4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
34 bool vmap_lazy_unmap __read_mostly
= true;
36 /*** Page table manipulation functions ***/
38 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
42 pte
= pte_offset_kernel(pmd
, addr
);
44 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
45 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
46 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
49 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
54 pmd
= pmd_offset(pud
, addr
);
56 next
= pmd_addr_end(addr
, end
);
57 if (pmd_none_or_clear_bad(pmd
))
59 vunmap_pte_range(pmd
, addr
, next
);
60 } while (pmd
++, addr
= next
, addr
!= end
);
63 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
68 pud
= pud_offset(pgd
, addr
);
70 next
= pud_addr_end(addr
, end
);
71 if (pud_none_or_clear_bad(pud
))
73 vunmap_pmd_range(pud
, addr
, next
);
74 } while (pud
++, addr
= next
, addr
!= end
);
77 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
83 pgd
= pgd_offset_k(addr
);
85 next
= pgd_addr_end(addr
, end
);
86 if (pgd_none_or_clear_bad(pgd
))
88 vunmap_pud_range(pgd
, addr
, next
);
89 } while (pgd
++, addr
= next
, addr
!= end
);
92 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
93 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
98 * nr is a running index into the array which helps higher level
99 * callers keep track of where we're up to.
102 pte
= pte_alloc_kernel(pmd
, addr
);
106 struct page
*page
= pages
[*nr
];
108 if (WARN_ON(!pte_none(*pte
)))
112 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
114 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
118 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
119 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
124 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
128 next
= pmd_addr_end(addr
, end
);
129 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
131 } while (pmd
++, addr
= next
, addr
!= end
);
135 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
136 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
141 pud
= pud_alloc(&init_mm
, pgd
, addr
);
145 next
= pud_addr_end(addr
, end
);
146 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
148 } while (pud
++, addr
= next
, addr
!= end
);
153 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
154 * will have pfns corresponding to the "pages" array.
156 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
158 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
159 pgprot_t prot
, struct page
**pages
)
163 unsigned long addr
= start
;
168 pgd
= pgd_offset_k(addr
);
170 next
= pgd_addr_end(addr
, end
);
171 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
174 } while (pgd
++, addr
= next
, addr
!= end
);
179 static int vmap_page_range(unsigned long start
, unsigned long end
,
180 pgprot_t prot
, struct page
**pages
)
184 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
185 flush_cache_vmap(start
, end
);
189 int is_vmalloc_or_module_addr(const void *x
)
192 * ARM, x86-64 and sparc64 put modules in a special place,
193 * and fall back on vmalloc() if that fails. Others
194 * just put it in the vmalloc space.
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 unsigned long addr
= (unsigned long)x
;
198 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
201 return is_vmalloc_addr(x
);
205 * Walk a vmap address to the struct page it maps.
207 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
209 unsigned long addr
= (unsigned long) vmalloc_addr
;
210 struct page
*page
= NULL
;
211 pgd_t
*pgd
= pgd_offset_k(addr
);
214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 * architectures that do not vmalloc module space
217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
219 if (!pgd_none(*pgd
)) {
220 pud_t
*pud
= pud_offset(pgd
, addr
);
221 if (!pud_none(*pud
)) {
222 pmd_t
*pmd
= pmd_offset(pud
, addr
);
223 if (!pmd_none(*pmd
)) {
226 ptep
= pte_offset_map(pmd
, addr
);
228 if (pte_present(pte
))
229 page
= pte_page(pte
);
236 EXPORT_SYMBOL(vmalloc_to_page
);
239 * Map a vmalloc()-space virtual address to the physical page frame number.
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
243 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
245 EXPORT_SYMBOL(vmalloc_to_pfn
);
248 /*** Global kva allocator ***/
250 #define VM_LAZY_FREE 0x01
251 #define VM_LAZY_FREEING 0x02
252 #define VM_VM_AREA 0x04
255 unsigned long va_start
;
256 unsigned long va_end
;
258 struct rb_node rb_node
; /* address sorted rbtree */
259 struct list_head list
; /* address sorted list */
260 struct list_head purge_list
; /* "lazy purge" list */
262 struct rcu_head rcu_head
;
265 static DEFINE_SPINLOCK(vmap_area_lock
);
266 static struct rb_root vmap_area_root
= RB_ROOT
;
267 static LIST_HEAD(vmap_area_list
);
268 static unsigned long vmap_area_pcpu_hole
;
270 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
272 struct rb_node
*n
= vmap_area_root
.rb_node
;
275 struct vmap_area
*va
;
277 va
= rb_entry(n
, struct vmap_area
, rb_node
);
278 if (addr
< va
->va_start
)
280 else if (addr
> va
->va_start
)
289 static void __insert_vmap_area(struct vmap_area
*va
)
291 struct rb_node
**p
= &vmap_area_root
.rb_node
;
292 struct rb_node
*parent
= NULL
;
296 struct vmap_area
*tmp_va
;
299 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
300 if (va
->va_start
< tmp_va
->va_end
)
302 else if (va
->va_end
> tmp_va
->va_start
)
308 rb_link_node(&va
->rb_node
, parent
, p
);
309 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
311 /* address-sort this list so it is usable like the vmlist */
312 tmp
= rb_prev(&va
->rb_node
);
314 struct vmap_area
*prev
;
315 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
316 list_add_rcu(&va
->list
, &prev
->list
);
318 list_add_rcu(&va
->list
, &vmap_area_list
);
321 static void purge_vmap_area_lazy(void);
324 * Allocate a region of KVA of the specified size and alignment, within the
327 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
329 unsigned long vstart
, unsigned long vend
,
330 int node
, gfp_t gfp_mask
)
332 struct vmap_area
*va
;
338 BUG_ON(size
& ~PAGE_MASK
);
340 va
= kmalloc_node(sizeof(struct vmap_area
),
341 gfp_mask
& GFP_RECLAIM_MASK
, node
);
343 return ERR_PTR(-ENOMEM
);
346 addr
= ALIGN(vstart
, align
);
348 spin_lock(&vmap_area_lock
);
349 if (addr
+ size
- 1 < addr
)
352 /* XXX: could have a last_hole cache */
353 n
= vmap_area_root
.rb_node
;
355 struct vmap_area
*first
= NULL
;
358 struct vmap_area
*tmp
;
359 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
360 if (tmp
->va_end
>= addr
) {
361 if (!first
&& tmp
->va_start
< addr
+ size
)
373 if (first
->va_end
< addr
) {
374 n
= rb_next(&first
->rb_node
);
376 first
= rb_entry(n
, struct vmap_area
, rb_node
);
381 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
382 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
383 if (addr
+ size
- 1 < addr
)
386 n
= rb_next(&first
->rb_node
);
388 first
= rb_entry(n
, struct vmap_area
, rb_node
);
394 if (addr
+ size
> vend
) {
396 spin_unlock(&vmap_area_lock
);
398 purge_vmap_area_lazy();
402 if (printk_ratelimit())
404 "vmap allocation for size %lu failed: "
405 "use vmalloc=<size> to increase size.\n", size
);
407 return ERR_PTR(-EBUSY
);
410 BUG_ON(addr
& (align
-1));
413 va
->va_end
= addr
+ size
;
415 __insert_vmap_area(va
);
416 spin_unlock(&vmap_area_lock
);
421 static void rcu_free_va(struct rcu_head
*head
)
423 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
428 static void __free_vmap_area(struct vmap_area
*va
)
430 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
431 rb_erase(&va
->rb_node
, &vmap_area_root
);
432 RB_CLEAR_NODE(&va
->rb_node
);
433 list_del_rcu(&va
->list
);
436 * Track the highest possible candidate for pcpu area
437 * allocation. Areas outside of vmalloc area can be returned
438 * here too, consider only end addresses which fall inside
439 * vmalloc area proper.
