net: rename skb->iif to skb->skb_iif
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / dev.c
blob09f3d6b9c0c800648591d03ff3a21ad90e558345
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
132 #include "net-sysfs.h"
134 /* Instead of increasing this, you should create a hash table. */
135 #define MAX_GRO_SKBS 8
137 /* This should be increased if a protocol with a bigger head is added. */
138 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141 * The list of packet types we will receive (as opposed to discard)
142 * and the routines to invoke.
144 * Why 16. Because with 16 the only overlap we get on a hash of the
145 * low nibble of the protocol value is RARP/SNAP/X.25.
147 * NOTE: That is no longer true with the addition of VLAN tags. Not
148 * sure which should go first, but I bet it won't make much
149 * difference if we are running VLANs. The good news is that
150 * this protocol won't be in the list unless compiled in, so
151 * the average user (w/out VLANs) will not be adversely affected.
152 * --BLG
154 * 0800 IP
155 * 8100 802.1Q VLAN
156 * 0001 802.3
157 * 0002 AX.25
158 * 0004 802.2
159 * 8035 RARP
160 * 0005 SNAP
161 * 0805 X.25
162 * 0806 ARP
163 * 8137 IPX
164 * 0009 Localtalk
165 * 86DD IPv6
168 #define PTYPE_HASH_SIZE (16)
169 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171 static DEFINE_SPINLOCK(ptype_lock);
172 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 static struct list_head ptype_all __read_mostly; /* Taps */
176 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177 * semaphore.
179 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 * Writers must hold the rtnl semaphore while they loop through the
182 * dev_base_head list, and hold dev_base_lock for writing when they do the
183 * actual updates. This allows pure readers to access the list even
184 * while a writer is preparing to update it.
186 * To put it another way, dev_base_lock is held for writing only to
187 * protect against pure readers; the rtnl semaphore provides the
188 * protection against other writers.
190 * See, for example usages, register_netdevice() and
191 * unregister_netdevice(), which must be called with the rtnl
192 * semaphore held.
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 /* Device list insertion */
209 static int list_netdevice(struct net_device *dev)
211 struct net *net = dev_net(dev);
213 ASSERT_RTNL();
215 write_lock_bh(&dev_base_lock);
216 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
217 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
218 hlist_add_head_rcu(&dev->index_hlist,
219 dev_index_hash(net, dev->ifindex));
220 write_unlock_bh(&dev_base_lock);
221 return 0;
224 /* Device list removal
225 * caller must respect a RCU grace period before freeing/reusing dev
227 static void unlist_netdevice(struct net_device *dev)
229 ASSERT_RTNL();
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del_rcu(&dev->dev_list);
234 hlist_del_rcu(&dev->name_hlist);
235 hlist_del_rcu(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
240 * Our notifier list
243 static RAW_NOTIFIER_HEAD(netdev_chain);
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251 EXPORT_PER_CPU_SYMBOL(softnet_data);
253 #ifdef CONFIG_LOCKDEP
255 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
256 * according to dev->type
258 static const unsigned short netdev_lock_type[] =
259 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
260 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
261 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
262 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
263 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
264 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
265 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
266 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
267 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
268 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
269 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
270 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
271 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
272 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
273 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
274 ARPHRD_VOID, ARPHRD_NONE};
276 static const char *const netdev_lock_name[] =
277 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
278 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
279 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
280 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
281 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
282 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
283 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
284 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
285 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
286 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
287 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
288 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
289 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
290 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
291 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
292 "_xmit_VOID", "_xmit_NONE"};
294 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
295 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 int i;
301 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
302 if (netdev_lock_type[i] == dev_type)
303 return i;
304 /* the last key is used by default */
305 return ARRAY_SIZE(netdev_lock_type) - 1;
308 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
309 unsigned short dev_type)
311 int i;
313 i = netdev_lock_pos(dev_type);
314 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
315 netdev_lock_name[i]);
318 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320 int i;
322 i = netdev_lock_pos(dev->type);
323 lockdep_set_class_and_name(&dev->addr_list_lock,
324 &netdev_addr_lock_key[i],
325 netdev_lock_name[i]);
327 #else
328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329 unsigned short dev_type)
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 #endif
337 /*******************************************************************************
339 Protocol management and registration routines
341 *******************************************************************************/
344 * Add a protocol ID to the list. Now that the input handler is
345 * smarter we can dispense with all the messy stuff that used to be
346 * here.
348 * BEWARE!!! Protocol handlers, mangling input packets,
349 * MUST BE last in hash buckets and checking protocol handlers
350 * MUST start from promiscuous ptype_all chain in net_bh.
351 * It is true now, do not change it.
