u64 last = 0;
2699 path = btrfs_alloc_path();
2700 if (!path)
2701 return -ENOMEM;
2703 while (1) {
2704 if (last == 0) {
2705 err = btrfs_run_delayed_refs(trans, root,
2706 (unsigned long)-1);
2707 BUG_ON(err);
2710 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2711 while (cache) {
2712 if (cache->dirty)
2713 break;
2714 cache = next_block_group(root, cache);
2716 if (!cache) {
2717 if (last == 0)
2718 break;
2719 last = 0;
2720 continue;
2723 cache->dirty = 0;
2724 last = cache->key.objectid + cache->key.offset;
2726 err = write_one_cache_group(trans, root, path, cache);
2727 BUG_ON(err);
2728 btrfs_put_block_group(cache);
2731 btrfs_free_path(path);
2732 return 0;
2735 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2737 struct btrfs_block_group_cache *block_group;
2738 int readonly = 0;
2740 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2741 if (!block_group || block_group->ro)
2742 readonly = 1;
2743 if (block_group)
2744 btrfs_put_block_group(block_group);
2745 return readonly;
2748 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2749 u64 total_bytes, u64 bytes_used,
2750 struct btrfs_space_info **space_info)
2752 struct btrfs_space_info *found;
2753 int i;
2754 int factor;
2756 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2757 BTRFS_BLOCK_GROUP_RAID10))
2758 factor = 2;
2759 else
2760 factor = 1;
2762 found = __find_space_info(info, flags);
2763 if (found) {
2764 spin_lock(&found->lock);
2765 found->total_bytes += total_bytes;
2766 found->disk_total += total_bytes * factor;
2767 found->bytes_used += bytes_used;
2768 found->disk_used += bytes_used * factor;
2769 found->full = 0;
2770 spin_unlock(&found->lock);
2771 *space_info = found;
2772 return 0;
2774 found = kzalloc(sizeof(*found), GFP_NOFS);
2775 if (!found)
2776 return -ENOMEM;
2778 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2779 INIT_LIST_HEAD(&found->block_groups[i]);
2780 init_rwsem(&found->groups_sem);
2781 spin_lock_init(&found->lock);
2782 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2783 BTRFS_BLOCK_GROUP_SYSTEM |
2784 BTRFS_BLOCK_GROUP_METADATA);
2785 found->total_bytes = total_bytes;
2786 found->disk_total = total_bytes * factor;
2787 found->bytes_used = bytes_used;
2788 found->disk_used = bytes_used * factor;
2789 found->bytes_pinned = 0;
2790 found->bytes_reserved = 0;
2791 found->bytes_readonly = 0;
2792 found->bytes_may_use = 0;
2793 found->full = 0;
2794 found->force_alloc = 0;
2795 *space_info = found;
2796 list_add_rcu(&found->list, &info->space_info);
2797 atomic_set(&found->caching_threads, 0);
2798 return 0;
2801 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2803 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2804 BTRFS_BLOCK_GROUP_RAID1 |
2805 BTRFS_BLOCK_GROUP_RAID10 |
2806 BTRFS_BLOCK_GROUP_DUP);
2807 if (extra_flags) {
2808 if (flags & BTRFS_BLOCK_GROUP_DATA)
2809 fs_info->avail_data_alloc_bits |= extra_flags;
2810 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2811 fs_info->avail_metadata_alloc_bits |= extra_flags;
2812 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2813 fs_info->avail_system_alloc_bits |= extra_flags;
2817 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2819 u64 num_devices = root->fs_info->fs_devices->rw_devices;
2821 if (num_devices == 1)
2822 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2823 if (num_devices < 4)
2824 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2826 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2827 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2828 BTRFS_BLOCK_GROUP_RAID10))) {
2829 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2832 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2833 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2834 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2837 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2838 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2839 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2840 (flags & BTRFS_BLOCK_GROUP_DUP)))
2841 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2842 return flags;
2845 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
2847 if (flags & BTRFS_BLOCK_GROUP_DATA)
2848 flags |= root->fs_info->avail_data_alloc_bits &
2849 root->fs_info->data_alloc_profile;
2850 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2851 flags |= root->fs_info->avail_system_alloc_bits &
2852 root->fs_info->system_alloc_profile;
2853 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
2854 flags |= root->fs_info->avail_metadata_alloc_bits &
2855 root->fs_info->metadata_alloc_profile;
2856 return btrfs_reduce_alloc_profile(root, flags);
2859 static u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
2861 u64 flags;
2863 if (data)
2864 flags = BTRFS_BLOCK_GROUP_DATA;
2865 else if (root == root->fs_info->chunk_root)
2866 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2867 else
2868 flags = BTRFS_BLOCK_GROUP_METADATA;
2870 return get_alloc_profile(root, flags);
2873 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
2875 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
2876 BTRFS_BLOCK_GROUP_DATA);
2880 * This will check the space that the inode allocates from to make sure we have
2881 * enough space for bytes.
2883 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
2885 struct btrfs_space_info *data_sinfo;
2886 struct btrfs_root *root = BTRFS_I(inode)->root;
2887 u64 used;
2888 int ret = 0, committed = 0;
2890 /* make sure bytes are sectorsize aligned */
2891 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2893 data_sinfo = BTRFS_I(inode)->space_info;
2894 if (!data_sinfo)
2895 goto alloc;
2897 again:
2898 /* make sure we have enough space to handle the data first */
2899 spin_lock(&data_sinfo->lock);
2900 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
2901 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
2902 data_sinfo->bytes_may_use;
2904 if (used + bytes > data_sinfo->total_bytes) {
2905 struct btrfs_trans_handle *trans;
2908 * if we don't have enough free bytes in this space then we need
2909 * to alloc a new chunk.
2911 if (!data_sinfo->full) {
2912 u64 alloc_target;
2914 data_sinfo->force_alloc = 1;
2915 spin_unlock(&data_sinfo->lock);
2916 alloc:
2917 alloc_target = btrfs_get_alloc_profile(root, 1);
2918 trans = btrfs_join_transaction(root, 1);
2919 if (IS_ERR(trans))
2920 return PTR_ERR(trans);
2922 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
2923 bytes + 2 * 1024 * 1024,
2924 alloc_target, 0);
2925 btrfs_end_transaction(trans, root);
2926 if (ret < 0)
2927 return ret;
2929 if (!data_sinfo) {
2930 btrfs_set_inode_space_info(root, inode);
2931 data_sinfo = BTRFS_I(inode)->space_info;
2933 goto again;
2935 spin_unlock(&data_sinfo->lock);
2937 /* commit the current transaction and try again */
2938 if (!committed && !root->fs_info->open_ioctl_trans) {
2939 committed = 1;
2940 trans = btrfs_join_transaction(root, 1);
2941 if (IS_ERR(trans))
2942 return PTR_ERR(trans);
2943 ret = btrfs_commit_transaction(trans, root);
2944 if (ret)
2945 return ret;
2946 goto again;
2949 #if 0 /* I hope we never need this code again, just in case */
2950 printk(KERN_ERR "no space left, need %llu, %llu bytes_used, "
2951 "%llu bytes_reserved, " "%llu bytes_pinned, "
2952 "%llu bytes_readonly, %llu may use %llu total\n",
2953 (unsigned long long)bytes,
2954 (unsigned long long)data_sinfo->bytes_used,
2955 (unsigned long long)data_sinfo->bytes_reserved,
2956 (unsigned long long)data_sinfo->bytes_pinned,
2957 (unsigned long long)data_sinfo->bytes_readonly,
2958 (unsigned long long)data_sinfo->bytes_may_use,
2959 (unsigned long long)data_sinfo->total_bytes);
2960 #endif
2961 return -ENOSPC;
2963 data_sinfo->bytes_may_use += bytes;
2964 BTRFS_I(inode)->reserved_bytes += bytes;
2965 spin_unlock(&data_sinfo->lock);
2967 return 0;
2971 * called when we are clearing an delalloc extent from the
2972 * inode's io_tree or there was an error for whatever reason
2973 * after calling btrfs_check_data_free_space
2975 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
2977 struct btrfs_root *root = BTRFS_I(inode)->root;
2978 struct btrfs_space_info *data_sinfo;
2980 /* make sure bytes are sectorsize aligned */
2981 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
2983 data_sinfo = BTRFS_I(inode)->space_info;
2984 spin_lock(&data_sinfo->lock);
2985 data_sinfo->bytes_may_use -= bytes;
2986 BTRFS_I(inode)->reserved_bytes -= bytes;
2987 spin_unlock(&data_sinfo->lock);
2990 static void force_metadata_allocation(struct btrfs_fs_info *info)
2992 struct list_head *head = &info->space_info;
2993 struct btrfs_space_info *found;
2995 rcu_read_lock();
2996 list_for_each_entry_rcu(found, head, list) {
2997 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2998 found->force_alloc = 1;
3000 rcu_read_unlock();
3003 static int should_alloc_chunk(struct btrfs_space_info *sinfo,
3004 u64 alloc_bytes)
3006 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3008 if (sinfo->bytes_used + sinfo->bytes_reserved +
3009 alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3010 return 0;
3012 if (sinfo->bytes_used + sinfo->bytes_reserved +
3013 alloc_bytes < div_factor(num_bytes, 8))
3014 return 0;
3016 return 1;
3019 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3020 struct btrfs_root *extent_root, u64 alloc_bytes,
3021 u64 flags, int force)
3023 struct btrfs_space_info *space_info;
3024 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3025 int ret = 0;
3027 mutex_lock(&fs_info->chunk_mutex);
3029 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3031 space_info = __find_space_info(extent_root->fs_info, flags);
3032 if (!space_info) {
3033 ret = update_space_info(extent_root->fs_info, flags,
3034 0, 0, &space_info);
3035 BUG_ON(ret);
3037 BUG_ON(!space_info);
3039 spin_lock(&space_info->lock);
3040 if (space_info->force_alloc)
3041 force = 1;
3042 if (space_info->full) {
3043 spin_unlock(&space_info->lock);
3044 goto out;
3047 if (!force && !should_alloc_chunk(space_info, alloc_bytes)) {
3048 spin_unlock(&space_info->lock);
3049 goto out;
3051 spin_unlock(&space_info->lock);
3054 * if we're doing a data chunk, go ahead and make sure that
3055 * we keep a reasonable number of metadata chunks allocated in the
3056 * FS as well.
3058 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3059 fs_info->data_chunk_allocations++;
3060 if (!(fs_info->data_chunk_allocations %
3061 fs_info->metadata_ratio))
3062 force_metadata_allocation(fs_info);
3065 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3066 spin_lock(&space_info->lock);
3067 if (ret)
3068 space_info->full = 1;
3069 else
3070 ret = 1;
3071 space_info->force_alloc = 0;
3072 spin_unlock(&space_info->lock);
3073 out:
3074 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3075 return ret;
3078 static int maybe_allocate_chunk(struct btrfs_trans_handle *trans,
3079 struct btrfs_root *root,
3080 struct btrfs_space_info *sinfo, u64 num_bytes)
3082 int ret;
3083 int end_trans = 0;
3085 if (sinfo->full)
3086 return 0;
3088 spin_lock(&sinfo->lock);
3089 ret = should_alloc_chunk(sinfo, num_bytes + 2 * 1024 * 1024);
3090 spin_unlock(&sinfo->lock);
3091 if (!ret)
3092 return 0;
3094 if (!trans) {
3095 trans = btrfs_join_transaction(root, 1);
3096 BUG_ON(IS_ERR(trans));
3097 end_trans = 1;
3100 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3101 num_bytes + 2 * 1024 * 1024,
3102 get_alloc_profile(root, sinfo->flags), 0);
3104 if (end_trans)
3105 btrfs_end_transaction(trans, root);
3107 return ret == 1 ? 1 : 0;
3111 * shrink metadata reservation for delalloc
3113 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3114 struct btrfs_root *root, u64 to_reclaim)
3116 struct btrfs_block_rsv *block_rsv;
3117 u64 reserved;
3118 u64 max_reclaim;
3119 u64 reclaimed = 0;
3120 int no_reclaim = 0;
3121 int pause = 1;
3122 int ret;
3124 block_rsv = &root->fs_info->delalloc_block_rsv;
3125 spin_lock(&block_rsv->lock);
3126 reserved = block_rsv->reserved;
3127 spin_unlock(&block_rsv->lock);
3129 if (reserved == 0)
3130 return 0;
3132 max_reclaim = min(reserved, to_reclaim);
3134 while (1) {
3135 ret = btrfs_start_one_delalloc_inode(root, trans ? 1 : 0);
3136 if (!ret) {
3137 if (no_reclaim > 2)
3138 break;
3139 no_reclaim++;
3140 __set_current_state(TASK_INTERRUPTIBLE);
3141 schedule_timeout(pause);
3142 pause <<= 1;
3143 if (pause > HZ / 10)
3144 pause = HZ / 10;
3145 } else {
3146 no_reclaim = 0;
3147 pause = 1;
3150 spin_lock(&block_rsv->lock);
3151 if (reserved > block_rsv->reserved)
3152 reclaimed = reserved - block_rsv->reserved;
3153 reserved = block_rsv->reserved;
3154 spin_unlock(&block_rsv->lock);
3156 if (reserved == 0 || reclaimed >= max_reclaim)
3157 break;
3159 if (trans && trans->transaction->blocked)
3160 return -EAGAIN;
3162 return reclaimed >= to_reclaim;
3165 static int should_retry_reserve(struct btrfs_trans_handle *trans,
3166 struct btrfs_root *root,
3167 struct btrfs_block_rsv *block_rsv,
3168 u64 num_bytes, int *retries)
3170 struct btrfs_space_info *space_info = block_rsv->space_info;
3171 int ret;
3173 if ((*retries) > 2)
3174 return -ENOSPC;
3176 ret = maybe_allocate_chunk(trans, root, space_info, num_bytes);
3177 if (ret)
3178 return 1;
3180 if (trans && trans->transaction->in_commit)
3181 return -ENOSPC;
3183 ret = shrink_delalloc(trans, root, num_bytes);
3184 if (ret)
3185 return ret;
3187 spin_lock(&space_info->lock);
3188 if (space_info->bytes_pinned < num_bytes)
3189 ret = 1;
3190 spin_unlock(&space_info->lock);
3191 if (ret)
3192 return -ENOSPC;
3194 (*retries)++;
3196 if (trans)
3197 return -EAGAIN;
3199 trans = btrfs_join_transaction(root, 1);
3200 BUG_ON(IS_ERR(trans));
3201 ret = btrfs_commit_transaction(trans, root);
3202 BUG_ON(ret);
3204 return 1;
3207 static int reserve_metadata_bytes(struct btrfs_block_rsv *block_rsv,
3208 u64 num_bytes)
3210 struct btrfs_space_info *space_info = block_rsv->space_info;
3211 u64 unused;
3212 int ret = -ENOSPC;
3214 spin_lock(&space_info->lock);
3215 unused = space_info->bytes_used + space_info->bytes_reserved +
3216 space_info->bytes_pinned + space_info->bytes_readonly;
3218 if (unused < space_info->total_bytes)
3219 unused = space_info->total_bytes - unused;
3220 else
3221 unused = 0;
3223 if (unused >= num_bytes) {
3224 if (block_rsv->priority >= 10) {
3225 space_info->bytes_reserved += num_bytes;
3226 ret = 0;
3227 } else {
3228 if ((unused + block_rsv->reserved) *
3229 block_rsv->priority >=
3230 (num_bytes + block_rsv->reserved) * 10) {
3231 space_info->bytes_reserved += num_bytes;
3232 ret = 0;
3236 spin_unlock(&space_info->lock);
3238 return ret;
3241 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3242 struct btrfs_root *root)
3244 struct btrfs_block_rsv *block_rsv;
3245 if (root->ref_cows)
3246 block_rsv = trans->block_rsv;
3247 else
3248 block_rsv = root->block_rsv;
3250 if (!block_rsv)
3251 block_rsv = &root->fs_info->empty_block_rsv;
3253 return block_rsv;
3256 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3257 u64 num_bytes)
3259 int ret = -ENOSPC;
3260 spin_lock(&block_rsv->lock);
3261 if (block_rsv->reserved >= num_bytes) {
3262 block_rsv->reserved -= num_bytes;
3263 if (block_rsv->reserved < block_rsv->size)
3264 block_rsv->full = 0;
3265 ret = 0;
3267 spin_unlock(&block_rsv->lock);
3268 return ret;
3271 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3272 u64 num_bytes, int update_size)
3274 spin_lock(&block_rsv->lock);
3275 block_rsv->reserved += num_bytes;
3276 if (update_size)
3277 block_rsv->size += num_bytes;
3278 else if (block_rsv->reserved >= block_rsv->size)
3279 block_rsv->full = 1;
3280 spin_unlock(&block_rsv->lock);
3283 void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3284 struct btrfs_block_rsv *dest, u64 num_bytes)
3286 struct btrfs_space_info *space_info = block_rsv->space_info;
3288 spin_lock(&block_rsv->lock);
3289 if (num_bytes == (u64)-1)
3290 num_bytes = block_rsv->size;
3291 block_rsv->size -= num_bytes;
3292 if (block_rsv->reserved >= block_rsv->size) {
3293 num_bytes = block_rsv->reserved - block_rsv->size;
3294 block_rsv->reserved = block_rsv->size;
3295 block_rsv->full = 1;
3296 } else {
3297 num_bytes = 0;
3299 spin_unlock(&block_rsv->lock);
3301 if (num_bytes > 0) {
3302 if (dest) {
3303 block_rsv_add_bytes(dest, num_bytes, 0);
3304 } else {
3305 spin_lock(&space_info->lock);
3306 space_info->bytes_reserved -= num_bytes;
3307 spin_unlock(&space_info->lock);
3312 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3313 struct btrfs_block_rsv *dst, u64 num_bytes)
3315 int ret;
3317 ret = block_rsv_use_bytes(src, num_bytes);
3318 if (ret)
3319 return ret;
3321 block_rsv_add_bytes(dst, num_bytes, 1);
3322 return 0;
3325 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3327 memset(rsv, 0, sizeof(*rsv));
3328 spin_lock_init(&rsv->lock);
3329 atomic_set(&rsv->usage, 1);
3330 rsv->priority = 6;
3331 INIT_LIST_HEAD(&rsv->list);
3334 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3336 struct btrfs_block_rsv *block_rsv;
3337 struct btrfs_fs_info *fs_info = root->fs_info;
3338 u64 alloc_target;
3340 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3341 if (!block_rsv)
3342 return NULL;
3344 btrfs_init_block_rsv(block_rsv);
3346 alloc_target = btrfs_get_alloc_profile(root, 0);
3347 block_rsv->space_info = __find_space_info(fs_info,
3348 BTRFS_BLOCK_GROUP_METADATA);
3350 return block_rsv;
3353 void btrfs_free_block_rsv(struct btrfs_root *root,
3354 struct btrfs_block_rsv *rsv)
3356 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3357 btrfs_block_rsv_release(root, rsv, (u64)-1);
3358 if (!rsv->durable)
3359 kfree(rsv);
3364 * make the block_rsv struct be able to capture freed space.
3365 * the captured space will re-add to the the block_rsv struct
3366 * after transaction commit
3368 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3369 struct btrfs_block_rsv *block_rsv)
3371 block_rsv->durable = 1;
3372 mutex_lock(&fs_info->durable_block_rsv_mutex);
3373 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3374 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3377 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3378 struct btrfs_root *root,
3379 struct btrfs_block_rsv *block_rsv,
3380 u64 num_bytes, int *retries)
3382 int ret;
3384 if (num_bytes == 0)
3385 return 0;
3386 again:
3387 ret = reserve_metadata_bytes(block_rsv, num_bytes);
3388 if (!ret) {
3389 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3390 return 0;
3393 ret = should_retry_reserve(trans, root, block_rsv, num_bytes, retries);
3394 if (ret > 0)
3395 goto again;
3397 return ret;
3400 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3401 struct btrfs_root *root,
3402 struct btrfs_block_rsv *block_rsv,
3403 u64 min_reserved, int min_factor)
3405 u64 num_bytes = 0;
3406 int commit_trans = 0;
3407 int ret = -ENOSPC;
3409 if (!block_rsv)
3410 return 0;
3412 spin_lock(&block_rsv->lock);
3413 if (min_factor > 0)
3414 num_bytes = div_factor(block_rsv->size, min_factor);
3415 if (min_reserved > num_bytes)
3416 num_bytes = min_reserved;
3418 if (block_rsv->reserved >= num_bytes) {
3419 ret = 0;
3420 } else {
3421 num_bytes -= block_rsv->reserved;
3422 if (block_rsv->durable &&
3423 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3424 commit_trans = 1;
3426 spin_unlock(&block_rsv->lock);
3427 if (!ret)
3428 return 0;
3430 if (block_rsv->refill_used) {
3431 ret = reserve_metadata_bytes(block_rsv, num_bytes);
3432 if (!ret) {
3433 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3434 return 0;
3438 if (commit_trans) {
3439 if (trans)
3440 return -EAGAIN;
3442 trans = btrfs_join_transaction(root, 1);
3443 BUG_ON(IS_ERR(trans));
3444 ret = btrfs_commit_transaction(trans, root);
3445 return 0;
3448 WARN_ON(1);
3449 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n",
3450 block_rsv->size, block_rsv->reserved,
3451 block_rsv->freed[0], block_rsv->freed[1]);
3453 return -ENOSPC;
3456 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3457 struct btrfs_block_rsv *dst_rsv,
3458 u64 num_bytes)
3460 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3463 void btrfs_block_rsv_release(struct btrfs_root *root,
3464 struct btrfs_block_rsv *block_rsv,
3465 u64 num_bytes)
3467 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3468 if (global_rsv->full || global_rsv == block_rsv ||
3469 block_rsv->space_info != global_rsv->space_info)
3470 global_rsv = NULL;
3471 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3475 * helper to calculate size of global block reservation.