441 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
442 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
444 call_rcu(&va
->rcu_head
, rcu_free_va
);
448 * Free a region of KVA allocated by alloc_vmap_area
450 static void free_vmap_area(struct vmap_area
*va
)
452 spin_lock(&vmap_area_lock
);
453 __free_vmap_area(va
);
454 spin_unlock(&vmap_area_lock
);
458 * Clear the pagetable entries of a given vmap_area
460 static void unmap_vmap_area(struct vmap_area
*va
)
462 vunmap_page_range(va
->va_start
, va
->va_end
);
465 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
468 * Unmap page tables and force a TLB flush immediately if
469 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
470 * bugs similarly to those in linear kernel virtual address
471 * space after a page has been freed.
473 * All the lazy freeing logic is still retained, in order to
474 * minimise intrusiveness of this debugging feature.
476 * This is going to be *slow* (linear kernel virtual address
477 * debugging doesn't do a broadcast TLB flush so it is a lot
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 vunmap_page_range(start
, end
);
482 flush_tlb_kernel_range(start
, end
);
487 * lazy_max_pages is the maximum amount of virtual address space we gather up
488 * before attempting to purge with a TLB flush.
490 * There is a tradeoff here: a larger number will cover more kernel page tables
491 * and take slightly longer to purge, but it will linearly reduce the number of
492 * global TLB flushes that must be performed. It would seem natural to scale
493 * this number up linearly with the number of CPUs (because vmapping activity
494 * could also scale linearly with the number of CPUs), however it is likely
495 * that in practice, workloads might be constrained in other ways that mean
496 * vmap activity will not scale linearly with CPUs. Also, I want to be
497 * conservative and not introduce a big latency on huge systems, so go with
498 * a less aggressive log scale. It will still be an improvement over the old
499 * code, and it will be simple to change the scale factor if we find that it
500 * becomes a problem on bigger systems.
502 static unsigned long lazy_max_pages(void)
506 if (!vmap_lazy_unmap
)
509 log
= fls(num_online_cpus());
511 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
514 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
516 /* for per-CPU blocks */
517 static void purge_fragmented_blocks_allcpus(void);
520 * called before a call to iounmap() if the caller wants vm_area_struct's
523 void set_iounmap_nonlazy(void)
525 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
529 * Purges all lazily-freed vmap areas.
531 * If sync is 0 then don't purge if there is already a purge in progress.
532 * If force_flush is 1, then flush kernel TLBs between *start and *end even
533 * if we found no lazy vmap areas to unmap (callers can use this to optimise
534 * their own TLB flushing).
535 * Returns with *start = min(*start, lowest purged address)
536 * *end = max(*end, highest purged address)
538 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
539 int sync
, int force_flush
)
541 static DEFINE_SPINLOCK(purge_lock
);
543 struct vmap_area
*va
;
544 struct vmap_area
*n_va
;
548 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
549 * should not expect such behaviour. This just simplifies locking for
550 * the case that isn't actually used at the moment anyway.
552 if (!sync
&& !force_flush
) {
553 if (!spin_trylock(&purge_lock
))
556 spin_lock(&purge_lock
);
559 purge_fragmented_blocks_allcpus();
562 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
563 if (va
->flags
& VM_LAZY_FREE
) {
564 if (va
->va_start
< *start
)
565 *start
= va
->va_start
;
566 if (va
->va_end
> *end
)
568 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
570 list_add_tail(&va
->purge_list
, &valist
);
571 va
->flags
|= VM_LAZY_FREEING
;
572 va
->flags
&= ~VM_LAZY_FREE
;
578 atomic_sub(nr
, &vmap_lazy_nr
);
580 if (nr
|| force_flush
)
581 flush_tlb_kernel_range(*start
, *end
);
584 spin_lock(&vmap_area_lock
);
585 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
586 __free_vmap_area(va
);
587 spin_unlock(&vmap_area_lock
);
589 spin_unlock(&purge_lock
);
593 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
594 * is already purging.
596 static void try_purge_vmap_area_lazy(void)
598 unsigned long start
= ULONG_MAX
, end
= 0;
600 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
604 * Kick off a purge of the outstanding lazy areas.
606 static void purge_vmap_area_lazy(void)
608 unsigned long start
= ULONG_MAX
, end
= 0;
610 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
614 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
615 * called for the correct range previously.
617 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
619 va
->flags
|= VM_LAZY_FREE
;
620 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
621 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
622 try_purge_vmap_area_lazy();
626 * Free and unmap a vmap area
628 static void free_unmap_vmap_area(struct vmap_area
*va
)
630 flush_cache_vunmap(va
->va_start
, va
->va_end
);
631 free_unmap_vmap_area_noflush(va
);
634 static struct vmap_area
*find_vmap_area(unsigned long addr
)
636 struct vmap_area
*va
;
638 spin_lock(&vmap_area_lock
);
639 va
= __find_vmap_area(addr
);
640 spin_unlock(&vmap_area_lock
);
645 static void free_unmap_vmap_area_addr(unsigned long addr
)
647 struct vmap_area
*va
;
649 va
= find_vmap_area(addr
);
651 free_unmap_vmap_area(va
);
655 /*** Per cpu kva allocator ***/
658 * vmap space is limited especially on 32 bit architectures. Ensure there is
659 * room for at least 16 percpu vmap blocks per CPU.
