i2c: twl: add register defines for pm master module
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / sched.h
blobbe7adb7588e5e5519c45caff28534cb3e2476b72
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
44 #ifdef __KERNEL__
46 struct sched_param {
47 int sched_priority;
50 #include <asm/param.h> /* for HZ */
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
95 #include <asm/processor.h>
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
146 extern void calc_global_load(void);
148 extern unsigned long get_parent_ip(unsigned long addr);
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 static inline void proc_sched_set_task(struct task_struct *p)
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 #endif
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
238 * If the caller does not need such serialisation then use __set_current_state()
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
248 #include <linux/spinlock.h>
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
259 struct task_struct;
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
271 extern int runqueue_is_locked(int cpu);
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
282 * Only dump TASK_* tasks. (0 for all tasks)
284 extern void show_state_filter(unsigned long state_filter);
286 static inline void show_state(void)
288 show_state_filter(0);
291 extern void show_regs(struct pt_regs *);
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
308 extern void sched_show_task(struct task_struct *p);
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void touch_softlockup_watchdog(void)
323 static inline void touch_softlockup_watchdog_sync(void)
326 static inline void touch_all_softlockup_watchdogs(void)
329 #endif
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 void __user *buffer,
338 size_t *lenp, loff_t *ppos);
339 #else
340 /* Avoid need for ifdefs elsewhere in the code */
341 enum { sysctl_hung_task_timeout_secs = 0 };
342 #endif
344 /* Attach to any functions which should be ignored in wchan output. */
345 #define __sched __attribute__((__section__(".sched.text")))
347 /* Linker adds these: start and end of __sched functions */
348 extern char __sched_text_start[], __sched_text_end[];
350 /* Is this address in the __sched functions? */
351 extern int in_sched_functions(unsigned long addr);
353 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
354 extern signed long schedule_timeout(signed long timeout);
355 extern signed long schedule_timeout_interruptible(signed long timeout);
356 extern signed long schedule_timeout_killable(signed long timeout);
357 extern signed long schedule_timeout_uninterruptible(signed long timeout);
358 asmlinkage void schedule(void);
359 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
361 struct nsproxy;
362 struct user_namespace;
365 * Default maximum number of active map areas, this limits the number of vmas
366 * per mm struct. Users can overwrite this number by sysctl but there is a
367 * problem.
369 * When a program's coredump is generated as ELF format, a section is created
370 * per a vma. In ELF, the number of sections is represented in unsigned short.
371 * This means the number of sections should be smaller than 65535 at coredump.
372 * Because the kernel adds some informative sections to a image of program at
373 * generating coredump, we need some margin. The number of extra sections is
374 * 1-3 now and depends on arch. We use "5" as safe margin, here.
376 #define MAPCOUNT_ELF_CORE_MARGIN (5)
377 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
379 extern int sysctl_max_map_count;
381 #include <linux/aio.h>
383 #ifdef CONFIG_MMU
384 extern void arch_pick_mmap_layout(struct mm_struct *mm);
385 extern unsigned long
386 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
387 unsigned long, unsigned long);
388 extern unsigned long
389 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
390 unsigned long len, unsigned long pgoff,
391 unsigned long flags);
392 extern void arch_unmap_area(struct mm_struct *, unsigned long);
393 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
394 #else
395 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
396 #endif
399 extern void set_dumpable(struct mm_struct *mm, int value);
400 extern int get_dumpable(struct mm_struct *mm);
402 /* mm flags */
403 /* dumpable bits */
404 #define MMF_DUMPABLE 0 /* core dump is permitted */
405 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
407 #define MMF_DUMPABLE_BITS 2
408 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
410 /* coredump filter bits */
411 #define MMF_DUMP_ANON_PRIVATE 2
412 #define MMF_DUMP_ANON_SHARED 3
413 #define MMF_DUMP_MAPPED_PRIVATE 4
414 #define MMF_DUMP_MAPPED_SHARED 5
415 #define MMF_DUMP_ELF_HEADERS 6
416 #define MMF_DUMP_HUGETLB_PRIVATE 7
417 #define MMF_DUMP_HUGETLB_SHARED 8
419 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
420 #define MMF_DUMP_FILTER_BITS 7
421 #define MMF_DUMP_FILTER_MASK \
422 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
423 #define MMF_DUMP_FILTER_DEFAULT \
424 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
425 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
427 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
428 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
429 #else
430 # define MMF_DUMP_MASK_DEFAULT_ELF 0
431 #endif
432 /* leave room for more dump flags */
433 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
435 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
437 struct sighand_struct {
438 atomic_t count;
439 struct k_sigaction action[_NSIG];
440 spinlock_t siglock;
441 wait_queue_head_t signalfd_wqh;
444 struct pacct_struct {
445 int ac_flag;
446 long ac_exitcode;
447 unsigned long ac_mem;
448 cputime_t ac_utime, ac_stime;
449 unsigned long ac_minflt, ac_majflt;
452 struct cpu_itimer {
453 cputime_t expires;
454 cputime_t incr;
455 u32 error;
456 u32 incr_error;
460 * struct task_cputime - collected CPU time counts
461 * @utime: time spent in user mode, in &cputime_t units
462 * @stime: time spent in kernel mode, in &cputime_t units
463 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
465 * This structure groups together three kinds of CPU time that are
466 * tracked for threads and thread groups. Most things considering
467 * CPU time want to group these counts together and treat all three
468 * of them in parallel.
470 struct task_cputime {
471 cputime_t utime;
472 cputime_t stime;
473 unsigned long long sum_exec_runtime;
475 /* Alternate field names when used to cache expirations. */
476 #define prof_exp stime
477 #define virt_exp utime
478 #define sched_exp sum_exec_runtime
480 #define INIT_CPUTIME \
481 (struct task_cputime) { \
482 .utime = cputime_zero, \
483 .stime = cputime_zero, \
484 .sum_exec_runtime = 0, \
488 * Disable preemption until the scheduler is running.
489 * Reset by start_kernel()->sched_init()->init_idle().
491 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
492 * before the scheduler is active -- see should_resched().
494 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
497 * struct thread_group_cputimer - thread group interval timer counts
498 * @cputime: thread group interval timers.
499 * @running: non-zero when there are timers running and
500 * @cputime receives updates.
501 * @lock: lock for fields in this struct.
503 * This structure contains the version of task_cputime, above, that is
504 * used for thread group CPU timer calculations.
506 struct thread_group_cputimer {
507 struct task_cputime cputime;
508 int running;
509 spinlock_t lock;
513 * NOTE! "signal_struct" does not have it's own
514 * locking, because a shared signal_struct always
515 * implies a shared sighand_struct, so locking
516 * sighand_struct is always a proper superset of
517 * the locking of signal_struct.
519 struct signal_struct {
520 atomic_t sigcnt;
521 atomic_t live;
522 int nr_threads;
524 wait_queue_head_t wait_chldexit; /* for wait4() */
526 /* current thread group signal load-balancing target: */
527 struct task_struct *curr_target;
529 /* shared signal handling: */
530 struct sigpending shared_pending;
532 /* thread group exit support */
533 int group_exit_code;
534 /* overloaded:
535 * - notify group_exit_task when ->count is equal to notify_count
536 * - everyone except group_exit_task is stopped during signal delivery
537 * of fatal signals, group_exit_task processes the signal.
539 int notify_count;
540 struct task_struct *group_exit_task;
542 /* thread group stop support, overloads group_exit_code too */
543 int group_stop_count;
544 unsigned int flags; /* see SIGNAL_* flags below */
546 /* POSIX.1b Interval Timers */
547 struct list_head posix_timers;
549 /* ITIMER_REAL timer for the process */
550 struct hrtimer real_timer;
551 struct pid *leader_pid;
552 ktime_t it_real_incr;
555 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
556 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
557 * values are defined to 0 and 1 respectively
559 struct cpu_itimer it[2];
562 * Thread group totals for process CPU timers.