3476 * the desired value is sum of space used by extent tree,
3477 * checksum tree and root tree
3479 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3481 struct btrfs_space_info *sinfo;
3482 u64 num_bytes;
3483 u64 meta_used;
3484 u64 data_used;
3485 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3486 #if 0
3488 * per tree used space accounting can be inaccuracy, so we
3489 * can't rely on it.
3491 spin_lock(&fs_info->extent_root->accounting_lock);
3492 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item);
3493 spin_unlock(&fs_info->extent_root->accounting_lock);
3495 spin_lock(&fs_info->csum_root->accounting_lock);
3496 num_bytes += btrfs_root_used(&fs_info->csum_root->root_item);
3497 spin_unlock(&fs_info->csum_root->accounting_lock);
3499 spin_lock(&fs_info->tree_root->accounting_lock);
3500 num_bytes += btrfs_root_used(&fs_info->tree_root->root_item);
3501 spin_unlock(&fs_info->tree_root->accounting_lock);
3502 #endif
3503 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3504 spin_lock(&sinfo->lock);
3505 data_used = sinfo->bytes_used;
3506 spin_unlock(&sinfo->lock);
3508 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3509 spin_lock(&sinfo->lock);
3510 meta_used = sinfo->bytes_used;
3511 spin_unlock(&sinfo->lock);
3513 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3514 csum_size * 2;
3515 num_bytes += div64_u64(data_used + meta_used, 50);
3517 if (num_bytes * 3 > meta_used)
3518 num_bytes = div64_u64(meta_used, 3);
3520 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3523 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3525 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3526 struct btrfs_space_info *sinfo = block_rsv->space_info;
3527 u64 num_bytes;
3529 num_bytes = calc_global_metadata_size(fs_info);
3531 spin_lock(&block_rsv->lock);
3532 spin_lock(&sinfo->lock);
3534 block_rsv->size = num_bytes;
3536 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3537 sinfo->bytes_reserved + sinfo->bytes_readonly;
3539 if (sinfo->total_bytes > num_bytes) {
3540 num_bytes = sinfo->total_bytes - num_bytes;
3541 block_rsv->reserved += num_bytes;
3542 sinfo->bytes_reserved += num_bytes;
3545 if (block_rsv->reserved >= block_rsv->size) {
3546 num_bytes = block_rsv->reserved - block_rsv->size;
3547 sinfo->bytes_reserved -= num_bytes;
3548 block_rsv->reserved = block_rsv->size;
3549 block_rsv->full = 1;
3551 #if 0
3552 printk(KERN_INFO"global block rsv size %llu reserved %llu\n",
3553 block_rsv->size, block_rsv->reserved);
3554 #endif
3555 spin_unlock(&sinfo->lock);
3556 spin_unlock(&block_rsv->lock);
3559 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3561 struct btrfs_space_info *space_info;
3563 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3564 fs_info->chunk_block_rsv.space_info = space_info;
3565 fs_info->chunk_block_rsv.priority = 10;
3567 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3568 fs_info->global_block_rsv.space_info = space_info;
3569 fs_info->global_block_rsv.priority = 10;
3570 fs_info->global_block_rsv.refill_used = 1;
3571 fs_info->delalloc_block_rsv.space_info = space_info;
3572 fs_info->trans_block_rsv.space_info = space_info;
3573 fs_info->empty_block_rsv.space_info = space_info;
3574 fs_info->empty_block_rsv.priority = 10;
3576 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3577 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3578 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3579 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3580 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3582 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3584 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3586 update_global_block_rsv(fs_info);
3589 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3591 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3592 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3593 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3594 WARN_ON(fs_info->trans_block_rsv.size > 0);
3595 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3596 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3597 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3600 static u64 calc_trans_metadata_size(struct btrfs_root *root, int num_items)
3602 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3603 3 * num_items;
3606 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3607 struct btrfs_root *root,
3608 int num_items, int *retries)
3610 u64 num_bytes;
3611 int ret;
3613 if (num_items == 0 || root->fs_info->chunk_root == root)
3614 return 0;
3616 num_bytes = calc_trans_metadata_size(root, num_items);
3617 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3618 num_bytes, retries);
3619 if (!ret) {
3620 trans->bytes_reserved += num_bytes;
3621 trans->block_rsv = &root->fs_info->trans_block_rsv;
3623 return ret;
3626 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3627 struct btrfs_root *root)
3629 if (!trans->bytes_reserved)
3630 return;
3632 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3633 btrfs_block_rsv_release(root, trans->block_rsv,
3634 trans->bytes_reserved);
3635 trans->bytes_reserved = 0;
3638 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3639 struct inode *inode)
3641 struct btrfs_root *root = BTRFS_I(inode)->root;
3642 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3643 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3646 * one for deleting orphan item, one for updating inode and
3647 * two for calling btrfs_truncate_inode_items.
3649 * btrfs_truncate_inode_items is a delete operation, it frees
3650 * more space than it uses in most cases. So two units of
3651 * metadata space should be enough for calling it many times.
3652 * If all of the metadata space is used, we can commit
3653 * transaction and use space it freed.
3655 u64 num_bytes = calc_trans_metadata_size(root, 4);
3656 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3659 void btrfs_orphan_release_metadata(struct inode *inode)
3661 struct btrfs_root *root = BTRFS_I(inode)->root;
3662 u64 num_bytes = calc_trans_metadata_size(root, 4);
3663 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3666 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3667 struct btrfs_pending_snapshot *pending)
3669 struct btrfs_root *root = pending->root;
3670 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3671 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3673 * two for root back/forward refs, two for directory entries
3674 * and one for root of the snapshot.
3676 u64 num_bytes = calc_trans_metadata_size(root, 5);
3677 dst_rsv->space_info = src_rsv->space_info;
3678 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3681 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3683 return num_bytes >>= 3;
3686 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3688 struct btrfs_root *root = BTRFS_I(inode)->root;
3689 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3690 u64 to_reserve;
3691 int nr_extents;
3692 int retries = 0;
3693 int ret;
3695 if (btrfs_transaction_in_commit(root->fs_info))
3696 schedule_timeout(1);
3698 num_bytes = ALIGN(num_bytes, root->sectorsize);
3699 again:
3700 spin_lock(&BTRFS_I(inode)->accounting_lock);
3701 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3702 if (nr_extents > BTRFS_I(inode)->reserved_extents) {
3703 nr_extents -= BTRFS_I(inode)->reserved_extents;
3704 to_reserve = calc_trans_metadata_size(root, nr_extents);
3705 } else {
3706 nr_extents = 0;
3707 to_reserve = 0;
3710 to_reserve += calc_csum_metadata_size(inode, num_bytes);
3711 ret = reserve_metadata_bytes(block_rsv, to_reserve);
3712 if (ret) {
3713 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3714 ret = should_retry_reserve(NULL, root, block_rsv, to_reserve,
3715 &retries);
3716 if (ret > 0)
3717 goto again;
3718 return ret;
3721 BTRFS_I(inode)->reserved_extents += nr_extents;
3722 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3723 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3725 block_rsv_add_bytes(block_rsv, to_reserve, 1);
3727 if (block_rsv->size > 512 * 1024 * 1024)
3728 shrink_delalloc(NULL, root, to_reserve);
3730 return 0;
3733 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
3735 struct btrfs_root *root = BTRFS_I(inode)->root;
3736 u64 to_free;
3737 int nr_extents;
3739 num_bytes = ALIGN(num_bytes, root->sectorsize);
3740 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
3742 spin_lock(&BTRFS_I(inode)->accounting_lock);
3743 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
3744 if (nr_extents < BTRFS_I(inode)->reserved_extents) {
3745 nr_extents = BTRFS_I(inode)->reserved_extents - nr_extents;
3746 BTRFS_I(inode)->reserved_extents -= nr_extents;
3747 } else {
3748 nr_extents = 0;
3750 spin_unlock(&BTRFS_I(inode)->accounting_lock);
3752 to_free = calc_csum_metadata_size(inode, num_bytes);
3753 if (nr_extents > 0)
3754 to_free += calc_trans_metadata_size(root, nr_extents);
3756 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
3757 to_free);
3760 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
3762 int ret;
3764 ret = btrfs_check_data_free_space(inode, num_bytes);
3765 if (ret)
3766 return ret;
3768 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
3769 if (ret) {
3770 btrfs_free_reserved_data_space(inode, num_bytes);
3771 return ret;
3774 return 0;
3777 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
3779 btrfs_delalloc_release_metadata(inode, num_bytes);
3780 btrfs_free_reserved_data_space(inode, num_bytes);
3783 static int update_block_group(struct btrfs_trans_handle *trans,
3784 struct btrfs_root *root,
3785 u64 bytenr, u64 num_bytes, int alloc)
3787 struct btrfs_block_group_cache *cache;
3788 struct btrfs_fs_info *info = root->fs_info;
3789 int factor;
3790 u64 total = num_bytes;
3791 u64 old_val;
3792 u64 byte_in_group;
3794 /* block accounting for super block */
3795 spin_lock(&info->delalloc_lock);
3796 old_val = btrfs_super_bytes_used(&info->super_copy);
3797 if (alloc)
3798 old_val += num_bytes;
3799 else
3800 old_val -= num_bytes;
3801 btrfs_set_super_bytes_used(&info->super_copy, old_val);
3802 spin_unlock(&info->delalloc_lock);
3804 while (total) {
3805 cache = btrfs_lookup_block_group(info, bytenr);
3806 if (!cache)
3807 return -1;
3808 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
3809 BTRFS_BLOCK_GROUP_RAID1 |
3810 BTRFS_BLOCK_GROUP_RAID10))
3811 factor = 2;
3812 else
3813 factor = 1;
3814 byte_in_group = bytenr - cache->key.objectid;
3815 WARN_ON(byte_in_group > cache->key.offset);
3817 spin_lock(&cache->space_info->lock);
3818 spin_lock(&cache->lock);
3819 cache->dirty = 1;
3820 old_val = btrfs_block_group_used(&cache->item);
3821 num_bytes = min(total, cache->key.offset - byte_in_group);
3822 if (alloc) {
3823 old_val += num_bytes;
3824 btrfs_set_block_group_used(&cache->item, old_val);
3825 cache->reserved -= num_bytes;
3826 cache->space_info->bytes_reserved -= num_bytes;
3827 cache->space_info->bytes_used += num_bytes;
3828 cache->space_info->disk_used += num_bytes * factor;
3829 spin_unlock(&cache->lock);
3830 spin_unlock(&cache->space_info->lock);
3831 } else {
3832 old_val -= num_bytes;
3833 btrfs_set_block_group_used(&cache->item, old_val);
3834 cache->pinned += num_bytes;
3835 cache->space_info->bytes_pinned += num_bytes;
3836 cache->space_info->bytes_used -= num_bytes;
3837 cache->space_info->disk_used -= num_bytes * factor;
3838 spin_unlock(&cache->lock);
3839 spin_unlock(&cache->space_info->lock);
3841 set_extent_dirty(info->pinned_extents,
3842 bytenr, bytenr + num_bytes - 1,
3843 GFP_NOFS | __GFP_NOFAIL);
3845 btrfs_put_block_group(cache);
3846 total -= num_bytes;
3847 bytenr += num_bytes;
3849 return 0;
3852 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
3854 struct btrfs_block_group_cache *cache;
3855 u64 bytenr;
3857 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
3858 if (!cache)
3859 return 0;
3861 bytenr = cache->key.objectid;
3862 btrfs_put_block_group(cache);
3864 return bytenr;
3867 static int pin_down_extent(struct btrfs_root *root,
3868 struct btrfs_block_group_cache *cache,
3869 u64 bytenr, u64 num_bytes, int reserved)
3871 spin_lock(&cache->space_info->lock);
3872 spin_lock(&cache->lock);
3873 cache->pinned += num_bytes;
3874 cache->space_info->bytes_pinned += num_bytes;
3875 if (reserved) {
3876 cache->reserved -= num_bytes;
3877 cache->space_info->bytes_reserved -= num_bytes;
3879 spin_unlock(&cache->lock);
3880 spin_unlock(&cache->space_info->lock);
3882 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
3883 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
3884 return 0;
3888 * this function must be called within transaction
3890 int btrfs_pin_extent(struct btrfs_root *root,
3891 u64 bytenr, u64 num_bytes, int reserved)
3893 struct btrfs_block_group_cache *cache;
3895 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
3896 BUG_ON(!cache);
3898 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
3900 btrfs_put_block_group(cache);
3901 return 0;
3905 * update size of reserved extents. this function may return -EAGAIN
3906 * if 'reserve' is true or 'sinfo' is false.
3908 static int update_reserved_bytes(struct btrfs_block_group_cache *cache,
3909 u64 num_bytes, int reserve, int sinfo)
3911 int ret = 0;
3912 if (sinfo) {
3913 struct btrfs_space_info *space_info = cache->space_info;
3914 spin_lock(&space_info->lock);
3915 spin_lock(&cache->lock);
3916 if (reserve) {
3917 if (cache->ro) {
3918 ret = -EAGAIN;
3919 } else {
3920 cache->reserved += num_bytes;
3921 space_info->bytes_reserved += num_bytes;
3923 } else {
3924 if (cache->ro)
3925 space_info->bytes_readonly += num_bytes;
3926 cache->reserved -= num_bytes;
3927 space_info->bytes_reserved -= num_bytes;
3929 spin_unlock(&cache->lock);
3930 spin_unlock(&space_info->lock);
3931 } else {
3932 spin_lock(&cache->lock);
3933 if (cache->ro) {
3934 ret = -EAGAIN;
3935 } else {
3936 if (reserve)
3937 cache->reserved += num_bytes;
3938 else
3939 cache->reserved -= num_bytes;
3941 spin_unlock(&cache->lock);
3943 return ret;
3946 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3947 struct btrfs_root *root)
3949 struct btrfs_fs_info *fs_info = root->fs_info;
3950 struct btrfs_caching_control *next;
3951 struct btrfs_caching_control *caching_ctl;
3952 struct btrfs_block_group_cache *cache;
3954 down_write(&fs_info->extent_commit_sem);
3956 list_for_each_entry_safe(caching_ctl, next,
3957 &fs_info->caching_block_groups, list) {
3958 cache = caching_ctl->block_group;
3959 if (block_group_cache_done(cache)) {
3960 cache->last_byte_to_unpin = (u64)-1;
3961 list_del_init(&caching_ctl->list);
3962 put_caching_control(caching_ctl);
3963 } else {
3964 cache->last_byte_to_unpin = caching_ctl->progress;
3968 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
3969 fs_info->pinned_extents = &fs_info->freed_extents[1];
3970 else
3971 fs_info->pinned_extents = &fs_info->freed_extents[0];
3973 up_write(&fs_info->extent_commit_sem);
3975 update_global_block_rsv(fs_info);
3976 return 0;
3979 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
3981 struct btrfs_fs_info *fs_info = root->fs_info;
3982 struct btrfs_block_group_cache *cache = NULL;
3983 u64 len;
3985 while (start <= end) {
3986 if (!cache ||
3987 start >= cache->key.objectid + cache->key.offset) {
3988 if (cache)
3989 btrfs_put_block_group(cache);
3990 cache = btrfs_lookup_block_group(fs_info, start);
3991 BUG_ON(!cache);
3994 len = cache->key.objectid + cache->key.offset - start;
3995 len = min(len, end + 1 - start);
3997 if (start < cache->last_byte_to_unpin) {
3998 len = min(len, cache->last_byte_to_unpin - start);
3999 btrfs_add_free_space(cache, start, len);
4002 start += len;
4004 spin_lock(&cache->space_info->lock);
4005 spin_lock(&cache->lock);
4006 cache->pinned -= len;
4007 cache->space_info->bytes_pinned -= len;
4008 if (cache->ro) {
4009 cache->space_info->bytes_readonly += len;
4010 } else if (cache->reserved_pinned > 0) {
4011 len = min(len, cache->reserved_pinned);
4012 cache->reserved_pinned -= len;
4013 cache->space_info->bytes_reserved += len;
4015 spin_unlock(&cache->lock);
4016 spin_unlock(&cache->space_info->lock);
4019 if (cache)
4020 btrfs_put_block_group(cache);
4021 return 0;
4024 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4025 struct btrfs_root *root)
4027 struct btrfs_fs_info *fs_info = root->fs_info;
4028 struct extent_io_tree *unpin;
4029 struct btrfs_block_rsv *block_rsv;
4030 struct btrfs_block_rsv *next_rsv;
4031 u64 start;
4032 u64 end;
4033 int idx;
4034 int ret;
4036 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4037 unpin = &fs_info->freed_extents[1];
4038 else
4039 unpin = &fs_info->freed_extents[0];
4041 while (1) {
4042 ret = find_first_extent_bit(unpin, 0, &start, &end,
4043 EXTENT_DIRTY);
4044 if (ret)
4045 break;
4047 ret = btrfs_discard_extent(root, start, end + 1 - start);
4049 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4050 unpin_extent_range(root, start, end);
4051 cond_resched();
4054 mutex_lock(&fs_info->durable_block_rsv_mutex);
4055 list_for_each_entry_safe(block_rsv, next_rsv,
4056 &fs_info->durable_block_rsv_list, list) {
4058 idx = trans->transid & 0x1;
4059 if (block_rsv->freed[idx] > 0) {
4060 block_rsv_add_bytes(block_rsv,
4061 block_rsv->freed[idx], 0);
4062 block_rsv->freed[idx] = 0;
4064 if (atomic_read(&block_rsv->usage) == 0) {
4065 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4067 if (block_rsv->freed[0] == 0 &&
4068 block_rsv->freed[1] == 0) {
4069 list_del_init(&block_rsv->list);
4070 kfree(block_rsv);
4072 } else {
4073 btrfs_block_rsv_release(root, block_rsv, 0);
4076 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4078 return 0;
4081 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4082 struct btrfs_root *root,
4083 u64 bytenr, u64 num_bytes, u64 parent,
4084 u64 root_objectid, u64 owner_objectid,
4085 u64 owner_offset, int refs_to_drop,
4086 struct btrfs_delayed_extent_op *extent_op)
4088 struct btrfs_key key;
4089 struct btrfs_path *path;
4090 struct btrfs_fs_info *info = root->fs_info;
4091 struct btrfs_root *extent_root = info->extent_root;
4092 struct extent_buffer *leaf;
4093 struct btrfs_extent_item *ei;
4094 struct btrfs_extent_inline_ref *iref;
4095 int ret;
4096 int is_data;
4097 int extent_slot = 0;
4098 int found_extent = 0;
4099 int num_to_del = 1;
4100 u32 item_size;
4101 u64 refs;
4103 path = btrfs_alloc_path();
4104 if (!path)
4105 return -ENOMEM;
4107 path->reada = 1;
4108 path->leave_spinning = 1;
4110 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4111 BUG_ON(!is_data && refs_to_drop != 1);
4113 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4114 bytenr, num_bytes, parent,
4115 root_objectid, owner_objectid,
4116 owner_offset);
4117 if (ret == 0) {
4118 extent_slot = path->slots[0];
4119 while (extent_slot >= 0) {
4120 btrfs_item_key_to_cpu(path->nodes[0], &key,
4121 extent_slot);
4122 if (key.objectid != bytenr)
4123 break;
4124 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4125 key.offset == num_bytes) {
4126 found_extent = 1;
4127 break;
4129 if (path->slots[0] - extent_slot > 5)
4130 break;
4131 extent_slot--;
4133 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4134 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4135 if (found_extent && item_size < sizeof(*ei))
4136 found_extent = 0;
4137 #endif
4138 if (!found_extent) {
4139 BUG_ON(iref);
4140 ret = remove_extent_backref(trans, extent_root, path,
4141 NULL, refs_to_drop,
4142 is_data);
4143 BUG_ON(ret);
4144 btrfs_release_path(extent_root, path);
4145 path->leave_spinning = 1;
4147 key.objectid = bytenr;
4148 key.type = BTRFS_EXTENT_ITEM_KEY;
4149 key.offset = num_bytes;
4151 ret = btrfs_search_slot(trans, extent_root,
4152 &key, path, -1, 1);
4153 if (ret) {
4154 printk(KERN_ERR "umm, got %d back from search"
4155 ", was looking for %llu\n", ret,
4156 (unsigned long long)bytenr);
4157 btrfs_print_leaf(extent_root, path->nodes[0]);
4159 BUG_ON(ret);
4160 extent_slot = path->slots[0];
4162 } else {
4163 btrfs_print_leaf(extent_root, path->nodes[0]);
4164 WARN_ON(1);
4165 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4166 "parent %llu root %llu owner %llu offset %llu\n",
4167 (unsigned long long)bytenr,
4168 (unsigned long long)parent,
4169 (unsigned long long)root_objectid,
4170 (unsigned long long)owner_objectid,
4171 (unsigned long long)owner_offset);
4174 leaf = path->nodes[0];
4175 item_size = btrfs_item_size_nr(leaf, extent_slot);
4176 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4177 if (item_size < sizeof(*ei)) {
4178 BUG_ON(found_extent || extent_slot != path->slots[0]);
4179 ret = convert_extent_item_v0(trans, extent_root, path,
4180 owner_objectid, 0);
4181 BUG_ON(ret < 0);
4183 btrfs_release_path(extent_root, path);
4184 path->leave_spinning = 1;
4186 key.objectid = bytenr;
4187 key.type = BTRFS_EXTENT_ITEM_KEY;
4188 key.offset = num_bytes;
4190 ret = btrfs_search_slot(trans, extent_root, &key, path,
4191 -1, 1);
4192 if (ret) {
4193 printk(KERN_ERR "umm, got %d back from search"
4194 ", was looking for %llu\n", ret,
4195 (unsigned long long)bytenr);
4196 btrfs_print_leaf(extent_root, path->nodes[0]);
4198 BUG_ON(ret);
4199 extent_slot = path->slots[0];
4200 leaf = path->nodes[0];
4201 item_size = btrfs_item_size_nr(leaf, extent_slot);
4203 #endif
4204 BUG_ON(item_size < sizeof(*ei));
4205 ei = btrfs_item_ptr(leaf, extent_slot,
4206 struct btrfs_extent_item);
4207 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4208 struct btrfs_tree_block_info *bi;
4209 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4210 bi = (struct btrfs_tree_block_info *)(ei + 1);
4211 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4214 refs = btrfs_extent_refs(leaf, ei);
4215 BUG_ON(refs < refs_to_drop);
4216 refs -= refs_to_drop;
4218 if (refs > 0) {
4219 if (extent_op)
4220 __run_delayed_extent_op(extent_op, leaf, ei);
4222 * In the case of inline back ref, reference count will
4223 * be updated by remove_extent_backref
4225 if (iref) {
4226 BUG_ON(!found_extent);
4227 } else {
4228 btrfs_set_extent_refs(leaf, ei, refs);
4229 btrfs_mark_buffer_dirty(leaf);
4231 if (found_extent) {
4232 ret = remove_extent_backref(trans, extent_root, path,
4233 iref, refs_to_drop,
4234 is_data);
4235 BUG_ON(ret);
4237 } else {
4238 if (found_extent) {
4239 BUG_ON(is_data && refs_to_drop !=
4240 extent_data_ref_count(root, path, iref));
4241 if (iref) {
4242 BUG_ON(path->slots[0] != extent_slot);
4243 } else {
4244 BUG_ON(path->slots[0] != extent_slot + 1);
4245 path->slots[0] = extent_slot;
4246 num_to_del = 2;
4250 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4251 num_to_del);
4252 BUG_ON(ret);
4253 btrfs_release_path(extent_root, path);
4255 if (is_data) {
4256 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4257 BUG_ON(ret);
4258 } else {
4259 invalidate_mapping_pages(info->btree_inode->i_mapping,
4260 bytenr >> PAGE_CACHE_SHIFT,
4261 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4264 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4265 BUG_ON(ret);
4267 btrfs_free_path(path);
4268 return ret;
4272 * when we free an block, it is possible (and likely) that we free the last
4273 * delayed ref for that extent as well. This searches the delayed ref tree for
4274 * a given extent, and if there are no other delayed refs to be processed, it
4275 * removes it from the tree.