662 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
663 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
664 * instead (we just need a rough idea)
666 #if BITS_PER_LONG == 32
667 #define VMALLOC_SPACE (128UL*1024*1024)
669 #define VMALLOC_SPACE (128UL*1024*1024*1024)
672 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
673 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
674 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
675 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
676 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
677 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
678 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
679 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
680 VMALLOC_PAGES / NR_CPUS / 16))
682 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
684 static bool vmap_initialized __read_mostly
= false;
686 struct vmap_block_queue
{
688 struct list_head free
;
693 struct vmap_area
*va
;
694 struct vmap_block_queue
*vbq
;
695 unsigned long free
, dirty
;
696 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
697 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
698 struct list_head free_list
;
699 struct rcu_head rcu_head
;
700 struct list_head purge
;
703 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
704 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
707 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
708 * in the free path. Could get rid of this if we change the API to return a
709 * "cookie" from alloc, to be passed to free. But no big deal yet.
711 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
712 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
715 * We should probably have a fallback mechanism to allocate virtual memory
716 * out of partially filled vmap blocks. However vmap block sizing should be
717 * fairly reasonable according to the vmalloc size, so it shouldn't be a
721 static unsigned long addr_to_vb_idx(unsigned long addr
)
723 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
724 addr
/= VMAP_BLOCK_SIZE
;
728 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
730 struct vmap_block_queue
*vbq
;
731 struct vmap_block
*vb
;
732 struct vmap_area
*va
;
733 unsigned long vb_idx
;
736 node
= numa_node_id();
738 vb
= kmalloc_node(sizeof(struct vmap_block
),
739 gfp_mask
& GFP_RECLAIM_MASK
, node
);
741 return ERR_PTR(-ENOMEM
);
743 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
744 VMALLOC_START
, VMALLOC_END
,
746 if (unlikely(IS_ERR(va
))) {
751 err
= radix_tree_preload(gfp_mask
);
758 spin_lock_init(&vb
->lock
);
760 vb
->free
= VMAP_BBMAP_BITS
;
762 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
763 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
764 INIT_LIST_HEAD(&vb
->free_list
);
766 vb_idx
= addr_to_vb_idx(va
->va_start
);
767 spin_lock(&vmap_block_tree_lock
);
768 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
769 spin_unlock(&vmap_block_tree_lock
);
771 radix_tree_preload_end();
773 vbq
= &get_cpu_var(vmap_block_queue
);
775 spin_lock(&vbq
->lock
);
776 list_add_rcu(&vb
->free_list
, &vbq
->free
);
777 spin_unlock(&vbq
->lock
);
778 put_cpu_var(vmap_block_queue
);
783 static void rcu_free_vb(struct rcu_head
*head
)
785 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
790 static void free_vmap_block(struct vmap_block
*vb
)
792 struct vmap_block
*tmp
;
793 unsigned long vb_idx
;
795 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
796 spin_lock(&vmap_block_tree_lock
);
797 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
798 spin_unlock(&vmap_block_tree_lock
);
801 free_unmap_vmap_area_noflush(vb
->va
);
802 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
805 static void purge_fragmented_blocks(int cpu
)
808 struct vmap_block
*vb
;
809 struct vmap_block
*n_vb
;
810 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
813 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
815 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
818 spin_lock(&vb
->lock
);
819 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
820 vb
->free
= 0; /* prevent further allocs after releasing lock */
821 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
822 bitmap_fill(vb
->alloc_map
, VMAP_BBMAP_BITS
);
823 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
824 spin_lock(&vbq
->lock
);
825 list_del_rcu(&vb
->free_list
);
826 spin_unlock(&vbq
->lock
);
827 spin_unlock(&vb
->lock
);
828 list_add_tail(&vb
->purge
, &purge
);
830 spin_unlock(&vb
->lock
);
834 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
835 list_del(&vb
->purge
);
840 static void purge_fragmented_blocks_thiscpu(void)
842 purge_fragmented_blocks(smp_processor_id());
845 static void purge_fragmented_blocks_allcpus(void)
849 for_each_possible_cpu(cpu
)
850 purge_fragmented_blocks(cpu
);
853 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
855 struct vmap_block_queue
*vbq
;
856 struct vmap_block
*vb
;
857 unsigned long addr
= 0;
861 BUG_ON(size
& ~PAGE_MASK
);
862 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
863 order
= get_order(size
);
867 vbq
= &get_cpu_var(vmap_block_queue
);
868 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
871 spin_lock(&vb
->lock
);
872 if (vb
->free
< 1UL << order
)
875 i
= bitmap_find_free_region(vb
->alloc_map
,
876 VMAP_BBMAP_BITS
, order
);
879 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
) {
880 /* fragmented and no outstanding allocations */
881 BUG_ON(vb
->dirty
!= VMAP_BBMAP_BITS
);
886 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
887 BUG_ON(addr_to_vb_idx(addr
) !=
888 addr_to_vb_idx(vb
->va
->va_start
));
889 vb
->free
-= 1UL << order
;
891 spin_lock(&vbq
->lock
);
892 list_del_rcu(&vb
->free_list
);
893 spin_unlock(&vbq
->lock
);
895 spin_unlock(&vb
->lock
);
898 spin_unlock(&vb
->lock
);
902 purge_fragmented_blocks_thiscpu();
904 put_cpu_var(vmap_block_queue
);
908 vb
= new_vmap_block(gfp_mask
);
917 static void vb_free(const void *addr
, unsigned long size
)
919 unsigned long offset
;
920 unsigned long vb_idx
;
922 struct vmap_block
*vb
;
924 BUG_ON(size
& ~PAGE_MASK
);
925 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
927 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
929 order
= get_order(size
);
931 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
933 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
935 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
939 spin_lock(&vb
->lock
);
940 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
942 vb
->dirty
+= 1UL << order
;
943 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
945 spin_unlock(&vb
->lock
);
948 spin_unlock(&vb
->lock
);
952 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
954 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
955 * to amortize TLB flushing overheads. What this means is that any page you
956 * have now, may, in a former life, have been mapped into kernel virtual
957 * address by the vmap layer and so there might be some CPUs with TLB entries
958 * still referencing that page (additional to the regular 1:1 kernel mapping).
960 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
961 * be sure that none of the pages we have control over will have any aliases
962 * from the vmap layer.