352 * Explanation follows: if protocol handler, mangling packet, will
353 * be the first on list, it is not able to sense, that packet
354 * is cloned and should be copied-on-write, so that it will
355 * change it and subsequent readers will get broken packet.
356 * --ANK (980803)
360 * dev_add_pack - add packet handler
361 * @pt: packet type declaration
363 * Add a protocol handler to the networking stack. The passed &packet_type
364 * is linked into kernel lists and may not be freed until it has been
365 * removed from the kernel lists.
367 * This call does not sleep therefore it can not
368 * guarantee all CPU's that are in middle of receiving packets
369 * will see the new packet type (until the next received packet).
372 void dev_add_pack(struct packet_type *pt)
374 int hash;
376 spin_lock_bh(&ptype_lock);
377 if (pt->type == htons(ETH_P_ALL))
378 list_add_rcu(&pt->list, &ptype_all);
379 else {
380 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
381 list_add_rcu(&pt->list, &ptype_base[hash]);
383 spin_unlock_bh(&ptype_lock);
385 EXPORT_SYMBOL(dev_add_pack);
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
400 void __dev_remove_pack(struct packet_type *pt)
402 struct list_head *head;
403 struct packet_type *pt1;
405 spin_lock_bh(&ptype_lock);
407 if (pt->type == htons(ETH_P_ALL))
408 head = &ptype_all;
409 else
410 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
412 list_for_each_entry(pt1, head, list) {
413 if (pt == pt1) {
414 list_del_rcu(&pt->list);
415 goto out;
419 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
420 out:
421 spin_unlock_bh(&ptype_lock);
423 EXPORT_SYMBOL(__dev_remove_pack);
426 * dev_remove_pack - remove packet handler
427 * @pt: packet type declaration
429 * Remove a protocol handler that was previously added to the kernel
430 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
431 * from the kernel lists and can be freed or reused once this function
432 * returns.
434 * This call sleeps to guarantee that no CPU is looking at the packet
435 * type after return.
437 void dev_remove_pack(struct packet_type *pt)
439 __dev_remove_pack(pt);
441 synchronize_net();
443 EXPORT_SYMBOL(dev_remove_pack);
445 /******************************************************************************
447 Device Boot-time Settings Routines
449 *******************************************************************************/
451 /* Boot time configuration table */
452 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
455 * netdev_boot_setup_add - add new setup entry
456 * @name: name of the device
457 * @map: configured settings for the device
459 * Adds new setup entry to the dev_boot_setup list. The function
460 * returns 0 on error and 1 on success. This is a generic routine to
461 * all netdevices.
463 static int netdev_boot_setup_add(char *name, struct ifmap *map)
465 struct netdev_boot_setup *s;
466 int i;
468 s = dev_boot_setup;
469 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
470 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
471 memset(s[i].name, 0, sizeof(s[i].name));
472 strlcpy(s[i].name, name, IFNAMSIZ);
473 memcpy(&s[i].map, map, sizeof(s[i].map));
474 break;
478 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
482 * netdev_boot_setup_check - check boot time settings
483 * @dev: the netdevice
485 * Check boot time settings for the device.
486 * The found settings are set for the device to be used
487 * later in the device probing.
488 * Returns 0 if no settings found, 1 if they are.
490 int netdev_boot_setup_check(struct net_device *dev)
492 struct netdev_boot_setup *s = dev_boot_setup;
493 int i;
495 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
496 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
497 !strcmp(dev->name, s[i].name)) {
498 dev->irq = s[i].map.irq;
499 dev->base_addr = s[i].map.base_addr;
500 dev->mem_start = s[i].map.mem_start;
501 dev->mem_end = s[i].map.mem_end;
502 return 1;
505 return 0;
507 EXPORT_SYMBOL(netdev_boot_setup_check);
511 * netdev_boot_base - get address from boot time settings
512 * @prefix: prefix for network device
513 * @unit: id for network device
515 * Check boot time settings for the base address of device.
516 * The found settings are set for the device to be used
517 * later in the device probing.
518 * Returns 0 if no settings found.
520 unsigned long netdev_boot_base(const char *prefix, int unit)
522 const struct netdev_boot_setup *s = dev_boot_setup;
523 char name[IFNAMSIZ];
524 int i;
526 sprintf(name, "%s%d", prefix, unit);
529 * If device already registered then return base of 1
530 * to indicate not to probe for this interface
532 if (__dev_get_by_name(&init_net, name))
533 return 1;
535 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
536 if (!strcmp(name, s[i].name))
537 return s[i].map.base_addr;
538 return 0;
542 * Saves at boot time configured settings for any netdevice.
