i2c: twl: add register defines for pm master module
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmalloc.c
bloba3d66b3dc5cb0c9136b13764958d6aedf5b10526
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
34 bool vmap_lazy_unmap __read_mostly = true;
36 /*** Page table manipulation functions ***/
38 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
40 pte_t *pte;
42 pte = pte_offset_kernel(pmd, addr);
43 do {
44 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
45 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
46 } while (pte++, addr += PAGE_SIZE, addr != end);
49 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
51 pmd_t *pmd;
52 unsigned long next;
54 pmd = pmd_offset(pud, addr);
55 do {
56 next = pmd_addr_end(addr, end);
57 if (pmd_none_or_clear_bad(pmd))
58 continue;
59 vunmap_pte_range(pmd, addr, next);
60 } while (pmd++, addr = next, addr != end);
63 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
65 pud_t *pud;
66 unsigned long next;
68 pud = pud_offset(pgd, addr);
69 do {
70 next = pud_addr_end(addr, end);
71 if (pud_none_or_clear_bad(pud))
72 continue;
73 vunmap_pmd_range(pud, addr, next);
74 } while (pud++, addr = next, addr != end);
77 static void vunmap_page_range(unsigned long addr, unsigned long end)
79 pgd_t *pgd;
80 unsigned long next;
82 BUG_ON(addr >= end);
83 pgd = pgd_offset_k(addr);
84 do {
85 next = pgd_addr_end(addr, end);
86 if (pgd_none_or_clear_bad(pgd))
87 continue;
88 vunmap_pud_range(pgd, addr, next);
89 } while (pgd++, addr = next, addr != end);
92 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
93 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
95 pte_t *pte;
98 * nr is a running index into the array which helps higher level
99 * callers keep track of where we're up to.
102 pte = pte_alloc_kernel(pmd, addr);
103 if (!pte)
104 return -ENOMEM;
105 do {
106 struct page *page = pages[*nr];
108 if (WARN_ON(!pte_none(*pte)))
109 return -EBUSY;
110 if (WARN_ON(!page))
111 return -ENOMEM;
112 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
113 (*nr)++;
114 } while (pte++, addr += PAGE_SIZE, addr != end);
115 return 0;
118 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
119 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
121 pmd_t *pmd;
122 unsigned long next;
124 pmd = pmd_alloc(&init_mm, pud, addr);
125 if (!pmd)
126 return -ENOMEM;
127 do {
128 next = pmd_addr_end(addr, end);
129 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
130 return -ENOMEM;
131 } while (pmd++, addr = next, addr != end);
132 return 0;
135 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
136 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 pud_t *pud;
139 unsigned long next;
141 pud = pud_alloc(&init_mm, pgd, addr);
142 if (!pud)
143 return -ENOMEM;
144 do {
145 next = pud_addr_end(addr, end);
146 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
147 return -ENOMEM;
148 } while (pud++, addr = next, addr != end);
149 return 0;
153 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
154 * will have pfns corresponding to the "pages" array.
156 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
158 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
159 pgprot_t prot, struct page **pages)
161 pgd_t *pgd;
162 unsigned long next;
163 unsigned long addr = start;
164 int err = 0;
165 int nr = 0;
167 BUG_ON(addr >= end);
168 pgd = pgd_offset_k(addr);
169 do {
170 next = pgd_addr_end(addr, end);
171 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
172 if (err)
173 return err;
174 } while (pgd++, addr = next, addr != end);
176 return nr;
179 static int vmap_page_range(unsigned long start, unsigned long end,
180 pgprot_t prot, struct page **pages)
182 int ret;
184 ret = vmap_page_range_noflush(start, end, prot, pages);
185 flush_cache_vmap(start, end);
186 return ret;
189 int is_vmalloc_or_module_addr(const void *x)
192 * ARM, x86-64 and sparc64 put modules in a special place,
193 * and fall back on vmalloc() if that fails. Others
194 * just put it in the vmalloc space.
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 unsigned long addr = (unsigned long)x;
198 if (addr >= MODULES_VADDR && addr < MODULES_END)
199 return 1;
200 #endif
201 return is_vmalloc_addr(x);
205 * Walk a vmap address to the struct page it maps.
207 struct page *vmalloc_to_page(const void *vmalloc_addr)
209 unsigned long addr = (unsigned long) vmalloc_addr;
210 struct page *page = NULL;
211 pgd_t *pgd = pgd_offset_k(addr);
214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 * architectures that do not vmalloc module space
217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
219 if (!pgd_none(*pgd)) {
220 pud_t *pud = pud_offset(pgd, addr);
221 if (!pud_none(*pud)) {
222 pmd_t *pmd = pmd_offset(pud, addr);
223 if (!pmd_none(*pmd)) {
224 pte_t *ptep, pte;
226 ptep = pte_offset_map(pmd, addr);
227 pte = *ptep;
228 if (pte_present(pte))
229 page = pte_page(pte);
230 pte_unmap(ptep);
234 return page;
236 EXPORT_SYMBOL(vmalloc_to_page);
239 * Map a vmalloc()-space virtual address to the physical page frame number.
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
243 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
245 EXPORT_SYMBOL(vmalloc_to_pfn);
248 /*** Global kva allocator ***/
250 #define VM_LAZY_FREE 0x01
251 #define VM_LAZY_FREEING 0x02
252 #define VM_VM_AREA 0x04
254 struct vmap_area {
255 unsigned long va_start;
256 unsigned long va_end;
257 unsigned long flags;
258 struct rb_node rb_node; /* address sorted rbtree */
259 struct list_head list; /* address sorted list */
260 struct list_head purge_list; /* "lazy purge" list */
261 void *private;
262 struct rcu_head rcu_head;
265 static DEFINE_SPINLOCK(vmap_area_lock);
266 static struct rb_root vmap_area_root = RB_ROOT;
267 static LIST_HEAD(vmap_area_list);
268 static unsigned long vmap_area_pcpu_hole;
270 static struct vmap_area *__find_vmap_area(unsigned long addr)
272 struct rb_node *n = vmap_area_root.rb_node;
274 while (n) {
275 struct vmap_area *va;
277 va = rb_entry(n, struct vmap_area, rb_node);
278 if (addr < va->va_start)
279 n = n->rb_left;
280 else if (addr > va->va_start)
281 n = n->rb_right;
282 else
283 return va;
286 return NULL;
289 static void __insert_vmap_area(struct vmap_area *va)
291 struct rb_node **p = &vmap_area_root.rb_node;
292 struct rb_node *parent = NULL;
293 struct rb_node *tmp;
295 while (*p) {
296 struct vmap_area *tmp_va;
298 parent = *p;
299 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
300 if (va->va_start < tmp_va->va_end)
301 p = &(*p)->rb_left;
302 else if (va->va_end > tmp_va->va_start)
303 p = &(*p)->rb_right;
304 else
305 BUG();
308 rb_link_node(&va->rb_node, parent, p);
309 rb_insert_color(&va->rb_node, &vmap_area_root);
311 /* address-sort this list so it is usable like the vmlist */
312 tmp = rb_prev(&va->rb_node);
313 if (tmp) {
314 struct vmap_area *prev;
315 prev = rb_entry(tmp, struct vmap_area, rb_node);
316 list_add_rcu(&va->list, &prev->list);
317 } else
318 list_add_rcu(&va->list, &vmap_area_list);
321 static void purge_vmap_area_lazy(void);
324 * Allocate a region of KVA of the specified size and alignment, within the
325 * vstart and vend.