563 * See thread_group_cputimer(), et al, for details.
565 struct thread_group_cputimer cputimer;
567 /* Earliest-expiration cache. */
568 struct task_cputime cputime_expires;
570 struct list_head cpu_timers[3];
572 struct pid *tty_old_pgrp;
574 /* boolean value for session group leader */
575 int leader;
577 struct tty_struct *tty; /* NULL if no tty */
580 * Cumulative resource counters for dead threads in the group,
581 * and for reaped dead child processes forked by this group.
582 * Live threads maintain their own counters and add to these
583 * in __exit_signal, except for the group leader.
585 cputime_t utime, stime, cutime, cstime;
586 cputime_t gtime;
587 cputime_t cgtime;
588 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
589 cputime_t prev_utime, prev_stime;
590 #endif
591 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
592 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
593 unsigned long inblock, oublock, cinblock, coublock;
594 unsigned long maxrss, cmaxrss;
595 struct task_io_accounting ioac;
598 * Cumulative ns of schedule CPU time fo dead threads in the
599 * group, not including a zombie group leader, (This only differs
600 * from jiffies_to_ns(utime + stime) if sched_clock uses something
601 * other than jiffies.)
603 unsigned long long sum_sched_runtime;
606 * We don't bother to synchronize most readers of this at all,
607 * because there is no reader checking a limit that actually needs
608 * to get both rlim_cur and rlim_max atomically, and either one
609 * alone is a single word that can safely be read normally.
610 * getrlimit/setrlimit use task_lock(current->group_leader) to
611 * protect this instead of the siglock, because they really
612 * have no need to disable irqs.
614 struct rlimit rlim[RLIM_NLIMITS];
616 #ifdef CONFIG_BSD_PROCESS_ACCT
617 struct pacct_struct pacct; /* per-process accounting information */
618 #endif
619 #ifdef CONFIG_TASKSTATS
620 struct taskstats *stats;
621 #endif
622 #ifdef CONFIG_AUDIT
623 unsigned audit_tty;
624 struct tty_audit_buf *tty_audit_buf;
625 #endif
627 int oom_adj; /* OOM kill score adjustment (bit shift) */
628 int oom_score_adj; /* OOM kill score adjustment */
630 struct mutex cred_guard_mutex; /* guard against foreign influences on
631 * credential calculations
632 * (notably. ptrace) */
635 /* Context switch must be unlocked if interrupts are to be enabled */
636 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
637 # define __ARCH_WANT_UNLOCKED_CTXSW
638 #endif
641 * Bits in flags field of signal_struct.
643 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
644 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
645 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
646 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
648 * Pending notifications to parent.
650 #define SIGNAL_CLD_STOPPED 0x00000010
651 #define SIGNAL_CLD_CONTINUED 0x00000020
652 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
654 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
656 /* If true, all threads except ->group_exit_task have pending SIGKILL */
657 static inline int signal_group_exit(const struct signal_struct *sig)
659 return (sig->flags & SIGNAL_GROUP_EXIT) ||
660 (sig->group_exit_task != NULL);
664 * Some day this will be a full-fledged user tracking system..
666 struct user_struct {
667 atomic_t __count; /* reference count */
668 atomic_t processes; /* How many processes does this user have? */
669 atomic_t files; /* How many open files does this user have? */
670 atomic_t sigpending; /* How many pending signals does this user have? */
671 #ifdef CONFIG_INOTIFY_USER
672 atomic_t inotify_watches; /* How many inotify watches does this user have? */
673 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
674 #endif
675 #ifdef CONFIG_EPOLL
676 atomic_t epoll_watches; /* The number of file descriptors currently watched */
677 #endif
678 #ifdef CONFIG_POSIX_MQUEUE
679 /* protected by mq_lock */
680 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
681 #endif
682 unsigned long locked_shm; /* How many pages of mlocked shm ? */
684 #ifdef CONFIG_KEYS
685 struct key *uid_keyring; /* UID specific keyring */
686 struct key *session_keyring; /* UID's default session keyring */
687 #endif
689 /* Hash table maintenance information */
690 struct hlist_node uidhash_node;
691 uid_t uid;
692 struct user_namespace *user_ns;
694 #ifdef CONFIG_PERF_EVENTS
695 atomic_long_t locked_vm;
696 #endif
699 extern int uids_sysfs_init(void);
701 extern struct user_struct *find_user(uid_t);
703 extern struct user_struct root_user;
704 #define INIT_USER (&root_user)
707 struct backing_dev_info;
708 struct reclaim_state;
710 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
711 struct sched_info {
712 /* cumulative counters */
713 unsigned long pcount; /* # of times run on this cpu */
714 unsigned long long run_delay; /* time spent waiting on a runqueue */
716 /* timestamps */
717 unsigned long long last_arrival,/* when we last ran on a cpu */
718 last_queued; /* when we were last queued to run */
719 #ifdef CONFIG_SCHEDSTATS
720 /* BKL stats */
721 unsigned int bkl_count;
722 #endif
724 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
726 #ifdef CONFIG_TASK_DELAY_ACCT
727 struct task_delay_info {
728 spinlock_t lock;
729 unsigned int flags; /* Private per-task flags */
731 /* For each stat XXX, add following, aligned appropriately
733 * struct timespec XXX_start, XXX_end;
734 * u64 XXX_delay;
735 * u32 XXX_count;
737 * Atomicity of updates to XXX_delay, XXX_count protected by
738 * single lock above (split into XXX_lock if contention is an issue).
742 * XXX_count is incremented on every XXX operation, the delay
743 * associated with the operation is added to XXX_delay.
744 * XXX_delay contains the accumulated delay time in nanoseconds.
746 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
747 u64 blkio_delay; /* wait for sync block io completion */
748 u64 swapin_delay; /* wait for swapin block io completion */
749 u32 blkio_count; /* total count of the number of sync block */
750 /* io operations performed */
751 u32 swapin_count; /* total count of the number of swapin block */
752 /* io operations performed */
754 struct timespec freepages_start, freepages_end;
755 u64 freepages_delay; /* wait for memory reclaim */
756 u32 freepages_count; /* total count of memory reclaim */
758 #endif /* CONFIG_TASK_DELAY_ACCT */
760 static inline int sched_info_on(void)
762 #ifdef CONFIG_SCHEDSTATS
763 return 1;
764 #elif defined(CONFIG_TASK_DELAY_ACCT)
765 extern int delayacct_on;
766 return delayacct_on;
767 #else
768 return 0;
769 #endif
772 enum cpu_idle_type {
773 CPU_IDLE,
774 CPU_NOT_IDLE,
775 CPU_NEWLY_IDLE,
776 CPU_MAX_IDLE_TYPES
780 * sched-domains (multiprocessor balancing) declarations:
784 * Increase resolution of nice-level calculations:
786 #define SCHED_LOAD_SHIFT 10
787 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
789 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
791 #ifdef CONFIG_SMP
792 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
793 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
794 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
795 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
796 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
797 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
798 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
799 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
800 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
801 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
802 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
803 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
804 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
806 enum powersavings_balance_level {
807 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
808 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
809 * first for long running threads
811 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
812 * cpu package for power savings
814 MAX_POWERSAVINGS_BALANCE_LEVELS
817 extern int sched_mc_power_savings, sched_smt_power_savings;
819 static inline int sd_balance_for_mc_power(void)
821 if (sched_smt_power_savings)
822 return SD_POWERSAVINGS_BALANCE;
824 if (!sched_mc_power_savings)
825 return SD_PREFER_SIBLING;
827 return 0;
830 static inline int sd_balance_for_package_power(void)
832 if (sched_mc_power_savings | sched_smt_power_savings)
833 return SD_POWERSAVINGS_BALANCE;
835 return SD_PREFER_SIBLING;
838 extern int __weak arch_sd_sibiling_asym_packing(void);
841 * Optimise SD flags for power savings:
842 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
843 * Keep default SD flags if sched_{smt,mc}_power_saving=0
846 static inline int sd_power_saving_flags(void)
848 if (sched_mc_power_savings | sched_smt_power_savings)
849 return SD_BALANCE_NEWIDLE;
851 return 0;
854 struct sched_group {
855 struct sched_group *next; /* Must be a circular list */
858 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
859 * single CPU.