544 int __init netdev_boot_setup(char *str)
546 int ints[5];
547 struct ifmap map;
549 str = get_options(str, ARRAY_SIZE(ints), ints);
550 if (!str || !*str)
551 return 0;
553 /* Save settings */
554 memset(&map, 0, sizeof(map));
555 if (ints[0] > 0)
556 map.irq = ints[1];
557 if (ints[0] > 1)
558 map.base_addr = ints[2];
559 if (ints[0] > 2)
560 map.mem_start = ints[3];
561 if (ints[0] > 3)
562 map.mem_end = ints[4];
564 /* Add new entry to the list */
565 return netdev_boot_setup_add(str, &map);
568 __setup("netdev=", netdev_boot_setup);
570 /*******************************************************************************
572 Device Interface Subroutines
574 *******************************************************************************/
577 * __dev_get_by_name - find a device by its name
578 * @net: the applicable net namespace
579 * @name: name to find
581 * Find an interface by name. Must be called under RTNL semaphore
582 * or @dev_base_lock. If the name is found a pointer to the device
583 * is returned. If the name is not found then %NULL is returned. The
584 * reference counters are not incremented so the caller must be
585 * careful with locks.
588 struct net_device *__dev_get_by_name(struct net *net, const char *name)
590 struct hlist_node *p;
591 struct net_device *dev;
592 struct hlist_head *head = dev_name_hash(net, name);
594 hlist_for_each_entry(dev, p, head, name_hlist)
595 if (!strncmp(dev->name, name, IFNAMSIZ))
596 return dev;
598 return NULL;
600 EXPORT_SYMBOL(__dev_get_by_name);
603 * dev_get_by_name_rcu - find a device by its name
604 * @net: the applicable net namespace
605 * @name: name to find
607 * Find an interface by name.
608 * If the name is found a pointer to the device is returned.
609 * If the name is not found then %NULL is returned.
610 * The reference counters are not incremented so the caller must be
611 * careful with locks. The caller must hold RCU lock.
614 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616 struct hlist_node *p;
617 struct net_device *dev;
618 struct hlist_head *head = dev_name_hash(net, name);
620 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
621 if (!strncmp(dev->name, name, IFNAMSIZ))
622 return dev;
624 return NULL;
626 EXPORT_SYMBOL(dev_get_by_name_rcu);
629 * dev_get_by_name - find a device by its name
630 * @net: the applicable net namespace
631 * @name: name to find
633 * Find an interface by name. This can be called from any
634 * context and does its own locking. The returned handle has
635 * the usage count incremented and the caller must use dev_put() to
636 * release it when it is no longer needed. %NULL is returned if no
637 * matching device is found.
640 struct net_device *dev_get_by_name(struct net *net, const char *name)
642 struct net_device *dev;
644 rcu_read_lock();
645 dev = dev_get_by_name_rcu(net, name);
646 if (dev)
647 dev_hold(dev);
648 rcu_read_unlock();
649 return dev;
651 EXPORT_SYMBOL(dev_get_by_name);
654 * __dev_get_by_index - find a device by its ifindex
655 * @net: the applicable net namespace
656 * @ifindex: index of device
658 * Search for an interface by index. Returns %NULL if the device
659 * is not found or a pointer to the device. The device has not
660 * had its reference counter increased so the caller must be careful
661 * about locking. The caller must hold either the RTNL semaphore
662 * or @dev_base_lock.
665 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
667 struct hlist_node *p;
668 struct net_device *dev;
669 struct hlist_head *head = dev_index_hash(net, ifindex);
671 hlist_for_each_entry(dev, p, head, index_hlist)
672 if (dev->ifindex == ifindex)
673 return dev;
675 return NULL;
677 EXPORT_SYMBOL(__dev_get_by_index);
680 * dev_get_by_index_rcu - find a device by its ifindex
681 * @net: the applicable net namespace
682 * @ifindex: index of device
684 * Search for an interface by index. Returns %NULL if the device
685 * is not found or a pointer to the device. The device has not
686 * had its reference counter increased so the caller must be careful
687 * about locking. The caller must hold RCU lock.
690 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692 struct hlist_node *p;
693 struct net_device *dev;
694 struct hlist_head *head = dev_index_hash(net, ifindex);
696 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
697 if (dev->ifindex == ifindex)
698 return dev;
700 return NULL;
702 EXPORT_SYMBOL(dev_get_by_index_rcu);
706 * dev_get_by_index - find a device by its ifindex
707 * @net: the applicable net namespace
708 * @ifindex: index of device
710 * Search for an interface by index. Returns NULL if the device
711 * is not found or a pointer to the device. The device returned has
712 * had a reference added and the pointer is safe until the user calls
713 * dev_put to indicate they have finished with it.