327 static struct vmap_area *alloc_vmap_area(unsigned long size,
328 unsigned long align,
329 unsigned long vstart, unsigned long vend,
330 int node, gfp_t gfp_mask)
332 struct vmap_area *va;
333 struct rb_node *n;
334 unsigned long addr;
335 int purged = 0;
337 BUG_ON(!size);
338 BUG_ON(size & ~PAGE_MASK);
340 va = kmalloc_node(sizeof(struct vmap_area),
341 gfp_mask & GFP_RECLAIM_MASK, node);
342 if (unlikely(!va))
343 return ERR_PTR(-ENOMEM);
345 retry:
346 addr = ALIGN(vstart, align);
348 spin_lock(&vmap_area_lock);
349 if (addr + size - 1 < addr)
350 goto overflow;
352 /* XXX: could have a last_hole cache */
353 n = vmap_area_root.rb_node;
354 if (n) {
355 struct vmap_area *first = NULL;
357 do {
358 struct vmap_area *tmp;
359 tmp = rb_entry(n, struct vmap_area, rb_node);
360 if (tmp->va_end >= addr) {
361 if (!first && tmp->va_start < addr + size)
362 first = tmp;
363 n = n->rb_left;
364 } else {
365 first = tmp;
366 n = n->rb_right;
368 } while (n);
370 if (!first)
371 goto found;
373 if (first->va_end < addr) {
374 n = rb_next(&first->rb_node);
375 if (n)
376 first = rb_entry(n, struct vmap_area, rb_node);
377 else
378 goto found;
381 while (addr + size > first->va_start && addr + size <= vend) {
382 addr = ALIGN(first->va_end + PAGE_SIZE, align);
383 if (addr + size - 1 < addr)
384 goto overflow;
386 n = rb_next(&first->rb_node);
387 if (n)
388 first = rb_entry(n, struct vmap_area, rb_node);
389 else
390 goto found;
393 found:
394 if (addr + size > vend) {
395 overflow:
396 spin_unlock(&vmap_area_lock);
397 if (!purged) {
398 purge_vmap_area_lazy();
399 purged = 1;
400 goto retry;
402 if (printk_ratelimit())
403 printk(KERN_WARNING
404 "vmap allocation for size %lu failed: "
405 "use vmalloc=<size> to increase size.\n", size);
406 kfree(va);
407 return ERR_PTR(-EBUSY);
410 BUG_ON(addr & (align-1));
412 va->va_start = addr;
413 va->va_end = addr + size;
414 va->flags = 0;
415 __insert_vmap_area(va);
416 spin_unlock(&vmap_area_lock);
418 return va;
421 static void rcu_free_va(struct rcu_head *head)
423 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
425 kfree(va);
428 static void __free_vmap_area(struct vmap_area *va)
430 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
431 rb_erase(&va->rb_node, &vmap_area_root);
432 RB_CLEAR_NODE(&va->rb_node);
433 list_del_rcu(&va->list);
436 * Track the highest possible candidate for pcpu area
437 * allocation. Areas outside of vmalloc area can be returned
438 * here too, consider only end addresses which fall inside
439 * vmalloc area proper.
441 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
442 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
444 call_rcu(&va->rcu_head, rcu_free_va);
448 * Free a region of KVA allocated by alloc_vmap_area
450 static void free_vmap_area(struct vmap_area *va)
452 spin_lock(&vmap_area_lock);
453 __free_vmap_area(va);
454 spin_unlock(&vmap_area_lock);
458 * Clear the pagetable entries of a given vmap_area
460 static void unmap_vmap_area(struct vmap_area *va)
462 vunmap_page_range(va->va_start, va->va_end);
465 static void vmap_debug_free_range(unsigned long start, unsigned long end)
468 * Unmap page tables and force a TLB flush immediately if
469 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
470 * bugs similarly to those in linear kernel virtual address
471 * space after a page has been freed.
473 * All the lazy freeing logic is still retained, in order to
474 * minimise intrusiveness of this debugging feature.
476 * This is going to be *slow* (linear kernel virtual address
477 * debugging doesn't do a broadcast TLB flush so it is a lot
478 * faster).
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 vunmap_page_range(start, end);
482 flush_tlb_kernel_range(start, end);
483 #endif
487 * lazy_max_pages is the maximum amount of virtual address space we gather up
488 * before attempting to purge with a TLB flush.
490 * There is a tradeoff here: a larger number will cover more kernel page tables
491 * and take slightly longer to purge, but it will linearly reduce the number of
492 * global TLB flushes that must be performed. It would seem natural to scale
493 * this number up linearly with the number of CPUs (because vmapping activity
494 * could also scale linearly with the number of CPUs), however it is likely
495 * that in practice, workloads might be constrained in other ways that mean
496 * vmap activity will not scale linearly with CPUs. Also, I want to be
497 * conservative and not introduce a big latency on huge systems, so go with
498 * a less aggressive log scale. It will still be an improvement over the old
499 * code, and it will be simple to change the scale factor if we find that it
500 * becomes a problem on bigger systems.
502 static unsigned long lazy_max_pages(void)
504 unsigned int log;
506 if (!vmap_lazy_unmap)
507 return 0;
509 log = fls(num_online_cpus());
511 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
514 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
516 /* for per-CPU blocks */
517 static void purge_fragmented_blocks_allcpus(void);
520 * called before a call to iounmap() if the caller wants vm_area_struct's
521 * immediately freed.
523 void set_iounmap_nonlazy(void)
525 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
529 * Purges all lazily-freed vmap areas.
531 * If sync is 0 then don't purge if there is already a purge in progress.
532 * If force_flush is 1, then flush kernel TLBs between *start and *end even
533 * if we found no lazy vmap areas to unmap (callers can use this to optimise
534 * their own TLB flushing).
535 * Returns with *start = min(*start, lowest purged address)
536 * *end = max(*end, highest purged address)
538 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
539 int sync, int force_flush)
541 static DEFINE_SPINLOCK(purge_lock);
542 LIST_HEAD(valist);
543 struct vmap_area *va;
544 struct vmap_area *n_va;
545 int nr = 0;
548 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
549 * should not expect such behaviour. This just simplifies locking for
550 * the case that isn't actually used at the moment anyway.
552 if (!sync && !force_flush) {
553 if (!spin_trylock(&purge_lock))
554 return;
555 } else
556 spin_lock(&purge_lock);
558 if (sync)
559 purge_fragmented_blocks_allcpus();
561 rcu_read_lock();
562 list_for_each_entry_rcu(va, &vmap_area_list, list) {
563 if (va->flags & VM_LAZY_FREE) {
564 if (va->va_start < *start)
565 *start = va->va_start;
566 if (va->va_end > *end)
567 *end = va->va_end;
568 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
569 unmap_vmap_area(va);
570 list_add_tail(&va->purge_list, &valist);
571 va->flags |= VM_LAZY_FREEING;
572 va->flags &= ~VM_LAZY_FREE;
575 rcu_read_unlock();
577 if (nr)
578 atomic_sub(nr, &vmap_lazy_nr);
580 if (nr || force_flush)
581 flush_tlb_kernel_range(*start, *end);
583 if (nr) {
584 spin_lock(&vmap_area_lock);
585 list_for_each_entry_safe(va, n_va, &valist, purge_list)
586 __free_vmap_area(va);
587 spin_unlock(&vmap_area_lock);
589 spin_unlock(&purge_lock);
593 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
594 * is already purging.
596 static void try_purge_vmap_area_lazy(void)
598 unsigned long start = ULONG_MAX, end = 0;
600 __purge_vmap_area_lazy(&start, &end, 0, 0);
604 * Kick off a purge of the outstanding lazy areas.
606 static void purge_vmap_area_lazy(void)
608 unsigned long start = ULONG_MAX, end = 0;
610 __purge_vmap_area_lazy(&start, &end, 1, 0);
614 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
615 * called for the correct range previously.
617 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
619 va->flags |= VM_LAZY_FREE;
620 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
621 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
622 try_purge_vmap_area_lazy();
626 * Free and unmap a vmap area
628 static void free_unmap_vmap_area(struct vmap_area *va)
630 flush_cache_vunmap(va->va_start, va->va_end);
631 free_unmap_vmap_area_noflush(va);
634 static struct vmap_area *find_vmap_area(unsigned long addr)
636 struct vmap_area *va;
638 spin_lock(&vmap_area_lock);
639 va = __find_vmap_area(addr);
640 spin_unlock(&vmap_area_lock);
642 return va;
645 static void free_unmap_vmap_area_addr(unsigned long addr)
647 struct vmap_area *va;
649 va = find_vmap_area(addr);
650 BUG_ON(!va);
651 free_unmap_vmap_area(va);
655 /*** Per cpu kva allocator ***/
658 * vmap space is limited especially on 32 bit architectures. Ensure there is
659 * room for at least 16 percpu vmap blocks per CPU.