861 unsigned int cpu_power, cpu_power_orig;
864 * The CPUs this group covers.
866 * NOTE: this field is variable length. (Allocated dynamically
867 * by attaching extra space to the end of the structure,
868 * depending on how many CPUs the kernel has booted up with)
870 * It is also be embedded into static data structures at build
871 * time. (See 'struct static_sched_group' in kernel/sched.c)
873 unsigned long cpumask[0];
876 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
878 return to_cpumask(sg->cpumask);
881 enum sched_domain_level {
882 SD_LV_NONE = 0,
883 SD_LV_SIBLING,
884 SD_LV_MC,
885 SD_LV_BOOK,
886 SD_LV_CPU,
887 SD_LV_NODE,
888 SD_LV_ALLNODES,
889 SD_LV_MAX
892 struct sched_domain_attr {
893 int relax_domain_level;
896 #define SD_ATTR_INIT (struct sched_domain_attr) { \
897 .relax_domain_level = -1, \
900 struct sched_domain {
901 /* These fields must be setup */
902 struct sched_domain *parent; /* top domain must be null terminated */
903 struct sched_domain *child; /* bottom domain must be null terminated */
904 struct sched_group *groups; /* the balancing groups of the domain */
905 unsigned long min_interval; /* Minimum balance interval ms */
906 unsigned long max_interval; /* Maximum balance interval ms */
907 unsigned int busy_factor; /* less balancing by factor if busy */
908 unsigned int imbalance_pct; /* No balance until over watermark */
909 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
910 unsigned int busy_idx;
911 unsigned int idle_idx;
912 unsigned int newidle_idx;
913 unsigned int wake_idx;
914 unsigned int forkexec_idx;
915 unsigned int smt_gain;
916 int flags; /* See SD_* */
917 enum sched_domain_level level;
919 /* Runtime fields. */
920 unsigned long last_balance; /* init to jiffies. units in jiffies */
921 unsigned int balance_interval; /* initialise to 1. units in ms. */
922 unsigned int nr_balance_failed; /* initialise to 0 */
924 u64 last_update;
926 #ifdef CONFIG_SCHEDSTATS
927 /* load_balance() stats */
928 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
929 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
932 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
937 /* Active load balancing */
938 unsigned int alb_count;
939 unsigned int alb_failed;
940 unsigned int alb_pushed;
942 /* SD_BALANCE_EXEC stats */
943 unsigned int sbe_count;
944 unsigned int sbe_balanced;
945 unsigned int sbe_pushed;
947 /* SD_BALANCE_FORK stats */
948 unsigned int sbf_count;
949 unsigned int sbf_balanced;
950 unsigned int sbf_pushed;
952 /* try_to_wake_up() stats */
953 unsigned int ttwu_wake_remote;
954 unsigned int ttwu_move_affine;
955 unsigned int ttwu_move_balance;
956 #endif
957 #ifdef CONFIG_SCHED_DEBUG
958 char *name;
959 #endif
961 unsigned int span_weight;
963 * Span of all CPUs in this domain.
965 * NOTE: this field is variable length. (Allocated dynamically
966 * by attaching extra space to the end of the structure,
967 * depending on how many CPUs the kernel has booted up with)
969 * It is also be embedded into static data structures at build
970 * time. (See 'struct static_sched_domain' in kernel/sched.c)
972 unsigned long span[0];
975 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
977 return to_cpumask(sd->span);
980 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
981 struct sched_domain_attr *dattr_new);
983 /* Allocate an array of sched domains, for partition_sched_domains(). */
984 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
985 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
987 /* Test a flag in parent sched domain */
988 static inline int test_sd_parent(struct sched_domain *sd, int flag)
990 if (sd->parent && (sd->parent->flags & flag))
991 return 1;
993 return 0;
996 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
997 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
999 #else /* CONFIG_SMP */
1001 struct sched_domain_attr;
1003 static inline void
1004 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1005 struct sched_domain_attr *dattr_new)
1008 #endif /* !CONFIG_SMP */
1011 struct io_context; /* See blkdev.h */
1014 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1015 extern void prefetch_stack(struct task_struct *t);
1016 #else
1017 static inline void prefetch_stack(struct task_struct *t) { }
1018 #endif
1020 struct audit_context; /* See audit.c */
1021 struct mempolicy;
1022 struct pipe_inode_info;
1023 struct uts_namespace;
1025 struct rq;
1026 struct sched_domain;
1029 * wake flags
1031 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1032 #define WF_FORK 0x02 /* child wakeup after fork */
1034 #define ENQUEUE_WAKEUP 1
1035 #define ENQUEUE_WAKING 2
1036 #define ENQUEUE_HEAD 4
1038 #define DEQUEUE_SLEEP 1
1040 struct sched_class {
1041 const struct sched_class *next;
1043 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1044 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1045 void (*yield_task) (struct rq *rq);
1047 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1049 struct task_struct * (*pick_next_task) (struct rq *rq);
1050 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1052 #ifdef CONFIG_SMP
1053 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1054 int sd_flag, int flags);
1056 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1057 void (*post_schedule) (struct rq *this_rq);
1058 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1059 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1061 void (*set_cpus_allowed)(struct task_struct *p,
1062 const struct cpumask *newmask);
1064 void (*rq_online)(struct rq *rq);
1065 void (*rq_offline)(struct rq *rq);
1066 #endif
1068 void (*set_curr_task) (struct rq *rq);
1069 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1070 void (*task_fork) (struct task_struct *p);
1072 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1073 int running);
1074 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1075 int running);
1076 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1077 int oldprio, int running);
1079 unsigned int (*get_rr_interval) (struct rq *rq,
1080 struct task_struct *task);
1082 #ifdef CONFIG_FAIR_GROUP_SCHED
1083 void (*moved_group) (struct task_struct *p, int on_rq);
1084 #endif
1087 struct load_weight {
1088 unsigned long weight, inv_weight;
1091 #ifdef CONFIG_SCHEDSTATS
1092 struct sched_statistics {
1093 u64 wait_start;
1094 u64 wait_max;
1095 u64 wait_count;
1096 u64 wait_sum;
1097 u64 iowait_count;
1098 u64 iowait_sum;
1100 u64 sleep_start;
1101 u64 sleep_max;
1102 s64 sum_sleep_runtime;
1104 u64 block_start;
1105 u64 block_max;
1106 u64 exec_max;
1107 u64 slice_max;
1109 u64 nr_migrations_cold;
1110 u64 nr_failed_migrations_affine;
1111 u64 nr_failed_migrations_running;
1112 u64 nr_failed_migrations_hot;
1113 u64 nr_forced_migrations;
1115 u64 nr_wakeups;
1116 u64 nr_wakeups_sync;
1117 u64 nr_wakeups_migrate;
1118 u64 nr_wakeups_local;
1119 u64 nr_wakeups_remote;
1120 u64 nr_wakeups_affine;
1121 u64 nr_wakeups_affine_attempts;
1122 u64 nr_wakeups_passive;
1123 u64 nr_wakeups_idle;
1125 #endif
1127 struct sched_entity {
1128 struct load_weight load; /* for load-balancing */
1129 struct rb_node run_node;
1130 struct list_head group_node;
1131 unsigned int on_rq;
1133 u64 exec_start;
1134 u64 sum_exec_runtime;
1135 u64 vruntime;
1136 u64 prev_sum_exec_runtime;
1138 u64 nr_migrations;
1140 #ifdef CONFIG_SCHEDSTATS
1141 struct sched_statistics statistics;
1142 #endif
1144 #ifdef CONFIG_FAIR_GROUP_SCHED
1145 struct sched_entity *parent;
1146 /* rq on which this entity is (to be) queued: */
1147 struct cfs_rq *cfs_rq;
1148 /* rq "owned" by this entity/group: */