964 void vm_unmap_aliases(void)
966 unsigned long start
= ULONG_MAX
, end
= 0;
970 if (unlikely(!vmap_initialized
))
973 for_each_possible_cpu(cpu
) {
974 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
975 struct vmap_block
*vb
;
978 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
981 spin_lock(&vb
->lock
);
982 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
983 while (i
< VMAP_BBMAP_BITS
) {
986 j
= find_next_zero_bit(vb
->dirty_map
,
989 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
990 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
991 vunmap_page_range(s
, e
);
1000 i
= find_next_bit(vb
->dirty_map
,
1001 VMAP_BBMAP_BITS
, i
);
1003 spin_unlock(&vb
->lock
);
1008 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1010 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1013 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1014 * @mem: the pointer returned by vm_map_ram
1015 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1017 void vm_unmap_ram(const void *mem
, unsigned int count
)
1019 unsigned long size
= count
<< PAGE_SHIFT
;
1020 unsigned long addr
= (unsigned long)mem
;
1023 BUG_ON(addr
< VMALLOC_START
);
1024 BUG_ON(addr
> VMALLOC_END
);
1025 BUG_ON(addr
& (PAGE_SIZE
-1));
1027 debug_check_no_locks_freed(mem
, size
);
1028 vmap_debug_free_range(addr
, addr
+size
);
1030 if (likely(count
<= VMAP_MAX_ALLOC
))
1033 free_unmap_vmap_area_addr(addr
);
1035 EXPORT_SYMBOL(vm_unmap_ram
);
1038 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1039 * @pages: an array of pointers to the pages to be mapped
1040 * @count: number of pages
1041 * @node: prefer to allocate data structures on this node
1042 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1044 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1046 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1048 unsigned long size
= count
<< PAGE_SHIFT
;
1052 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1053 mem
= vb_alloc(size
, GFP_KERNEL
);
1056 addr
= (unsigned long)mem
;
1058 struct vmap_area
*va
;
1059 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1060 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1064 addr
= va
->va_start
;
1067 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1068 vm_unmap_ram(mem
, count
);
1073 EXPORT_SYMBOL(vm_map_ram
);
1076 * vm_area_register_early - register vmap area early during boot
1077 * @vm: vm_struct to register
1078 * @align: requested alignment
1080 * This function is used to register kernel vm area before
1081 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1082 * proper values on entry and other fields should be zero. On return,
1083 * vm->addr contains the allocated address.
1085 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1087 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1089 static size_t vm_init_off __initdata
;
1092 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1093 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1095 vm
->addr
= (void *)addr
;
1101 void __init
vmalloc_init(void)
1103 struct vmap_area
*va
;
1104 struct vm_struct
*tmp
;
1107 for_each_possible_cpu(i
) {
1108 struct vmap_block_queue
*vbq
;
1110 vbq
= &per_cpu(vmap_block_queue
, i
);
1111 spin_lock_init(&vbq
->lock
);
1112 INIT_LIST_HEAD(&vbq
->free
);
1115 /* Import existing vmlist entries. */
1116 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1117 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1118 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1119 va
->va_start
= (unsigned long)tmp
->addr
;
1120 va
->va_end
= va
->va_start
+ tmp
->size
;
1121 __insert_vmap_area(va
);
1124 vmap_area_pcpu_hole
= VMALLOC_END
;
1126 vmap_initialized
= true;
1130 * map_kernel_range_noflush - map kernel VM area with the specified pages
1131 * @addr: start of the VM area to map
1132 * @size: size of the VM area to map
1133 * @prot: page protection flags to use
1134 * @pages: pages to map
1136 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1137 * specify should have been allocated using get_vm_area() and its
1141 * This function does NOT do any cache flushing. The caller is
1142 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1143 * before calling this function.
1146 * The number of pages mapped on success, -errno on failure.
1148 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1149 pgprot_t prot
, struct page
**pages
)
1151 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1155 * unmap_kernel_range_noflush - unmap kernel VM area
1156 * @addr: start of the VM area to unmap
1157 * @size: size of the VM area to unmap
1159 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1160 * specify should have been allocated using get_vm_area() and its
1164 * This function does NOT do any cache flushing. The caller is
1165 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1166 * before calling this function and flush_tlb_kernel_range() after.
1168 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1170 vunmap_page_range(addr
, addr
+ size
);
1174 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1175 * @addr: start of the VM area to unmap
1176 * @size: size of the VM area to unmap
1178 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1179 * the unmapping and tlb after.
1181 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1183 unsigned long end
= addr
+ size
;
1185 flush_cache_vunmap(addr
, end
);
1186 vunmap_page_range(addr
, end
);
1187 flush_tlb_kernel_range(addr
, end
);
1190 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1192 unsigned long addr
= (unsigned long)area
->addr
;
1193 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1196 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1204 EXPORT_SYMBOL_GPL(map_vm_area
);
1206 /*** Old vmalloc interfaces ***/
1207 DEFINE_RWLOCK(vmlist_lock
);
1208 struct vm_struct
*vmlist
;
1210 static void insert_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1211 unsigned long flags
, void *caller
)
1213 struct vm_struct
*tmp
, **p
;
1216 vm
->addr
= (void *)va
->va_start
;
1217 vm
->size
= va
->va_end
- va
->va_start
;
1218 vm
->caller
= caller
;
1220 va
->flags
|= VM_VM_AREA
;
1222 write_lock(&vmlist_lock
);
1223 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1224 if (tmp
->addr
>= vm
->addr
)
1229 write_unlock(&vmlist_lock
);
1232 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1233 unsigned long align
, unsigned long flags
, unsigned long start
,
1234 unsigned long end
, int node
, gfp_t gfp_mask
, void *caller
)
1236 static struct vmap_area
*va
;
1237 struct vm_struct
*area
;
1239 BUG_ON(in_interrupt());
1240 if (flags
& VM_IOREMAP
) {
1241 int bit
= fls(size
);
1243 if (bit
> IOREMAP_MAX_ORDER
)
1244 bit
= IOREMAP_MAX_ORDER
;
1245 else if (bit
< PAGE_SHIFT
)
1251 size
= PAGE_ALIGN(size
);
1252 if (unlikely(!size
))
1255 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1256 if (unlikely(!area
))
1260 * We always allocate a guard page.
1264 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1270 insert_vmalloc_vm(area
, va
, flags
, caller
);
1274 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1275 unsigned long start
, unsigned long end
)
1277 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1278 __builtin_return_address(0));
1280 EXPORT_SYMBOL_GPL(__get_vm_area
);
1282 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1283 unsigned long start
, unsigned long end
,
1286 return __get_vm_area_node(size
, 1, flags
, start
, end
, -1, GFP_KERNEL
,
1291 * get_vm_area - reserve a contiguous kernel virtual area
1292 * @size: size of the area
1293 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1295 * Search an area of @size in the kernel virtual mapping area,
1296 * and reserved it for out purposes. Returns the area descriptor
1297 * on success or %NULL on failure.