662 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
663 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
664 * instead (we just need a rough idea)
666 #if BITS_PER_LONG == 32
667 #define VMALLOC_SPACE (128UL*1024*1024)
668 #else
669 #define VMALLOC_SPACE (128UL*1024*1024*1024)
670 #endif
672 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
673 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
674 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
675 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
676 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
677 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
678 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
679 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
680 VMALLOC_PAGES / NR_CPUS / 16))
682 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
684 static bool vmap_initialized __read_mostly = false;
686 struct vmap_block_queue {
687 spinlock_t lock;
688 struct list_head free;
691 struct vmap_block {
692 spinlock_t lock;
693 struct vmap_area *va;
694 struct vmap_block_queue *vbq;
695 unsigned long free, dirty;
696 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
697 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
698 struct list_head free_list;
699 struct rcu_head rcu_head;
700 struct list_head purge;
703 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
704 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
707 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
708 * in the free path. Could get rid of this if we change the API to return a
709 * "cookie" from alloc, to be passed to free. But no big deal yet.
711 static DEFINE_SPINLOCK(vmap_block_tree_lock);
712 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
715 * We should probably have a fallback mechanism to allocate virtual memory
716 * out of partially filled vmap blocks. However vmap block sizing should be
717 * fairly reasonable according to the vmalloc size, so it shouldn't be a
718 * big problem.
721 static unsigned long addr_to_vb_idx(unsigned long addr)
723 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
724 addr /= VMAP_BLOCK_SIZE;
725 return addr;
728 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
730 struct vmap_block_queue *vbq;
731 struct vmap_block *vb;
732 struct vmap_area *va;
733 unsigned long vb_idx;
734 int node, err;
736 node = numa_node_id();
738 vb = kmalloc_node(sizeof(struct vmap_block),
739 gfp_mask & GFP_RECLAIM_MASK, node);
740 if (unlikely(!vb))
741 return ERR_PTR(-ENOMEM);
743 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
744 VMALLOC_START, VMALLOC_END,
745 node, gfp_mask);
746 if (unlikely(IS_ERR(va))) {
747 kfree(vb);
748 return ERR_CAST(va);
751 err = radix_tree_preload(gfp_mask);
752 if (unlikely(err)) {
753 kfree(vb);
754 free_vmap_area(va);
755 return ERR_PTR(err);
758 spin_lock_init(&vb->lock);
759 vb->va = va;
760 vb->free = VMAP_BBMAP_BITS;
761 vb->dirty = 0;
762 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
763 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
764 INIT_LIST_HEAD(&vb->free_list);
766 vb_idx = addr_to_vb_idx(va->va_start);
767 spin_lock(&vmap_block_tree_lock);
768 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
769 spin_unlock(&vmap_block_tree_lock);
770 BUG_ON(err);
771 radix_tree_preload_end();
773 vbq = &get_cpu_var(vmap_block_queue);
774 vb->vbq = vbq;
775 spin_lock(&vbq->lock);
776 list_add_rcu(&vb->free_list, &vbq->free);
777 spin_unlock(&vbq->lock);
778 put_cpu_var(vmap_block_queue);
780 return vb;
783 static void rcu_free_vb(struct rcu_head *head)
785 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
787 kfree(vb);
790 static void free_vmap_block(struct vmap_block *vb)
792 struct vmap_block *tmp;
793 unsigned long vb_idx;
795 vb_idx = addr_to_vb_idx(vb->va->va_start);
796 spin_lock(&vmap_block_tree_lock);
797 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
798 spin_unlock(&vmap_block_tree_lock);
799 BUG_ON(tmp != vb);
801 free_unmap_vmap_area_noflush(vb->va);
802 call_rcu(&vb->rcu_head, rcu_free_vb);
805 static void purge_fragmented_blocks(int cpu)
807 LIST_HEAD(purge);
808 struct vmap_block *vb;
809 struct vmap_block *n_vb;
810 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
812 rcu_read_lock();
813 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
815 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
816 continue;
818 spin_lock(&vb->lock);
819 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
820 vb->free = 0; /* prevent further allocs after releasing lock */
821 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
822 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
823 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
824 spin_lock(&vbq->lock);
825 list_del_rcu(&vb->free_list);
826 spin_unlock(&vbq->lock);
827 spin_unlock(&vb->lock);
828 list_add_tail(&vb->purge, &purge);
829 } else
830 spin_unlock(&vb->lock);
832 rcu_read_unlock();
834 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
835 list_del(&vb->purge);
836 free_vmap_block(vb);
840 static void purge_fragmented_blocks_thiscpu(void)
842 purge_fragmented_blocks(smp_processor_id());
845 static void purge_fragmented_blocks_allcpus(void)
847 int cpu;
849 for_each_possible_cpu(cpu)
850 purge_fragmented_blocks(cpu);
853 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
855 struct vmap_block_queue *vbq;
856 struct vmap_block *vb;
857 unsigned long addr = 0;
858 unsigned int order;
859 int purge = 0;
861 BUG_ON(size & ~PAGE_MASK);
862 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
863 order = get_order(size);
865 again:
866 rcu_read_lock();
867 vbq = &get_cpu_var(vmap_block_queue);
868 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
869 int i;
871 spin_lock(&vb->lock);
872 if (vb->free < 1UL << order)
873 goto next;
875 i = bitmap_find_free_region(vb->alloc_map,
876 VMAP_BBMAP_BITS, order);
878 if (i < 0) {
879 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
880 /* fragmented and no outstanding allocations */
881 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
882 purge = 1;
884 goto next;
886 addr = vb->va->va_start + (i << PAGE_SHIFT);
887 BUG_ON(addr_to_vb_idx(addr) !=
888 addr_to_vb_idx(vb->va->va_start));
889 vb->free -= 1UL << order;
890 if (vb->free == 0) {
891 spin_lock(&vbq->lock);
892 list_del_rcu(&vb->free_list);
893 spin_unlock(&vbq->lock);
895 spin_unlock(&vb->lock);
896 break;
897 next:
898 spin_unlock(&vb->lock);
901 if (purge)
902 purge_fragmented_blocks_thiscpu();
904 put_cpu_var(vmap_block_queue);
905 rcu_read_unlock();
907 if (!addr) {
908 vb = new_vmap_block(gfp_mask);
909 if (IS_ERR(vb))
910 return vb;
911 goto again;
914 return (void *)addr;
917 static void vb_free(const void *addr, unsigned long size)
919 unsigned long offset;
920 unsigned long vb_idx;
921 unsigned int order;
922 struct vmap_block *vb;
924 BUG_ON(size & ~PAGE_MASK);
925 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
927 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
929 order = get_order(size);
931 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
933 vb_idx = addr_to_vb_idx((unsigned long)addr);
934 rcu_read_lock();
935 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
936 rcu_read_unlock();
937 BUG_ON(!vb);
939 spin_lock(&vb->lock);
940 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
942 vb->dirty += 1UL << order;
943 if (vb->dirty == VMAP_BBMAP_BITS) {
944 BUG_ON(vb->free);
945 spin_unlock(&vb->lock);
946 free_vmap_block(vb);
947 } else
948 spin_unlock(&vb->lock);
952 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
954 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
955 * to amortize TLB flushing overheads. What this means is that any page you
956 * have now, may, in a former life, have been mapped into kernel virtual
957 * address by the vmap layer and so there might be some CPUs with TLB entries
958 * still referencing that page (additional to the regular 1:1 kernel mapping).
960 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
961 * be sure that none of the pages we have control over will have any aliases
962 * from the vmap layer.