4277 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4278 struct btrfs_root *root, u64 bytenr)
4280 struct btrfs_delayed_ref_head *head;
4281 struct btrfs_delayed_ref_root *delayed_refs;
4282 struct btrfs_delayed_ref_node *ref;
4283 struct rb_node *node;
4284 int ret = 0;
4286 delayed_refs = &trans->transaction->delayed_refs;
4287 spin_lock(&delayed_refs->lock);
4288 head = btrfs_find_delayed_ref_head(trans, bytenr);
4289 if (!head)
4290 goto out;
4292 node = rb_prev(&head->node.rb_node);
4293 if (!node)
4294 goto out;
4296 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4298 /* there are still entries for this ref, we can't drop it */
4299 if (ref->bytenr == bytenr)
4300 goto out;
4302 if (head->extent_op) {
4303 if (!head->must_insert_reserved)
4304 goto out;
4305 kfree(head->extent_op);
4306 head->extent_op = NULL;
4310 * waiting for the lock here would deadlock. If someone else has it
4311 * locked they are already in the process of dropping it anyway
4313 if (!mutex_trylock(&head->mutex))
4314 goto out;
4317 * at this point we have a head with no other entries. Go
4318 * ahead and process it.
4320 head->node.in_tree = 0;
4321 rb_erase(&head->node.rb_node, &delayed_refs->root);
4323 delayed_refs->num_entries--;
4326 * we don't take a ref on the node because we're removing it from the
4327 * tree, so we just steal the ref the tree was holding.
4329 delayed_refs->num_heads--;
4330 if (list_empty(&head->cluster))
4331 delayed_refs->num_heads_ready--;
4333 list_del_init(&head->cluster);
4334 spin_unlock(&delayed_refs->lock);
4336 BUG_ON(head->extent_op);
4337 if (head->must_insert_reserved)
4338 ret = 1;
4340 mutex_unlock(&head->mutex);
4341 btrfs_put_delayed_ref(&head->node);
4342 return ret;
4343 out:
4344 spin_unlock(&delayed_refs->lock);
4345 return 0;
4348 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4349 struct btrfs_root *root,
4350 struct extent_buffer *buf,
4351 u64 parent, int last_ref)
4353 struct btrfs_block_rsv *block_rsv;
4354 struct btrfs_block_group_cache *cache = NULL;
4355 int ret;
4357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4358 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4359 parent, root->root_key.objectid,
4360 btrfs_header_level(buf),
4361 BTRFS_DROP_DELAYED_REF, NULL);
4362 BUG_ON(ret);
4365 if (!last_ref)
4366 return;
4368 block_rsv = get_block_rsv(trans, root);
4369 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4370 if (block_rsv->space_info != cache->space_info)
4371 goto out;
4373 if (btrfs_header_generation(buf) == trans->transid) {
4374 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4375 ret = check_ref_cleanup(trans, root, buf->start);
4376 if (!ret)
4377 goto pin;
4380 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4381 pin_down_extent(root, cache, buf->start, buf->len, 1);
4382 goto pin;
4385 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4387 btrfs_add_free_space(cache, buf->start, buf->len);
4388 ret = update_reserved_bytes(cache, buf->len, 0, 0);
4389 if (ret == -EAGAIN) {
4390 /* block group became read-only */
4391 update_reserved_bytes(cache, buf->len, 0, 1);
4392 goto out;
4395 ret = 1;
4396 spin_lock(&block_rsv->lock);
4397 if (block_rsv->reserved < block_rsv->size) {
4398 block_rsv->reserved += buf->len;
4399 ret = 0;
4401 spin_unlock(&block_rsv->lock);
4403 if (ret) {
4404 spin_lock(&cache->space_info->lock);
4405 cache->space_info->bytes_reserved -= buf->len;
4406 spin_unlock(&cache->space_info->lock);
4408 goto out;
4410 pin:
4411 if (block_rsv->durable && !cache->ro) {
4412 ret = 0;
4413 spin_lock(&cache->lock);
4414 if (!cache->ro) {
4415 cache->reserved_pinned += buf->len;
4416 ret = 1;
4418 spin_unlock(&cache->lock);
4420 if (ret) {
4421 spin_lock(&block_rsv->lock);
4422 block_rsv->freed[trans->transid & 0x1] += buf->len;
4423 spin_unlock(&block_rsv->lock);
4426 out:
4427 btrfs_put_block_group(cache);
4430 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4431 struct btrfs_root *root,
4432 u64 bytenr, u64 num_bytes, u64 parent,
4433 u64 root_objectid, u64 owner, u64 offset)
4435 int ret;
4438 * tree log blocks never actually go into the extent allocation
4439 * tree, just update pinning info and exit early.
4441 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4442 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4443 /* unlocks the pinned mutex */
4444 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4445 ret = 0;
4446 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4447 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4448 parent, root_objectid, (int)owner,
4449 BTRFS_DROP_DELAYED_REF, NULL);
4450 BUG_ON(ret);
4451 } else {
4452 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4453 parent, root_objectid, owner,
4454 offset, BTRFS_DROP_DELAYED_REF, NULL);
4455 BUG_ON(ret);
4457 return ret;
4460 static u64 stripe_align(struct btrfs_root *root, u64 val)
4462 u64 mask = ((u64)root->stripesize - 1);
4463 u64 ret = (val + mask) & ~mask;
4464 return ret;
4468 * when we wait for progress in the block group caching, its because
4469 * our allocation attempt failed at least once. So, we must sleep
4470 * and let some progress happen before we try again.
4472 * This function will sleep at least once waiting for new free space to
4473 * show up, and then it will check the block group free space numbers
4474 * for our min num_bytes. Another option is to have it go ahead
4475 * and look in the rbtree for a free extent of a given size, but this
4476 * is a good start.
4478 static noinline int
4479 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4480 u64 num_bytes)
4482 struct btrfs_caching_control *caching_ctl;
4483 DEFINE_WAIT(wait);
4485 caching_ctl = get_caching_control(cache);
4486 if (!caching_ctl)
4487 return 0;
4489 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4490 (cache->free_space >= num_bytes));
4492 put_caching_control(caching_ctl);
4493 return 0;
4496 static noinline int
4497 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4499 struct btrfs_caching_control *caching_ctl;
4500 DEFINE_WAIT(wait);
4502 caching_ctl = get_caching_control(cache);
4503 if (!caching_ctl)
4504 return 0;
4506 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4508 put_caching_control(caching_ctl);
4509 return 0;
4512 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4514 int index;
4515 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4516 index = 0;
4517 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4518 index = 1;
4519 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4520 index = 2;
4521 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4522 index = 3;
4523 else
4524 index = 4;
4525 return index;
4528 enum btrfs_loop_type {
4529 LOOP_FIND_IDEAL = 0,
4530 LOOP_CACHING_NOWAIT = 1,
4531 LOOP_CACHING_WAIT = 2,
4532 LOOP_ALLOC_CHUNK = 3,
4533 LOOP_NO_EMPTY_SIZE = 4,
4537 * walks the btree of allocated extents and find a hole of a given size.
4538 * The key ins is changed to record the hole:
4539 * ins->objectid == block start
4540 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4541 * ins->offset == number of blocks
4542 * Any available blocks before search_start are skipped.
4544 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4545 struct btrfs_root *orig_root,
4546 u64 num_bytes, u64 empty_size,
4547 u64 search_start, u64 search_end,
4548 u64 hint_byte, struct btrfs_key *ins,
4549 int data)
4551 int ret = 0;
4552 struct btrfs_root *root = orig_root->fs_info->extent_root;
4553 struct btrfs_free_cluster *last_ptr = NULL;
4554 struct btrfs_block_group_cache *block_group = NULL;
4555 int empty_cluster = 2 * 1024 * 1024;
4556 int allowed_chunk_alloc = 0;
4557 int done_chunk_alloc = 0;
4558 struct btrfs_space_info *space_info;
4559 int last_ptr_loop = 0;
4560 int loop = 0;
4561 int index = 0;
4562 bool found_uncached_bg = false;
4563 bool failed_cluster_refill = false;
4564 bool failed_alloc = false;
4565 u64 ideal_cache_percent = 0;
4566 u64 ideal_cache_offset = 0;
4568 WARN_ON(num_bytes < root->sectorsize);
4569 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4570 ins->objectid = 0;
4571 ins->offset = 0;
4573 space_info = __find_space_info(root->fs_info, data);
4574 if (!space_info) {
4575 printk(KERN_ERR "No space info for %d\n", data);
4576 return -ENOSPC;
4579 if (orig_root->ref_cows || empty_size)
4580 allowed_chunk_alloc = 1;
4582 if (data & BTRFS_BLOCK_GROUP_METADATA) {
4583 last_ptr = &root->fs_info->meta_alloc_cluster;
4584 if (!btrfs_test_opt(root, SSD))
4585 empty_cluster = 64 * 1024;
4588 if ((data & BTRFS_BLOCK_GROUP_DATA) && btrfs_test_opt(root, SSD)) {
4589 last_ptr = &root->fs_info->data_alloc_cluster;
4592 if (last_ptr) {
4593 spin_lock(&last_ptr->lock);
4594 if (last_ptr->block_group)
4595 hint_byte = last_ptr->window_start;
4596 spin_unlock(&last_ptr->lock);
4599 search_start = max(search_start, first_logical_byte(root, 0));
4600 search_start = max(search_start, hint_byte);
4602 if (!last_ptr)
4603 empty_cluster = 0;
4605 if (search_start == hint_byte) {
4606 ideal_cache:
4607 block_group = btrfs_lookup_block_group(root->fs_info,
4608 search_start);
4610 * we don't want to use the block group if it doesn't match our
4611 * allocation bits, or if its not cached.
4613 * However if we are re-searching with an ideal block group
4614 * picked out then we don't care that the block group is cached.
4616 if (block_group && block_group_bits(block_group, data) &&
4617 (block_group->cached != BTRFS_CACHE_NO ||
4618 search_start == ideal_cache_offset)) {
4619 down_read(&space_info->groups_sem);
4620 if (list_empty(&block_group->list) ||
4621 block_group->ro) {
4623 * someone is removing this block group,
4624 * we can't jump into the have_block_group
4625 * target because our list pointers are not
4626 * valid
4628 btrfs_put_block_group(block_group);
4629 up_read(&space_info->groups_sem);
4630 } else {
4631 index = get_block_group_index(block_group);
4632 goto have_block_group;
4634 } else if (block_group) {
4635 btrfs_put_block_group(block_group);
4638 search:
4639 down_read(&space_info->groups_sem);
4640 list_for_each_entry(block_group, &space_info->block_groups[index],
4641 list) {
4642 u64 offset;
4643 int cached;
4645 btrfs_get_block_group(block_group);
4646 search_start = block_group->key.objectid;
4648 have_block_group:
4649 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4650 u64 free_percent;
4652 free_percent = btrfs_block_group_used(&block_group->item);
4653 free_percent *= 100;
4654 free_percent = div64_u64(free_percent,
4655 block_group->key.offset);
4656 free_percent = 100 - free_percent;
4657 if (free_percent > ideal_cache_percent &&
4658 likely(!block_group->ro)) {
4659 ideal_cache_offset = block_group->key.objectid;
4660 ideal_cache_percent = free_percent;
4664 * We only want to start kthread caching if we are at
4665 * the point where we will wait for caching to make
4666 * progress, or if our ideal search is over and we've
4667 * found somebody to start caching.
4669 if (loop > LOOP_CACHING_NOWAIT ||
4670 (loop > LOOP_FIND_IDEAL &&
4671 atomic_read(&space_info->caching_threads) < 2)) {
4672 ret = cache_block_group(block_group);
4673 BUG_ON(ret);
4675 found_uncached_bg = true;
4678 * If loop is set for cached only, try the next block
4679 * group.
4681 if (loop == LOOP_FIND_IDEAL)
4682 goto loop;
4685 cached = block_group_cache_done(block_group);
4686 if (unlikely(!cached))
4687 found_uncached_bg = true;
4689 if (unlikely(block_group->ro))
4690 goto loop;
4693 * Ok we want to try and use the cluster allocator, so lets look
4694 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
4695 * have tried the cluster allocator plenty of times at this
4696 * point and not have found anything, so we are likely way too
4697 * fragmented for the clustering stuff to find anything, so lets
4698 * just skip it and let the allocator find whatever block it can
4699 * find
4701 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
4703 * the refill lock keeps out other
4704 * people trying to start a new cluster
4706 spin_lock(&last_ptr->refill_lock);
4707 if (last_ptr->block_group &&
4708 (last_ptr->block_group->ro ||
4709 !block_group_bits(last_ptr->block_group, data))) {
4710 offset = 0;
4711 goto refill_cluster;
4714 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
4715 num_bytes, search_start);
4716 if (offset) {
4717 /* we have a block, we're done */
4718 spin_unlock(&last_ptr->refill_lock);
4719 goto checks;
4722 spin_lock(&last_ptr->lock);
4724 * whoops, this cluster doesn't actually point to
4725 * this block group. Get a ref on the block
4726 * group is does point to and try again
4728 if (!last_ptr_loop && last_ptr->block_group &&
4729 last_ptr->block_group != block_group) {
4731 btrfs_put_block_group(block_group);
4732 block_group = last_ptr->block_group;
4733 btrfs_get_block_group(block_group);
4734 spin_unlock(&last_ptr->lock);
4735 spin_unlock(&last_ptr->refill_lock);
4737 last_ptr_loop = 1;
4738 search_start = block_group->key.objectid;
4740 * we know this block group is properly
4741 * in the list because
4742 * btrfs_remove_block_group, drops the
4743 * cluster before it removes the block
4744 * group from the list
4746 goto have_block_group;
4748 spin_unlock(&last_ptr->lock);
4749 refill_cluster:
4751 * this cluster didn't work out, free it and
4752 * start over
4754 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4756 last_ptr_loop = 0;
4758 /* allocate a cluster in this block group */
4759 ret = btrfs_find_space_cluster(trans, root,
4760 block_group, last_ptr,
4761 offset, num_bytes,
4762 empty_cluster + empty_size);
4763 if (ret == 0) {
4765 * now pull our allocation out of this
4766 * cluster
4768 offset = btrfs_alloc_from_cluster(block_group,
4769 last_ptr, num_bytes,
4770 search_start);
4771 if (offset) {
4772 /* we found one, proceed */
4773 spin_unlock(&last_ptr->refill_lock);
4774 goto checks;
4776 } else if (!cached && loop > LOOP_CACHING_NOWAIT
4777 && !failed_cluster_refill) {
4778 spin_unlock(&last_ptr->refill_lock);
4780 failed_cluster_refill = true;
4781 wait_block_group_cache_progress(block_group,
4782 num_bytes + empty_cluster + empty_size);
4783 goto have_block_group;
4787 * at this point we either didn't find a cluster
4788 * or we weren't able to allocate a block from our
4789 * cluster. Free the cluster we've been trying
4790 * to use, and go to the next block group
4792 btrfs_return_cluster_to_free_space(NULL, last_ptr);
4793 spin_unlock(&last_ptr->refill_lock);
4794 goto loop;
4797 offset = btrfs_find_space_for_alloc(block_group, search_start,
4798 num_bytes, empty_size);
4800 * If we didn't find a chunk, and we haven't failed on this
4801 * block group before, and this block group is in the middle of
4802 * caching and we are ok with waiting, then go ahead and wait
4803 * for progress to be made, and set failed_alloc to true.
4805 * If failed_alloc is true then we've already waited on this
4806 * block group once and should move on to the next block group.