1299 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1301 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1302 -1, GFP_KERNEL
, __builtin_return_address(0));
1305 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1308 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1309 -1, GFP_KERNEL
, caller
);
1312 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1313 int node
, gfp_t gfp_mask
)
1315 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1316 node
, gfp_mask
, __builtin_return_address(0));
1319 static struct vm_struct
*find_vm_area(const void *addr
)
1321 struct vmap_area
*va
;
1323 va
= find_vmap_area((unsigned long)addr
);
1324 if (va
&& va
->flags
& VM_VM_AREA
)
1331 * remove_vm_area - find and remove a continuous kernel virtual area
1332 * @addr: base address
1334 * Search for the kernel VM area starting at @addr, and remove it.
1335 * This function returns the found VM area, but using it is NOT safe
1336 * on SMP machines, except for its size or flags.
1338 struct vm_struct
*remove_vm_area(const void *addr
)
1340 struct vmap_area
*va
;
1342 va
= find_vmap_area((unsigned long)addr
);
1343 if (va
&& va
->flags
& VM_VM_AREA
) {
1344 struct vm_struct
*vm
= va
->private;
1345 struct vm_struct
*tmp
, **p
;
1347 * remove from list and disallow access to this vm_struct
1348 * before unmap. (address range confliction is maintained by
1351 write_lock(&vmlist_lock
);
1352 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1355 write_unlock(&vmlist_lock
);
1357 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1358 free_unmap_vmap_area(va
);
1359 vm
->size
-= PAGE_SIZE
;
1366 static void __vunmap(const void *addr
, int deallocate_pages
)
1368 struct vm_struct
*area
;
1373 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1374 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1378 area
= remove_vm_area(addr
);
1379 if (unlikely(!area
)) {
1380 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1385 debug_check_no_locks_freed(addr
, area
->size
);
1386 debug_check_no_obj_freed(addr
, area
->size
);
1388 if (deallocate_pages
) {
1391 for (i
= 0; i
< area
->nr_pages
; i
++) {
1392 struct page
*page
= area
->pages
[i
];
1398 if (area
->flags
& VM_VPAGES
)
1409 * vfree - release memory allocated by vmalloc()
1410 * @addr: memory base address
1412 * Free the virtually continuous memory area starting at @addr, as
1413 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1414 * NULL, no operation is performed.
1416 * Must not be called in interrupt context.
1418 void vfree(const void *addr
)
1420 BUG_ON(in_interrupt());
1422 kmemleak_free(addr
);
1426 EXPORT_SYMBOL(vfree
);
1429 * vunmap - release virtual mapping obtained by vmap()
1430 * @addr: memory base address
1432 * Free the virtually contiguous memory area starting at @addr,
1433 * which was created from the page array passed to vmap().
1435 * Must not be called in interrupt context.
1437 void vunmap(const void *addr
)
1439 BUG_ON(in_interrupt());
1443 EXPORT_SYMBOL(vunmap
);
1446 * vmap - map an array of pages into virtually contiguous space
1447 * @pages: array of page pointers
1448 * @count: number of pages to map
1449 * @flags: vm_area->flags
1450 * @prot: page protection for the mapping
1452 * Maps @count pages from @pages into contiguous kernel virtual
1455 void *vmap(struct page
**pages
, unsigned int count
,
1456 unsigned long flags
, pgprot_t prot
)
1458 struct vm_struct
*area
;
1462 if (count
> totalram_pages
)
1465 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1466 __builtin_return_address(0));
1470 if (map_vm_area(area
, prot
, &pages
)) {
1477 EXPORT_SYMBOL(vmap
);
1479 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1480 gfp_t gfp_mask
, pgprot_t prot
,
1481 int node
, void *caller
);
1482 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1483 pgprot_t prot
, int node
, void *caller
)
1485 struct page
**pages
;
1486 unsigned int nr_pages
, array_size
, i
;
1487 gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1489 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1490 array_size
= (nr_pages
* sizeof(struct page
*));
1492 area
->nr_pages
= nr_pages
;
1493 /* Please note that the recursion is strictly bounded. */
1494 if (array_size
> PAGE_SIZE
) {
1495 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1496 PAGE_KERNEL
, node
, caller
);
1497 area
->flags
|= VM_VPAGES
;
1499 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1501 area
->pages
= pages
;
1502 area
->caller
= caller
;
1504 remove_vm_area(area
->addr
);
1509 for (i
= 0; i
< area
->nr_pages
; i
++) {
1513 page
= alloc_page(gfp_mask
);
1515 page
= alloc_pages_node(node
, gfp_mask
, 0);
1517 if (unlikely(!page
)) {
1518 /* Successfully allocated i pages, free them in __vunmap() */
1522 area
->pages
[i
] = page
;
1525 if (map_vm_area(area
, prot
, &pages
))
1534 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1536 void *addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1537 __builtin_return_address(0));
1540 * A ref_count = 3 is needed because the vm_struct and vmap_area
1541 * structures allocated in the __get_vm_area_node() function contain
1542 * references to the virtual address of the vmalloc'ed block.
1544 kmemleak_alloc(addr
, area
->size
- PAGE_SIZE
, 3, gfp_mask
);
1550 * __vmalloc_node - allocate virtually contiguous memory
1551 * @size: allocation size
1552 * @align: desired alignment
1553 * @gfp_mask: flags for the page level allocator
1554 * @prot: protection mask for the allocated pages
1555 * @node: node to use for allocation or -1
1556 * @caller: caller's return address
1558 * Allocate enough pages to cover @size from the page level
1559 * allocator with @gfp_mask flags. Map them into contiguous
1560 * kernel virtual space, using a pagetable protection of @prot.
1562 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1563 gfp_t gfp_mask
, pgprot_t prot
,
1564 int node
, void *caller
)
1566 struct vm_struct
*area
;
1568 unsigned long real_size
= size
;
1570 size
= PAGE_ALIGN(size
);
1571 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1574 area
= __get_vm_area_node(size
, align
, VM_ALLOC
, VMALLOC_START
,
1575 VMALLOC_END
, node
, gfp_mask
, caller
);
1580 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1583 * A ref_count = 3 is needed because the vm_struct and vmap_area
1584 * structures allocated in the __get_vm_area_node() function contain
1585 * references to the virtual address of the vmalloc'ed block.
1587 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1592 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1594 return __vmalloc_node(size
, 1, gfp_mask
, prot
, -1,
1595 __builtin_return_address(0));
1597 EXPORT_SYMBOL(__vmalloc
);
1599 static inline void *__vmalloc_node_flags(unsigned long size
,
1600 int node
, gfp_t flags
)
1602 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1603 node
, __builtin_return_address(0));
1607 * vmalloc - allocate virtually contiguous memory
1608 * @size: allocation size
1609 * Allocate enough pages to cover @size from the page level
1610 * allocator and map them into contiguous kernel virtual space.
1612 * For tight control over page level allocator and protection flags
1613 * use __vmalloc() instead.