964 void vm_unmap_aliases(void)
966 unsigned long start = ULONG_MAX, end = 0;
967 int cpu;
968 int flush = 0;
970 if (unlikely(!vmap_initialized))
971 return;
973 for_each_possible_cpu(cpu) {
974 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
975 struct vmap_block *vb;
977 rcu_read_lock();
978 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
979 int i;
981 spin_lock(&vb->lock);
982 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
983 while (i < VMAP_BBMAP_BITS) {
984 unsigned long s, e;
985 int j;
986 j = find_next_zero_bit(vb->dirty_map,
987 VMAP_BBMAP_BITS, i);
989 s = vb->va->va_start + (i << PAGE_SHIFT);
990 e = vb->va->va_start + (j << PAGE_SHIFT);
991 vunmap_page_range(s, e);
992 flush = 1;
994 if (s < start)
995 start = s;
996 if (e > end)
997 end = e;
999 i = j;
1000 i = find_next_bit(vb->dirty_map,
1001 VMAP_BBMAP_BITS, i);
1003 spin_unlock(&vb->lock);
1005 rcu_read_unlock();
1008 __purge_vmap_area_lazy(&start, &end, 1, flush);
1010 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1013 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1014 * @mem: the pointer returned by vm_map_ram
1015 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1017 void vm_unmap_ram(const void *mem, unsigned int count)
1019 unsigned long size = count << PAGE_SHIFT;
1020 unsigned long addr = (unsigned long)mem;
1022 BUG_ON(!addr);
1023 BUG_ON(addr < VMALLOC_START);
1024 BUG_ON(addr > VMALLOC_END);
1025 BUG_ON(addr & (PAGE_SIZE-1));
1027 debug_check_no_locks_freed(mem, size);
1028 vmap_debug_free_range(addr, addr+size);
1030 if (likely(count <= VMAP_MAX_ALLOC))
1031 vb_free(mem, size);
1032 else
1033 free_unmap_vmap_area_addr(addr);
1035 EXPORT_SYMBOL(vm_unmap_ram);
1038 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1039 * @pages: an array of pointers to the pages to be mapped
1040 * @count: number of pages
1041 * @node: prefer to allocate data structures on this node
1042 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1044 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1046 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1048 unsigned long size = count << PAGE_SHIFT;
1049 unsigned long addr;
1050 void *mem;
1052 if (likely(count <= VMAP_MAX_ALLOC)) {
1053 mem = vb_alloc(size, GFP_KERNEL);
1054 if (IS_ERR(mem))
1055 return NULL;
1056 addr = (unsigned long)mem;
1057 } else {
1058 struct vmap_area *va;
1059 va = alloc_vmap_area(size, PAGE_SIZE,
1060 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1061 if (IS_ERR(va))
1062 return NULL;
1064 addr = va->va_start;
1065 mem = (void *)addr;
1067 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1068 vm_unmap_ram(mem, count);
1069 return NULL;
1071 return mem;
1073 EXPORT_SYMBOL(vm_map_ram);
1076 * vm_area_register_early - register vmap area early during boot
1077 * @vm: vm_struct to register
1078 * @align: requested alignment
1080 * This function is used to register kernel vm area before
1081 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1082 * proper values on entry and other fields should be zero. On return,
1083 * vm->addr contains the allocated address.
1085 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1087 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1089 static size_t vm_init_off __initdata;
1090 unsigned long addr;
1092 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1093 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1095 vm->addr = (void *)addr;
1097 vm->next = vmlist;
1098 vmlist = vm;
1101 void __init vmalloc_init(void)
1103 struct vmap_area *va;
1104 struct vm_struct *tmp;
1105 int i;
1107 for_each_possible_cpu(i) {
1108 struct vmap_block_queue *vbq;
1110 vbq = &per_cpu(vmap_block_queue, i);
1111 spin_lock_init(&vbq->lock);
1112 INIT_LIST_HEAD(&vbq->free);
1115 /* Import existing vmlist entries. */
1116 for (tmp = vmlist; tmp; tmp = tmp->next) {
1117 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1118 va->flags = tmp->flags | VM_VM_AREA;
1119 va->va_start = (unsigned long)tmp->addr;
1120 va->va_end = va->va_start + tmp->size;
1121 __insert_vmap_area(va);
1124 vmap_area_pcpu_hole = VMALLOC_END;
1126 vmap_initialized = true;
1130 * map_kernel_range_noflush - map kernel VM area with the specified pages
1131 * @addr: start of the VM area to map
1132 * @size: size of the VM area to map
1133 * @prot: page protection flags to use
1134 * @pages: pages to map
1136 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1137 * specify should have been allocated using get_vm_area() and its
1138 * friends.
1140 * NOTE:
1141 * This function does NOT do any cache flushing. The caller is
1142 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1143 * before calling this function.
1145 * RETURNS:
1146 * The number of pages mapped on success, -errno on failure.
1148 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1149 pgprot_t prot, struct page **pages)
1151 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1155 * unmap_kernel_range_noflush - unmap kernel VM area
1156 * @addr: start of the VM area to unmap
1157 * @size: size of the VM area to unmap
1159 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1160 * specify should have been allocated using get_vm_area() and its
1161 * friends.
1163 * NOTE:
1164 * This function does NOT do any cache flushing. The caller is
1165 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1166 * before calling this function and flush_tlb_kernel_range() after.
1168 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1170 vunmap_page_range(addr, addr + size);
1174 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1175 * @addr: start of the VM area to unmap
1176 * @size: size of the VM area to unmap
1178 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1179 * the unmapping and tlb after.
1181 void unmap_kernel_range(unsigned long addr, unsigned long size)
1183 unsigned long end = addr + size;
1185 flush_cache_vunmap(addr, end);
1186 vunmap_page_range(addr, end);
1187 flush_tlb_kernel_range(addr, end);
1190 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1192 unsigned long addr = (unsigned long)area->addr;
1193 unsigned long end = addr + area->size - PAGE_SIZE;
1194 int err;
1196 err = vmap_page_range(addr, end, prot, *pages);
1197 if (err > 0) {
1198 *pages += err;
1199 err = 0;
1202 return err;
1204 EXPORT_SYMBOL_GPL(map_vm_area);
1206 /*** Old vmalloc interfaces ***/
1207 DEFINE_RWLOCK(vmlist_lock);
1208 struct vm_struct *vmlist;
1210 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1211 unsigned long flags, void *caller)
1213 struct vm_struct *tmp, **p;
1215 vm->flags = flags;
1216 vm->addr = (void *)va->va_start;
1217 vm->size = va->va_end - va->va_start;
1218 vm->caller = caller;
1219 va->private = vm;
1220 va->flags |= VM_VM_AREA;
1222 write_lock(&vmlist_lock);
1223 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1224 if (tmp->addr >= vm->addr)
1225 break;
1227 vm->next = *p;
1228 *p = vm;
1229 write_unlock(&vmlist_lock);
1232 static struct vm_struct *__get_vm_area_node(unsigned long size,
1233 unsigned long align, unsigned long flags, unsigned long start,
1234 unsigned long end, int node, gfp_t gfp_mask, void *caller)
1236 static struct vmap_area *va;
1237 struct vm_struct *area;
1239 BUG_ON(in_interrupt());
1240 if (flags & VM_IOREMAP) {
1241 int bit = fls(size);
1243 if (bit > IOREMAP_MAX_ORDER)
1244 bit = IOREMAP_MAX_ORDER;
1245 else if (bit < PAGE_SHIFT)
1246 bit = PAGE_SHIFT;
1248 align = 1ul << bit;
1251 size = PAGE_ALIGN(size);
1252 if (unlikely(!size))
1253 return NULL;
1255 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1256 if (unlikely(!area))
1257 return NULL;
1260 * We always allocate a guard page.
1262 size += PAGE_SIZE;
1264 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1265 if (IS_ERR(va)) {
1266 kfree(area);
1267 return NULL;
1270 insert_vmalloc_vm(area, va, flags, caller);
1271 return area;
1274 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1275 unsigned long start, unsigned long end)
1277 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1278 __builtin_return_address(0));
1280 EXPORT_SYMBOL_GPL(__get_vm_area);
1282 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1283 unsigned long start, unsigned long end,
1284 void *caller)
1286 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1287 caller);
1291 * get_vm_area - reserve a contiguous kernel virtual area
1292 * @size: size of the area
1293 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1295 * Search an area of @size in the kernel virtual mapping area,
1296 * and reserved it for out purposes. Returns the area descriptor
1297 * on success or %NULL on failure.