4808 if (!offset && !failed_alloc && !cached &&
4809 loop > LOOP_CACHING_NOWAIT) {
4810 wait_block_group_cache_progress(block_group,
4811 num_bytes + empty_size);
4812 failed_alloc = true;
4813 goto have_block_group;
4814 } else if (!offset) {
4815 goto loop;
4817 checks:
4818 search_start = stripe_align(root, offset);
4819 /* move on to the next group */
4820 if (search_start + num_bytes >= search_end) {
4821 btrfs_add_free_space(block_group, offset, num_bytes);
4822 goto loop;
4825 /* move on to the next group */
4826 if (search_start + num_bytes >
4827 block_group->key.objectid + block_group->key.offset) {
4828 btrfs_add_free_space(block_group, offset, num_bytes);
4829 goto loop;
4832 ins->objectid = search_start;
4833 ins->offset = num_bytes;
4835 if (offset < search_start)
4836 btrfs_add_free_space(block_group, offset,
4837 search_start - offset);
4838 BUG_ON(offset > search_start);
4840 ret = update_reserved_bytes(block_group, num_bytes, 1,
4841 (data & BTRFS_BLOCK_GROUP_DATA));
4842 if (ret == -EAGAIN) {
4843 btrfs_add_free_space(block_group, offset, num_bytes);
4844 goto loop;
4847 /* we are all good, lets return */
4848 ins->objectid = search_start;
4849 ins->offset = num_bytes;
4851 if (offset < search_start)
4852 btrfs_add_free_space(block_group, offset,
4853 search_start - offset);
4854 BUG_ON(offset > search_start);
4855 break;
4856 loop:
4857 failed_cluster_refill = false;
4858 failed_alloc = false;
4859 BUG_ON(index != get_block_group_index(block_group));
4860 btrfs_put_block_group(block_group);
4862 up_read(&space_info->groups_sem);
4864 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
4865 goto search;
4867 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
4868 * for them to make caching progress. Also
4869 * determine the best possible bg to cache
4870 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4871 * caching kthreads as we move along
4872 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4873 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4874 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4875 * again
4877 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE &&
4878 (found_uncached_bg || empty_size || empty_cluster ||
4879 allowed_chunk_alloc)) {
4880 index = 0;
4881 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
4882 found_uncached_bg = false;
4883 loop++;
4884 if (!ideal_cache_percent &&
4885 atomic_read(&space_info->caching_threads))
4886 goto search;
4889 * 1 of the following 2 things have happened so far
4891 * 1) We found an ideal block group for caching that
4892 * is mostly full and will cache quickly, so we might
4893 * as well wait for it.
4895 * 2) We searched for cached only and we didn't find
4896 * anything, and we didn't start any caching kthreads
4897 * either, so chances are we will loop through and
4898 * start a couple caching kthreads, and then come back
4899 * around and just wait for them. This will be slower
4900 * because we will have 2 caching kthreads reading at
4901 * the same time when we could have just started one
4902 * and waited for it to get far enough to give us an
4903 * allocation, so go ahead and go to the wait caching
4904 * loop.
4906 loop = LOOP_CACHING_WAIT;
4907 search_start = ideal_cache_offset;
4908 ideal_cache_percent = 0;
4909 goto ideal_cache;
4910 } else if (loop == LOOP_FIND_IDEAL) {
4912 * Didn't find a uncached bg, wait on anything we find
4913 * next.
4915 loop = LOOP_CACHING_WAIT;
4916 goto search;
4919 if (loop < LOOP_CACHING_WAIT) {
4920 loop++;
4921 goto search;
4924 if (loop == LOOP_ALLOC_CHUNK) {
4925 empty_size = 0;
4926 empty_cluster = 0;
4929 if (allowed_chunk_alloc) {
4930 ret = do_chunk_alloc(trans, root, num_bytes +
4931 2 * 1024 * 1024, data, 1);
4932 allowed_chunk_alloc = 0;
4933 done_chunk_alloc = 1;
4934 } else if (!done_chunk_alloc) {
4935 space_info->force_alloc = 1;
4938 if (loop < LOOP_NO_EMPTY_SIZE) {
4939 loop++;
4940 goto search;
4942 ret = -ENOSPC;
4943 } else if (!ins->objectid) {
4944 ret = -ENOSPC;
4947 /* we found what we needed */
4948 if (ins->objectid) {
4949 if (!(data & BTRFS_BLOCK_GROUP_DATA))
4950 trans->block_group = block_group->key.objectid;
4952 btrfs_put_block_group(block_group);
4953 ret = 0;
4956 return ret;
4959 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
4960 int dump_block_groups)
4962 struct btrfs_block_group_cache *cache;
4963 int index = 0;
4965 spin_lock(&info->lock);
4966 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
4967 (unsigned long long)(info->total_bytes - info->bytes_used -
4968 info->bytes_pinned - info->bytes_reserved -
4969 info->bytes_readonly),
4970 (info->full) ? "" : "not ");
4971 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
4972 "reserved=%llu, may_use=%llu, readonly=%llu\n",
4973 (unsigned long long)info->total_bytes,
4974 (unsigned long long)info->bytes_used,
4975 (unsigned long long)info->bytes_pinned,
4976 (unsigned long long)info->bytes_reserved,
4977 (unsigned long long)info->bytes_may_use,
4978 (unsigned long long)info->bytes_readonly);
4979 spin_unlock(&info->lock);
4981 if (!dump_block_groups)
4982 return;
4984 down_read(&info->groups_sem);
4985 again:
4986 list_for_each_entry(cache, &info->block_groups[index], list) {
4987 spin_lock(&cache->lock);
4988 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
4989 "%llu pinned %llu reserved\n",
4990 (unsigned long long)cache->key.objectid,
4991 (unsigned long long)cache->key.offset,
4992 (unsigned long long)btrfs_block_group_used(&cache->item),
4993 (unsigned long long)cache->pinned,
4994 (unsigned long long)cache->reserved);
4995 btrfs_dump_free_space(cache, bytes);
4996 spin_unlock(&cache->lock);
4998 if (++index < BTRFS_NR_RAID_TYPES)
4999 goto again;
5000 up_read(&info->groups_sem);
5003 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5004 struct btrfs_root *root,
5005 u64 num_bytes, u64 min_alloc_size,
5006 u64 empty_size, u64 hint_byte,
5007 u64 search_end, struct btrfs_key *ins,
5008 u64 data)
5010 int ret;
5011 u64 search_start = 0;
5013 data = btrfs_get_alloc_profile(root, data);
5014 again:
5016 * the only place that sets empty_size is btrfs_realloc_node, which
5017 * is not called recursively on allocations
5019 if (empty_size || root->ref_cows)
5020 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5021 num_bytes + 2 * 1024 * 1024, data, 0);
5023 WARN_ON(num_bytes < root->sectorsize);
5024 ret = find_free_extent(trans, root, num_bytes, empty_size,
5025 search_start, search_end, hint_byte,
5026 ins, data);
5028 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5029 num_bytes = num_bytes >> 1;
5030 num_bytes = num_bytes & ~(root->sectorsize - 1);
5031 num_bytes = max(num_bytes, min_alloc_size);
5032 do_chunk_alloc(trans, root->fs_info->extent_root,
5033 num_bytes, data, 1);
5034 goto again;
5036 if (ret == -ENOSPC) {
5037 struct btrfs_space_info *sinfo;
5039 sinfo = __find_space_info(root->fs_info, data);
5040 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5041 "wanted %llu\n", (unsigned long long)data,
5042 (unsigned long long)num_bytes);
5043 dump_space_info(sinfo, num_bytes, 1);
5046 return ret;
5049 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5051 struct btrfs_block_group_cache *cache;
5052 int ret = 0;
5054 cache = btrfs_lookup_block_group(root->fs_info, start);
5055 if (!cache) {
5056 printk(KERN_ERR "Unable to find block group for %llu\n",
5057 (unsigned long long)start);
5058 return -ENOSPC;
5061 ret = btrfs_discard_extent(root, start, len);
5063 btrfs_add_free_space(cache, start, len);
5064 update_reserved_bytes(cache, len, 0, 1);
5065 btrfs_put_block_group(cache);
5067 return ret;
5070 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5071 struct btrfs_root *root,
5072 u64 parent, u64 root_objectid,
5073 u64 flags, u64 owner, u64 offset,
5074 struct btrfs_key *ins, int ref_mod)
5076 int ret;
5077 struct btrfs_fs_info *fs_info = root->fs_info;
5078 struct btrfs_extent_item *extent_item;
5079 struct btrfs_extent_inline_ref *iref;
5080 struct btrfs_path *path;
5081 struct extent_buffer *leaf;
5082 int type;
5083 u32 size;
5085 if (parent > 0)
5086 type = BTRFS_SHARED_DATA_REF_KEY;
5087 else
5088 type = BTRFS_EXTENT_DATA_REF_KEY;
5090 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5092 path = btrfs_alloc_path();
5093 BUG_ON(!path);
5095 path->leave_spinning = 1;
5096 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5097 ins, size);
5098 BUG_ON(ret);
5100 leaf = path->nodes[0];
5101 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5102 struct btrfs_extent_item);
5103 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5104 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5105 btrfs_set_extent_flags(leaf, extent_item,
5106 flags | BTRFS_EXTENT_FLAG_DATA);
5108 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5109 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5110 if (parent > 0) {
5111 struct btrfs_shared_data_ref *ref;
5112 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5113 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5114 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5115 } else {
5116 struct btrfs_extent_data_ref *ref;
5117 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5118 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5119 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5120 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5121 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5124 btrfs_mark_buffer_dirty(path->nodes[0]);
5125 btrfs_free_path(path);
5127 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5128 if (ret) {
5129 printk(KERN_ERR "btrfs update block group failed for %llu "
5130 "%llu\n", (unsigned long long)ins->objectid,
5131 (unsigned long long)ins->offset);
5132 BUG();
5134 return ret;
5137 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5138 struct btrfs_root *root,
5139 u64 parent, u64 root_objectid,
5140 u64 flags, struct btrfs_disk_key *key,
5141 int level, struct btrfs_key *ins)
5143 int ret;
5144 struct btrfs_fs_info *fs_info = root->fs_info;
5145 struct btrfs_extent_item *extent_item;
5146 struct btrfs_tree_block_info *block_info;
5147 struct btrfs_extent_inline_ref *iref;
5148 struct btrfs_path *path;
5149 struct extent_buffer *leaf;
5150 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5152 path = btrfs_alloc_path();
5153 BUG_ON(!path);
5155 path->leave_spinning = 1;
5156 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5157 ins, size);
5158 BUG_ON(ret);
5160 leaf = path->nodes[0];
5161 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5162 struct btrfs_extent_item);
5163 btrfs_set_extent_refs(leaf, extent_item, 1);
5164 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5165 btrfs_set_extent_flags(leaf, extent_item,
5166 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5167 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5169 btrfs_set_tree_block_key(leaf, block_info, key);
5170 btrfs_set_tree_block_level(leaf, block_info, level);
5172 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5173 if (parent > 0) {
5174 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5175 btrfs_set_extent_inline_ref_type(leaf, iref,
5176 BTRFS_SHARED_BLOCK_REF_KEY);
5177 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5178 } else {
5179 btrfs_set_extent_inline_ref_type(leaf, iref,
5180 BTRFS_TREE_BLOCK_REF_KEY);
5181 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5184 btrfs_mark_buffer_dirty(leaf);
5185 btrfs_free_path(path);
5187 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5188 if (ret) {
5189 printk(KERN_ERR "btrfs update block group failed for %llu "
5190 "%llu\n", (unsigned long long)ins->objectid,
5191 (unsigned long long)ins->offset);
5192 BUG();
5194 return ret;
5197 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5198 struct btrfs_root *root,
5199 u64 root_objectid, u64 owner,
5200 u64 offset, struct btrfs_key *ins)
5202 int ret;
5204 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5206 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5207 0, root_objectid, owner, offset,
5208 BTRFS_ADD_DELAYED_EXTENT, NULL);
5209 return ret;
5213 * this is used by the tree logging recovery code. It records that
5214 * an extent has been allocated and makes sure to clear the free
5215 * space cache bits as well
5217 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5218 struct btrfs_root *root,
5219 u64 root_objectid, u64 owner, u64 offset,
5220 struct btrfs_key *ins)
5222 int ret;
5223 struct btrfs_block_group_cache *block_group;
5224 struct btrfs_caching_control *caching_ctl;
5225 u64 start = ins->objectid;
5226 u64 num_bytes = ins->offset;
5228 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5229 cache_block_group(block_group);
5230 caching_ctl = get_caching_control(block_group);
5232 if (!caching_ctl) {
5233 BUG_ON(!block_group_cache_done(block_group));
5234 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5235 BUG_ON(ret);
5236 } else {
5237 mutex_lock(&caching_ctl->mutex);
5239 if (start >= caching_ctl->progress) {
5240 ret = add_excluded_extent(root, start, num_bytes);
5241 BUG_ON(ret);
5242 } else if (start + num_bytes <= caching_ctl->progress) {
5243 ret = btrfs_remove_free_space(block_group,
5244 start, num_bytes);
5245 BUG_ON(ret);
5246 } else {
5247 num_bytes = caching_ctl->progress - start;
5248 ret = btrfs_remove_free_space(block_group,
5249 start, num_bytes);
5250 BUG_ON(ret);
5252 start = caching_ctl->progress;
5253 num_bytes = ins->objectid + ins->offset -
5254 caching_ctl->progress;
5255 ret = add_excluded_extent(root, start, num_bytes);
5256 BUG_ON(ret);
5259 mutex_unlock(&caching_ctl->mutex);
5260 put_caching_control(caching_ctl);
5263 ret = update_reserved_bytes(block_group, ins->offset, 1, 1);
5264 BUG_ON(ret);
5265 btrfs_put_block_group(block_group);
5266 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5267 0, owner, offset, ins, 1);
5268 return ret;
5271 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5272 struct btrfs_root *root,
5273 u64 bytenr, u32 blocksize,
5274 int level)
5276 struct extent_buffer *buf;
5278 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5279 if (!buf)
5280 return ERR_PTR(-ENOMEM);
5281 btrfs_set_header_generation(buf, trans->transid);
5282 btrfs_set_buffer_lockdep_class(buf, level);
5283 btrfs_tree_lock(buf);
5284 clean_tree_block(trans, root, buf);
5286 btrfs_set_lock_blocking(buf);
5287 btrfs_set_buffer_uptodate(buf);
5289 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5291 * we allow two log transactions at a time, use different
5292 * EXENT bit to differentiate dirty pages.
5294 if (root->log_transid % 2 == 0)
5295 set_extent_dirty(&root->dirty_log_pages, buf->start,
5296 buf->start + buf->len - 1, GFP_NOFS);
5297 else
5298 set_extent_new(&root->dirty_log_pages, buf->start,
5299 buf->start + buf->len - 1, GFP_NOFS);
5300 } else {
5301 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5302 buf->start + buf->len - 1, GFP_NOFS);
5304 trans->blocks_used++;
5305 /* this returns a buffer locked for blocking */
5306 return buf;
5309 static struct btrfs_block_rsv *
5310 use_block_rsv(struct btrfs_trans_handle *trans,
5311 struct btrfs_root *root, u32 blocksize)
5313 struct btrfs_block_rsv *block_rsv;
5314 int ret;
5316 block_rsv = get_block_rsv(trans, root);
5318 if (block_rsv->size == 0) {
5319 ret = reserve_metadata_bytes(block_rsv, blocksize);
5320 if (ret)
5321 return ERR_PTR(ret);
5322 return block_rsv;
5325 ret = block_rsv_use_bytes(block_rsv, blocksize);
5326 if (!ret)
5327 return block_rsv;
5329 WARN_ON(1);
5330 printk(KERN_INFO"block_rsv size %llu reserved %llu freed %llu %llu\n",
5331 block_rsv->size, block_rsv->reserved,
5332 block_rsv->freed[0], block_rsv->freed[1]);
5334 return ERR_PTR(-ENOSPC);
5337 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5339 block_rsv_add_bytes(block_rsv, blocksize, 0);
5340 block_rsv_release_bytes(block_rsv, NULL, 0);
5344 * finds a free extent and does all the dirty work required for allocation
5345 * returns the key for the extent through ins, and a tree buffer for
5346 * the first block of the extent through buf.
5348 * returns the tree buffer or NULL.
5350 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5351 struct btrfs_root *root, u32 blocksize,
5352 u64 parent, u64 root_objectid,
5353 struct btrfs_disk_key *key, int level,
5354 u64 hint, u64 empty_size)
5356 struct btrfs_key ins;
5357 struct btrfs_block_rsv *block_rsv;
5358 struct extent_buffer *buf;
5359 u64 flags = 0;
5360 int ret;
5363 block_rsv = use_block_rsv(trans, root, blocksize);
5364 if (IS_ERR(block_rsv))
5365 return ERR_CAST(block_rsv);
5367 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5368 empty_size, hint, (u64)-1, &ins, 0);
5369 if (ret) {
5370 unuse_block_rsv(block_rsv, blocksize);
5371 return ERR_PTR(ret);
5374 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5375 blocksize, level);
5376 BUG_ON(IS_ERR(buf));
5378 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5379 if (parent == 0)
5380 parent = ins.objectid;
5381 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5382 } else
5383 BUG_ON(parent > 0);
5385 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5386 struct btrfs_delayed_extent_op *extent_op;
5387 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5388 BUG_ON(!extent_op);
5389 if (key)
5390 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5391 else
5392 memset(&extent_op->key, 0, sizeof(extent_op->key));
5393 extent_op->flags_to_set = flags;
5394 extent_op->update_key = 1;
5395 extent_op->update_flags = 1;
5396 extent_op->is_data = 0;
5398 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5399 ins.offset, parent, root_objectid,
5400 level, BTRFS_ADD_DELAYED_EXTENT,
5401 extent_op);
5402 BUG_ON(ret);
5404 return buf;
5407 struct walk_control {
5408 u64 refs[BTRFS_MAX_LEVEL];
5409 u64 flags[BTRFS_MAX_LEVEL];
5410 struct btrfs_key update_progress;
5411 int stage;
5412 int level;
5413 int shared_level;
5414 int update_ref;
5415 int keep_locks;
5416 int reada_slot;
5417 int reada_count;
5420 #define DROP_REFERENCE 1
5421 #define UPDATE_BACKREF 2
5423 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5424 struct btrfs_root *root,
5425 struct walk_control *wc,
5426 struct btrfs_path *path)
5428 u64 bytenr;
5429 u64 generation;
5430 u64 refs;
5431 u64 flags;
5432 u64 last = 0;
5433 u32 nritems;
5434 u32 blocksize;
5435 struct btrfs_key key;
5436 struct extent_buffer *eb;
5437 int ret;
5438 int slot;
5439 int nread = 0;
5441 if (path->slots[wc->level] < wc->reada_slot) {
5442 wc->reada_count = wc->reada_count * 2 / 3;
5443 wc->reada_count = max(wc->reada_count, 2);
5444 } else {
5445 wc->reada_count = wc->reada_count * 3 / 2;
5446 wc->reada_count = min_t(int, wc->reada_count,
5447 BTRFS_NODEPTRS_PER_BLOCK(root));
5450 eb = path->nodes[wc->level];
5451 nritems = btrfs_header_nritems(eb);
5452 blocksize = btrfs_level_size(root, wc->level - 1);
5454 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5455 if (nread >= wc->reada_count)
5456 break;
5458 cond_resched();
5459 bytenr = btrfs_node_blockptr(eb, slot);
5460 generation = btrfs_node_ptr_generation(eb, slot);
5462 if (slot == path->slots[wc->level])
5463 goto reada;
5465 if (wc->stage == UPDATE_BACKREF &&
5466 generation <= root->root_key.offset)
5467 continue;
5469 /* We don't lock the tree block, it's OK to be racy here */
5470 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5471 &refs, &flags);
5472 BUG_ON(ret);
5473 BUG_ON(refs == 0);
5475 if (wc->stage == DROP_REFERENCE) {
5476 if (refs == 1)
5477 goto reada;
5479 if (wc->level == 1 &&
5480 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5481 continue;
5482 if (!wc->update_ref ||
5483 generation <= root->root_key.offset)
5484 continue;
5485 btrfs_node_key_to_cpu(eb, &key, slot);
5486 ret = btrfs_comp_cpu_keys(&key,
5487 &wc->update_progress);
5488 if (ret < 0)
5489 continue;
5490 } else {
5491 if (wc->level == 1 &&
5492 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5493 continue;
5495 reada:
5496 ret = readahead_tree_block(root, bytenr, blocksize,
5497 generation);
5498 if (ret)
5499 break;
5500 last = bytenr + blocksize;
5501 nread++;
5503 wc->reada_slot = slot;
5507 * hepler to process tree block while walking down the tree.
5509 * when wc->stage == UPDATE_BACKREF, this function updates
5510 * back refs for pointers in the block.
5512 * NOTE: return value 1 means we should stop walking down.
5514 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5515 struct btrfs_root *root,
5516 struct btrfs_path *path,
5517 struct walk_control *wc, int lookup_info)
5519 int level = wc->level;
5520 struct extent_buffer *eb = path->nodes[level];
5521 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5522 int ret;
5524 if (wc->stage == UPDATE_BACKREF &&
5525 btrfs_header_owner(eb) != root->root_key.objectid)
5526 return 1;
5529 * when reference count of tree block is 1, it won't increase
5530 * again. once full backref flag is set, we never clear it.