1149 struct cfs_rq *my_q;
1150 #endif
1153 struct sched_rt_entity {
1154 struct list_head run_list;
1155 unsigned long timeout;
1156 unsigned int time_slice;
1157 int nr_cpus_allowed;
1159 struct sched_rt_entity *back;
1160 #ifdef CONFIG_RT_GROUP_SCHED
1161 struct sched_rt_entity *parent;
1162 /* rq on which this entity is (to be) queued: */
1163 struct rt_rq *rt_rq;
1164 /* rq "owned" by this entity/group: */
1165 struct rt_rq *my_q;
1166 #endif
1169 struct rcu_node;
1171 enum perf_event_task_context {
1172 perf_invalid_context = -1,
1173 perf_hw_context = 0,
1174 perf_sw_context,
1175 perf_nr_task_contexts,
1178 struct task_struct {
1179 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1180 void *stack;
1181 atomic_t usage;
1182 unsigned int flags; /* per process flags, defined below */
1183 unsigned int ptrace;
1185 int lock_depth; /* BKL lock depth */
1187 #ifdef CONFIG_SMP
1188 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1189 int oncpu;
1190 #endif
1191 #endif
1193 int prio, static_prio, normal_prio;
1194 unsigned int rt_priority;
1195 const struct sched_class *sched_class;
1196 struct sched_entity se;
1197 struct sched_rt_entity rt;
1199 #ifdef CONFIG_PREEMPT_NOTIFIERS
1200 /* list of struct preempt_notifier: */
1201 struct hlist_head preempt_notifiers;
1202 #endif
1205 * fpu_counter contains the number of consecutive context switches
1206 * that the FPU is used. If this is over a threshold, the lazy fpu
1207 * saving becomes unlazy to save the trap. This is an unsigned char
1208 * so that after 256 times the counter wraps and the behavior turns
1209 * lazy again; this to deal with bursty apps that only use FPU for
1210 * a short time
1212 unsigned char fpu_counter;
1213 #ifdef CONFIG_BLK_DEV_IO_TRACE
1214 unsigned int btrace_seq;
1215 #endif
1217 unsigned int policy;
1218 cpumask_t cpus_allowed;
1220 #ifdef CONFIG_PREEMPT_RCU
1221 int rcu_read_lock_nesting;
1222 char rcu_read_unlock_special;
1223 struct list_head rcu_node_entry;
1224 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1225 #ifdef CONFIG_TREE_PREEMPT_RCU
1226 struct rcu_node *rcu_blocked_node;
1227 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1229 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1230 struct sched_info sched_info;
1231 #endif
1233 struct list_head tasks;
1234 struct plist_node pushable_tasks;
1236 struct mm_struct *mm, *active_mm;
1237 #if defined(SPLIT_RSS_COUNTING)
1238 struct task_rss_stat rss_stat;
1239 #endif
1240 /* task state */
1241 int exit_state;
1242 int exit_code, exit_signal;
1243 int pdeath_signal; /* The signal sent when the parent dies */
1244 /* ??? */
1245 unsigned int personality;
1246 unsigned did_exec:1;
1247 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1248 * execve */
1249 unsigned in_iowait:1;
1252 /* Revert to default priority/policy when forking */
1253 unsigned sched_reset_on_fork:1;
1255 pid_t pid;
1256 pid_t tgid;
1258 #ifdef CONFIG_CC_STACKPROTECTOR
1259 /* Canary value for the -fstack-protector gcc feature */
1260 unsigned long stack_canary;
1261 #endif
1264 * pointers to (original) parent process, youngest child, younger sibling,
1265 * older sibling, respectively. (p->father can be replaced with
1266 * p->real_parent->pid)
1268 struct task_struct *real_parent; /* real parent process */
1269 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1271 * children/sibling forms the list of my natural children
1273 struct list_head children; /* list of my children */
1274 struct list_head sibling; /* linkage in my parent's children list */
1275 struct task_struct *group_leader; /* threadgroup leader */
1278 * ptraced is the list of tasks this task is using ptrace on.
1279 * This includes both natural children and PTRACE_ATTACH targets.
1280 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1282 struct list_head ptraced;
1283 struct list_head ptrace_entry;
1285 /* PID/PID hash table linkage. */
1286 struct pid_link pids[PIDTYPE_MAX];
1287 struct list_head thread_group;
1289 struct completion *vfork_done; /* for vfork() */
1290 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1291 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1293 cputime_t utime, stime, utimescaled, stimescaled;
1294 cputime_t gtime;
1295 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1296 cputime_t prev_utime, prev_stime;
1297 #endif
1298 unsigned long nvcsw, nivcsw; /* context switch counts */
1299 struct timespec start_time; /* monotonic time */
1300 struct timespec real_start_time; /* boot based time */
1301 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1302 unsigned long min_flt, maj_flt;
1304 struct task_cputime cputime_expires;
1305 struct list_head cpu_timers[3];
1307 /* process credentials */
1308 const struct cred __rcu *real_cred; /* objective and real subjective task
1309 * credentials (COW) */
1310 const struct cred __rcu *cred; /* effective (overridable) subjective task
1311 * credentials (COW) */
1312 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1314 char comm[TASK_COMM_LEN]; /* executable name excluding path
1315 - access with [gs]et_task_comm (which lock
1316 it with task_lock())
1317 - initialized normally by setup_new_exec */
1318 /* file system info */
1319 int link_count, total_link_count;
1320 #ifdef CONFIG_SYSVIPC
1321 /* ipc stuff */
1322 struct sysv_sem sysvsem;
1323 #endif
1324 #ifdef CONFIG_DETECT_HUNG_TASK
1325 /* hung task detection */
1326 unsigned long last_switch_count;
1327 #endif
1328 /* CPU-specific state of this task */
1329 struct thread_struct thread;
1330 /* filesystem information */
1331 struct fs_struct *fs;
1332 /* open file information */
1333 struct files_struct *files;
1334 /* namespaces */
1335 struct nsproxy *nsproxy;
1336 /* signal handlers */
1337 struct signal_struct *signal;
1338 struct sighand_struct *sighand;
1340 sigset_t blocked, real_blocked;
1341 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1342 struct sigpending pending;
1344 unsigned long sas_ss_sp;
1345 size_t sas_ss_size;
1346 int (*notifier)(void *priv);
1347 void *notifier_data;
1348 sigset_t *notifier_mask;
1349 struct audit_context *audit_context;
1350 #ifdef CONFIG_AUDITSYSCALL
1351 uid_t loginuid;
1352 unsigned int sessionid;
1353 #endif
1354 seccomp_t seccomp;
1356 /* Thread group tracking */
1357 u32 parent_exec_id;
1358 u32 self_exec_id;
1359 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1360 * mempolicy */
1361 spinlock_t alloc_lock;
1363 #ifdef CONFIG_GENERIC_HARDIRQS
1364 /* IRQ handler threads */
1365 struct irqaction *irqaction;
1366 #endif
1368 /* Protection of the PI data structures: */
1369 raw_spinlock_t pi_lock;
1371 #ifdef CONFIG_RT_MUTEXES
1372 /* PI waiters blocked on a rt_mutex held by this task */
1373 struct plist_head pi_waiters;
1374 /* Deadlock detection and priority inheritance handling */
1375 struct rt_mutex_waiter *pi_blocked_on;
1376 #endif
1378 #ifdef CONFIG_DEBUG_MUTEXES
1379 /* mutex deadlock detection */
1380 struct mutex_waiter *blocked_on;
1381 #endif
1382 #ifdef CONFIG_TRACE_IRQFLAGS
1383 unsigned int irq_events;
1384 unsigned long hardirq_enable_ip;
1385 unsigned long hardirq_disable_ip;
1386 unsigned int hardirq_enable_event;
1387 unsigned int hardirq_disable_event;
1388 int hardirqs_enabled;
1389 int hardirq_context;
1390 unsigned long softirq_disable_ip;
1391 unsigned long softirq_enable_ip;
1392 unsigned int softirq_disable_event;
1393 unsigned int softirq_enable_event;
1394 int softirqs_enabled;
1395 int softirq_context;
1396 #endif
1397 #ifdef CONFIG_LOCKDEP
1398 # define MAX_LOCK_DEPTH 48UL
1399 u64 curr_chain_key;
1400 int lockdep_depth;