1299 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1301 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1302 -1, GFP_KERNEL, __builtin_return_address(0));
1305 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1306 void *caller)
1308 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1309 -1, GFP_KERNEL, caller);
1312 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1313 int node, gfp_t gfp_mask)
1315 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1316 node, gfp_mask, __builtin_return_address(0));
1319 static struct vm_struct *find_vm_area(const void *addr)
1321 struct vmap_area *va;
1323 va = find_vmap_area((unsigned long)addr);
1324 if (va && va->flags & VM_VM_AREA)
1325 return va->private;
1327 return NULL;
1331 * remove_vm_area - find and remove a continuous kernel virtual area
1332 * @addr: base address
1334 * Search for the kernel VM area starting at @addr, and remove it.
1335 * This function returns the found VM area, but using it is NOT safe
1336 * on SMP machines, except for its size or flags.
1338 struct vm_struct *remove_vm_area(const void *addr)
1340 struct vmap_area *va;
1342 va = find_vmap_area((unsigned long)addr);
1343 if (va && va->flags & VM_VM_AREA) {
1344 struct vm_struct *vm = va->private;
1345 struct vm_struct *tmp, **p;
1347 * remove from list and disallow access to this vm_struct
1348 * before unmap. (address range confliction is maintained by
1349 * vmap.)
1351 write_lock(&vmlist_lock);
1352 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1354 *p = tmp->next;
1355 write_unlock(&vmlist_lock);
1357 vmap_debug_free_range(va->va_start, va->va_end);
1358 free_unmap_vmap_area(va);
1359 vm->size -= PAGE_SIZE;
1361 return vm;
1363 return NULL;
1366 static void __vunmap(const void *addr, int deallocate_pages)
1368 struct vm_struct *area;
1370 if (!addr)
1371 return;
1373 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1374 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1375 return;
1378 area = remove_vm_area(addr);
1379 if (unlikely(!area)) {
1380 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1381 addr);
1382 return;
1385 debug_check_no_locks_freed(addr, area->size);
1386 debug_check_no_obj_freed(addr, area->size);
1388 if (deallocate_pages) {
1389 int i;
1391 for (i = 0; i < area->nr_pages; i++) {
1392 struct page *page = area->pages[i];
1394 BUG_ON(!page);
1395 __free_page(page);
1398 if (area->flags & VM_VPAGES)
1399 vfree(area->pages);
1400 else
1401 kfree(area->pages);
1404 kfree(area);
1405 return;
1409 * vfree - release memory allocated by vmalloc()
1410 * @addr: memory base address
1412 * Free the virtually continuous memory area starting at @addr, as
1413 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1414 * NULL, no operation is performed.
1416 * Must not be called in interrupt context.
1418 void vfree(const void *addr)
1420 BUG_ON(in_interrupt());
1422 kmemleak_free(addr);
1424 __vunmap(addr, 1);
1426 EXPORT_SYMBOL(vfree);
1429 * vunmap - release virtual mapping obtained by vmap()
1430 * @addr: memory base address
1432 * Free the virtually contiguous memory area starting at @addr,
1433 * which was created from the page array passed to vmap().
1435 * Must not be called in interrupt context.
1437 void vunmap(const void *addr)
1439 BUG_ON(in_interrupt());
1440 might_sleep();
1441 __vunmap(addr, 0);
1443 EXPORT_SYMBOL(vunmap);
1446 * vmap - map an array of pages into virtually contiguous space
1447 * @pages: array of page pointers
1448 * @count: number of pages to map
1449 * @flags: vm_area->flags
1450 * @prot: page protection for the mapping
1452 * Maps @count pages from @pages into contiguous kernel virtual
1453 * space.
1455 void *vmap(struct page **pages, unsigned int count,
1456 unsigned long flags, pgprot_t prot)
1458 struct vm_struct *area;
1460 might_sleep();
1462 if (count > totalram_pages)
1463 return NULL;
1465 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1466 __builtin_return_address(0));
1467 if (!area)
1468 return NULL;
1470 if (map_vm_area(area, prot, &pages)) {
1471 vunmap(area->addr);
1472 return NULL;
1475 return area->addr;
1477 EXPORT_SYMBOL(vmap);
1479 static void *__vmalloc_node(unsigned long size, unsigned long align,
1480 gfp_t gfp_mask, pgprot_t prot,
1481 int node, void *caller);
1482 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1483 pgprot_t prot, int node, void *caller)
1485 struct page **pages;
1486 unsigned int nr_pages, array_size, i;
1487 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1489 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1490 array_size = (nr_pages * sizeof(struct page *));
1492 area->nr_pages = nr_pages;
1493 /* Please note that the recursion is strictly bounded. */
1494 if (array_size > PAGE_SIZE) {
1495 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1496 PAGE_KERNEL, node, caller);
1497 area->flags |= VM_VPAGES;
1498 } else {
1499 pages = kmalloc_node(array_size, nested_gfp, node);
1501 area->pages = pages;
1502 area->caller = caller;
1503 if (!area->pages) {
1504 remove_vm_area(area->addr);
1505 kfree(area);
1506 return NULL;
1509 for (i = 0; i < area->nr_pages; i++) {
1510 struct page *page;
1512 if (node < 0)
1513 page = alloc_page(gfp_mask);
1514 else
1515 page = alloc_pages_node(node, gfp_mask, 0);
1517 if (unlikely(!page)) {
1518 /* Successfully allocated i pages, free them in __vunmap() */
1519 area->nr_pages = i;
1520 goto fail;
1522 area->pages[i] = page;
1525 if (map_vm_area(area, prot, &pages))
1526 goto fail;
1527 return area->addr;
1529 fail:
1530 vfree(area->addr);
1531 return NULL;
1534 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1536 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1537 __builtin_return_address(0));
1540 * A ref_count = 3 is needed because the vm_struct and vmap_area
1541 * structures allocated in the __get_vm_area_node() function contain
1542 * references to the virtual address of the vmalloc'ed block.
1544 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1546 return addr;
1550 * __vmalloc_node - allocate virtually contiguous memory
1551 * @size: allocation size
1552 * @align: desired alignment
1553 * @gfp_mask: flags for the page level allocator
1554 * @prot: protection mask for the allocated pages
1555 * @node: node to use for allocation or -1
1556 * @caller: caller's return address
1558 * Allocate enough pages to cover @size from the page level
1559 * allocator with @gfp_mask flags. Map them into contiguous
1560 * kernel virtual space, using a pagetable protection of @prot.
1562 static void *__vmalloc_node(unsigned long size, unsigned long align,
1563 gfp_t gfp_mask, pgprot_t prot,
1564 int node, void *caller)
1566 struct vm_struct *area;
1567 void *addr;
1568 unsigned long real_size = size;
1570 size = PAGE_ALIGN(size);
1571 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1572 return NULL;
1574 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1575 VMALLOC_END, node, gfp_mask, caller);
1577 if (!area)
1578 return NULL;
1580 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1583 * A ref_count = 3 is needed because the vm_struct and vmap_area
1584 * structures allocated in the __get_vm_area_node() function contain
1585 * references to the virtual address of the vmalloc'ed block.
1587 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1589 return addr;
1592 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1594 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1595 __builtin_return_address(0));
1597 EXPORT_SYMBOL(__vmalloc);
1599 static inline void *__vmalloc_node_flags(unsigned long size,
1600 int node, gfp_t flags)
1602 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1603 node, __builtin_return_address(0));
1607 * vmalloc - allocate virtually contiguous memory
1608 * @size: allocation size
1609 * Allocate enough pages to cover @size from the page level
1610 * allocator and map them into contiguous kernel virtual space.
1612 * For tight control over page level allocator and protection flags
1613 * use __vmalloc() instead.
1615 void *vmalloc(unsigned long size)
1617 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1619 EXPORT_SYMBOL(vmalloc);
1622 * vzalloc - allocate virtually contiguous memory with zero fill
1623 * @size: allocation size
1624 * Allocate enough pages to cover @size from the page level
1625 * allocator and map them into contiguous kernel virtual space.