5532 if (lookup_info &&
5533 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5534 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5535 BUG_ON(!path->locks[level]);
5536 ret = btrfs_lookup_extent_info(trans, root,
5537 eb->start, eb->len,
5538 &wc->refs[level],
5539 &wc->flags[level]);
5540 BUG_ON(ret);
5541 BUG_ON(wc->refs[level] == 0);
5544 if (wc->stage == DROP_REFERENCE) {
5545 if (wc->refs[level] > 1)
5546 return 1;
5548 if (path->locks[level] && !wc->keep_locks) {
5549 btrfs_tree_unlock(eb);
5550 path->locks[level] = 0;
5552 return 0;
5555 /* wc->stage == UPDATE_BACKREF */
5556 if (!(wc->flags[level] & flag)) {
5557 BUG_ON(!path->locks[level]);
5558 ret = btrfs_inc_ref(trans, root, eb, 1);
5559 BUG_ON(ret);
5560 ret = btrfs_dec_ref(trans, root, eb, 0);
5561 BUG_ON(ret);
5562 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5563 eb->len, flag, 0);
5564 BUG_ON(ret);
5565 wc->flags[level] |= flag;
5569 * the block is shared by multiple trees, so it's not good to
5570 * keep the tree lock
5572 if (path->locks[level] && level > 0) {
5573 btrfs_tree_unlock(eb);
5574 path->locks[level] = 0;
5576 return 0;
5580 * hepler to process tree block pointer.
5582 * when wc->stage == DROP_REFERENCE, this function checks
5583 * reference count of the block pointed to. if the block
5584 * is shared and we need update back refs for the subtree
5585 * rooted at the block, this function changes wc->stage to
5586 * UPDATE_BACKREF. if the block is shared and there is no
5587 * need to update back, this function drops the reference
5588 * to the block.
5590 * NOTE: return value 1 means we should stop walking down.
5592 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5593 struct btrfs_root *root,
5594 struct btrfs_path *path,
5595 struct walk_control *wc, int *lookup_info)
5597 u64 bytenr;
5598 u64 generation;
5599 u64 parent;
5600 u32 blocksize;
5601 struct btrfs_key key;
5602 struct extent_buffer *next;
5603 int level = wc->level;
5604 int reada = 0;
5605 int ret = 0;
5607 generation = btrfs_node_ptr_generation(path->nodes[level],
5608 path->slots[level]);
5610 * if the lower level block was created before the snapshot
5611 * was created, we know there is no need to update back refs
5612 * for the subtree
5614 if (wc->stage == UPDATE_BACKREF &&
5615 generation <= root->root_key.offset) {
5616 *lookup_info = 1;
5617 return 1;
5620 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5621 blocksize = btrfs_level_size(root, level - 1);
5623 next = btrfs_find_tree_block(root, bytenr, blocksize);
5624 if (!next) {
5625 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5626 if (!next)
5627 return -ENOMEM;
5628 reada = 1;
5630 btrfs_tree_lock(next);
5631 btrfs_set_lock_blocking(next);
5633 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5634 &wc->refs[level - 1],
5635 &wc->flags[level - 1]);
5636 BUG_ON(ret);
5637 BUG_ON(wc->refs[level - 1] == 0);
5638 *lookup_info = 0;
5640 if (wc->stage == DROP_REFERENCE) {
5641 if (wc->refs[level - 1] > 1) {
5642 if (level == 1 &&
5643 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5644 goto skip;
5646 if (!wc->update_ref ||
5647 generation <= root->root_key.offset)
5648 goto skip;
5650 btrfs_node_key_to_cpu(path->nodes[level], &key,
5651 path->slots[level]);
5652 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5653 if (ret < 0)
5654 goto skip;
5656 wc->stage = UPDATE_BACKREF;
5657 wc->shared_level = level - 1;
5659 } else {
5660 if (level == 1 &&
5661 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5662 goto skip;
5665 if (!btrfs_buffer_uptodate(next, generation)) {
5666 btrfs_tree_unlock(next);
5667 free_extent_buffer(next);
5668 next = NULL;
5669 *lookup_info = 1;
5672 if (!next) {
5673 if (reada && level == 1)
5674 reada_walk_down(trans, root, wc, path);
5675 next = read_tree_block(root, bytenr, blocksize, generation);
5676 btrfs_tree_lock(next);
5677 btrfs_set_lock_blocking(next);
5680 level--;
5681 BUG_ON(level != btrfs_header_level(next));
5682 path->nodes[level] = next;
5683 path->slots[level] = 0;
5684 path->locks[level] = 1;
5685 wc->level = level;
5686 if (wc->level == 1)
5687 wc->reada_slot = 0;
5688 return 0;
5689 skip:
5690 wc->refs[level - 1] = 0;
5691 wc->flags[level - 1] = 0;
5692 if (wc->stage == DROP_REFERENCE) {
5693 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5694 parent = path->nodes[level]->start;
5695 } else {
5696 BUG_ON(root->root_key.objectid !=
5697 btrfs_header_owner(path->nodes[level]));
5698 parent = 0;
5701 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
5702 root->root_key.objectid, level - 1, 0);
5703 BUG_ON(ret);
5705 btrfs_tree_unlock(next);
5706 free_extent_buffer(next);
5707 *lookup_info = 1;
5708 return 1;
5712 * hepler to process tree block while walking up the tree.
5714 * when wc->stage == DROP_REFERENCE, this function drops
5715 * reference count on the block.
5717 * when wc->stage == UPDATE_BACKREF, this function changes
5718 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5719 * to UPDATE_BACKREF previously while processing the block.
5721 * NOTE: return value 1 means we should stop walking up.
5723 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5724 struct btrfs_root *root,
5725 struct btrfs_path *path,
5726 struct walk_control *wc)
5728 int ret;
5729 int level = wc->level;
5730 struct extent_buffer *eb = path->nodes[level];
5731 u64 parent = 0;
5733 if (wc->stage == UPDATE_BACKREF) {
5734 BUG_ON(wc->shared_level < level);
5735 if (level < wc->shared_level)
5736 goto out;
5738 ret = find_next_key(path, level + 1, &wc->update_progress);
5739 if (ret > 0)
5740 wc->update_ref = 0;
5742 wc->stage = DROP_REFERENCE;
5743 wc->shared_level = -1;
5744 path->slots[level] = 0;
5747 * check reference count again if the block isn't locked.
5748 * we should start walking down the tree again if reference
5749 * count is one.
5751 if (!path->locks[level]) {
5752 BUG_ON(level == 0);
5753 btrfs_tree_lock(eb);
5754 btrfs_set_lock_blocking(eb);
5755 path->locks[level] = 1;
5757 ret = btrfs_lookup_extent_info(trans, root,
5758 eb->start, eb->len,
5759 &wc->refs[level],
5760 &wc->flags[level]);
5761 BUG_ON(ret);
5762 BUG_ON(wc->refs[level] == 0);
5763 if (wc->refs[level] == 1) {
5764 btrfs_tree_unlock(eb);
5765 path->locks[level] = 0;
5766 return 1;
5771 /* wc->stage == DROP_REFERENCE */
5772 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5774 if (wc->refs[level] == 1) {
5775 if (level == 0) {
5776 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5777 ret = btrfs_dec_ref(trans, root, eb, 1);
5778 else
5779 ret = btrfs_dec_ref(trans, root, eb, 0);
5780 BUG_ON(ret);
5782 /* make block locked assertion in clean_tree_block happy */
5783 if (!path->locks[level] &&
5784 btrfs_header_generation(eb) == trans->transid) {
5785 btrfs_tree_lock(eb);
5786 btrfs_set_lock_blocking(eb);
5787 path->locks[level] = 1;
5789 clean_tree_block(trans, root, eb);
5792 if (eb == root->node) {
5793 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5794 parent = eb->start;
5795 else
5796 BUG_ON(root->root_key.objectid !=
5797 btrfs_header_owner(eb));
5798 } else {
5799 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5800 parent = path->nodes[level + 1]->start;
5801 else
5802 BUG_ON(root->root_key.objectid !=
5803 btrfs_header_owner(path->nodes[level + 1]));
5806 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5807 out:
5808 wc->refs[level] = 0;
5809 wc->flags[level] = 0;
5810 return 0;
5813 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5814 struct btrfs_root *root,
5815 struct btrfs_path *path,
5816 struct walk_control *wc)
5818 int level = wc->level;
5819 int lookup_info = 1;
5820 int ret;
5822 while (level >= 0) {
5823 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5824 if (ret > 0)
5825 break;
5827 if (level == 0)
5828 break;
5830 if (path->slots[level] >=
5831 btrfs_header_nritems(path->nodes[level]))
5832 break;
5834 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5835 if (ret > 0) {
5836 path->slots[level]++;
5837 continue;
5838 } else if (ret < 0)
5839 return ret;
5840 level = wc->level;
5842 return 0;
5845 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5846 struct btrfs_root *root,
5847 struct btrfs_path *path,
5848 struct walk_control *wc, int max_level)
5850 int level = wc->level;
5851 int ret;
5853 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5854 while (level < max_level && path->nodes[level]) {
5855 wc->level = level;
5856 if (path->slots[level] + 1 <
5857 btrfs_header_nritems(path->nodes[level])) {
5858 path->slots[level]++;
5859 return 0;
5860 } else {
5861 ret = walk_up_proc(trans, root, path, wc);
5862 if (ret > 0)
5863 return 0;
5865 if (path->locks[level]) {
5866 btrfs_tree_unlock(path->nodes[level]);
5867 path->locks[level] = 0;
5869 free_extent_buffer(path->nodes[level]);
5870 path->nodes[level] = NULL;
5871 level++;
5874 return 1;
5878 * drop a subvolume tree.
5880 * this function traverses the tree freeing any blocks that only
5881 * referenced by the tree.
5883 * when a shared tree block is found. this function decreases its
5884 * reference count by one. if update_ref is true, this function
5885 * also make sure backrefs for the shared block and all lower level
5886 * blocks are properly updated.
5888 int btrfs_drop_snapshot(struct btrfs_root *root,
5889 struct btrfs_block_rsv *block_rsv, int update_ref)
5891 struct btrfs_path *path;
5892 struct btrfs_trans_handle *trans;
5893 struct btrfs_root *tree_root = root->fs_info->tree_root;
5894 struct btrfs_root_item *root_item = &root->root_item;
5895 struct walk_control *wc;
5896 struct btrfs_key key;
5897 int err = 0;
5898 int ret;
5899 int level;
5901 path = btrfs_alloc_path();
5902 BUG_ON(!path);
5904 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5905 BUG_ON(!wc);
5907 trans = btrfs_start_transaction(tree_root, 0);
5908 if (block_rsv)
5909 trans->block_rsv = block_rsv;
5911 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5912 level = btrfs_header_level(root->node);
5913 path->nodes[level] = btrfs_lock_root_node(root);
5914 btrfs_set_lock_blocking(path->nodes[level]);
5915 path->slots[level] = 0;
5916 path->locks[level] = 1;
5917 memset(&wc->update_progress, 0,
5918 sizeof(wc->update_progress));
5919 } else {
5920 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5921 memcpy(&wc->update_progress, &key,
5922 sizeof(wc->update_progress));
5924 level = root_item->drop_level;
5925 BUG_ON(level == 0);
5926 path->lowest_level = level;
5927 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5928 path->lowest_level = 0;
5929 if (ret < 0) {
5930 err = ret;
5931 goto out;
5933 WARN_ON(ret > 0);
5936 * unlock our path, this is safe because only this
5937 * function is allowed to delete this snapshot
5939 btrfs_unlock_up_safe(path, 0);
5941 level = btrfs_header_level(root->node);
5942 while (1) {
5943 btrfs_tree_lock(path->nodes[level]);
5944 btrfs_set_lock_blocking(path->nodes[level]);
5946 ret = btrfs_lookup_extent_info(trans, root,
5947 path->nodes[level]->start,
5948 path->nodes[level]->len,
5949 &wc->refs[level],
5950 &wc->flags[level]);
5951 BUG_ON(ret);
5952 BUG_ON(wc->refs[level] == 0);
5954 if (level == root_item->drop_level)
5955 break;
5957 btrfs_tree_unlock(path->nodes[level]);
5958 WARN_ON(wc->refs[level] != 1);
5959 level--;
5963 wc->level = level;
5964 wc->shared_level = -1;
5965 wc->stage = DROP_REFERENCE;
5966 wc->update_ref = update_ref;
5967 wc->keep_locks = 0;
5968 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
5970 while (1) {
5971 ret = walk_down_tree(trans, root, path, wc);
5972 if (ret < 0) {
5973 err = ret;
5974 break;
5977 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5978 if (ret < 0) {
5979 err = ret;
5980 break;
5983 if (ret > 0) {
5984 BUG_ON(wc->stage != DROP_REFERENCE);
5985 break;
5988 if (wc->stage == DROP_REFERENCE) {
5989 level = wc->level;
5990 btrfs_node_key(path->nodes[level],
5991 &root_item->drop_progress,
5992 path->slots[level]);
5993 root_item->drop_level = level;
5996 BUG_ON(wc->level == 0);
5997 if (btrfs_should_end_transaction(trans, tree_root)) {
5998 ret = btrfs_update_root(trans, tree_root,
5999 &root->root_key,
6000 root_item);
6001 BUG_ON(ret);
6003 btrfs_end_transaction_throttle(trans, tree_root);
6004 trans = btrfs_start_transaction(tree_root, 0);
6005 if (block_rsv)
6006 trans->block_rsv = block_rsv;
6009 btrfs_release_path(root, path);
6010 BUG_ON(err);
6012 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6013 BUG_ON(ret);
6015 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6016 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6017 NULL, NULL);
6018 BUG_ON(ret < 0);
6019 if (ret > 0) {
6020 ret = btrfs_del_orphan_item(trans, tree_root,
6021 root->root_key.objectid);
6022 BUG_ON(ret);
6026 if (root->in_radix) {
6027 btrfs_free_fs_root(tree_root->fs_info, root);
6028 } else {
6029 free_extent_buffer(root->node);
6030 free_extent_buffer(root->commit_root);
6031 kfree(root);
6033 out:
6034 btrfs_end_transaction_throttle(trans, tree_root);
6035 kfree(wc);
6036 btrfs_free_path(path);
6037 return err;
6041 * drop subtree rooted at tree block 'node'.
6043 * NOTE: this function will unlock and release tree block 'node'
6045 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6046 struct btrfs_root *root,
6047 struct extent_buffer *node,
6048 struct extent_buffer *parent)
6050 struct btrfs_path *path;
6051 struct walk_control *wc;
6052 int level;
6053 int parent_level;
6054 int ret = 0;
6055 int wret;
6057 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6059 path = btrfs_alloc_path();
6060 BUG_ON(!path);
6062 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6063 BUG_ON(!wc);
6065 btrfs_assert_tree_locked(parent);
6066 parent_level = btrfs_header_level(parent);
6067 extent_buffer_get(parent);
6068 path->nodes[parent_level] = parent;
6069 path->slots[parent_level] = btrfs_header_nritems(parent);
6071 btrfs_assert_tree_locked(node);
6072 level = btrfs_header_level(node);
6073 path->nodes[level] = node;
6074 path->slots[level] = 0;
6075 path->locks[level] = 1;
6077 wc->refs[parent_level] = 1;
6078 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6079 wc->level = level;
6080 wc->shared_level = -1;
6081 wc->stage = DROP_REFERENCE;
6082 wc->update_ref = 0;
6083 wc->keep_locks = 1;
6084 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6086 while (1) {
6087 wret = walk_down_tree(trans, root, path, wc);
6088 if (wret < 0) {
6089 ret = wret;
6090 break;
6093 wret = walk_up_tree(trans, root, path, wc, parent_level);
6094 if (wret < 0)
6095 ret = wret;
6096 if (wret != 0)
6097 break;
6100 kfree(wc);
6101 btrfs_free_path(path);
6102 return ret;
6105 #if 0
6106 static unsigned long calc_ra(unsigned long start, unsigned long last,
6107 unsigned long nr)
6109 return min(last, start + nr - 1);
6112 static noinline int relocate_inode_pages(struct inode *inode, u64 start,
6113 u64 len)
6115 u64 page_start;
6116 u64 page_end;
6117 unsigned long first_index;
6118 unsigned long last_index;
6119 unsigned long i;
6120 struct page *page;
6121 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6122 struct file_ra_state *ra;
6123 struct btrfs_ordered_extent *ordered;
6124 unsigned int total_read = 0;
6125 unsigned int total_dirty = 0;
6126 int ret = 0;
6128 ra = kzalloc(sizeof(*ra), GFP_NOFS);
6130 mutex_lock(&inode->i_mutex);
6131 first_index = start >> PAGE_CACHE_SHIFT;
6132 last_index = (start + len - 1) >> PAGE_CACHE_SHIFT;
6134 /* make sure the dirty trick played by the caller work */
6135 ret = invalidate_inode_pages2_range(inode->i_mapping,
6136 first_index, last_index);
6137 if (ret)
6138 goto out_unlock;
6140 file_ra_state_init(ra, inode->i_mapping);
6142 for (i = first_index ; i <= last_index; i++) {
6143 if (total_read % ra->ra_pages == 0) {
6144 btrfs_force_ra(inode->i_mapping, ra, NULL, i,
6145 calc_ra(i, last_index, ra->ra_pages));
6147 total_read++;
6148 again:
6149 if (((u64)i << PAGE_CACHE_SHIFT) > i_size_read(inode))
6150 BUG_ON(1);
6151 page = grab_cache_page(inode->i_mapping, i);
6152 if (!page) {
6153 ret = -ENOMEM;
6154 goto out_unlock;
6156 if (!PageUptodate(page)) {
6157 btrfs_readpage(NULL, page);
6158 lock_page(page);
6159 if (!PageUptodate(page)) {
6160 unlock_page(page);
6161 page_cache_release(page);
6162 ret = -EIO;
6163 goto out_unlock;
6166 wait_on_page_writeback(page);
6168 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
6169 page_end = page_start + PAGE_CACHE_SIZE - 1;
6170 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
6172 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6173 if (ordered) {
6174 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6175 unlock_page(page);
6176 page_cache_release(page);
6177 btrfs_start_ordered_extent(inode, ordered, 1);
6178 btrfs_put_ordered_extent(ordered);
6179 goto again;
6181 set_page_extent_mapped(page);
6183 if (i == first_index)
6184 set_extent_bits(io_tree, page_start, page_end,
6185 EXTENT_BOUNDARY, GFP_NOFS);
6186 btrfs_set_extent_delalloc(inode, page_start, page_end);
6188 set_page_dirty(page);
6189 total_dirty++;
6191 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
6192 unlock_page(page);
6193 page_cache_release(page);
6196 out_unlock:
6197 kfree(ra);
6198 mutex_unlock(&inode->i_mutex);
6199 balance_dirty_pages_ratelimited_nr(inode->i_mapping, total_dirty);
6200 return ret;
6203 static noinline int relocate_data_extent(struct inode *reloc_inode,
6204 struct btrfs_key *extent_key,
6205 u64 offset)
6207 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6208 struct extent_map_tree *em_tree = &BTRFS_I(reloc_inode)->extent_tree;
6209 struct extent_map *em;
6210 u64 start = extent_key->objectid - offset;
6211 u64 end = start + extent_key->offset - 1;
6213 em = alloc_extent_map(GFP_NOFS);
6214 BUG_ON(!em || IS_ERR(em));
6216 em->start = start;
6217 em->len = extent_key->offset;
6218 em->block_len = extent_key->offset;
6219 em->block_start = extent_key->objectid;
6220 em->bdev = root->fs_info->fs_devices->latest_bdev;
6221 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6223 /* setup extent map to cheat btrfs_readpage */
6224 lock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6225 while (1) {
6226 int ret;
6227 write_lock(&em_tree->lock);
6228 ret = add_extent_mapping(em_tree, em);
6229 write_unlock(&em_tree->lock);
6230 if (ret != -EEXIST) {
6231 free_extent_map(em);
6232 break;
6234 btrfs_drop_extent_cache(reloc_inode, start, end, 0);
6236 unlock_extent(&BTRFS_I(reloc_inode)->io_tree, start, end, GFP_NOFS);
6238 return relocate_inode_pages(reloc_inode, start, extent_key->offset);
6241 struct btrfs_ref_path {
6242 u64 extent_start;
6243 u64 nodes[BTRFS_MAX_LEVEL];
6244 u64 root_objectid;
6245 u64 root_generation;
6246 u64 owner_objectid;
6247 u32 num_refs;
6248 int lowest_level;
6249 int current_level;
6250 int shared_level;
6252 struct btrfs_key node_keys[BTRFS_MAX_LEVEL];
6253 u64 new_nodes[BTRFS_MAX_LEVEL];
6256 struct disk_extent {
6257 u64 ram_bytes;
6258 u64 disk_bytenr;
6259 u64 disk_num_bytes;
6260 u64 offset;
6261 u64 num_bytes;
6262 u8 compression;
6263 u8 encryption;
6264 u16 other_encoding;
6267 static int is_cowonly_root(u64 root_objectid)
6269 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
6270 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
6271 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
6272 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
6273 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
6274 root_objectid == BTRFS_CSUM_TREE_OBJECTID)
6275 return 1;
6276 return 0;
6279 static noinline int __next_ref_path(struct btrfs_trans_handle *trans,
6280 struct btrfs_root *extent_root,
6281 struct btrfs_ref_path *ref_path,
6282 int first_time)
6284 struct extent_buffer *leaf;
6285 struct btrfs_path *path;
6286 struct btrfs_extent_ref *ref;
6287 struct btrfs_key key;
6288 struct btrfs_key found_key;
6289 u64 bytenr;
6290 u32 nritems;
6291 int level;
6292 int ret = 1;
6294 path = btrfs_alloc_path();
6295 if (!path)
6296 return -ENOMEM;
6298 if (first_time) {
6299 ref_path->lowest_level = -1;
6300 ref_path->current_level = -1;
6301 ref_path->shared_level = -1;
6302 goto walk_up;
6304 walk_down:
6305 level = ref_path->current_level - 1;
6306 while (level >= -1) {
6307 u64 parent;
6308 if (level < ref_path->lowest_level)
6309 break;
6311 if (level >= 0)
6312 bytenr = ref_path->nodes[level];
6313 else
6314 bytenr = ref_path->extent_start;
6315 BUG_ON(bytenr == 0);
6317 parent = ref_path->nodes[level + 1];
6318 ref_path->nodes[level + 1] = 0;
6319 ref_path->current_level = level;
6320 BUG_ON(parent == 0);
6322 key.objectid = bytenr;
6323 key.offset = parent + 1;
6324 key.type = BTRFS_EXTENT_REF_KEY;
6326 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6327 if (ret < 0)
6328 goto out;
6329 BUG_ON(ret == 0);
6331 leaf = path->nodes[0];
6332 nritems = btrfs_header_nritems(leaf);
6333 if (path->slots[0] >= nritems) {
6334 ret = btrfs_next_leaf(extent_root, path);
6335 if (ret < 0)
6336 goto out;
6337 if (ret > 0)
6338 goto next;
6339 leaf = path->nodes[0];
6342 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6343 if (found_key.objectid == bytenr &&
6344 found_key.type == BTRFS_EXTENT_REF_KEY) {
6345 if (level < ref_path->shared_level)
6346 ref_path->shared_level = level;
6347 goto found;
6349 next:
6350 level--;
6351 btrfs_release_path(extent_root, path);
6352 cond_resched();
6354 /* reached lowest level */
6355 ret = 1;
6356 goto out;
6357 walk_up:
6358 level = ref_path->current_level;
6359 while (level < BTRFS_MAX_LEVEL - 1) {
6360 u64 ref_objectid;
6362 if (level >= 0)
6363 bytenr = ref_path->nodes[level];
6364 else
6365 bytenr = ref_path->extent_start;
6367 BUG_ON(bytenr == 0);
6369 key.objectid = bytenr;
6370 key.offset = 0;
6371 key.type = BTRFS_EXTENT_REF_KEY;
6373 ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 0);
6374 if (ret < 0)
6375 goto out;
6377 leaf = path->nodes[0];
6378 nritems = btrfs_header_nritems(leaf);
6379 if (path->slots[0] >= nritems) {
6380 ret = btrfs_next_leaf(extent_root, path);
6381 if (ret < 0)
6382 goto out;
6383 if (ret > 0) {
6384 /* the extent was freed by someone */
6385 if (ref_path->lowest_level == level)
6386 goto out;
6387 btrfs_release_path(extent_root, path);
6388 goto walk_down;
6390 leaf = path->nodes[0];
6393 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6394 if (found_key.objectid != bytenr ||
6395 found_key.type != BTRFS_EXTENT_REF_KEY) {
6396 /* the extent was freed by someone */
6397 if (ref_path->lowest_level == level) {
6398 ret = 1;
6399 goto out;
6401 btrfs_release_path(extent_root, path);
6402 goto walk_down;
6404 found:
6405 ref = btrfs_item_ptr(leaf, path->slots[0],
6406 struct btrfs_extent_ref);
6407 ref_objectid = btrfs_ref_objectid(leaf, ref);
6408 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID) {
6409 if (first_time) {
6410 level = (int)ref_objectid;
6411 BUG_ON(level >= BTRFS_MAX_LEVEL);
6412 ref_path->lowest_level = level;
6413 ref_path->current_level = level;
6414 ref_path->nodes[level] = bytenr;
6415 } else {
6416 WARN_ON(ref_objectid != level);
6418 } else {
6419 WARN_ON(level != -1);
6421 first_time = 0;
6423 if (ref_path->lowest_level == level) {
6424 ref_path->owner_objectid = ref_objectid;
6425 ref_path->num_refs = btrfs_ref_num_refs(leaf, ref);
6429 * the block is tree root or the block isn't in reference
6430 * counted tree.