1401 unsigned int lockdep_recursion;
1402 struct held_lock held_locks[MAX_LOCK_DEPTH];
1403 gfp_t lockdep_reclaim_gfp;
1404 #endif
1406 /* journalling filesystem info */
1407 void *journal_info;
1409 /* stacked block device info */
1410 struct bio_list *bio_list;
1412 /* VM state */
1413 struct reclaim_state *reclaim_state;
1415 struct backing_dev_info *backing_dev_info;
1417 struct io_context *io_context;
1419 unsigned long ptrace_message;
1420 siginfo_t *last_siginfo; /* For ptrace use. */
1421 struct task_io_accounting ioac;
1422 #if defined(CONFIG_TASK_XACCT)
1423 u64 acct_rss_mem1; /* accumulated rss usage */
1424 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1425 cputime_t acct_timexpd; /* stime + utime since last update */
1426 #endif
1427 #ifdef CONFIG_CPUSETS
1428 nodemask_t mems_allowed; /* Protected by alloc_lock */
1429 int mems_allowed_change_disable;
1430 int cpuset_mem_spread_rotor;
1431 int cpuset_slab_spread_rotor;
1432 #endif
1433 #ifdef CONFIG_CGROUPS
1434 /* Control Group info protected by css_set_lock */
1435 struct css_set __rcu *cgroups;
1436 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1437 struct list_head cg_list;
1438 #endif
1439 #ifdef CONFIG_FUTEX
1440 struct robust_list_head __user *robust_list;
1441 #ifdef CONFIG_COMPAT
1442 struct compat_robust_list_head __user *compat_robust_list;
1443 #endif
1444 struct list_head pi_state_list;
1445 struct futex_pi_state *pi_state_cache;
1446 #endif
1447 #ifdef CONFIG_PERF_EVENTS
1448 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1449 struct mutex perf_event_mutex;
1450 struct list_head perf_event_list;
1451 #endif
1452 #ifdef CONFIG_NUMA
1453 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1454 short il_next;
1455 #endif
1456 atomic_t fs_excl; /* holding fs exclusive resources */
1457 struct rcu_head rcu;
1460 * cache last used pipe for splice
1462 struct pipe_inode_info *splice_pipe;
1463 #ifdef CONFIG_TASK_DELAY_ACCT
1464 struct task_delay_info *delays;
1465 #endif
1466 #ifdef CONFIG_FAULT_INJECTION
1467 int make_it_fail;
1468 #endif
1469 struct prop_local_single dirties;
1470 #ifdef CONFIG_LATENCYTOP
1471 int latency_record_count;
1472 struct latency_record latency_record[LT_SAVECOUNT];
1473 #endif
1475 * time slack values; these are used to round up poll() and
1476 * select() etc timeout values. These are in nanoseconds.
1478 unsigned long timer_slack_ns;
1479 unsigned long default_timer_slack_ns;
1481 struct list_head *scm_work_list;
1482 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1483 /* Index of current stored address in ret_stack */
1484 int curr_ret_stack;
1485 /* Stack of return addresses for return function tracing */
1486 struct ftrace_ret_stack *ret_stack;
1487 /* time stamp for last schedule */
1488 unsigned long long ftrace_timestamp;
1490 * Number of functions that haven't been traced
1491 * because of depth overrun.
1493 atomic_t trace_overrun;
1494 /* Pause for the tracing */
1495 atomic_t tracing_graph_pause;
1496 #endif
1497 #ifdef CONFIG_TRACING
1498 /* state flags for use by tracers */
1499 unsigned long trace;
1500 /* bitmask of trace recursion */
1501 unsigned long trace_recursion;
1502 #endif /* CONFIG_TRACING */
1503 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1504 struct memcg_batch_info {
1505 int do_batch; /* incremented when batch uncharge started */
1506 struct mem_cgroup *memcg; /* target memcg of uncharge */
1507 unsigned long bytes; /* uncharged usage */
1508 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1509 } memcg_batch;
1510 #endif
1513 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1514 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1517 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1518 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1519 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1520 * values are inverted: lower p->prio value means higher priority.
1522 * The MAX_USER_RT_PRIO value allows the actual maximum
1523 * RT priority to be separate from the value exported to
1524 * user-space. This allows kernel threads to set their
1525 * priority to a value higher than any user task. Note:
1526 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1529 #define MAX_USER_RT_PRIO 100
1530 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1532 #define MAX_PRIO (MAX_RT_PRIO + 40)
1533 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1535 static inline int rt_prio(int prio)
1537 if (unlikely(prio < MAX_RT_PRIO))
1538 return 1;
1539 return 0;
1542 static inline int rt_task(struct task_struct *p)
1544 return rt_prio(p->prio);
1547 static inline struct pid *task_pid(struct task_struct *task)
1549 return task->pids[PIDTYPE_PID].pid;
1552 static inline struct pid *task_tgid(struct task_struct *task)
1554 return task->group_leader->pids[PIDTYPE_PID].pid;
1558 * Without tasklist or rcu lock it is not safe to dereference
1559 * the result of task_pgrp/task_session even if task == current,
1560 * we can race with another thread doing sys_setsid/sys_setpgid.
1562 static inline struct pid *task_pgrp(struct task_struct *task)
1564 return task->group_leader->pids[PIDTYPE_PGID].pid;
1567 static inline struct pid *task_session(struct task_struct *task)
1569 return task->group_leader->pids[PIDTYPE_SID].pid;
1572 struct pid_namespace;
1575 * the helpers to get the task's different pids as they are seen
1576 * from various namespaces
1578 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1579 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1580 * current.
1581 * task_xid_nr_ns() : id seen from the ns specified;
1583 * set_task_vxid() : assigns a virtual id to a task;
1585 * see also pid_nr() etc in include/linux/pid.h
1587 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1588 struct pid_namespace *ns);
1590 static inline pid_t task_pid_nr(struct task_struct *tsk)
1592 return tsk->pid;
1595 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1596 struct pid_namespace *ns)
1598 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1601 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1603 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1607 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1609 return tsk->tgid;
1612 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1614 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1616 return pid_vnr(task_tgid(tsk));
1620 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1621 struct pid_namespace *ns)
1623 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1626 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1628 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1632 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1633 struct pid_namespace *ns)
1635 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1638 static inline pid_t task_session_vnr(struct task_struct *tsk)
1640 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1643 /* obsolete, do not use */
1644 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1646 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1650 * pid_alive - check that a task structure is not stale
1651 * @p: Task structure to be checked.
1653 * Test if a process is not yet dead (at most zombie state)
1654 * If pid_alive fails, then pointers within the task structure
1655 * can be stale and must not be dereferenced.
1657 static inline int pid_alive(struct task_struct *p)
1659 return p->pids[PIDTYPE_PID].pid != NULL;
1663 * is_global_init - check if a task structure is init
1664 * @tsk: Task structure to be checked.
1666 * Check if a task structure is the first user space task the kernel created.