716 struct net_device *dev_get_by_index(struct net *net, int ifindex)
718 struct net_device *dev;
720 rcu_read_lock();
721 dev = dev_get_by_index_rcu(net, ifindex);
722 if (dev)
723 dev_hold(dev);
724 rcu_read_unlock();
725 return dev;
727 EXPORT_SYMBOL(dev_get_by_index);
730 * dev_getbyhwaddr - find a device by its hardware address
731 * @net: the applicable net namespace
732 * @type: media type of device
733 * @ha: hardware address
735 * Search for an interface by MAC address. Returns NULL if the device
736 * is not found or a pointer to the device. The caller must hold the
737 * rtnl semaphore. The returned device has not had its ref count increased
738 * and the caller must therefore be careful about locking
740 * BUGS:
741 * If the API was consistent this would be __dev_get_by_hwaddr
744 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
746 struct net_device *dev;
748 ASSERT_RTNL();
750 for_each_netdev(net, dev)
751 if (dev->type == type &&
752 !memcmp(dev->dev_addr, ha, dev->addr_len))
753 return dev;
755 return NULL;
757 EXPORT_SYMBOL(dev_getbyhwaddr);
759 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
761 struct net_device *dev;
763 ASSERT_RTNL();
764 for_each_netdev(net, dev)
765 if (dev->type == type)
766 return dev;
768 return NULL;
770 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 struct net_device *dev;
776 rtnl_lock();
777 dev = __dev_getfirstbyhwtype(net, type);
778 if (dev)
779 dev_hold(dev);
780 rtnl_unlock();
781 return dev;
783 EXPORT_SYMBOL(dev_getfirstbyhwtype);
786 * dev_get_by_flags - find any device with given flags
787 * @net: the applicable net namespace
788 * @if_flags: IFF_* values
789 * @mask: bitmask of bits in if_flags to check
791 * Search for any interface with the given flags. Returns NULL if a device
792 * is not found or a pointer to the device. The device returned has
793 * had a reference added and the pointer is safe until the user calls
794 * dev_put to indicate they have finished with it.
797 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
798 unsigned short mask)
800 struct net_device *dev, *ret;
802 ret = NULL;
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev) {
805 if (((dev->flags ^ if_flags) & mask) == 0) {
806 dev_hold(dev);
807 ret = dev;
808 break;
811 rcu_read_unlock();
812 return ret;
814 EXPORT_SYMBOL(dev_get_by_flags);
817 * dev_valid_name - check if name is okay for network device
818 * @name: name string
820 * Network device names need to be valid file names to
821 * to allow sysfs to work. We also disallow any kind of
822 * whitespace.
824 int dev_valid_name(const char *name)
826 if (*name == '\0')
827 return 0;
828 if (strlen(name) >= IFNAMSIZ)
829 return 0;
830 if (!strcmp(name, ".") || !strcmp(name, ".."))
831 return 0;
833 while (*name) {
834 if (*name == '/' || isspace(*name))
835 return 0;
836 name++;
838 return 1;
840 EXPORT_SYMBOL(dev_valid_name);
843 * __dev_alloc_name - allocate a name for a device
844 * @net: network namespace to allocate the device name in
845 * @name: name format string
846 * @buf: scratch buffer and result name string
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
857 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
859 int i = 0;
860 const char *p;
861 const int max_netdevices = 8*PAGE_SIZE;
862 unsigned long *inuse;
863 struct net_device *d;
865 p = strnchr(name, IFNAMSIZ-1, '%');
866 if (p) {
868 * Verify the string as this thing may have come from
869 * the user. There must be either one "%d" and no other "%"
870 * characters.
872 if (p[1] != 'd' || strchr(p + 2, '%'))
873 return -EINVAL;
875 /* Use one page as a bit array of possible slots */
876 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
877 if (!inuse)
878 return -ENOMEM;
880 for_each_netdev(net, d) {
881 if (!sscanf(d->name, name, &i))
882 continue;
883 if (i < 0 || i >= max_netdevices)
884 continue;
886 /* avoid cases where sscanf is not exact inverse of printf */
887 snprintf(buf, IFNAMSIZ, name, i);
888 if (!strncmp(buf, d->name, IFNAMSIZ))
889 set_bit(i, inuse);
892 i = find_first_zero_bit(inuse, max_netdevices);
893 free_page((unsigned long) inuse);
896 if (buf != name)
897 snprintf(buf, IFNAMSIZ, name, i);
898 if (!__dev_get_by_name(net, buf))
899 return i;
901 /* It is possible to run out of possible slots
902 * when the name is long and there isn't enough space left
903 * for the digits, or if all bits are used.
905 return -ENFILE;
909 * dev_alloc_name - allocate a name for a device
910 * @dev: device
911 * @name: name format string
913 * Passed a format string - eg "lt%d" it will try and find a suitable
914 * id. It scans list of devices to build up a free map, then chooses
915 * the first empty slot. The caller must hold the dev_base or rtnl lock
916 * while allocating the name and adding the device in order to avoid
917 * duplicates.