6432 if (found_key.objectid == found_key.offset ||
6433 is_cowonly_root(btrfs_ref_root(leaf, ref))) {
6434 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6435 ref_path->root_generation =
6436 btrfs_ref_generation(leaf, ref);
6437 if (level < 0) {
6438 /* special reference from the tree log */
6439 ref_path->nodes[0] = found_key.offset;
6440 ref_path->current_level = 0;
6442 ret = 0;
6443 goto out;
6446 level++;
6447 BUG_ON(ref_path->nodes[level] != 0);
6448 ref_path->nodes[level] = found_key.offset;
6449 ref_path->current_level = level;
6452 * the reference was created in the running transaction,
6453 * no need to continue walking up.
6455 if (btrfs_ref_generation(leaf, ref) == trans->transid) {
6456 ref_path->root_objectid = btrfs_ref_root(leaf, ref);
6457 ref_path->root_generation =
6458 btrfs_ref_generation(leaf, ref);
6459 ret = 0;
6460 goto out;
6463 btrfs_release_path(extent_root, path);
6464 cond_resched();
6466 /* reached max tree level, but no tree root found. */
6467 BUG();
6468 out:
6469 btrfs_free_path(path);
6470 return ret;
6473 static int btrfs_first_ref_path(struct btrfs_trans_handle *trans,
6474 struct btrfs_root *extent_root,
6475 struct btrfs_ref_path *ref_path,
6476 u64 extent_start)
6478 memset(ref_path, 0, sizeof(*ref_path));
6479 ref_path->extent_start = extent_start;
6481 return __next_ref_path(trans, extent_root, ref_path, 1);
6484 static int btrfs_next_ref_path(struct btrfs_trans_handle *trans,
6485 struct btrfs_root *extent_root,
6486 struct btrfs_ref_path *ref_path)
6488 return __next_ref_path(trans, extent_root, ref_path, 0);
6491 static noinline int get_new_locations(struct inode *reloc_inode,
6492 struct btrfs_key *extent_key,
6493 u64 offset, int no_fragment,
6494 struct disk_extent **extents,
6495 int *nr_extents)
6497 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
6498 struct btrfs_path *path;
6499 struct btrfs_file_extent_item *fi;
6500 struct extent_buffer *leaf;
6501 struct disk_extent *exts = *extents;
6502 struct btrfs_key found_key;
6503 u64 cur_pos;
6504 u64 last_byte;
6505 u32 nritems;
6506 int nr = 0;
6507 int max = *nr_extents;
6508 int ret;
6510 WARN_ON(!no_fragment && *extents);
6511 if (!exts) {
6512 max = 1;
6513 exts = kmalloc(sizeof(*exts) * max, GFP_NOFS);
6514 if (!exts)
6515 return -ENOMEM;
6518 path = btrfs_alloc_path();
6519 BUG_ON(!path);
6521 cur_pos = extent_key->objectid - offset;
6522 last_byte = extent_key->objectid + extent_key->offset;
6523 ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
6524 cur_pos, 0);
6525 if (ret < 0)
6526 goto out;
6527 if (ret > 0) {
6528 ret = -ENOENT;
6529 goto out;
6532 while (1) {
6533 leaf = path->nodes[0];
6534 nritems = btrfs_header_nritems(leaf);
6535 if (path->slots[0] >= nritems) {
6536 ret = btrfs_next_leaf(root, path);
6537 if (ret < 0)
6538 goto out;
6539 if (ret > 0)
6540 break;
6541 leaf = path->nodes[0];
6544 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6545 if (found_key.offset != cur_pos ||
6546 found_key.type != BTRFS_EXTENT_DATA_KEY ||
6547 found_key.objectid != reloc_inode->i_ino)
6548 break;
6550 fi = btrfs_item_ptr(leaf, path->slots[0],
6551 struct btrfs_file_extent_item);
6552 if (btrfs_file_extent_type(leaf, fi) !=
6553 BTRFS_FILE_EXTENT_REG ||
6554 btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6555 break;
6557 if (nr == max) {
6558 struct disk_extent *old = exts;
6559 max *= 2;
6560 exts = kzalloc(sizeof(*exts) * max, GFP_NOFS);
6561 memcpy(exts, old, sizeof(*exts) * nr);
6562 if (old != *extents)
6563 kfree(old);
6566 exts[nr].disk_bytenr =
6567 btrfs_file_extent_disk_bytenr(leaf, fi);
6568 exts[nr].disk_num_bytes =
6569 btrfs_file_extent_disk_num_bytes(leaf, fi);
6570 exts[nr].offset = btrfs_file_extent_offset(leaf, fi);
6571 exts[nr].num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6572 exts[nr].ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6573 exts[nr].compression = btrfs_file_extent_compression(leaf, fi);
6574 exts[nr].encryption = btrfs_file_extent_encryption(leaf, fi);
6575 exts[nr].other_encoding = btrfs_file_extent_other_encoding(leaf,
6576 fi);
6577 BUG_ON(exts[nr].offset > 0);
6578 BUG_ON(exts[nr].compression || exts[nr].encryption);
6579 BUG_ON(exts[nr].num_bytes != exts[nr].disk_num_bytes);
6581 cur_pos += exts[nr].num_bytes;
6582 nr++;
6584 if (cur_pos + offset >= last_byte)
6585 break;
6587 if (no_fragment) {
6588 ret = 1;
6589 goto out;
6591 path->slots[0]++;
6594 BUG_ON(cur_pos + offset > last_byte);
6595 if (cur_pos + offset < last_byte) {
6596 ret = -ENOENT;
6597 goto out;
6599 ret = 0;
6600 out:
6601 btrfs_free_path(path);
6602 if (ret) {
6603 if (exts != *extents)
6604 kfree(exts);
6605 } else {
6606 *extents = exts;
6607 *nr_extents = nr;
6609 return ret;
6612 static noinline int replace_one_extent(struct btrfs_trans_handle *trans,
6613 struct btrfs_root *root,
6614 struct btrfs_path *path,
6615 struct btrfs_key *extent_key,
6616 struct btrfs_key *leaf_key,
6617 struct btrfs_ref_path *ref_path,
6618 struct disk_extent *new_extents,
6619 int nr_extents)
6621 struct extent_buffer *leaf;
6622 struct btrfs_file_extent_item *fi;
6623 struct inode *inode = NULL;
6624 struct btrfs_key key;
6625 u64 lock_start = 0;
6626 u64 lock_end = 0;
6627 u64 num_bytes;
6628 u64 ext_offset;
6629 u64 search_end = (u64)-1;
6630 u32 nritems;
6631 int nr_scaned = 0;
6632 int extent_locked = 0;
6633 int extent_type;
6634 int ret;
6636 memcpy(&key, leaf_key, sizeof(key));
6637 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6638 if (key.objectid < ref_path->owner_objectid ||
6639 (key.objectid == ref_path->owner_objectid &&
6640 key.type < BTRFS_EXTENT_DATA_KEY)) {
6641 key.objectid = ref_path->owner_objectid;
6642 key.type = BTRFS_EXTENT_DATA_KEY;
6643 key.offset = 0;
6647 while (1) {
6648 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
6649 if (ret < 0)
6650 goto out;
6652 leaf = path->nodes[0];
6653 nritems = btrfs_header_nritems(leaf);
6654 next:
6655 if (extent_locked && ret > 0) {
6657 * the file extent item was modified by someone
6658 * before the extent got locked.
6660 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6661 lock_end, GFP_NOFS);
6662 extent_locked = 0;
6665 if (path->slots[0] >= nritems) {
6666 if (++nr_scaned > 2)
6667 break;
6669 BUG_ON(extent_locked);
6670 ret = btrfs_next_leaf(root, path);
6671 if (ret < 0)
6672 goto out;
6673 if (ret > 0)
6674 break;
6675 leaf = path->nodes[0];
6676 nritems = btrfs_header_nritems(leaf);
6679 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
6681 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS) {
6682 if ((key.objectid > ref_path->owner_objectid) ||
6683 (key.objectid == ref_path->owner_objectid &&
6684 key.type > BTRFS_EXTENT_DATA_KEY) ||
6685 key.offset >= search_end)
6686 break;
6689 if (inode && key.objectid != inode->i_ino) {
6690 BUG_ON(extent_locked);
6691 btrfs_release_path(root, path);
6692 mutex_unlock(&inode->i_mutex);
6693 iput(inode);
6694 inode = NULL;
6695 continue;
6698 if (key.type != BTRFS_EXTENT_DATA_KEY) {
6699 path->slots[0]++;
6700 ret = 1;
6701 goto next;
6703 fi = btrfs_item_ptr(leaf, path->slots[0],
6704 struct btrfs_file_extent_item);
6705 extent_type = btrfs_file_extent_type(leaf, fi);
6706 if ((extent_type != BTRFS_FILE_EXTENT_REG &&
6707 extent_type != BTRFS_FILE_EXTENT_PREALLOC) ||
6708 (btrfs_file_extent_disk_bytenr(leaf, fi) !=
6709 extent_key->objectid)) {
6710 path->slots[0]++;
6711 ret = 1;
6712 goto next;
6715 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
6716 ext_offset = btrfs_file_extent_offset(leaf, fi);
6718 if (search_end == (u64)-1) {
6719 search_end = key.offset - ext_offset +
6720 btrfs_file_extent_ram_bytes(leaf, fi);
6723 if (!extent_locked) {
6724 lock_start = key.offset;
6725 lock_end = lock_start + num_bytes - 1;
6726 } else {
6727 if (lock_start > key.offset ||
6728 lock_end + 1 < key.offset + num_bytes) {
6729 unlock_extent(&BTRFS_I(inode)->io_tree,
6730 lock_start, lock_end, GFP_NOFS);
6731 extent_locked = 0;
6735 if (!inode) {
6736 btrfs_release_path(root, path);
6738 inode = btrfs_iget_locked(root->fs_info->sb,
6739 key.objectid, root);
6740 if (inode->i_state & I_NEW) {
6741 BTRFS_I(inode)->root = root;
6742 BTRFS_I(inode)->location.objectid =
6743 key.objectid;
6744 BTRFS_I(inode)->location.type =
6745 BTRFS_INODE_ITEM_KEY;
6746 BTRFS_I(inode)->location.offset = 0;
6747 btrfs_read_locked_inode(inode);
6748 unlock_new_inode(inode);
6751 * some code call btrfs_commit_transaction while
6752 * holding the i_mutex, so we can't use mutex_lock
6753 * here.