1626 * The memory allocated is set to zero.
1628 * For tight control over page level allocator and protection flags
1629 * use __vmalloc() instead.
1631 void *vzalloc(unsigned long size)
1633 return __vmalloc_node_flags(size, -1,
1634 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1636 EXPORT_SYMBOL(vzalloc);
1639 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1640 * @size: allocation size
1642 * The resulting memory area is zeroed so it can be mapped to userspace
1643 * without leaking data.
1645 void *vmalloc_user(unsigned long size)
1647 struct vm_struct *area;
1648 void *ret;
1650 ret = __vmalloc_node(size, SHMLBA,
1651 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1652 PAGE_KERNEL, -1, __builtin_return_address(0));
1653 if (ret) {
1654 area = find_vm_area(ret);
1655 area->flags |= VM_USERMAP;
1657 return ret;
1659 EXPORT_SYMBOL(vmalloc_user);
1662 * vmalloc_node - allocate memory on a specific node
1663 * @size: allocation size
1664 * @node: numa node
1666 * Allocate enough pages to cover @size from the page level
1667 * allocator and map them into contiguous kernel virtual space.
1669 * For tight control over page level allocator and protection flags
1670 * use __vmalloc() instead.
1672 void *vmalloc_node(unsigned long size, int node)
1674 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1675 node, __builtin_return_address(0));
1677 EXPORT_SYMBOL(vmalloc_node);
1680 * vzalloc_node - allocate memory on a specific node with zero fill
1681 * @size: allocation size
1682 * @node: numa node
1684 * Allocate enough pages to cover @size from the page level
1685 * allocator and map them into contiguous kernel virtual space.
1686 * The memory allocated is set to zero.
1688 * For tight control over page level allocator and protection flags
1689 * use __vmalloc_node() instead.
1691 void *vzalloc_node(unsigned long size, int node)
1693 return __vmalloc_node_flags(size, node,
1694 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1696 EXPORT_SYMBOL(vzalloc_node);
1698 #ifndef PAGE_KERNEL_EXEC
1699 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1700 #endif
1703 * vmalloc_exec - allocate virtually contiguous, executable memory
1704 * @size: allocation size
1706 * Kernel-internal function to allocate enough pages to cover @size
1707 * the page level allocator and map them into contiguous and
1708 * executable kernel virtual space.
1710 * For tight control over page level allocator and protection flags
1711 * use __vmalloc() instead.
1714 void *vmalloc_exec(unsigned long size)
1716 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1717 -1, __builtin_return_address(0));
1720 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1721 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1722 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1723 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1724 #else
1725 #define GFP_VMALLOC32 GFP_KERNEL
1726 #endif
1729 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1730 * @size: allocation size
1732 * Allocate enough 32bit PA addressable pages to cover @size from the
1733 * page level allocator and map them into contiguous kernel virtual space.
1735 void *vmalloc_32(unsigned long size)
1737 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1738 -1, __builtin_return_address(0));
1740 EXPORT_SYMBOL(vmalloc_32);
1743 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1744 * @size: allocation size
1746 * The resulting memory area is 32bit addressable and zeroed so it can be
1747 * mapped to userspace without leaking data.
1749 void *vmalloc_32_user(unsigned long size)
1751 struct vm_struct *area;
1752 void *ret;
1754 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1755 -1, __builtin_return_address(0));
1756 if (ret) {
1757 area = find_vm_area(ret);
1758 area->flags |= VM_USERMAP;
1760 return ret;
1762 EXPORT_SYMBOL(vmalloc_32_user);
1765 * small helper routine , copy contents to buf from addr.
1766 * If the page is not present, fill zero.
1769 static int aligned_vread(char *buf, char *addr, unsigned long count)
1771 struct page *p;
1772 int copied = 0;
1774 while (count) {
1775 unsigned long offset, length;
1777 offset = (unsigned long)addr & ~PAGE_MASK;
1778 length = PAGE_SIZE - offset;
1779 if (length > count)
1780 length = count;
1781 p = vmalloc_to_page(addr);
1783 * To do safe access to this _mapped_ area, we need
1784 * lock. But adding lock here means that we need to add
1785 * overhead of vmalloc()/vfree() calles for this _debug_
1786 * interface, rarely used. Instead of that, we'll use
1787 * kmap() and get small overhead in this access function.
1789 if (p) {
1791 * we can expect USER0 is not used (see vread/vwrite's
1792 * function description)
1794 void *map = kmap_atomic(p, KM_USER0);
1795 memcpy(buf, map + offset, length);
1796 kunmap_atomic(map, KM_USER0);
1797 } else
1798 memset(buf, 0, length);
1800 addr += length;
1801 buf += length;
1802 copied += length;
1803 count -= length;
1805 return copied;
1808 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1810 struct page *p;
1811 int copied = 0;
1813 while (count) {
1814 unsigned long offset, length;
1816 offset = (unsigned long)addr & ~PAGE_MASK;
1817 length = PAGE_SIZE - offset;
1818 if (length > count)
1819 length = count;
1820 p = vmalloc_to_page(addr);
1822 * To do safe access to this _mapped_ area, we need
1823 * lock. But adding lock here means that we need to add
1824 * overhead of vmalloc()/vfree() calles for this _debug_
1825 * interface, rarely used. Instead of that, we'll use
1826 * kmap() and get small overhead in this access function.
1828 if (p) {
1830 * we can expect USER0 is not used (see vread/vwrite's
1831 * function description)
1833 void *map = kmap_atomic(p, KM_USER0);
1834 memcpy(map + offset, buf, length);
1835 kunmap_atomic(map, KM_USER0);
1837 addr += length;
1838 buf += length;
1839 copied += length;
1840 count -= length;
1842 return copied;
1846 * vread() - read vmalloc area in a safe way.
1847 * @buf: buffer for reading data
1848 * @addr: vm address.
1849 * @count: number of bytes to be read.
1851 * Returns # of bytes which addr and buf should be increased.
1852 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1853 * includes any intersect with alive vmalloc area.
1855 * This function checks that addr is a valid vmalloc'ed area, and
1856 * copy data from that area to a given buffer. If the given memory range
1857 * of [addr...addr+count) includes some valid address, data is copied to
1858 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1859 * IOREMAP area is treated as memory hole and no copy is done.
1861 * If [addr...addr+count) doesn't includes any intersects with alive
1862 * vm_struct area, returns 0.
1863 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1864 * the caller should guarantee KM_USER0 is not used.
1866 * Note: In usual ops, vread() is never necessary because the caller
1867 * should know vmalloc() area is valid and can use memcpy().
1868 * This is for routines which have to access vmalloc area without
1869 * any informaion, as /dev/kmem.
1873 long vread(char *buf, char *addr, unsigned long count)
1875 struct vm_struct *tmp;
1876 char *vaddr, *buf_start = buf;
1877 unsigned long buflen = count;
1878 unsigned long n;
1880 /* Don't allow overflow */
1881 if ((unsigned long) addr + count < count)
1882 count = -(unsigned long) addr;
1884 read_lock(&vmlist_lock);
1885 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1886 vaddr = (char *) tmp->addr;
1887 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1888 continue;
1889 while (addr < vaddr) {
1890 if (count == 0)
1891 goto finished;
1892 *buf = '\0';
1893 buf++;
1894 addr++;
1895 count--;
1897 n = vaddr + tmp->size - PAGE_SIZE - addr;
1898 if (n > count)
1899 n = count;
1900 if (!(tmp->flags & VM_IOREMAP))
1901 aligned_vread(buf, addr, n);
1902 else /* IOREMAP area is treated as memory hole */
1903 memset(buf, 0, n);
1904 buf += n;
1905 addr += n;
1906 count -= n;
1908 finished:
1909 read_unlock(&vmlist_lock);
1911 if (buf == buf_start)
1912 return 0;
1913 /* zero-fill memory holes */
1914 if (buf != buf_start + buflen)
1915 memset(buf, 0, buflen - (buf - buf_start));
1917 return buflen;
1921 * vwrite() - write vmalloc area in a safe way.