1668 static inline int is_global_init(struct task_struct *tsk)
1670 return tsk->pid == 1;
1674 * is_container_init:
1675 * check whether in the task is init in its own pid namespace.
1677 extern int is_container_init(struct task_struct *tsk);
1679 extern struct pid *cad_pid;
1681 extern void free_task(struct task_struct *tsk);
1682 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1684 extern void __put_task_struct(struct task_struct *t);
1686 static inline void put_task_struct(struct task_struct *t)
1688 if (atomic_dec_and_test(&t->usage))
1689 __put_task_struct(t);
1692 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1693 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1696 * Per process flags
1698 #define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */
1699 #define PF_STARTING 0x00000002 /* being created */
1700 #define PF_EXITING 0x00000004 /* getting shut down */
1701 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1702 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1703 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1704 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1705 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1706 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1707 #define PF_DUMPCORE 0x00000200 /* dumped core */
1708 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1709 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1710 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1711 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1712 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1713 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1714 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1715 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1716 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1717 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1718 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1719 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1720 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1721 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1722 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1723 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1724 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1725 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1726 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1727 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1728 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1731 * Only the _current_ task can read/write to tsk->flags, but other
1732 * tasks can access tsk->flags in readonly mode for example
1733 * with tsk_used_math (like during threaded core dumping).
1734 * There is however an exception to this rule during ptrace
1735 * or during fork: the ptracer task is allowed to write to the
1736 * child->flags of its traced child (same goes for fork, the parent
1737 * can write to the child->flags), because we're guaranteed the
1738 * child is not running and in turn not changing child->flags
1739 * at the same time the parent does it.
1741 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1742 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1743 #define clear_used_math() clear_stopped_child_used_math(current)
1744 #define set_used_math() set_stopped_child_used_math(current)
1745 #define conditional_stopped_child_used_math(condition, child) \
1746 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1747 #define conditional_used_math(condition) \
1748 conditional_stopped_child_used_math(condition, current)
1749 #define copy_to_stopped_child_used_math(child) \
1750 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1751 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1752 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1753 #define used_math() tsk_used_math(current)
1755 #ifdef CONFIG_PREEMPT_RCU
1757 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1758 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1760 static inline void rcu_copy_process(struct task_struct *p)
1762 p->rcu_read_lock_nesting = 0;
1763 p->rcu_read_unlock_special = 0;
1764 #ifdef CONFIG_TREE_PREEMPT_RCU
1765 p->rcu_blocked_node = NULL;
1766 #endif
1767 INIT_LIST_HEAD(&p->rcu_node_entry);
1770 #else
1772 static inline void rcu_copy_process(struct task_struct *p)
1776 #endif
1778 #ifdef CONFIG_SMP
1779 extern int set_cpus_allowed_ptr(struct task_struct *p,
1780 const struct cpumask *new_mask);
1781 #else
1782 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1783 const struct cpumask *new_mask)
1785 if (!cpumask_test_cpu(0, new_mask))
1786 return -EINVAL;
1787 return 0;
1789 #endif
1791 #ifndef CONFIG_CPUMASK_OFFSTACK
1792 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1794 return set_cpus_allowed_ptr(p, &new_mask);
1796 #endif
1799 * Do not use outside of architecture code which knows its limitations.
1801 * sched_clock() has no promise of monotonicity or bounded drift between
1802 * CPUs, use (which you should not) requires disabling IRQs.
1804 * Please use one of the three interfaces below.
1806 extern unsigned long long notrace sched_clock(void);
1808 * See the comment in kernel/sched_clock.c
1810 extern u64 cpu_clock(int cpu);
1811 extern u64 local_clock(void);
1812 extern u64 sched_clock_cpu(int cpu);
1815 extern void sched_clock_init(void);
1817 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1818 static inline void sched_clock_tick(void)
1822 static inline void sched_clock_idle_sleep_event(void)
1826 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1829 #else
1831 * Architectures can set this to 1 if they have specified
1832 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1833 * but then during bootup it turns out that sched_clock()
1834 * is reliable after all:
1836 extern int sched_clock_stable;
1838 extern void sched_clock_tick(void);
1839 extern void sched_clock_idle_sleep_event(void);
1840 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1841 #endif
1843 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1845 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1846 * The reason for this explicit opt-in is not to have perf penalty with
1847 * slow sched_clocks.
1849 extern void enable_sched_clock_irqtime(void);
1850 extern void disable_sched_clock_irqtime(void);
1851 #else
1852 static inline void enable_sched_clock_irqtime(void) {}
1853 static inline void disable_sched_clock_irqtime(void) {}
1854 #endif
1856 extern unsigned long long
1857 task_sched_runtime(struct task_struct *task);
1858 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1860 /* sched_exec is called by processes performing an exec */
1861 #ifdef CONFIG_SMP
1862 extern void sched_exec(void);
1863 #else
1864 #define sched_exec() {}
1865 #endif
1867 extern void sched_clock_idle_sleep_event(void);
1868 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1870 #ifdef CONFIG_HOTPLUG_CPU
1871 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1872 extern void idle_task_exit(void);
1873 #else
1874 static inline void idle_task_exit(void) {}
1875 #endif
1877 extern void sched_idle_next(void);
1879 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1880 extern void wake_up_idle_cpu(int cpu);
1881 #else
1882 static inline void wake_up_idle_cpu(int cpu) { }
1883 #endif
1885 extern unsigned int sysctl_sched_latency;
1886 extern unsigned int sysctl_sched_min_granularity;
1887 extern unsigned int sysctl_sched_wakeup_granularity;
1888 extern unsigned int sysctl_sched_shares_ratelimit;
1889 extern unsigned int sysctl_sched_shares_thresh;
1890 extern unsigned int sysctl_sched_child_runs_first;
1892 enum sched_tunable_scaling {
1893 SCHED_TUNABLESCALING_NONE,
1894 SCHED_TUNABLESCALING_LOG,
1895 SCHED_TUNABLESCALING_LINEAR,
1896 SCHED_TUNABLESCALING_END,
1898 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1900 #ifdef CONFIG_SCHED_DEBUG
1901 extern unsigned int sysctl_sched_migration_cost;
1902 extern unsigned int sysctl_sched_nr_migrate;
1903 extern unsigned int sysctl_sched_time_avg;
1904 extern unsigned int sysctl_timer_migration;
1906 int sched_proc_update_handler(struct ctl_table *table, int write,
1907 void __user *buffer, size_t *length,
1908 loff_t *ppos);
1909 #endif
1910 #ifdef CONFIG_SCHED_DEBUG
1911 static inline unsigned int get_sysctl_timer_migration(void)
1913 return sysctl_timer_migration;
1915 #else
1916 static inline unsigned int get_sysctl_timer_migration(void)
1918 return 1;
1920 #endif
1921 extern unsigned int sysctl_sched_rt_period;
1922 extern int sysctl_sched_rt_runtime;
1924 int sched_rt_handler(struct ctl_table *table, int write,
1925 void __user *buffer, size_t *lenp,
1926 loff_t *ppos);
1928 extern unsigned int sysctl_sched_compat_yield;
1930 #ifdef CONFIG_RT_MUTEXES
1931 extern int rt_mutex_getprio(struct task_struct *p);
1932 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1933 extern void rt_mutex_adjust_pi(struct task_struct *p);
1934 #else
1935 static inline int rt_mutex_getprio(struct task_struct *p)
1937 return p->normal_prio;
1939 # define rt_mutex_adjust_pi(p) do { } while (0)
1940 #endif
1942 extern void set_user_nice(struct task_struct *p, long nice);
1943 extern int task_prio(const struct task_struct *p);
1944 extern int task_nice(const struct task_struct *p);
1945 extern int can_nice(const struct task_struct *p, const int nice);
1946 extern int task_curr(const struct task_struct *p);
1947 extern int idle_cpu(int cpu);
1948 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1949 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1950 struct sched_param *);
1951 extern struct task_struct *idle_task(int cpu);
1952 extern struct task_struct *curr_task(int cpu);
1953 extern void set_curr_task(int cpu, struct task_struct *p);
1955 void yield(void);
1958 * The default (Linux) execution domain.