6755 if (is_bad_inode(inode) ||
6756 !mutex_trylock(&inode->i_mutex)) {
6757 iput(inode);
6758 inode = NULL;
6759 key.offset = (u64)-1;
6760 goto skip;
6764 if (!extent_locked) {
6765 struct btrfs_ordered_extent *ordered;
6767 btrfs_release_path(root, path);
6769 lock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6770 lock_end, GFP_NOFS);
6771 ordered = btrfs_lookup_first_ordered_extent(inode,
6772 lock_end);
6773 if (ordered &&
6774 ordered->file_offset <= lock_end &&
6775 ordered->file_offset + ordered->len > lock_start) {
6776 unlock_extent(&BTRFS_I(inode)->io_tree,
6777 lock_start, lock_end, GFP_NOFS);
6778 btrfs_start_ordered_extent(inode, ordered, 1);
6779 btrfs_put_ordered_extent(ordered);
6780 key.offset += num_bytes;
6781 goto skip;
6783 if (ordered)
6784 btrfs_put_ordered_extent(ordered);
6786 extent_locked = 1;
6787 continue;
6790 if (nr_extents == 1) {
6791 /* update extent pointer in place */
6792 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6793 new_extents[0].disk_bytenr);
6794 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6795 new_extents[0].disk_num_bytes);
6796 btrfs_mark_buffer_dirty(leaf);
6798 btrfs_drop_extent_cache(inode, key.offset,
6799 key.offset + num_bytes - 1, 0);
6801 ret = btrfs_inc_extent_ref(trans, root,
6802 new_extents[0].disk_bytenr,
6803 new_extents[0].disk_num_bytes,
6804 leaf->start,
6805 root->root_key.objectid,
6806 trans->transid,
6807 key.objectid);
6808 BUG_ON(ret);
6810 ret = btrfs_free_extent(trans, root,
6811 extent_key->objectid,
6812 extent_key->offset,
6813 leaf->start,
6814 btrfs_header_owner(leaf),
6815 btrfs_header_generation(leaf),
6816 key.objectid, 0);
6817 BUG_ON(ret);
6819 btrfs_release_path(root, path);
6820 key.offset += num_bytes;
6821 } else {
6822 BUG_ON(1);
6823 #if 0
6824 u64 alloc_hint;
6825 u64 extent_len;
6826 int i;
6828 * drop old extent pointer at first, then insert the
6829 * new pointers one bye one
6831 btrfs_release_path(root, path);
6832 ret = btrfs_drop_extents(trans, root, inode, key.offset,
6833 key.offset + num_bytes,
6834 key.offset, &alloc_hint);
6835 BUG_ON(ret);
6837 for (i = 0; i < nr_extents; i++) {
6838 if (ext_offset >= new_extents[i].num_bytes) {
6839 ext_offset -= new_extents[i].num_bytes;
6840 continue;
6842 extent_len = min(new_extents[i].num_bytes -
6843 ext_offset, num_bytes);
6845 ret = btrfs_insert_empty_item(trans, root,
6846 path, &key,
6847 sizeof(*fi));
6848 BUG_ON(ret);
6850 leaf = path->nodes[0];
6851 fi = btrfs_item_ptr(leaf, path->slots[0],
6852 struct btrfs_file_extent_item);
6853 btrfs_set_file_extent_generation(leaf, fi,
6854 trans->transid);
6855 btrfs_set_file_extent_type(leaf, fi,
6856 BTRFS_FILE_EXTENT_REG);
6857 btrfs_set_file_extent_disk_bytenr(leaf, fi,
6858 new_extents[i].disk_bytenr);
6859 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
6860 new_extents[i].disk_num_bytes);
6861 btrfs_set_file_extent_ram_bytes(leaf, fi,
6862 new_extents[i].ram_bytes);
6864 btrfs_set_file_extent_compression(leaf, fi,
6865 new_extents[i].compression);
6866 btrfs_set_file_extent_encryption(leaf, fi,
6867 new_extents[i].encryption);
6868 btrfs_set_file_extent_other_encoding(leaf, fi,
6869 new_extents[i].other_encoding);
6871 btrfs_set_file_extent_num_bytes(leaf, fi,
6872 extent_len);
6873 ext_offset += new_extents[i].offset;
6874 btrfs_set_file_extent_offset(leaf, fi,
6875 ext_offset);
6876 btrfs_mark_buffer_dirty(leaf);
6878 btrfs_drop_extent_cache(inode, key.offset,
6879 key.offset + extent_len - 1, 0);
6881 ret = btrfs_inc_extent_ref(trans, root,
6882 new_extents[i].disk_bytenr,
6883 new_extents[i].disk_num_bytes,
6884 leaf->start,
6885 root->root_key.objectid,
6886 trans->transid, key.objectid);
6887 BUG_ON(ret);
6888 btrfs_release_path(root, path);
6890 inode_add_bytes(inode, extent_len);
6892 ext_offset = 0;
6893 num_bytes -= extent_len;
6894 key.offset += extent_len;
6896 if (num_bytes == 0)
6897 break;
6899 BUG_ON(i >= nr_extents);
6900 #endif
6903 if (extent_locked) {
6904 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6905 lock_end, GFP_NOFS);
6906 extent_locked = 0;
6908 skip:
6909 if (ref_path->owner_objectid != BTRFS_MULTIPLE_OBJECTIDS &&
6910 key.offset >= search_end)
6911 break;
6913 cond_resched();
6915 ret = 0;
6916 out:
6917 btrfs_release_path(root, path);
6918 if (inode) {
6919 mutex_unlock(&inode->i_mutex);
6920 if (extent_locked) {
6921 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start,
6922 lock_end, GFP_NOFS);
6924 iput(inode);
6926 return ret;
6929 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle *trans,
6930 struct btrfs_root *root,
6931 struct extent_buffer *buf, u64 orig_start)
6933 int level;
6934 int ret;
6936 BUG_ON(btrfs_header_generation(buf) != trans->transid);
6937 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6939 level = btrfs_header_level(buf);
6940 if (level == 0) {
6941 struct btrfs_leaf_ref *ref;
6942 struct btrfs_leaf_ref *orig_ref;
6944 orig_ref = btrfs_lookup_leaf_ref(root, orig_start);
6945 if (!orig_ref)
6946 return -ENOENT;
6948 ref = btrfs_alloc_leaf_ref(root, orig_ref->nritems);
6949 if (!ref) {
6950 btrfs_free_leaf_ref(root, orig_ref);
6951 return -ENOMEM;
6954 ref->nritems = orig_ref->nritems;
6955 memcpy(ref->extents, orig_ref->extents,
6956 sizeof(ref->extents[0]) * ref->nritems);
6958 btrfs_free_leaf_ref(root, orig_ref);
6960 ref->root_gen = trans->transid;
6961 ref->bytenr = buf->start;
6962 ref->owner = btrfs_header_owner(buf);
6963 ref->generation = btrfs_header_generation(buf);
6965 ret = btrfs_add_leaf_ref(root, ref, 0);
6966 WARN_ON(ret);
6967 btrfs_free_leaf_ref(root, ref);
6969 return 0;
6972 static noinline int invalidate_extent_cache(struct btrfs_root *root,
6973 struct extent_buffer *leaf,
6974 struct btrfs_block_group_cache *group,
6975 struct btrfs_root *target_root)
6977 struct btrfs_key key;
6978 struct inode *inode = NULL;
6979 struct btrfs_file_extent_item *fi;
6980 struct extent_state *cached_state = NULL;
6981 u64 num_bytes;
6982 u64 skip_objectid = 0;
6983 u32 nritems;
6984 u32 i;
6986 nritems = btrfs_header_nritems(leaf);
6987 for (i = 0; i < nritems; i++) {
6988 btrfs_item_key_to_cpu(leaf, &key, i);
6989 if (key.objectid == skip_objectid ||
6990 key.type != BTRFS_EXTENT_DATA_KEY)
6991 continue;
6992 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
6993 if (btrfs_file_extent_type(leaf, fi) ==
6994 BTRFS_FILE_EXTENT_INLINE)
6995 continue;
6996 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
6997 continue;
6998 if (!inode || inode->i_ino != key.objectid) {
6999 iput(inode);
7000 inode = btrfs_ilookup(target_root->fs_info->sb,
7001 key.objectid, target_root, 1);
7003 if (!inode) {
7004 skip_objectid = key.objectid;
7005 continue;
7007 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
7009 lock_extent_bits(&BTRFS_I(inode)->io_tree, key.offset,
7010 key.offset + num_bytes - 1, 0, &cached_state,
7011 GFP_NOFS);
7012 btrfs_drop_extent_cache(inode, key.offset,
7013 key.offset + num_bytes - 1, 1);
7014 unlock_extent_cached(&BTRFS_I(inode)->io_tree, key.offset,
7015 key.offset + num_bytes - 1, &cached_state,
7016 GFP_NOFS);
7017 cond_resched();
7019 iput(inode);
7020 return 0;
7023 static noinline int replace_extents_in_leaf(struct btrfs_trans_handle *trans,
7024 struct btrfs_root *root,
7025 struct extent_buffer *leaf,
7026 struct btrfs_block_group_cache *group,
7027 struct inode *reloc_inode)
7029 struct btrfs_key key;
7030 struct btrfs_key extent_key;
7031 struct btrfs_file_extent_item *fi;
7032 struct btrfs_leaf_ref *ref;
7033 struct disk_extent *new_extent;
7034 u64 bytenr;
7035 u64 num_bytes;
7036 u32 nritems;
7037 u32 i;
7038 int ext_index;
7039 int nr_extent;
7040 int ret;
7042 new_extent = kmalloc(sizeof(*new_extent), GFP_NOFS);
7043 BUG_ON(!new_extent);
7045 ref = btrfs_lookup_leaf_ref(root, leaf->start);
7046 BUG_ON(!ref);
7048 ext_index = -1;
7049 nritems = btrfs_header_nritems(leaf);
7050 for (i = 0; i < nritems; i++) {
7051 btrfs_item_key_to_cpu(leaf, &key, i);
7052 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
7053 continue;
7054 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
7055 if (btrfs_file_extent_type(leaf, fi) ==
7056 BTRFS_FILE_EXTENT_INLINE)
7057 continue;
7058 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7059 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
7060 if (bytenr == 0)
7061 continue;
7063 ext_index++;
7064 if (bytenr >= group->key.objectid + group->key.offset ||
7065 bytenr + num_bytes <= group->key.objectid)
7066 continue;
7068 extent_key.objectid = bytenr;
7069 extent_key.offset = num_bytes;
7070 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7071 nr_extent = 1;
7072 ret = get_new_locations(reloc_inode, &extent_key,
7073 group->key.objectid, 1,
7074 &new_extent, &nr_extent);
7075 if (ret > 0)
7076 continue;
7077 BUG_ON(ret < 0);
7079 BUG_ON(ref->extents[ext_index].bytenr != bytenr);
7080 BUG_ON(ref->extents[ext_index].num_bytes != num_bytes);
7081 ref->extents[ext_index].bytenr = new_extent->disk_bytenr;
7082 ref->extents[ext_index].num_bytes = new_extent->disk_num_bytes;
7084 btrfs_set_file_extent_disk_bytenr(leaf, fi,
7085 new_extent->disk_bytenr);
7086 btrfs_set_file_extent_disk_num_bytes(leaf, fi,
7087 new_extent->disk_num_bytes);
7088 btrfs_mark_buffer_dirty(leaf);
7090 ret = btrfs_inc_extent_ref(trans, root,
7091 new_extent->disk_bytenr,
7092 new_extent->disk_num_bytes,
7093 leaf->start,
7094 root->root_key.objectid,
7095 trans->transid, key.objectid);
7096 BUG_ON(ret);
7098 ret = btrfs_free_extent(trans, root,
7099 bytenr, num_bytes, leaf->start,
7100 btrfs_header_owner(leaf),
7101 btrfs_header_generation(leaf),
7102 key.objectid, 0);
7103 BUG_ON(ret);
7104 cond_resched();
7106 kfree(new_extent);
7107 BUG_ON(ext_index + 1 != ref->nritems);
7108 btrfs_free_leaf_ref(root, ref);
7109 return 0;
7112 int btrfs_free_reloc_root(struct btrfs_trans_handle *trans,
7113 struct btrfs_root *root)
7115 struct btrfs_root *reloc_root;
7116 int ret;
7118 if (root->reloc_root) {
7119 reloc_root = root->reloc_root;
7120 root->reloc_root = NULL;
7121 list_add(&reloc_root->dead_list,
7122 &root->fs_info->dead_reloc_roots);
7124 btrfs_set_root_bytenr(&reloc_root->root_item,
7125 reloc_root->node->start);
7126 btrfs_set_root_level(&root->root_item,
7127 btrfs_header_level(reloc_root->node));
7128 memset(&reloc_root->root_item.drop_progress, 0,
7129 sizeof(struct btrfs_disk_key));
7130 reloc_root->root_item.drop_level = 0;
7132 ret = btrfs_update_root(trans, root->fs_info->tree_root,
7133 &reloc_root->root_key,
7134 &reloc_root->root_item);
7135 BUG_ON(ret);
7137 return 0;
7140 int btrfs_drop_dead_reloc_roots(struct btrfs_root *root)
7142 struct btrfs_trans_handle *trans;
7143 struct btrfs_root *reloc_root;
7144 struct btrfs_root *prev_root = NULL;
7145 struct list_head dead_roots;
7146 int ret;
7147 unsigned long nr;
7149 INIT_LIST_HEAD(&dead_roots);
7150 list_splice_init(&root->fs_info->dead_reloc_roots, &dead_roots);
7152 while (!list_empty(&dead_roots)) {
7153 reloc_root = list_entry(dead_roots.prev,
7154 struct btrfs_root, dead_list);
7155 list_del_init(&reloc_root->dead_list);
7157 BUG_ON(reloc_root->commit_root != NULL);
7158 while (1) {
7159 trans = btrfs_join_transaction(root, 1);
7160 BUG_ON(!trans);
7162 mutex_lock(&root->fs_info->drop_mutex);
7163 ret = btrfs_drop_snapshot(trans, reloc_root);
7164 if (ret != -EAGAIN)
7165 break;
7166 mutex_unlock(&root->fs_info->drop_mutex);
7168 nr = trans->blocks_used;
7169 ret = btrfs_end_transaction(trans, root);
7170 BUG_ON(ret);
7171 btrfs_btree_balance_dirty(root, nr);
7174 free_extent_buffer(reloc_root->node);
7176 ret = btrfs_del_root(trans, root->fs_info->tree_root,
7177 &reloc_root->root_key);
7178 BUG_ON(ret);
7179 mutex_unlock(&root->fs_info->drop_mutex);
7181 nr = trans->blocks_used;
7182 ret = btrfs_end_transaction(trans, root);
7183 BUG_ON(ret);
7184 btrfs_btree_balance_dirty(root, nr);
7186 kfree(prev_root);
7187 prev_root = reloc_root;
7189 if (prev_root) {
7190 btrfs_remove_leaf_refs(prev_root, (u64)-1, 0);
7191 kfree(prev_root);
7193 return 0;
7196 int btrfs_add_dead_reloc_root(struct btrfs_root *root)
7198 list_add(&root->dead_list, &root->fs_info->dead_reloc_roots);
7199 return 0;
7202 int btrfs_cleanup_reloc_trees(struct btrfs_root *root)
7204 struct btrfs_root *reloc_root;
7205 struct btrfs_trans_handle *trans;
7206 struct btrfs_key location;
7207 int found;
7208 int ret;
7210 mutex_lock(&root->fs_info->tree_reloc_mutex);
7211 ret = btrfs_find_dead_roots(root, BTRFS_TREE_RELOC_OBJECTID, NULL);
7212 BUG_ON(ret);
7213 found = !list_empty(&root->fs_info->dead_reloc_roots);
7214 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7216 if (found) {
7217 trans = btrfs_start_transaction(root, 1);
7218 BUG_ON(!trans);
7219 ret = btrfs_commit_transaction(trans, root);
7220 BUG_ON(ret);
7223 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
7224 location.offset = (u64)-1;
7225 location.type = BTRFS_ROOT_ITEM_KEY;
7227 reloc_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
7228 BUG_ON(!reloc_root);
7229 btrfs_orphan_cleanup(reloc_root);
7230 return 0;
7233 static noinline int init_reloc_tree(struct btrfs_trans_handle *trans,
7234 struct btrfs_root *root)
7236 struct btrfs_root *reloc_root;
7237 struct extent_buffer *eb;
7238 struct btrfs_root_item *root_item;
7239 struct btrfs_key root_key;
7240 int ret;
7242 BUG_ON(!root->ref_cows);
7243 if (root->reloc_root)
7244 return 0;
7246 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
7247 BUG_ON(!root_item);
7249 ret = btrfs_copy_root(trans, root, root->commit_root,
7250 &eb, BTRFS_TREE_RELOC_OBJECTID);
7251 BUG_ON(ret);
7253 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
7254 root_key.offset = root->root_key.objectid;
7255 root_key.type = BTRFS_ROOT_ITEM_KEY;
7257 memcpy(root_item, &root->root_item, sizeof(root_item));
7258 btrfs_set_root_refs(root_item, 0);
7259 btrfs_set_root_bytenr(root_item, eb->start);
7260 btrfs_set_root_level(root_item, btrfs_header_level(eb));
7261 btrfs_set_root_generation(root_item, trans->transid);
7263 btrfs_tree_unlock(eb);
7264 free_extent_buffer(eb);
7266 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
7267 &root_key, root_item);
7268 BUG_ON(ret);
7269 kfree(root_item);
7271 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
7272 &root_key);
7273 BUG_ON(!reloc_root);
7274 reloc_root->last_trans = trans->transid;
7275 reloc_root->commit_root = NULL;
7276 reloc_root->ref_tree = &root->fs_info->reloc_ref_tree;
7278 root->reloc_root = reloc_root;
7279 return 0;
7283 * Core function of space balance.
7285 * The idea is using reloc trees to relocate tree blocks in reference
7286 * counted roots. There is one reloc tree for each subvol, and all
7287 * reloc trees share same root key objectid. Reloc trees are snapshots
7288 * of the latest committed roots of subvols (root->commit_root).
7290 * To relocate a tree block referenced by a subvol, there are two steps.
7291 * COW the block through subvol's reloc tree, then update block pointer
7292 * in the subvol to point to the new block. Since all reloc trees share
7293 * same root key objectid, doing special handing for tree blocks owned
7294 * by them is easy. Once a tree block has been COWed in one reloc tree,
7295 * we can use the resulting new block directly when the same block is
7296 * required to COW again through other reloc trees. By this way, relocated
7297 * tree blocks are shared between reloc trees, so they are also shared
7298 * between subvols.
7300 static noinline int relocate_one_path(struct btrfs_trans_handle *trans,
7301 struct btrfs_root *root,
7302 struct btrfs_path *path,
7303 struct btrfs_key *first_key,
7304 struct btrfs_ref_path *ref_path,
7305 struct btrfs_block_group_cache *group,
7306 struct inode *reloc_inode)
7308 struct btrfs_root *reloc_root;
7309 struct extent_buffer *eb = NULL;
7310 struct btrfs_key *keys;
7311 u64 *nodes;
7312 int level;
7313 int shared_level;
7314 int lowest_level = 0;
7315 int ret;
7317 if (ref_path->owner_objectid < BTRFS_FIRST_FREE_OBJECTID)
7318 lowest_level = ref_path->owner_objectid;
7320 if (!root->ref_cows) {
7321 path->lowest_level = lowest_level;
7322 ret = btrfs_search_slot(trans, root, first_key, path, 0, 1);
7323 BUG_ON(ret < 0);
7324 path->lowest_level = 0;
7325 btrfs_release_path(root, path);
7326 return 0;
7329 mutex_lock(&root->fs_info->tree_reloc_mutex);
7330 ret = init_reloc_tree(trans, root);
7331 BUG_ON(ret);
7332 reloc_root = root->reloc_root;
7334 shared_level = ref_path->shared_level;
7335 ref_path->shared_level = BTRFS_MAX_LEVEL - 1;
7337 keys = ref_path->node_keys;
7338 nodes = ref_path->new_nodes;
7339 memset(&keys[shared_level + 1], 0,
7340 sizeof(*keys) * (BTRFS_MAX_LEVEL - shared_level - 1));
7341 memset(&nodes[shared_level + 1], 0,
7342 sizeof(*nodes) * (BTRFS_MAX_LEVEL - shared_level - 1));
7344 if (nodes[lowest_level] == 0) {
7345 path->lowest_level = lowest_level;
7346 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7347 0, 1);
7348 BUG_ON(ret);
7349 for (level = lowest_level; level < BTRFS_MAX_LEVEL; level++) {
7350 eb = path->nodes[level];
7351 if (!eb || eb == reloc_root->node)
7352 break;
7353 nodes[level] = eb->start;
7354 if (level == 0)
7355 btrfs_item_key_to_cpu(eb, &keys[level], 0);
7356 else
7357 btrfs_node_key_to_cpu(eb, &keys[level], 0);
7359 if (nodes[0] &&
7360 ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7361 eb = path->nodes[0];
7362 ret = replace_extents_in_leaf(trans, reloc_root, eb,
7363 group, reloc_inode);
7364 BUG_ON(ret);
7366 btrfs_release_path(reloc_root, path);
7367 } else {
7368 ret = btrfs_merge_path(trans, reloc_root, keys, nodes,
7369 lowest_level);
7370 BUG_ON(ret);
7374 * replace tree blocks in the fs tree with tree blocks in
7375 * the reloc tree.
7377 ret = btrfs_merge_path(trans, root, keys, nodes, lowest_level);
7378 BUG_ON(ret < 0);
7380 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7381 ret = btrfs_search_slot(trans, reloc_root, first_key, path,
7382 0, 0);
7383 BUG_ON(ret);
7384 extent_buffer_get(path->nodes[0]);
7385 eb = path->nodes[0];
7386 btrfs_release_path(reloc_root, path);
7387 ret = invalidate_extent_cache(reloc_root, eb, group, root);
7388 BUG_ON(ret);
7389 free_extent_buffer(eb);
7392 mutex_unlock(&root->fs_info->tree_reloc_mutex);
7393 path->lowest_level = 0;
7394 return 0;
7397 static noinline int relocate_tree_block(struct btrfs_trans_handle *trans,
7398 struct btrfs_root *root,
7399 struct btrfs_path *path,
7400 struct btrfs_key *first_key,
7401 struct btrfs_ref_path *ref_path)
7403 int ret;
7405 ret = relocate_one_path(trans, root, path, first_key,
7406 ref_path, NULL, NULL);
7407 BUG_ON(ret);
7409 return 0;
7412 static noinline int del_extent_zero(struct btrfs_trans_handle *trans,
7413 struct btrfs_root *extent_root,
7414 struct btrfs_path *path,
7415 struct btrfs_key *extent_key)
7417 int ret;
7419 ret = btrfs_search_slot(trans, extent_root, extent_key, path, -1, 1);
7420 if (ret)
7421 goto out;
7422 ret = btrfs_del_item(trans, extent_root, path);
7423 out:
7424 btrfs_release_path(extent_root, path);
7425 return ret;
7428 static noinline struct btrfs_root *read_ref_root(struct btrfs_fs_info *fs_info,
7429 struct btrfs_ref_path *ref_path)
7431 struct btrfs_key root_key;
7433 root_key.objectid = ref_path->root_objectid;
7434 root_key.type = BTRFS_ROOT_ITEM_KEY;
7435 if (is_cowonly_root(ref_path->root_objectid))
7436 root_key.offset = 0;
7437 else
7438 root_key.offset = (u64)-1;
7440 return btrfs_read_fs_root_no_name(fs_info, &root_key);
7443 static noinline int relocate_one_extent(struct btrfs_root *extent_root,
7444 struct btrfs_path *path,
7445 struct btrfs_key *extent_key,
7446 struct btrfs_block_group_cache *group,
7447 struct inode *reloc_inode, int pass)
7449 struct btrfs_trans_handle *trans;
7450 struct btrfs_root *found_root;
7451 struct btrfs_ref_path *ref_path = NULL;
7452 struct disk_extent *new_extents = NULL;
7453 int nr_extents = 0;
7454 int loops;
7455 int ret;
7456 int level;
7457 struct btrfs_key first_key;
7458 u64 prev_block = 0;
7461 trans = btrfs_start_transaction(extent_root, 1);
7462 BUG_ON(!trans);
7464 if (extent_key->objectid == 0) {
7465 ret = del_extent_zero(trans, extent_root, path, extent_key);
7466 goto out;
7469 ref_path = kmalloc(sizeof(*ref_path), GFP_NOFS);
7470 if (!ref_path) {
7471 ret = -ENOMEM;
7472 goto out;
7475 for (loops = 0; ; loops++) {
7476 if (loops == 0) {
7477 ret = btrfs_first_ref_path(trans, extent_root, ref_path,
7478 extent_key->objectid);
7479 } else {
7480 ret = btrfs_next_ref_path(trans, extent_root, ref_path);
7482 if (ret < 0)
7483 goto out;
7484 if (ret > 0)
7485 break;
7487 if (ref_path->root_objectid == BTRFS_TREE_LOG_OBJECTID ||
7488 ref_path->root_objectid == BTRFS_TREE_RELOC_OBJECTID)
7489 continue;
7491 found_root = read_ref_root(extent_root->fs_info, ref_path);
7492 BUG_ON(!found_root);
7494 * for reference counted tree, only process reference paths
7495 * rooted at the latest committed root.