1615 void *vmalloc(unsigned long size
)
1617 return __vmalloc_node_flags(size
, -1, GFP_KERNEL
| __GFP_HIGHMEM
);
1619 EXPORT_SYMBOL(vmalloc
);
1622 * vzalloc - allocate virtually contiguous memory with zero fill
1623 * @size: allocation size
1624 * Allocate enough pages to cover @size from the page level
1625 * allocator and map them into contiguous kernel virtual space.
1626 * The memory allocated is set to zero.
1628 * For tight control over page level allocator and protection flags
1629 * use __vmalloc() instead.
1631 void *vzalloc(unsigned long size
)
1633 return __vmalloc_node_flags(size
, -1,
1634 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1636 EXPORT_SYMBOL(vzalloc
);
1639 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1640 * @size: allocation size
1642 * The resulting memory area is zeroed so it can be mapped to userspace
1643 * without leaking data.
1645 void *vmalloc_user(unsigned long size
)
1647 struct vm_struct
*area
;
1650 ret
= __vmalloc_node(size
, SHMLBA
,
1651 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1652 PAGE_KERNEL
, -1, __builtin_return_address(0));
1654 area
= find_vm_area(ret
);
1655 area
->flags
|= VM_USERMAP
;
1659 EXPORT_SYMBOL(vmalloc_user
);
1662 * vmalloc_node - allocate memory on a specific node
1663 * @size: allocation size
1666 * Allocate enough pages to cover @size from the page level
1667 * allocator and map them into contiguous kernel virtual space.
1669 * For tight control over page level allocator and protection flags
1670 * use __vmalloc() instead.
1672 void *vmalloc_node(unsigned long size
, int node
)
1674 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1675 node
, __builtin_return_address(0));
1677 EXPORT_SYMBOL(vmalloc_node
);
1680 * vzalloc_node - allocate memory on a specific node with zero fill
1681 * @size: allocation size
1684 * Allocate enough pages to cover @size from the page level
1685 * allocator and map them into contiguous kernel virtual space.
1686 * The memory allocated is set to zero.
1688 * For tight control over page level allocator and protection flags
1689 * use __vmalloc_node() instead.
1691 void *vzalloc_node(unsigned long size
, int node
)
1693 return __vmalloc_node_flags(size
, node
,
1694 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1696 EXPORT_SYMBOL(vzalloc_node
);
1698 #ifndef PAGE_KERNEL_EXEC
1699 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1703 * vmalloc_exec - allocate virtually contiguous, executable memory
1704 * @size: allocation size
1706 * Kernel-internal function to allocate enough pages to cover @size
1707 * the page level allocator and map them into contiguous and
1708 * executable kernel virtual space.
1710 * For tight control over page level allocator and protection flags
1711 * use __vmalloc() instead.
1714 void *vmalloc_exec(unsigned long size
)
1716 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1717 -1, __builtin_return_address(0));
1720 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1721 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1722 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1723 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1725 #define GFP_VMALLOC32 GFP_KERNEL
1729 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1730 * @size: allocation size
1732 * Allocate enough 32bit PA addressable pages to cover @size from the
1733 * page level allocator and map them into contiguous kernel virtual space.
1735 void *vmalloc_32(unsigned long size
)
1737 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1738 -1, __builtin_return_address(0));
1740 EXPORT_SYMBOL(vmalloc_32
);
1743 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1744 * @size: allocation size
1746 * The resulting memory area is 32bit addressable and zeroed so it can be
1747 * mapped to userspace without leaking data.
1749 void *vmalloc_32_user(unsigned long size
)
1751 struct vm_struct
*area
;
1754 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1755 -1, __builtin_return_address(0));
1757 area
= find_vm_area(ret
);
1758 area
->flags
|= VM_USERMAP
;
1762 EXPORT_SYMBOL(vmalloc_32_user
);
1765 * small helper routine , copy contents to buf from addr.
1766 * If the page is not present, fill zero.
1769 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1775 unsigned long offset
, length
;
1777 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1778 length
= PAGE_SIZE
- offset
;
1781 p
= vmalloc_to_page(addr
);
1783 * To do safe access to this _mapped_ area, we need
1784 * lock. But adding lock here means that we need to add
1785 * overhead of vmalloc()/vfree() calles for this _debug_
1786 * interface, rarely used. Instead of that, we'll use
1787 * kmap() and get small overhead in this access function.
1791 * we can expect USER0 is not used (see vread/vwrite's
1792 * function description)
1794 void *map
= kmap_atomic(p
, KM_USER0
);
1795 memcpy(buf
, map
+ offset
, length
);
1796 kunmap_atomic(map
, KM_USER0
);
1798 memset(buf
, 0, length
);
1808 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1814 unsigned long offset
, length
;
1816 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1817 length
= PAGE_SIZE
- offset
;
1820 p
= vmalloc_to_page(addr
);
1822 * To do safe access to this _mapped_ area, we need
1823 * lock. But adding lock here means that we need to add
1824 * overhead of vmalloc()/vfree() calles for this _debug_
1825 * interface, rarely used. Instead of that, we'll use
1826 * kmap() and get small overhead in this access function.
1830 * we can expect USER0 is not used (see vread/vwrite's
1831 * function description)
1833 void *map
= kmap_atomic(p
, KM_USER0
);
1834 memcpy(map
+ offset
, buf
, length
);
1835 kunmap_atomic(map
, KM_USER0
);
1846 * vread() - read vmalloc area in a safe way.
1847 * @buf: buffer for reading data
1848 * @addr: vm address.
1849 * @count: number of bytes to be read.
1851 * Returns # of bytes which addr and buf should be increased.
1852 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1853 * includes any intersect with alive vmalloc area.
1855 * This function checks that addr is a valid vmalloc'ed area, and
1856 * copy data from that area to a given buffer. If the given memory range
1857 * of [addr...addr+count) includes some valid address, data is copied to
1858 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1859 * IOREMAP area is treated as memory hole and no copy is done.
1861 * If [addr...addr+count) doesn't includes any intersects with alive
1862 * vm_struct area, returns 0.
1863 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1864 * the caller should guarantee KM_USER0 is not used.
1866 * Note: In usual ops, vread() is never necessary because the caller
1867 * should know vmalloc() area is valid and can use memcpy().
1868 * This is for routines which have to access vmalloc area without
1869 * any informaion, as /dev/kmem.