1960 extern struct exec_domain default_exec_domain;
1962 union thread_union {
1963 struct thread_info thread_info;
1964 unsigned long stack[THREAD_SIZE/sizeof(long)];
1967 #ifndef __HAVE_ARCH_KSTACK_END
1968 static inline int kstack_end(void *addr)
1970 /* Reliable end of stack detection:
1971 * Some APM bios versions misalign the stack
1973 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1975 #endif
1977 extern union thread_union init_thread_union;
1978 extern struct task_struct init_task;
1980 extern struct mm_struct init_mm;
1982 extern struct pid_namespace init_pid_ns;
1985 * find a task by one of its numerical ids
1987 * find_task_by_pid_ns():
1988 * finds a task by its pid in the specified namespace
1989 * find_task_by_vpid():
1990 * finds a task by its virtual pid
1992 * see also find_vpid() etc in include/linux/pid.h
1995 extern struct task_struct *find_task_by_vpid(pid_t nr);
1996 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1997 struct pid_namespace *ns);
1999 extern void __set_special_pids(struct pid *pid);
2001 /* per-UID process charging. */
2002 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2003 static inline struct user_struct *get_uid(struct user_struct *u)
2005 atomic_inc(&u->__count);
2006 return u;
2008 extern void free_uid(struct user_struct *);
2009 extern void release_uids(struct user_namespace *ns);
2011 #include <asm/current.h>
2013 extern void do_timer(unsigned long ticks);
2015 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2016 extern int wake_up_process(struct task_struct *tsk);
2017 extern void wake_up_new_task(struct task_struct *tsk,
2018 unsigned long clone_flags);
2019 #ifdef CONFIG_SMP
2020 extern void kick_process(struct task_struct *tsk);
2021 #else
2022 static inline void kick_process(struct task_struct *tsk) { }
2023 #endif
2024 extern void sched_fork(struct task_struct *p, int clone_flags);
2025 extern void sched_dead(struct task_struct *p);
2027 extern void proc_caches_init(void);
2028 extern void flush_signals(struct task_struct *);
2029 extern void __flush_signals(struct task_struct *);
2030 extern void ignore_signals(struct task_struct *);
2031 extern void flush_signal_handlers(struct task_struct *, int force_default);
2032 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2034 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2036 unsigned long flags;
2037 int ret;
2039 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2040 ret = dequeue_signal(tsk, mask, info);
2041 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2043 return ret;
2046 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2047 sigset_t *mask);
2048 extern void unblock_all_signals(void);
2049 extern void release_task(struct task_struct * p);
2050 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2051 extern int force_sigsegv(int, struct task_struct *);
2052 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2053 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2054 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2055 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2056 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2057 extern int kill_pid(struct pid *pid, int sig, int priv);
2058 extern int kill_proc_info(int, struct siginfo *, pid_t);
2059 extern int do_notify_parent(struct task_struct *, int);
2060 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2061 extern void force_sig(int, struct task_struct *);
2062 extern int send_sig(int, struct task_struct *, int);
2063 extern int zap_other_threads(struct task_struct *p);
2064 extern struct sigqueue *sigqueue_alloc(void);
2065 extern void sigqueue_free(struct sigqueue *);
2066 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2067 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2068 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2070 static inline int kill_cad_pid(int sig, int priv)
2072 return kill_pid(cad_pid, sig, priv);
2075 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2076 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2077 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2078 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2081 * True if we are on the alternate signal stack.
2083 static inline int on_sig_stack(unsigned long sp)
2085 #ifdef CONFIG_STACK_GROWSUP
2086 return sp >= current->sas_ss_sp &&
2087 sp - current->sas_ss_sp < current->sas_ss_size;
2088 #else
2089 return sp > current->sas_ss_sp &&
2090 sp - current->sas_ss_sp <= current->sas_ss_size;
2091 #endif
2094 static inline int sas_ss_flags(unsigned long sp)
2096 return (current->sas_ss_size == 0 ? SS_DISABLE
2097 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2101 * Routines for handling mm_structs
2103 extern struct mm_struct * mm_alloc(void);
2105 /* mmdrop drops the mm and the page tables */
2106 extern void __mmdrop(struct mm_struct *);
2107 static inline void mmdrop(struct mm_struct * mm)
2109 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2110 __mmdrop(mm);
2113 /* mmput gets rid of the mappings and all user-space */
2114 extern void mmput(struct mm_struct *);
2115 /* Grab a reference to a task's mm, if it is not already going away */
2116 extern struct mm_struct *get_task_mm(struct task_struct *task);
2117 /* Remove the current tasks stale references to the old mm_struct */
2118 extern void mm_release(struct task_struct *, struct mm_struct *);
2119 /* Allocate a new mm structure and copy contents from tsk->mm */
2120 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2122 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2123 struct task_struct *, struct pt_regs *);
2124 extern void flush_thread(void);
2125 extern void exit_thread(void);
2127 extern void exit_files(struct task_struct *);
2128 extern void __cleanup_sighand(struct sighand_struct *);
2130 extern void exit_itimers(struct signal_struct *);
2131 extern void flush_itimer_signals(void);
2133 extern NORET_TYPE void do_group_exit(int);
2135 extern void daemonize(const char *, ...);
2136 extern int allow_signal(int);
2137 extern int disallow_signal(int);
2139 extern int do_execve(const char *,
2140 const char __user * const __user *,
2141 const char __user * const __user *, struct pt_regs *);
2142 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2143 struct task_struct *fork_idle(int);
2145 extern void set_task_comm(struct task_struct *tsk, char *from);
2146 extern char *get_task_comm(char *to, struct task_struct *tsk);
2148 #ifdef CONFIG_SMP
2149 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2150 #else
2151 static inline unsigned long wait_task_inactive(struct task_struct *p,
2152 long match_state)
2154 return 1;
2156 #endif
2158 #define next_task(p) \
2159 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2161 #define for_each_process(p) \
2162 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2164 extern bool current_is_single_threaded(void);
2167 * Careful: do_each_thread/while_each_thread is a double loop so
2168 * 'break' will not work as expected - use goto instead.
2170 #define do_each_thread(g, t) \
2171 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2173 #define while_each_thread(g, t) \
2174 while ((t = next_thread(t)) != g)
2176 static inline int get_nr_threads(struct task_struct *tsk)
2178 return tsk->signal->nr_threads;
2181 /* de_thread depends on thread_group_leader not being a pid based check */
2182 #define thread_group_leader(p) (p == p->group_leader)
2184 /* Do to the insanities of de_thread it is possible for a process
2185 * to have the pid of the thread group leader without actually being
2186 * the thread group leader. For iteration through the pids in proc
2187 * all we care about is that we have a task with the appropriate
2188 * pid, we don't actually care if we have the right task.
2190 static inline int has_group_leader_pid(struct task_struct *p)
2192 return p->pid == p->tgid;
2195 static inline
2196 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2198 return p1->tgid == p2->tgid;
2201 static inline struct task_struct *next_thread(const struct task_struct *p)
2203 return list_entry_rcu(p->thread_group.next,
2204 struct task_struct, thread_group);
2207 static inline int thread_group_empty(struct task_struct *p)
2209 return list_empty(&p->thread_group);
2212 #define delay_group_leader(p) \
2213 (thread_group_leader(p) && !thread_group_empty(p))
2215 static inline int task_detached(struct task_struct *p)
2217 return p->exit_signal == -1;
2221 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2222 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2223 * pins the final release of task.io_context. Also protects ->cpuset and
2224 * ->cgroup.subsys[].