918 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
919 * Returns the number of the unit assigned or a negative errno code.
922 int dev_alloc_name(struct net_device *dev, const char *name)
924 char buf[IFNAMSIZ];
925 struct net *net;
926 int ret;
928 BUG_ON(!dev_net(dev));
929 net = dev_net(dev);
930 ret = __dev_alloc_name(net, name, buf);
931 if (ret >= 0)
932 strlcpy(dev->name, buf, IFNAMSIZ);
933 return ret;
935 EXPORT_SYMBOL(dev_alloc_name);
937 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
938 bool fmt)
940 if (!dev_valid_name(name))
941 return -EINVAL;
943 if (fmt && strchr(name, '%'))
944 return __dev_alloc_name(net, name, buf);
945 else if (__dev_get_by_name(net, name))
946 return -EEXIST;
947 else if (buf != name)
948 strlcpy(buf, name, IFNAMSIZ);
950 return 0;
954 * dev_change_name - change name of a device
955 * @dev: device
956 * @newname: name (or format string) must be at least IFNAMSIZ
958 * Change name of a device, can pass format strings "eth%d".
959 * for wildcarding.
961 int dev_change_name(struct net_device *dev, const char *newname)
963 char oldname[IFNAMSIZ];
964 int err = 0;
965 int ret;
966 struct net *net;
968 ASSERT_RTNL();
969 BUG_ON(!dev_net(dev));
971 net = dev_net(dev);
972 if (dev->flags & IFF_UP)
973 return -EBUSY;
975 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
976 return 0;
978 memcpy(oldname, dev->name, IFNAMSIZ);
980 err = dev_get_valid_name(net, newname, dev->name, 1);
981 if (err < 0)
982 return err;
984 rollback:
985 /* For now only devices in the initial network namespace
986 * are in sysfs.
988 if (net == &init_net) {
989 ret = device_rename(&dev->dev, dev->name);
990 if (ret) {
991 memcpy(dev->name, oldname, IFNAMSIZ);
992 return ret;
996 write_lock_bh(&dev_base_lock);
997 hlist_del(&dev->name_hlist);
998 write_unlock_bh(&dev_base_lock);
1000 synchronize_rcu();
1002 write_lock_bh(&dev_base_lock);
1003 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1004 write_unlock_bh(&dev_base_lock);
1006 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1007 ret = notifier_to_errno(ret);
1009 if (ret) {
1010 /* err >= 0 after dev_alloc_name() or stores the first errno */
1011 if (err >= 0) {
1012 err = ret;
1013 memcpy(dev->name, oldname, IFNAMSIZ);
1014 goto rollback;
1015 } else {
1016 printk(KERN_ERR
1017 "%s: name change rollback failed: %d.\n",
1018 dev->name, ret);
1022 return err;
1026 * dev_set_alias - change ifalias of a device
1027 * @dev: device
1028 * @alias: name up to IFALIASZ
1029 * @len: limit of bytes to copy from info
1031 * Set ifalias for a device,
1033 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1035 ASSERT_RTNL();
1037 if (len >= IFALIASZ)
1038 return -EINVAL;
1040 if (!len) {
1041 if (dev->ifalias) {
1042 kfree(dev->ifalias);
1043 dev->ifalias = NULL;
1045 return 0;
1048 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1049 if (!dev->ifalias)
1050 return -ENOMEM;
1052 strlcpy(dev->ifalias, alias, len+1);
1053 return len;
1058 * netdev_features_change - device changes features
1059 * @dev: device to cause notification
1061 * Called to indicate a device has changed features.
1063 void netdev_features_change(struct net_device *dev)
1065 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1067 EXPORT_SYMBOL(netdev_features_change);
1070 * netdev_state_change - device changes state
1071 * @dev: device to cause notification
1073 * Called to indicate a device has changed state. This function calls
1074 * the notifier chains for netdev_chain and sends a NEWLINK message
1075 * to the routing socket.
1077 void netdev_state_change(struct net_device *dev)
1079 if (dev->flags & IFF_UP) {
1080 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1081 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1084 EXPORT_SYMBOL(netdev_state_change);
1086 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1088 call_netdevice_notifiers(event, dev);
1090 EXPORT_SYMBOL(netdev_bonding_change);
1093 * dev_load - load a network module
1094 * @net: the applicable net namespace
1095 * @name: name of interface
1097 * If a network interface is not present and the process has suitable
1098 * privileges this function loads the module. If module loading is not
1099 * available in this kernel then it becomes a nop.