1873 long vread(char *buf
, char *addr
, unsigned long count
)
1875 struct vm_struct
*tmp
;
1876 char *vaddr
, *buf_start
= buf
;
1877 unsigned long buflen
= count
;
1880 /* Don't allow overflow */
1881 if ((unsigned long) addr
+ count
< count
)
1882 count
= -(unsigned long) addr
;
1884 read_lock(&vmlist_lock
);
1885 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1886 vaddr
= (char *) tmp
->addr
;
1887 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1889 while (addr
< vaddr
) {
1897 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1900 if (!(tmp
->flags
& VM_IOREMAP
))
1901 aligned_vread(buf
, addr
, n
);
1902 else /* IOREMAP area is treated as memory hole */
1909 read_unlock(&vmlist_lock
);
1911 if (buf
== buf_start
)
1913 /* zero-fill memory holes */
1914 if (buf
!= buf_start
+ buflen
)
1915 memset(buf
, 0, buflen
- (buf
- buf_start
));
1921 * vwrite() - write vmalloc area in a safe way.
1922 * @buf: buffer for source data
1923 * @addr: vm address.
1924 * @count: number of bytes to be read.
1926 * Returns # of bytes which addr and buf should be incresed.
1927 * (same number to @count).
1928 * If [addr...addr+count) doesn't includes any intersect with valid
1929 * vmalloc area, returns 0.
1931 * This function checks that addr is a valid vmalloc'ed area, and
1932 * copy data from a buffer to the given addr. If specified range of
1933 * [addr...addr+count) includes some valid address, data is copied from
1934 * proper area of @buf. If there are memory holes, no copy to hole.
1935 * IOREMAP area is treated as memory hole and no copy is done.
1937 * If [addr...addr+count) doesn't includes any intersects with alive
1938 * vm_struct area, returns 0.
1939 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1940 * the caller should guarantee KM_USER0 is not used.
1942 * Note: In usual ops, vwrite() is never necessary because the caller
1943 * should know vmalloc() area is valid and can use memcpy().
1944 * This is for routines which have to access vmalloc area without
1945 * any informaion, as /dev/kmem.
1947 * The caller should guarantee KM_USER1 is not used.
1950 long vwrite(char *buf
, char *addr
, unsigned long count
)
1952 struct vm_struct
*tmp
;
1954 unsigned long n
, buflen
;
1957 /* Don't allow overflow */
1958 if ((unsigned long) addr
+ count
< count
)
1959 count
= -(unsigned long) addr
;
1962 read_lock(&vmlist_lock
);
1963 for (tmp
= vmlist
; count
&& tmp
; tmp
= tmp
->next
) {
1964 vaddr
= (char *) tmp
->addr
;
1965 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1967 while (addr
< vaddr
) {
1974 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1977 if (!(tmp
->flags
& VM_IOREMAP
)) {
1978 aligned_vwrite(buf
, addr
, n
);
1986 read_unlock(&vmlist_lock
);
1993 * remap_vmalloc_range - map vmalloc pages to userspace
1994 * @vma: vma to cover (map full range of vma)
1995 * @addr: vmalloc memory
1996 * @pgoff: number of pages into addr before first page to map
1998 * Returns: 0 for success, -Exxx on failure
2000 * This function checks that addr is a valid vmalloc'ed area, and
2001 * that it is big enough to cover the vma. Will return failure if
2002 * that criteria isn't met.
2004 * Similar to remap_pfn_range() (see mm/memory.c)
2006 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2007 unsigned long pgoff
)
2009 struct vm_struct
*area
;
2010 unsigned long uaddr
= vma
->vm_start
;
2011 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
2013 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
2016 area
= find_vm_area(addr
);
2020 if (!(area
->flags
& VM_USERMAP
))
2023 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
2026 addr
+= pgoff
<< PAGE_SHIFT
;
2028 struct page
*page
= vmalloc_to_page(addr
);
2031 ret
= vm_insert_page(vma
, uaddr
, page
);
2038 } while (usize
> 0);
2040 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2041 vma
->vm_flags
|= VM_RESERVED
;
2045 EXPORT_SYMBOL(remap_vmalloc_range
);
2048 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2051 void __attribute__((weak
)) vmalloc_sync_all(void)
2056 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2058 /* apply_to_page_range() does all the hard work. */
2063 * alloc_vm_area - allocate a range of kernel address space
2064 * @size: size of the area
2066 * Returns: NULL on failure, vm_struct on success
2068 * This function reserves a range of kernel address space, and
2069 * allocates pagetables to map that range. No actual mappings
2070 * are created. If the kernel address space is not shared
2071 * between processes, it syncs the pagetable across all
2074 struct vm_struct
*alloc_vm_area(size_t size
)
2076 struct vm_struct
*area
;
2078 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2079 __builtin_return_address(0));
2084 * This ensures that page tables are constructed for this region
2085 * of kernel virtual address space and mapped into init_mm.
2087 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2088 area
->size
, f
, NULL
)) {
2093 /* Make sure the pagetables are constructed in process kernel
2099 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2101 void free_vm_area(struct vm_struct
*area
)
2103 struct vm_struct
*ret
;
2104 ret
= remove_vm_area(area
->addr
);
2105 BUG_ON(ret
!= area
);
2108 EXPORT_SYMBOL_GPL(free_vm_area
);
2111 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2113 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2117 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2118 * @end: target address
2119 * @pnext: out arg for the next vmap_area
2120 * @pprev: out arg for the previous vmap_area
2122 * Returns: %true if either or both of next and prev are found,
2123 * %false if no vmap_area exists
2125 * Find vmap_areas end addresses of which enclose @end. ie. if not
2126 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2128 static bool pvm_find_next_prev(unsigned long end
,
2129 struct vmap_area
**pnext
,
2130 struct vmap_area
**pprev
)
2132 struct rb_node
*n
= vmap_area_root
.rb_node
;
2133 struct vmap_area
*va
= NULL
;
2136 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2137 if (end
< va
->va_end
)
2139 else if (end
> va
->va_end
)
2148 if (va
->va_end
> end
) {
2150 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2153 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2159 * pvm_determine_end - find the highest aligned address between two vmap_areas
2160 * @pnext: in/out arg for the next vmap_area
2161 * @pprev: in/out arg for the previous vmap_area
2164 * Returns: determined end address
2166 * Find the highest aligned address between *@pnext and *@pprev below
2167 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2168 * down address is between the end addresses of the two vmap_areas.
2170 * Please note that the address returned by this function may fall
2171 * inside *@pnext vmap_area. The caller is responsible for checking
2174 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2175 struct vmap_area
**pprev
,
2176 unsigned long align
)
2178 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2182 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2186 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2188 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2195 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2196 * @offsets: array containing offset of each area
2197 * @sizes: array containing size of each area
2198 * @nr_vms: the number of areas to allocate
2199 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2200 * @gfp_mask: allocation mask
2202 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2203 * vm_structs on success, %NULL on failure
2205 * Percpu allocator wants to use congruent vm areas so that it can
2206 * maintain the offsets among percpu areas. This function allocates
2207 * congruent vmalloc areas for it. These areas tend to be scattered
2208 * pretty far, distance between two areas easily going up to
2209 * gigabytes. To avoid interacting with regular vmallocs, these areas
2210 * are allocated from top.