1922 * @buf: buffer for source data
1923 * @addr: vm address.
1924 * @count: number of bytes to be read.
1926 * Returns # of bytes which addr and buf should be incresed.
1927 * (same number to @count).
1928 * If [addr...addr+count) doesn't includes any intersect with valid
1929 * vmalloc area, returns 0.
1931 * This function checks that addr is a valid vmalloc'ed area, and
1932 * copy data from a buffer to the given addr. If specified range of
1933 * [addr...addr+count) includes some valid address, data is copied from
1934 * proper area of @buf. If there are memory holes, no copy to hole.
1935 * IOREMAP area is treated as memory hole and no copy is done.
1937 * If [addr...addr+count) doesn't includes any intersects with alive
1938 * vm_struct area, returns 0.
1939 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1940 * the caller should guarantee KM_USER0 is not used.
1942 * Note: In usual ops, vwrite() is never necessary because the caller
1943 * should know vmalloc() area is valid and can use memcpy().
1944 * This is for routines which have to access vmalloc area without
1945 * any informaion, as /dev/kmem.
1947 * The caller should guarantee KM_USER1 is not used.
1950 long vwrite(char *buf, char *addr, unsigned long count)
1952 struct vm_struct *tmp;
1953 char *vaddr;
1954 unsigned long n, buflen;
1955 int copied = 0;
1957 /* Don't allow overflow */
1958 if ((unsigned long) addr + count < count)
1959 count = -(unsigned long) addr;
1960 buflen = count;
1962 read_lock(&vmlist_lock);
1963 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1964 vaddr = (char *) tmp->addr;
1965 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1966 continue;
1967 while (addr < vaddr) {
1968 if (count == 0)
1969 goto finished;
1970 buf++;
1971 addr++;
1972 count--;
1974 n = vaddr + tmp->size - PAGE_SIZE - addr;
1975 if (n > count)
1976 n = count;
1977 if (!(tmp->flags & VM_IOREMAP)) {
1978 aligned_vwrite(buf, addr, n);
1979 copied++;
1981 buf += n;
1982 addr += n;
1983 count -= n;
1985 finished:
1986 read_unlock(&vmlist_lock);
1987 if (!copied)
1988 return 0;
1989 return buflen;
1993 * remap_vmalloc_range - map vmalloc pages to userspace
1994 * @vma: vma to cover (map full range of vma)
1995 * @addr: vmalloc memory
1996 * @pgoff: number of pages into addr before first page to map
1998 * Returns: 0 for success, -Exxx on failure
2000 * This function checks that addr is a valid vmalloc'ed area, and
2001 * that it is big enough to cover the vma. Will return failure if
2002 * that criteria isn't met.
2004 * Similar to remap_pfn_range() (see mm/memory.c)
2006 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2007 unsigned long pgoff)
2009 struct vm_struct *area;
2010 unsigned long uaddr = vma->vm_start;
2011 unsigned long usize = vma->vm_end - vma->vm_start;
2013 if ((PAGE_SIZE-1) & (unsigned long)addr)
2014 return -EINVAL;
2016 area = find_vm_area(addr);
2017 if (!area)
2018 return -EINVAL;
2020 if (!(area->flags & VM_USERMAP))
2021 return -EINVAL;
2023 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2024 return -EINVAL;
2026 addr += pgoff << PAGE_SHIFT;
2027 do {
2028 struct page *page = vmalloc_to_page(addr);
2029 int ret;
2031 ret = vm_insert_page(vma, uaddr, page);
2032 if (ret)
2033 return ret;
2035 uaddr += PAGE_SIZE;
2036 addr += PAGE_SIZE;
2037 usize -= PAGE_SIZE;
2038 } while (usize > 0);
2040 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2041 vma->vm_flags |= VM_RESERVED;
2043 return 0;
2045 EXPORT_SYMBOL(remap_vmalloc_range);
2048 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2049 * have one.
2051 void __attribute__((weak)) vmalloc_sync_all(void)
2056 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2058 /* apply_to_page_range() does all the hard work. */
2059 return 0;
2063 * alloc_vm_area - allocate a range of kernel address space
2064 * @size: size of the area
2066 * Returns: NULL on failure, vm_struct on success
2068 * This function reserves a range of kernel address space, and
2069 * allocates pagetables to map that range. No actual mappings
2070 * are created. If the kernel address space is not shared
2071 * between processes, it syncs the pagetable across all
2072 * processes.
2074 struct vm_struct *alloc_vm_area(size_t size)
2076 struct vm_struct *area;
2078 area = get_vm_area_caller(size, VM_IOREMAP,
2079 __builtin_return_address(0));
2080 if (area == NULL)
2081 return NULL;
2084 * This ensures that page tables are constructed for this region
2085 * of kernel virtual address space and mapped into init_mm.
2087 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2088 area->size, f, NULL)) {
2089 free_vm_area(area);
2090 return NULL;
2093 /* Make sure the pagetables are constructed in process kernel
2094 mappings */
2095 vmalloc_sync_all();
2097 return area;
2099 EXPORT_SYMBOL_GPL(alloc_vm_area);
2101 void free_vm_area(struct vm_struct *area)
2103 struct vm_struct *ret;
2104 ret = remove_vm_area(area->addr);
2105 BUG_ON(ret != area);
2106 kfree(area);
2108 EXPORT_SYMBOL_GPL(free_vm_area);
2110 #ifdef CONFIG_SMP
2111 static struct vmap_area *node_to_va(struct rb_node *n)
2113 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2117 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2118 * @end: target address
2119 * @pnext: out arg for the next vmap_area
2120 * @pprev: out arg for the previous vmap_area
2122 * Returns: %true if either or both of next and prev are found,
2123 * %false if no vmap_area exists
2125 * Find vmap_areas end addresses of which enclose @end. ie. if not
2126 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2128 static bool pvm_find_next_prev(unsigned long end,
2129 struct vmap_area **pnext,
2130 struct vmap_area **pprev)
2132 struct rb_node *n = vmap_area_root.rb_node;
2133 struct vmap_area *va = NULL;
2135 while (n) {
2136 va = rb_entry(n, struct vmap_area, rb_node);
2137 if (end < va->va_end)
2138 n = n->rb_left;
2139 else if (end > va->va_end)
2140 n = n->rb_right;
2141 else
2142 break;
2145 if (!va)
2146 return false;
2148 if (va->va_end > end) {
2149 *pnext = va;
2150 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2151 } else {
2152 *pprev = va;
2153 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2155 return true;
2159 * pvm_determine_end - find the highest aligned address between two vmap_areas
2160 * @pnext: in/out arg for the next vmap_area
2161 * @pprev: in/out arg for the previous vmap_area
2162 * @align: alignment
2164 * Returns: determined end address
2166 * Find the highest aligned address between *@pnext and *@pprev below
2167 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2168 * down address is between the end addresses of the two vmap_areas.
2170 * Please note that the address returned by this function may fall
2171 * inside *@pnext vmap_area. The caller is responsible for checking
2172 * that.
2174 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2175 struct vmap_area **pprev,
2176 unsigned long align)
2178 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2179 unsigned long addr;
2181 if (*pnext)
2182 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2183 else
2184 addr = vmalloc_end;
2186 while (*pprev && (*pprev)->va_end > addr) {
2187 *pnext = *pprev;
2188 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2191 return addr;
2195 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2196 * @offsets: array containing offset of each area
2197 * @sizes: array containing size of each area
2198 * @nr_vms: the number of areas to allocate
2199 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2200 * @gfp_mask: allocation mask
2202 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2203 * vm_structs on success, %NULL on failure
2205 * Percpu allocator wants to use congruent vm areas so that it can
2206 * maintain the offsets among percpu areas. This function allocates
2207 * congruent vmalloc areas for it. These areas tend to be scattered
2208 * pretty far, distance between two areas easily going up to
2209 * gigabytes. To avoid interacting with regular vmallocs, these areas
2210 * are allocated from top.