1102 void dev_load(struct net *net, const char *name)
1104 struct net_device *dev;
1106 rcu_read_lock();
1107 dev = dev_get_by_name_rcu(net, name);
1108 rcu_read_unlock();
1110 if (!dev && capable(CAP_NET_ADMIN))
1111 request_module("%s", name);
1113 EXPORT_SYMBOL(dev_load);
1116 * dev_open - prepare an interface for use.
1117 * @dev: device to open
1119 * Takes a device from down to up state. The device's private open
1120 * function is invoked and then the multicast lists are loaded. Finally
1121 * the device is moved into the up state and a %NETDEV_UP message is
1122 * sent to the netdev notifier chain.
1124 * Calling this function on an active interface is a nop. On a failure
1125 * a negative errno code is returned.
1127 int dev_open(struct net_device *dev)
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1132 ASSERT_RTNL();
1135 * Is it already up?
1138 if (dev->flags & IFF_UP)
1139 return 0;
1142 * Is it even present?
1144 if (!netif_device_present(dev))
1145 return -ENODEV;
1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1148 ret = notifier_to_errno(ret);
1149 if (ret)
1150 return ret;
1153 * Call device private open method
1155 set_bit(__LINK_STATE_START, &dev->state);
1157 if (ops->ndo_validate_addr)
1158 ret = ops->ndo_validate_addr(dev);
1160 if (!ret && ops->ndo_open)
1161 ret = ops->ndo_open(dev);
1164 * If it went open OK then:
1167 if (ret)
1168 clear_bit(__LINK_STATE_START, &dev->state);
1169 else {
1171 * Set the flags.
1173 dev->flags |= IFF_UP;
1176 * Enable NET_DMA
1178 net_dmaengine_get();
1181 * Initialize multicasting status
1183 dev_set_rx_mode(dev);
1186 * Wakeup transmit queue engine
1188 dev_activate(dev);
1191 * ... and announce new interface.
1193 call_netdevice_notifiers(NETDEV_UP, dev);
1196 return ret;
1198 EXPORT_SYMBOL(dev_open);
1201 * dev_close - shutdown an interface.
1202 * @dev: device to shutdown
1204 * This function moves an active device into down state. A
1205 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1206 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1207 * chain.
1209 int dev_close(struct net_device *dev)
1211 const struct net_device_ops *ops = dev->netdev_ops;
1212 ASSERT_RTNL();
1214 might_sleep();
1216 if (!(dev->flags & IFF_UP))
1217 return 0;
1220 * Tell people we are going down, so that they can
1221 * prepare to death, when device is still operating.
1223 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1225 clear_bit(__LINK_STATE_START, &dev->state);
1227 /* Synchronize to scheduled poll. We cannot touch poll list,
1228 * it can be even on different cpu. So just clear netif_running().
1230 * dev->stop() will invoke napi_disable() on all of it's
1231 * napi_struct instances on this device.
1233 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1235 dev_deactivate(dev);
1238 * Call the device specific close. This cannot fail.
1239 * Only if device is UP
1241 * We allow it to be called even after a DETACH hot-plug
1242 * event.
1244 if (ops->ndo_stop)
1245 ops->ndo_stop(dev);
1248 * Device is now down.
1251 dev->flags &= ~IFF_UP;
1254 * Tell people we are down
1256 call_netdevice_notifiers(NETDEV_DOWN, dev);
1259 * Shutdown NET_DMA
1261 net_dmaengine_put();
1263 return 0;
1265 EXPORT_SYMBOL(dev_close);
1269 * dev_disable_lro - disable Large Receive Offload on a device
1270 * @dev: device
1272 * Disable Large Receive Offload (LRO) on a net device. Must be
1273 * called under RTNL. This is needed if received packets may be
1274 * forwarded to another interface.
1276 void dev_disable_lro(struct net_device *dev)
1278 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1279 dev->ethtool_ops->set_flags) {
1280 u32 flags = dev->ethtool_ops->get_flags(dev);
1281 if (flags & ETH_FLAG_LRO) {
1282 flags &= ~ETH_FLAG_LRO;
1283 dev->ethtool_ops->set_flags(dev, flags);
1286 WARN_ON(dev->features & NETIF_F_LRO);
1288 EXPORT_SYMBOL(dev_disable_lro);
1291 static int dev_boot_phase = 1;
1294 * Device change register/unregister. These are not inline or static
1295 * as we export them to the world.
1299 * register_netdevice_notifier - register a network notifier block
1300 * @nb: notifier
1302 * Register a notifier to be called when network device events occur.
1303 * The notifier passed is linked into the kernel structures and must
1304 * not be reused until it has been unregistered. A negative errno code
1305 * is returned on a failure.
1307 * When registered all registration and up events are replayed
1308 * to the new notifier to allow device to have a race free
1309 * view of the network device list.