2212 * Despite its complicated look, this allocator is rather simple. It
2213 * does everything top-down and scans areas from the end looking for
2214 * matching slot. While scanning, if any of the areas overlaps with
2215 * existing vmap_area, the base address is pulled down to fit the
2216 * area. Scanning is repeated till all the areas fit and then all
2217 * necessary data structres are inserted and the result is returned.
2219 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2220 const size_t *sizes
, int nr_vms
,
2221 size_t align
, gfp_t gfp_mask
)
2223 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2224 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2225 struct vmap_area
**vas
, *prev
, *next
;
2226 struct vm_struct
**vms
;
2227 int area
, area2
, last_area
, term_area
;
2228 unsigned long base
, start
, end
, last_end
;
2229 bool purged
= false;
2231 gfp_mask
&= GFP_RECLAIM_MASK
;
2233 /* verify parameters and allocate data structures */
2234 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2235 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2236 start
= offsets
[area
];
2237 end
= start
+ sizes
[area
];
2239 /* is everything aligned properly? */
2240 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2241 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2243 /* detect the area with the highest address */
2244 if (start
> offsets
[last_area
])
2247 for (area2
= 0; area2
< nr_vms
; area2
++) {
2248 unsigned long start2
= offsets
[area2
];
2249 unsigned long end2
= start2
+ sizes
[area2
];
2254 BUG_ON(start2
>= start
&& start2
< end
);
2255 BUG_ON(end2
<= end
&& end2
> start
);
2258 last_end
= offsets
[last_area
] + sizes
[last_area
];
2260 if (vmalloc_end
- vmalloc_start
< last_end
) {
2265 vms
= kzalloc(sizeof(vms
[0]) * nr_vms
, gfp_mask
);
2266 vas
= kzalloc(sizeof(vas
[0]) * nr_vms
, gfp_mask
);
2270 for (area
= 0; area
< nr_vms
; area
++) {
2271 vas
[area
] = kzalloc(sizeof(struct vmap_area
), gfp_mask
);
2272 vms
[area
] = kzalloc(sizeof(struct vm_struct
), gfp_mask
);
2273 if (!vas
[area
] || !vms
[area
])
2277 spin_lock(&vmap_area_lock
);
2279 /* start scanning - we scan from the top, begin with the last area */
2280 area
= term_area
= last_area
;
2281 start
= offsets
[area
];
2282 end
= start
+ sizes
[area
];
2284 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2285 base
= vmalloc_end
- last_end
;
2288 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2291 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2292 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2295 * base might have underflowed, add last_end before
2298 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2299 spin_unlock(&vmap_area_lock
);
2301 purge_vmap_area_lazy();
2309 * If next overlaps, move base downwards so that it's
2310 * right below next and then recheck.
2312 if (next
&& next
->va_start
< base
+ end
) {
2313 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2319 * If prev overlaps, shift down next and prev and move
2320 * base so that it's right below new next and then
2323 if (prev
&& prev
->va_end
> base
+ start
) {
2325 prev
= node_to_va(rb_prev(&next
->rb_node
));
2326 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2332 * This area fits, move on to the previous one. If
2333 * the previous one is the terminal one, we're done.
2335 area
= (area
+ nr_vms
- 1) % nr_vms
;
2336 if (area
== term_area
)
2338 start
= offsets
[area
];
2339 end
= start
+ sizes
[area
];
2340 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2343 /* we've found a fitting base, insert all va's */
2344 for (area
= 0; area
< nr_vms
; area
++) {
2345 struct vmap_area
*va
= vas
[area
];
2347 va
->va_start
= base
+ offsets
[area
];
2348 va
->va_end
= va
->va_start
+ sizes
[area
];
2349 __insert_vmap_area(va
);
2352 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2354 spin_unlock(&vmap_area_lock
);
2356 /* insert all vm's */
2357 for (area
= 0; area
< nr_vms
; area
++)
2358 insert_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2365 for (area
= 0; area
< nr_vms
; area
++) {
2377 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2378 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2379 * @nr_vms: the number of allocated areas
2381 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2383 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2387 for (i
= 0; i
< nr_vms
; i
++)
2388 free_vm_area(vms
[i
]);
2391 #endif /* CONFIG_SMP */
2393 #ifdef CONFIG_PROC_FS
2394 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2395 __acquires(&vmlist_lock
)
2398 struct vm_struct
*v
;
2400 read_lock(&vmlist_lock
);
2402 while (n
> 0 && v
) {
2413 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2415 struct vm_struct
*v
= p
;
2421 static void s_stop(struct seq_file
*m
, void *p
)
2422 __releases(&vmlist_lock
)
2424 read_unlock(&vmlist_lock
);
2427 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2430 unsigned int nr
, *counters
= m
->private;
2435 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2437 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2438 counters
[page_to_nid(v
->pages
[nr
])]++;
2440 for_each_node_state(nr
, N_HIGH_MEMORY
)
2442 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2446 static int s_show(struct seq_file
*m
, void *p
)
2448 struct vm_struct
*v
= p
;
2450 seq_printf(m
, "0x%p-0x%p %7ld",
2451 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2454 char buff
[KSYM_SYMBOL_LEN
];
2457 sprint_symbol(buff
, (unsigned long)v
->caller
);
2462 seq_printf(m
, " pages=%d", v
->nr_pages
);
2465 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2467 if (v
->flags
& VM_IOREMAP
)
2468 seq_printf(m
, " ioremap");
2470 if (v
->flags
& VM_ALLOC
)
2471 seq_printf(m
, " vmalloc");
2473 if (v
->flags
& VM_MAP
)
2474 seq_printf(m
, " vmap");
2476 if (v
->flags
& VM_USERMAP
)
2477 seq_printf(m
, " user");
2479 if (v
->flags
& VM_VPAGES
)
2480 seq_printf(m
, " vpages");
2482 show_numa_info(m
, v
);
2487 static const struct seq_operations vmalloc_op
= {
2494 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2496 unsigned int *ptr
= NULL
;
2500 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2504 ret
= seq_open(file
, &vmalloc_op
);
2506 struct seq_file
*m
= file
->private_data
;
2513 static const struct file_operations proc_vmalloc_operations
= {
2514 .open
= vmalloc_open
,
2516 .llseek
= seq_lseek
,
2517 .release
= seq_release_private
,
2520 static int __init
proc_vmalloc_init(void)
2522 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2525 module_init(proc_vmalloc_init
);