2212 * Despite its complicated look, this allocator is rather simple. It
2213 * does everything top-down and scans areas from the end looking for
2214 * matching slot. While scanning, if any of the areas overlaps with
2215 * existing vmap_area, the base address is pulled down to fit the
2216 * area. Scanning is repeated till all the areas fit and then all
2217 * necessary data structres are inserted and the result is returned.
2219 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2220 const size_t *sizes, int nr_vms,
2221 size_t align, gfp_t gfp_mask)
2223 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2224 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2225 struct vmap_area **vas, *prev, *next;
2226 struct vm_struct **vms;
2227 int area, area2, last_area, term_area;
2228 unsigned long base, start, end, last_end;
2229 bool purged = false;
2231 gfp_mask &= GFP_RECLAIM_MASK;
2233 /* verify parameters and allocate data structures */
2234 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2235 for (last_area = 0, area = 0; area < nr_vms; area++) {
2236 start = offsets[area];
2237 end = start + sizes[area];
2239 /* is everything aligned properly? */
2240 BUG_ON(!IS_ALIGNED(offsets[area], align));
2241 BUG_ON(!IS_ALIGNED(sizes[area], align));
2243 /* detect the area with the highest address */
2244 if (start > offsets[last_area])
2245 last_area = area;
2247 for (area2 = 0; area2 < nr_vms; area2++) {
2248 unsigned long start2 = offsets[area2];
2249 unsigned long end2 = start2 + sizes[area2];
2251 if (area2 == area)
2252 continue;
2254 BUG_ON(start2 >= start && start2 < end);
2255 BUG_ON(end2 <= end && end2 > start);
2258 last_end = offsets[last_area] + sizes[last_area];
2260 if (vmalloc_end - vmalloc_start < last_end) {
2261 WARN_ON(true);
2262 return NULL;
2265 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2266 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2267 if (!vas || !vms)
2268 goto err_free;
2270 for (area = 0; area < nr_vms; area++) {
2271 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2272 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2273 if (!vas[area] || !vms[area])
2274 goto err_free;
2276 retry:
2277 spin_lock(&vmap_area_lock);
2279 /* start scanning - we scan from the top, begin with the last area */
2280 area = term_area = last_area;
2281 start = offsets[area];
2282 end = start + sizes[area];
2284 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2285 base = vmalloc_end - last_end;
2286 goto found;
2288 base = pvm_determine_end(&next, &prev, align) - end;
2290 while (true) {
2291 BUG_ON(next && next->va_end <= base + end);
2292 BUG_ON(prev && prev->va_end > base + end);
2295 * base might have underflowed, add last_end before
2296 * comparing.
2298 if (base + last_end < vmalloc_start + last_end) {
2299 spin_unlock(&vmap_area_lock);
2300 if (!purged) {
2301 purge_vmap_area_lazy();
2302 purged = true;
2303 goto retry;
2305 goto err_free;
2309 * If next overlaps, move base downwards so that it's
2310 * right below next and then recheck.
2312 if (next && next->va_start < base + end) {
2313 base = pvm_determine_end(&next, &prev, align) - end;
2314 term_area = area;
2315 continue;
2319 * If prev overlaps, shift down next and prev and move
2320 * base so that it's right below new next and then
2321 * recheck.
2323 if (prev && prev->va_end > base + start) {
2324 next = prev;
2325 prev = node_to_va(rb_prev(&next->rb_node));
2326 base = pvm_determine_end(&next, &prev, align) - end;
2327 term_area = area;
2328 continue;
2332 * This area fits, move on to the previous one. If
2333 * the previous one is the terminal one, we're done.
2335 area = (area + nr_vms - 1) % nr_vms;
2336 if (area == term_area)
2337 break;
2338 start = offsets[area];
2339 end = start + sizes[area];
2340 pvm_find_next_prev(base + end, &next, &prev);
2342 found:
2343 /* we've found a fitting base, insert all va's */
2344 for (area = 0; area < nr_vms; area++) {
2345 struct vmap_area *va = vas[area];
2347 va->va_start = base + offsets[area];
2348 va->va_end = va->va_start + sizes[area];
2349 __insert_vmap_area(va);
2352 vmap_area_pcpu_hole = base + offsets[last_area];
2354 spin_unlock(&vmap_area_lock);
2356 /* insert all vm's */
2357 for (area = 0; area < nr_vms; area++)
2358 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2359 pcpu_get_vm_areas);
2361 kfree(vas);
2362 return vms;
2364 err_free:
2365 for (area = 0; area < nr_vms; area++) {
2366 if (vas)
2367 kfree(vas[area]);
2368 if (vms)
2369 kfree(vms[area]);
2371 kfree(vas);
2372 kfree(vms);
2373 return NULL;
2377 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2378 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2379 * @nr_vms: the number of allocated areas
2381 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2383 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2385 int i;
2387 for (i = 0; i < nr_vms; i++)
2388 free_vm_area(vms[i]);
2389 kfree(vms);
2391 #endif /* CONFIG_SMP */
2393 #ifdef CONFIG_PROC_FS
2394 static void *s_start(struct seq_file *m, loff_t *pos)
2395 __acquires(&vmlist_lock)
2397 loff_t n = *pos;
2398 struct vm_struct *v;
2400 read_lock(&vmlist_lock);
2401 v = vmlist;
2402 while (n > 0 && v) {
2403 n--;
2404 v = v->next;
2406 if (!n)
2407 return v;
2409 return NULL;
2413 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2415 struct vm_struct *v = p;
2417 ++*pos;
2418 return v->next;
2421 static void s_stop(struct seq_file *m, void *p)
2422 __releases(&vmlist_lock)
2424 read_unlock(&vmlist_lock);
2427 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2429 if (NUMA_BUILD) {
2430 unsigned int nr, *counters = m->private;
2432 if (!counters)
2433 return;
2435 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2437 for (nr = 0; nr < v->nr_pages; nr++)
2438 counters[page_to_nid(v->pages[nr])]++;
2440 for_each_node_state(nr, N_HIGH_MEMORY)
2441 if (counters[nr])
2442 seq_printf(m, " N%u=%u", nr, counters[nr]);
2446 static int s_show(struct seq_file *m, void *p)
2448 struct vm_struct *v = p;
2450 seq_printf(m, "0x%p-0x%p %7ld",
2451 v->addr, v->addr + v->size, v->size);
2453 if (v->caller) {
2454 char buff[KSYM_SYMBOL_LEN];
2456 seq_putc(m, ' ');
2457 sprint_symbol(buff, (unsigned long)v->caller);
2458 seq_puts(m, buff);
2461 if (v->nr_pages)
2462 seq_printf(m, " pages=%d", v->nr_pages);
2464 if (v->phys_addr)
2465 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2467 if (v->flags & VM_IOREMAP)
2468 seq_printf(m, " ioremap");
2470 if (v->flags & VM_ALLOC)
2471 seq_printf(m, " vmalloc");
2473 if (v->flags & VM_MAP)
2474 seq_printf(m, " vmap");
2476 if (v->flags & VM_USERMAP)
2477 seq_printf(m, " user");
2479 if (v->flags & VM_VPAGES)
2480 seq_printf(m, " vpages");
2482 show_numa_info(m, v);
2483 seq_putc(m, '\n');
2484 return 0;
2487 static const struct seq_operations vmalloc_op = {
2488 .start = s_start,
2489 .next = s_next,
2490 .stop = s_stop,
2491 .show = s_show,
2494 static int vmalloc_open(struct inode *inode, struct file *file)
2496 unsigned int *ptr = NULL;
2497 int ret;
2499 if (NUMA_BUILD) {
2500 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2501 if (ptr == NULL)
2502 return -ENOMEM;
2504 ret = seq_open(file, &vmalloc_op);
2505 if (!ret) {
2506 struct seq_file *m = file->private_data;
2507 m->private = ptr;
2508 } else
2509 kfree(ptr);
2510 return ret;
2513 static const struct file_operations proc_vmalloc_operations = {
2514 .open = vmalloc_open,
2515 .read = seq_read,
2516 .llseek = seq_lseek,
2517 .release = seq_release_private,
2520 static int __init proc_vmalloc_init(void)
2522 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2523 return 0;
2525 module_init(proc_vmalloc_init);
2526 #endif