7497 if (found_root->ref_cows &&
7498 ref_path->root_generation != found_root->root_key.offset)
7499 continue;
7501 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7502 if (pass == 0) {
7504 * copy data extents to new locations
7506 u64 group_start = group->key.objectid;
7507 ret = relocate_data_extent(reloc_inode,
7508 extent_key,
7509 group_start);
7510 if (ret < 0)
7511 goto out;
7512 break;
7514 level = 0;
7515 } else {
7516 level = ref_path->owner_objectid;
7519 if (prev_block != ref_path->nodes[level]) {
7520 struct extent_buffer *eb;
7521 u64 block_start = ref_path->nodes[level];
7522 u64 block_size = btrfs_level_size(found_root, level);
7524 eb = read_tree_block(found_root, block_start,
7525 block_size, 0);
7526 btrfs_tree_lock(eb);
7527 BUG_ON(level != btrfs_header_level(eb));
7529 if (level == 0)
7530 btrfs_item_key_to_cpu(eb, &first_key, 0);
7531 else
7532 btrfs_node_key_to_cpu(eb, &first_key, 0);
7534 btrfs_tree_unlock(eb);
7535 free_extent_buffer(eb);
7536 prev_block = block_start;
7539 mutex_lock(&extent_root->fs_info->trans_mutex);
7540 btrfs_record_root_in_trans(found_root);
7541 mutex_unlock(&extent_root->fs_info->trans_mutex);
7542 if (ref_path->owner_objectid >= BTRFS_FIRST_FREE_OBJECTID) {
7544 * try to update data extent references while
7545 * keeping metadata shared between snapshots.
7547 if (pass == 1) {
7548 ret = relocate_one_path(trans, found_root,
7549 path, &first_key, ref_path,
7550 group, reloc_inode);
7551 if (ret < 0)
7552 goto out;
7553 continue;
7556 * use fallback method to process the remaining
7557 * references.
7559 if (!new_extents) {
7560 u64 group_start = group->key.objectid;
7561 new_extents = kmalloc(sizeof(*new_extents),
7562 GFP_NOFS);
7563 nr_extents = 1;
7564 ret = get_new_locations(reloc_inode,
7565 extent_key,
7566 group_start, 1,
7567 &new_extents,
7568 &nr_extents);
7569 if (ret)
7570 goto out;
7572 ret = replace_one_extent(trans, found_root,
7573 path, extent_key,
7574 &first_key, ref_path,
7575 new_extents, nr_extents);
7576 } else {
7577 ret = relocate_tree_block(trans, found_root, path,
7578 &first_key, ref_path);
7580 if (ret < 0)
7581 goto out;
7583 ret = 0;
7584 out:
7585 btrfs_end_transaction(trans, extent_root);
7586 kfree(new_extents);
7587 kfree(ref_path);
7588 return ret;
7590 #endif
7592 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7594 u64 num_devices;
7595 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7596 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7598 num_devices = root->fs_info->fs_devices->rw_devices;
7599 if (num_devices == 1) {
7600 stripped |= BTRFS_BLOCK_GROUP_DUP;
7601 stripped = flags & ~stripped;
7603 /* turn raid0 into single device chunks */
7604 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7605 return stripped;
7607 /* turn mirroring into duplication */
7608 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7609 BTRFS_BLOCK_GROUP_RAID10))
7610 return stripped | BTRFS_BLOCK_GROUP_DUP;
7611 return flags;
7612 } else {
7613 /* they already had raid on here, just return */
7614 if (flags & stripped)
7615 return flags;
7617 stripped |= BTRFS_BLOCK_GROUP_DUP;
7618 stripped = flags & ~stripped;
7620 /* switch duplicated blocks with raid1 */
7621 if (flags & BTRFS_BLOCK_GROUP_DUP)
7622 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7624 /* turn single device chunks into raid0 */
7625 return stripped | BTRFS_BLOCK_GROUP_RAID0;
7627 return flags;
7630 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
7632 struct btrfs_space_info *sinfo = cache->space_info;
7633 u64 num_bytes;
7634 int ret = -ENOSPC;
7636 if (cache->ro)
7637 return 0;
7639 spin_lock(&sinfo->lock);
7640 spin_lock(&cache->lock);
7641 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7642 cache->bytes_super - btrfs_block_group_used(&cache->item);
7644 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7645 sinfo->bytes_may_use + sinfo->bytes_readonly +
7646 cache->reserved_pinned + num_bytes < sinfo->total_bytes) {
7647 sinfo->bytes_readonly += num_bytes;
7648 sinfo->bytes_reserved += cache->reserved_pinned;
7649 cache->reserved_pinned = 0;
7650 cache->ro = 1;
7651 ret = 0;
7653 spin_unlock(&cache->lock);
7654 spin_unlock(&sinfo->lock);
7655 return ret;
7658 int btrfs_set_block_group_ro(struct btrfs_root *root,
7659 struct btrfs_block_group_cache *cache)
7662 struct btrfs_trans_handle *trans;
7663 u64 alloc_flags;
7664 int ret;
7666 BUG_ON(cache->ro);
7668 trans = btrfs_join_transaction(root, 1);
7669 BUG_ON(IS_ERR(trans));
7671 alloc_flags = update_block_group_flags(root, cache->flags);
7672 if (alloc_flags != cache->flags)
7673 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
7675 ret = set_block_group_ro(cache);
7676 if (!ret)
7677 goto out;
7678 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7679 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 1);
7680 if (ret < 0)
7681 goto out;
7682 ret = set_block_group_ro(cache);
7683 out:
7684 btrfs_end_transaction(trans, root);
7685 return ret;
7688 int btrfs_set_block_group_rw(struct btrfs_root *root,
7689 struct btrfs_block_group_cache *cache)
7691 struct btrfs_space_info *sinfo = cache->space_info;
7692 u64 num_bytes;
7694 BUG_ON(!cache->ro);
7696 spin_lock(&sinfo->lock);
7697 spin_lock(&cache->lock);
7698 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7699 cache->bytes_super - btrfs_block_group_used(&cache->item);
7700 sinfo->bytes_readonly -= num_bytes;
7701 cache->ro = 0;
7702 spin_unlock(&cache->lock);
7703 spin_unlock(&sinfo->lock);
7704 return 0;
7708 * checks to see if its even possible to relocate this block group.
7710 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7711 * ok to go ahead and try.
7713 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7715 struct btrfs_block_group_cache *block_group;
7716 struct btrfs_space_info *space_info;
7717 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7718 struct btrfs_device *device;
7719 int full = 0;
7720 int ret = 0;
7722 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7724 /* odd, couldn't find the block group, leave it alone */
7725 if (!block_group)
7726 return -1;
7728 /* no bytes used, we're good */
7729 if (!btrfs_block_group_used(&block_group->item))
7730 goto out;
7732 space_info = block_group->space_info;
7733 spin_lock(&space_info->lock);
7735 full = space_info->full;
7738 * if this is the last block group we have in this space, we can't
7739 * relocate it unless we're able to allocate a new chunk below.
7741 * Otherwise, we need to make sure we have room in the space to handle
7742 * all of the extents from this block group. If we can, we're good
7744 if ((space_info->total_bytes != block_group->key.offset) &&
7745 (space_info->bytes_used + space_info->bytes_reserved +
7746 space_info->bytes_pinned + space_info->bytes_readonly +
7747 btrfs_block_group_used(&block_group->item) <
7748 space_info->total_bytes)) {
7749 spin_unlock(&space_info->lock);
7750 goto out;
7752 spin_unlock(&space_info->lock);
7755 * ok we don't have enough space, but maybe we have free space on our
7756 * devices to allocate new chunks for relocation, so loop through our
7757 * alloc devices and guess if we have enough space. However, if we
7758 * were marked as full, then we know there aren't enough chunks, and we
7759 * can just return.
7761 ret = -1;
7762 if (full)
7763 goto out;
7765 mutex_lock(&root->fs_info->chunk_mutex);
7766 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7767 u64 min_free = btrfs_block_group_used(&block_group->item);
7768 u64 dev_offset, max_avail;
7771 * check to make sure we can actually find a chunk with enough
7772 * space to fit our block group in.
7774 if (device->total_bytes > device->bytes_used + min_free) {
7775 ret = find_free_dev_extent(NULL, device, min_free,
7776 &dev_offset, &max_avail);
7777 if (!ret)
7778 break;
7779 ret = -1;
7782 mutex_unlock(&root->fs_info->chunk_mutex);
7783 out:
7784 btrfs_put_block_group(block_group);
7785 return ret;
7788 static int find_first_block_group(struct btrfs_root *root,
7789 struct btrfs_path *path, struct btrfs_key *key)
7791 int ret = 0;
7792 struct btrfs_key found_key;
7793 struct extent_buffer *leaf;
7794 int slot;
7796 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7797 if (ret < 0)
7798 goto out;
7800 while (1) {
7801 slot = path->slots[0];
7802 leaf = path->nodes[0];
7803 if (slot >= btrfs_header_nritems(leaf)) {
7804 ret = btrfs_next_leaf(root, path);
7805 if (ret == 0)
7806 continue;
7807 if (ret < 0)
7808 goto out;
7809 break;
7811 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7813 if (found_key.objectid >= key->objectid &&
7814 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7815 ret = 0;
7816 goto out;
7818 path->slots[0]++;
7820 out:
7821 return ret;
7824 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7826 struct btrfs_block_group_cache *block_group;
7827 struct btrfs_space_info *space_info;
7828 struct btrfs_caching_control *caching_ctl;
7829 struct rb_node *n;
7831 down_write(&info->extent_commit_sem);
7832 while (!list_empty(&info->caching_block_groups)) {
7833 caching_ctl = list_entry(info->caching_block_groups.next,
7834 struct btrfs_caching_control, list);
7835 list_del(&caching_ctl->list);
7836 put_caching_control(caching_ctl);
7838 up_write(&info->extent_commit_sem);
7840 spin_lock(&info->block_group_cache_lock);
7841 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7842 block_group = rb_entry(n, struct btrfs_block_group_cache,
7843 cache_node);
7844 rb_erase(&block_group->cache_node,
7845 &info->block_group_cache_tree);
7846 spin_unlock(&info->block_group_cache_lock);
7848 down_write(&block_group->space_info->groups_sem);
7849 list_del(&block_group->list);
7850 up_write(&block_group->space_info->groups_sem);
7852 if (block_group->cached == BTRFS_CACHE_STARTED)
7853 wait_block_group_cache_done(block_group);
7855 btrfs_remove_free_space_cache(block_group);
7856 btrfs_put_block_group(block_group);
7858 spin_lock(&info->block_group_cache_lock);
7860 spin_unlock(&info->block_group_cache_lock);
7862 /* now that all the block groups are freed, go through and
7863 * free all the space_info structs. This is only called during
7864 * the final stages of unmount, and so we know nobody is
7865 * using them. We call synchronize_rcu() once before we start,
7866 * just to be on the safe side.
7868 synchronize_rcu();
7870 release_global_block_rsv(info);
7872 while(!list_empty(&info->space_info)) {
7873 space_info = list_entry(info->space_info.next,
7874 struct btrfs_space_info,
7875 list);
7876 if (space_info->bytes_pinned > 0 ||
7877 space_info->bytes_reserved > 0) {
7878 WARN_ON(1);
7879 dump_space_info(space_info, 0, 0);
7881 list_del(&space_info->list);
7882 kfree(space_info);
7884 return 0;
7887 static void __link_block_group(struct btrfs_space_info *space_info,
7888 struct btrfs_block_group_cache *cache)
7890 int index = get_block_group_index(cache);
7892 down_write(&space_info->groups_sem);
7893 list_add_tail(&cache->list, &space_info->block_groups[index]);
7894 up_write(&space_info->groups_sem);
7897 int btrfs_read_block_groups(struct btrfs_root *root)
7899 struct btrfs_path *path;
7900 int ret;
7901 struct btrfs_block_group_cache *cache;
7902 struct btrfs_fs_info *info = root->fs_info;
7903 struct btrfs_space_info *space_info;
7904 struct btrfs_key key;
7905 struct btrfs_key found_key;
7906 struct extent_buffer *leaf;
7908 root = info->extent_root;
7909 key.objectid = 0;
7910 key.offset = 0;
7911 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7912 path = btrfs_alloc_path();
7913 if (!path)
7914 return -ENOMEM;
7916 while (1) {
7917 ret = find_first_block_group(root, path, &key);
7918 if (ret > 0)
7919 break;
7920 if (ret != 0)
7921 goto error;
7923 leaf = path->nodes[0];
7924 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7925 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7926 if (!cache) {
7927 ret = -ENOMEM;
7928 goto error;
7931 atomic_set(&cache->count, 1);
7932 spin_lock_init(&cache->lock);
7933 spin_lock_init(&cache->tree_lock);
7934 cache->fs_info = info;
7935 INIT_LIST_HEAD(&cache->list);
7936 INIT_LIST_HEAD(&cache->cluster_list);
7939 * we only want to have 32k of ram per block group for keeping
7940 * track of free space, and if we pass 1/2 of that we want to
7941 * start converting things over to using bitmaps
7943 cache->extents_thresh = ((1024 * 32) / 2) /
7944 sizeof(struct btrfs_free_space);
7946 read_extent_buffer(leaf, &cache->item,
7947 btrfs_item_ptr_offset(leaf, path->slots[0]),
7948 sizeof(cache->item));
7949 memcpy(&cache->key, &found_key, sizeof(found_key));
7951 key.objectid = found_key.objectid + found_key.offset;
7952 btrfs_release_path(root, path);
7953 cache->flags = btrfs_block_group_flags(&cache->item);
7954 cache->sectorsize = root->sectorsize;
7957 * check for two cases, either we are full, and therefore
7958 * don't need to bother with the caching work since we won't
7959 * find any space, or we are empty, and we can just add all
7960 * the space in and be done with it. This saves us _alot_ of
7961 * time, particularly in the full case.
7963 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7964 exclude_super_stripes(root, cache);
7965 cache->last_byte_to_unpin = (u64)-1;
7966 cache->cached = BTRFS_CACHE_FINISHED;
7967 free_excluded_extents(root, cache);
7968 } else if (btrfs_block_group_used(&cache->item) == 0) {
7969 exclude_super_stripes(root, cache);
7970 cache->last_byte_to_unpin = (u64)-1;
7971 cache->cached = BTRFS_CACHE_FINISHED;
7972 add_new_free_space(cache, root->fs_info,
7973 found_key.objectid,
7974 found_key.objectid +
7975 found_key.offset);
7976 free_excluded_extents(root, cache);
7979 ret = update_space_info(info, cache->flags, found_key.offset,
7980 btrfs_block_group_used(&cache->item),
7981 &space_info);
7982 BUG_ON(ret);
7983 cache->space_info = space_info;
7984 spin_lock(&cache->space_info->lock);
7985 cache->space_info->bytes_readonly += cache->bytes_super;
7986 spin_unlock(&cache->space_info->lock);
7988 __link_block_group(space_info, cache);
7990 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7991 BUG_ON(ret);
7993 set_avail_alloc_bits(root->fs_info, cache->flags);
7994 if (btrfs_chunk_readonly(root, cache->key.objectid))
7995 set_block_group_ro(cache);
7998 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7999 if (!(get_alloc_profile(root, space_info->flags) &
8000 (BTRFS_BLOCK_GROUP_RAID10 |
8001 BTRFS_BLOCK_GROUP_RAID1 |
8002 BTRFS_BLOCK_GROUP_DUP)))
8003 continue;
8005 * avoid allocating from un-mirrored block group if there are
8006 * mirrored block groups.
8008 list_for_each_entry(cache, &space_info->block_groups[3], list)
8009 set_block_group_ro(cache);
8010 list_for_each_entry(cache, &space_info->block_groups[4], list)
8011 set_block_group_ro(cache);
8014 init_global_block_rsv(info);
8015 ret = 0;
8016 error:
8017 btrfs_free_path(path);
8018 return ret;
8021 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8022 struct btrfs_root *root, u64 bytes_used,
8023 u64 type, u64 chunk_objectid, u64 chunk_offset,
8024 u64 size)
8026 int ret;
8027 struct btrfs_root *extent_root;
8028 struct btrfs_block_group_cache *cache;
8030 extent_root = root->fs_info->extent_root;
8032 root->fs_info->last_trans_log_full_commit = trans->transid;
8034 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8035 if (!cache)
8036 return -ENOMEM;
8038 cache->key.objectid = chunk_offset;
8039 cache->key.offset = size;
8040 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8041 cache->sectorsize = root->sectorsize;
8044 * we only want to have 32k of ram per block group for keeping track
8045 * of free space, and if we pass 1/2 of that we want to start
8046 * converting things over to using bitmaps
8048 cache->extents_thresh = ((1024 * 32) / 2) /
8049 sizeof(struct btrfs_free_space);
8050 atomic_set(&cache->count, 1);
8051 spin_lock_init(&cache->lock);
8052 spin_lock_init(&cache->tree_lock);
8053 INIT_LIST_HEAD(&cache->list);
8054 INIT_LIST_HEAD(&cache->cluster_list);
8056 btrfs_set_block_group_used(&cache->item, bytes_used);
8057 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8058 cache->flags = type;
8059 btrfs_set_block_group_flags(&cache->item, type);
8061 cache->last_byte_to_unpin = (u64)-1;
8062 cache->cached = BTRFS_CACHE_FINISHED;
8063 exclude_super_stripes(root, cache);
8065 add_new_free_space(cache, root->fs_info, chunk_offset,
8066 chunk_offset + size);
8068 free_excluded_extents(root, cache);
8070 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8071 &cache->space_info);
8072 BUG_ON(ret);
8074 spin_lock(&cache->space_info->lock);
8075 cache->space_info->bytes_readonly += cache->bytes_super;
8076 spin_unlock(&cache->space_info->lock);
8078 __link_block_group(cache->space_info, cache);
8080 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8081 BUG_ON(ret);
8083 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
8084 sizeof(cache->item));
8085 BUG_ON(ret);
8087 set_avail_alloc_bits(extent_root->fs_info, type);
8089 return 0;
8092 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8093 struct btrfs_root *root, u64 group_start)
8095 struct btrfs_path *path;
8096 struct btrfs_block_group_cache *block_group;
8097 struct btrfs_free_cluster *cluster;
8098 struct btrfs_key key;
8099 int ret;
8100 int factor;
8102 root = root->fs_info->extent_root;
8104 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8105 BUG_ON(!block_group);
8106 BUG_ON(!block_group->ro);
8108 memcpy(&key, &block_group->key, sizeof(key));
8109 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8110 BTRFS_BLOCK_GROUP_RAID1 |
8111 BTRFS_BLOCK_GROUP_RAID10))
8112 factor = 2;
8113 else
8114 factor = 1;
8116 /* make sure this block group isn't part of an allocation cluster */
8117 cluster = &root->fs_info->data_alloc_cluster;
8118 spin_lock(&cluster->refill_lock);
8119 btrfs_return_cluster_to_free_space(block_group, cluster);
8120 spin_unlock(&cluster->refill_lock);
8123 * make sure this block group isn't part of a metadata
8124 * allocation cluster
8126 cluster = &root->fs_info->meta_alloc_cluster;
8127 spin_lock(&cluster->refill_lock);
8128 btrfs_return_cluster_to_free_space(block_group, cluster);
8129 spin_unlock(&cluster->refill_lock);
8131 path = btrfs_alloc_path();
8132 BUG_ON(!path);
8134 spin_lock(&root->fs_info->block_group_cache_lock);
8135 rb_erase(&block_group->cache_node,
8136 &root->fs_info->block_group_cache_tree);
8137 spin_unlock(&root->fs_info->block_group_cache_lock);
8139 down_write(&block_group->space_info->groups_sem);
8141 * we must use list_del_init so people can check to see if they
8142 * are still on the list after taking the semaphore
8144 list_del_init(&block_group->list);
8145 up_write(&block_group->space_info->groups_sem);
8147 if (block_group->cached == BTRFS_CACHE_STARTED)
8148 wait_block_group_cache_done(block_group);
8150 btrfs_remove_free_space_cache(block_group);
8152 spin_lock(&block_group->space_info->lock);
8153 block_group->space_info->total_bytes -= block_group->key.offset;
8154 block_group->space_info->bytes_readonly -= block_group->key.offset;
8155 block_group->space_info->disk_total -= block_group->key.offset * factor;
8156 spin_unlock(&block_group->space_info->lock);
8158 btrfs_clear_space_info_full(root->fs_info);
8160 btrfs_put_block_group(block_group);
8161 btrfs_put_block_group(block_group);
8163 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8164 if (ret > 0)
8165 ret = -EIO;
8166 if (ret < 0)
8167 goto out;
8169 ret = btrfs_del_item(trans, root, path);
8170 out:
8171 btrfs_free_path(path);
8172 return ret;