1312 int register_netdevice_notifier(struct notifier_block *nb)
1314 struct net_device *dev;
1315 struct net_device *last;
1316 struct net *net;
1317 int err;
1319 rtnl_lock();
1320 err = raw_notifier_chain_register(&netdev_chain, nb);
1321 if (err)
1322 goto unlock;
1323 if (dev_boot_phase)
1324 goto unlock;
1325 for_each_net(net) {
1326 for_each_netdev(net, dev) {
1327 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1328 err = notifier_to_errno(err);
1329 if (err)
1330 goto rollback;
1332 if (!(dev->flags & IFF_UP))
1333 continue;
1335 nb->notifier_call(nb, NETDEV_UP, dev);
1339 unlock:
1340 rtnl_unlock();
1341 return err;
1343 rollback:
1344 last = dev;
1345 for_each_net(net) {
1346 for_each_netdev(net, dev) {
1347 if (dev == last)
1348 break;
1350 if (dev->flags & IFF_UP) {
1351 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1352 nb->notifier_call(nb, NETDEV_DOWN, dev);
1354 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1355 nb->notifier_call(nb, NETDEV_UNREGISTER_PERNET, dev);
1359 raw_notifier_chain_unregister(&netdev_chain, nb);
1360 goto unlock;
1362 EXPORT_SYMBOL(register_netdevice_notifier);
1365 * unregister_netdevice_notifier - unregister a network notifier block
1366 * @nb: notifier
1368 * Unregister a notifier previously registered by
1369 * register_netdevice_notifier(). The notifier is unlinked into the
1370 * kernel structures and may then be reused. A negative errno code
1371 * is returned on a failure.
1374 int unregister_netdevice_notifier(struct notifier_block *nb)
1376 int err;
1378 rtnl_lock();
1379 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1380 rtnl_unlock();
1381 return err;
1383 EXPORT_SYMBOL(unregister_netdevice_notifier);
1386 * call_netdevice_notifiers - call all network notifier blocks
1387 * @val: value passed unmodified to notifier function
1388 * @dev: net_device pointer passed unmodified to notifier function
1390 * Call all network notifier blocks. Parameters and return value
1391 * are as for raw_notifier_call_chain().
1394 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1396 return raw_notifier_call_chain(&netdev_chain, val, dev);
1399 /* When > 0 there are consumers of rx skb time stamps */
1400 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1402 void net_enable_timestamp(void)
1404 atomic_inc(&netstamp_needed);
1406 EXPORT_SYMBOL(net_enable_timestamp);
1408 void net_disable_timestamp(void)
1410 atomic_dec(&netstamp_needed);
1412 EXPORT_SYMBOL(net_disable_timestamp);
1414 static inline void net_timestamp(struct sk_buff *skb)
1416 if (atomic_read(&netstamp_needed))
1417 __net_timestamp(skb);
1418 else
1419 skb->tstamp.tv64 = 0;
1423 * Support routine. Sends outgoing frames to any network
1424 * taps currently in use.
1427 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1429 struct packet_type *ptype;
1431 #ifdef CONFIG_NET_CLS_ACT
1432 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1433 net_timestamp(skb);
1434 #else
1435 net_timestamp(skb);
1436 #endif
1438 rcu_read_lock();
1439 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1440 /* Never send packets back to the socket
1441 * they originated from - MvS (miquels@drinkel.ow.org)
1443 if ((ptype->dev == dev || !ptype->dev) &&
1444 (ptype->af_packet_priv == NULL ||
1445 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1446 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1447 if (!skb2)
1448 break;
1450 /* skb->nh should be correctly
1451 set by sender, so that the second statement is
1452 just protection against buggy protocols.
1454 skb_reset_mac_header(skb2);
1456 if (skb_network_header(skb2) < skb2->data ||
1457 skb2->network_header > skb2->tail) {
1458 if (net_ratelimit())
1459 printk(KERN_CRIT "protocol %04x is "
1460 "buggy, dev %s\n",
1461 skb2->protocol, dev->name);
1462 skb_reset_network_header(skb2);
1465 skb2->transport_header = skb2->network_header;
1466 skb2->pkt_type = PACKET_OUTGOING;
1467 ptype->func(skb2, skb->dev, ptype, skb->dev);
1470 rcu_read_unlock();
1474 static inline void __netif_reschedule(struct Qdisc *q)
1476 struct softnet_data *sd;
1477 unsigned long flags;
1479 local_irq_save(flags);
1480 sd = &__get_cpu_var(softnet_data);
1481 q->next_sched = sd->output_queue;
1482 sd->output_queue = q;
1483 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1484 local_irq_restore(flags);
1487 void __netif_schedule(struct Qdisc *q)
1489 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1490 __netif_reschedule(q);
1492 EXPORT_SYMBOL(__netif_schedule);
1494 void dev_kfree_skb_irq(struct sk_buff *skb)
1496 if (atomic_dec_and_test(&skb->users)) {
1497 struct softnet_data *sd;
1498 unsigned long flags;
1500 local_irq_save(flags);
1501 sd = &__get_cpu_var(softnet_data);
1502 skb->next = sd->completion_queue;
1503 sd->completion_queue = skb;
1504 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1505 local_irq_restore(flags);
1508 EXPORT_SYMBOL(dev_kfree_skb_irq);
1510 void dev_kfree_skb_any(struct sk_buff *skb)
1512 if (in_irq() || irqs_disabled())
1513 dev_kfree_skb_irq(skb);
1514 else
1515 dev_kfree_skb(skb);
1517 EXPORT_SYMBOL(dev_kfree_skb_any);
1521 * netif_device_detach - mark device as removed
1522 * @dev: network device
1524 * Mark device as removed from system and therefore no longer available.