2226 * Nests both inside and outside of read_lock(&tasklist_lock).
2227 * It must not be nested with write_lock_irq(&tasklist_lock),
2228 * neither inside nor outside.
2230 static inline void task_lock(struct task_struct *p)
2232 spin_lock(&p->alloc_lock);
2235 static inline void task_unlock(struct task_struct *p)
2237 spin_unlock(&p->alloc_lock);
2240 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2241 unsigned long *flags);
2243 #define lock_task_sighand(tsk, flags) \
2244 ({ struct sighand_struct *__ss; \
2245 __cond_lock(&(tsk)->sighand->siglock, \
2246 (__ss = __lock_task_sighand(tsk, flags))); \
2247 __ss; \
2248 }) \
2250 static inline void unlock_task_sighand(struct task_struct *tsk,
2251 unsigned long *flags)
2253 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2256 #ifndef __HAVE_THREAD_FUNCTIONS
2258 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2259 #define task_stack_page(task) ((task)->stack)
2261 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2263 *task_thread_info(p) = *task_thread_info(org);
2264 task_thread_info(p)->task = p;
2267 static inline unsigned long *end_of_stack(struct task_struct *p)
2269 return (unsigned long *)(task_thread_info(p) + 1);
2272 #endif
2274 static inline int object_is_on_stack(void *obj)
2276 void *stack = task_stack_page(current);
2278 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2281 extern void thread_info_cache_init(void);
2283 #ifdef CONFIG_DEBUG_STACK_USAGE
2284 static inline unsigned long stack_not_used(struct task_struct *p)
2286 unsigned long *n = end_of_stack(p);
2288 do { /* Skip over canary */
2289 n++;
2290 } while (!*n);
2292 return (unsigned long)n - (unsigned long)end_of_stack(p);
2294 #endif
2296 /* set thread flags in other task's structures
2297 * - see asm/thread_info.h for TIF_xxxx flags available
2299 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2301 set_ti_thread_flag(task_thread_info(tsk), flag);
2304 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2306 clear_ti_thread_flag(task_thread_info(tsk), flag);
2309 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2311 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2314 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2316 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2319 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2321 return test_ti_thread_flag(task_thread_info(tsk), flag);
2324 static inline void set_tsk_need_resched(struct task_struct *tsk)
2326 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2329 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2331 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2334 static inline int test_tsk_need_resched(struct task_struct *tsk)
2336 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2339 static inline int restart_syscall(void)
2341 set_tsk_thread_flag(current, TIF_SIGPENDING);
2342 return -ERESTARTNOINTR;
2345 static inline int signal_pending(struct task_struct *p)
2347 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2350 static inline int __fatal_signal_pending(struct task_struct *p)
2352 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2355 static inline int fatal_signal_pending(struct task_struct *p)
2357 return signal_pending(p) && __fatal_signal_pending(p);
2360 static inline int signal_pending_state(long state, struct task_struct *p)
2362 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2363 return 0;
2364 if (!signal_pending(p))
2365 return 0;
2367 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2370 static inline int need_resched(void)
2372 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2376 * cond_resched() and cond_resched_lock(): latency reduction via
2377 * explicit rescheduling in places that are safe. The return
2378 * value indicates whether a reschedule was done in fact.
2379 * cond_resched_lock() will drop the spinlock before scheduling,
2380 * cond_resched_softirq() will enable bhs before scheduling.
2382 extern int _cond_resched(void);
2384 #define cond_resched() ({ \
2385 __might_sleep(__FILE__, __LINE__, 0); \
2386 _cond_resched(); \
2389 extern int __cond_resched_lock(spinlock_t *lock);
2391 #ifdef CONFIG_PREEMPT
2392 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2393 #else
2394 #define PREEMPT_LOCK_OFFSET 0
2395 #endif
2397 #define cond_resched_lock(lock) ({ \
2398 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2399 __cond_resched_lock(lock); \
2402 extern int __cond_resched_softirq(void);
2404 #define cond_resched_softirq() ({ \
2405 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2406 __cond_resched_softirq(); \
2410 * Does a critical section need to be broken due to another
2411 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2412 * but a general need for low latency)
2414 static inline int spin_needbreak(spinlock_t *lock)
2416 #ifdef CONFIG_PREEMPT
2417 return spin_is_contended(lock);
2418 #else
2419 return 0;
2420 #endif
2424 * Thread group CPU time accounting.
2426 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2427 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2429 static inline void thread_group_cputime_init(struct signal_struct *sig)
2431 spin_lock_init(&sig->cputimer.lock);
2435 * Reevaluate whether the task has signals pending delivery.
2436 * Wake the task if so.
2437 * This is required every time the blocked sigset_t changes.
2438 * callers must hold sighand->siglock.
2440 extern void recalc_sigpending_and_wake(struct task_struct *t);
2441 extern void recalc_sigpending(void);
2443 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2446 * Wrappers for p->thread_info->cpu access. No-op on UP.
2448 #ifdef CONFIG_SMP
2450 static inline unsigned int task_cpu(const struct task_struct *p)
2452 return task_thread_info(p)->cpu;
2455 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2457 #else
2459 static inline unsigned int task_cpu(const struct task_struct *p)
2461 return 0;
2464 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2468 #endif /* CONFIG_SMP */
2470 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2471 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2473 extern void normalize_rt_tasks(void);
2475 #ifdef CONFIG_CGROUP_SCHED
2477 extern struct task_group init_task_group;
2479 extern struct task_group *sched_create_group(struct task_group *parent);
2480 extern void sched_destroy_group(struct task_group *tg);
2481 extern void sched_move_task(struct task_struct *tsk);
2482 #ifdef CONFIG_FAIR_GROUP_SCHED
2483 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2484 extern unsigned long sched_group_shares(struct task_group *tg);
2485 #endif
2486 #ifdef CONFIG_RT_GROUP_SCHED
2487 extern int sched_group_set_rt_runtime(struct task_group *tg,
2488 long rt_runtime_us);
2489 extern long sched_group_rt_runtime(struct task_group *tg);
2490 extern int sched_group_set_rt_period(struct task_group *tg,
2491 long rt_period_us);
2492 extern long sched_group_rt_period(struct task_group *tg);
2493 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2494 #endif
2495 #endif
2497 extern int task_can_switch_user(struct user_struct *up,
2498 struct task_struct *tsk);
2500 #ifdef CONFIG_TASK_XACCT
2501 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2503 tsk->ioac.rchar += amt;
2506 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2508 tsk->ioac.wchar += amt;
2511 static inline void inc_syscr(struct task_struct *tsk)
2513 tsk->ioac.syscr++;
2516 static inline void inc_syscw(struct task_struct *tsk)
2518 tsk->ioac.syscw++;
2520 #else
2521 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2525 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2529 static inline void inc_syscr(struct task_struct *tsk)
2533 static inline void inc_syscw(struct task_struct *tsk)
2536 #endif
2538 #ifndef TASK_SIZE_OF
2539 #define TASK_SIZE_OF(tsk) TASK_SIZE
2540 #endif
2543 * Call the function if the target task is executing on a CPU right now:
2545 extern void task_oncpu_function_call(struct task_struct *p,
2546 void (*func) (void *info), void *info);
2549 #ifdef CONFIG_MM_OWNER
2550 extern void mm_update_next_owner(struct mm_struct *mm);
2551 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2552 #else
2553 static inline void mm_update_next_owner(struct mm_struct *mm)
2557 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2560 #endif /* CONFIG_MM_OWNER */
2562 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2563 unsigned int limit)
2565 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2568 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2569 unsigned int limit)
2571 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2574 static inline unsigned long rlimit(unsigned int limit)
2576 return task_rlimit(current, limit);
2579 static inline unsigned long rlimit_max(unsigned int limit)
2581 return task_rlimit_max(current, limit);
2584 #endif /* __KERNEL__ */
2586 #endif