1526 void netif_device_detach(struct net_device *dev)
1528 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1529 netif_running(dev)) {
1530 netif_tx_stop_all_queues(dev);
1533 EXPORT_SYMBOL(netif_device_detach);
1536 * netif_device_attach - mark device as attached
1537 * @dev: network device
1539 * Mark device as attached from system and restart if needed.
1541 void netif_device_attach(struct net_device *dev)
1543 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1544 netif_running(dev)) {
1545 netif_tx_wake_all_queues(dev);
1546 __netdev_watchdog_up(dev);
1549 EXPORT_SYMBOL(netif_device_attach);
1551 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1553 return ((features & NETIF_F_GEN_CSUM) ||
1554 ((features & NETIF_F_IP_CSUM) &&
1555 protocol == htons(ETH_P_IP)) ||
1556 ((features & NETIF_F_IPV6_CSUM) &&
1557 protocol == htons(ETH_P_IPV6)) ||
1558 ((features & NETIF_F_FCOE_CRC) &&
1559 protocol == htons(ETH_P_FCOE)));
1562 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1564 if (can_checksum_protocol(dev->features, skb->protocol))
1565 return true;
1567 if (skb->protocol == htons(ETH_P_8021Q)) {
1568 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1569 if (can_checksum_protocol(dev->features & dev->vlan_features,
1570 veh->h_vlan_encapsulated_proto))
1571 return true;
1574 return false;
1578 * Invalidate hardware checksum when packet is to be mangled, and
1579 * complete checksum manually on outgoing path.
1581 int skb_checksum_help(struct sk_buff *skb)
1583 __wsum csum;
1584 int ret = 0, offset;
1586 if (skb->ip_summed == CHECKSUM_COMPLETE)
1587 goto out_set_summed;
1589 if (unlikely(skb_shinfo(skb)->gso_size)) {
1590 /* Let GSO fix up the checksum. */
1591 goto out_set_summed;
1594 offset = skb->csum_start - skb_headroom(skb);
1595 BUG_ON(offset >= skb_headlen(skb));
1596 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1598 offset += skb->csum_offset;
1599 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1601 if (skb_cloned(skb) &&
1602 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1603 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1604 if (ret)
1605 goto out;
1608 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1609 out_set_summed:
1610 skb->ip_summed = CHECKSUM_NONE;
1611 out:
1612 return ret;
1614 EXPORT_SYMBOL(skb_checksum_help);
1617 * skb_gso_segment - Perform segmentation on skb.
1618 * @skb: buffer to segment
1619 * @features: features for the output path (see dev->features)
1621 * This function segments the given skb and returns a list of segments.
1623 * It may return NULL if the skb requires no segmentation. This is
1624 * only possible when GSO is used for verifying header integrity.
1626 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1628 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1629 struct packet_type *ptype;
1630 __be16 type = skb->protocol;
1631 int err;
1633 skb_reset_mac_header(skb);
1634 skb->mac_len = skb->network_header - skb->mac_header;
1635 __skb_pull(skb, skb->mac_len);
1637 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1638 struct net_device *dev = skb->dev;
1639 struct ethtool_drvinfo info = {};
1641 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1642 dev->ethtool_ops->get_drvinfo(dev, &info);
1644 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1645 "ip_summed=%d",
1646 info.driver, dev ? dev->features : 0L,
1647 skb->sk ? skb->sk->sk_route_caps : 0L,
1648 skb->len, skb->data_len, skb->ip_summed);
1650 if (skb_header_cloned(skb) &&
1651 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1652 return ERR_PTR(err);
1655 rcu_read_lock();
1656 list_for_each_entry_rcu(ptype,
1657 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1658 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1659 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1660 err = ptype->gso_send_check(skb);
1661 segs = ERR_PTR(err);
1662 if (err || skb_gso_ok(skb, features))
1663 break;
1664 __skb_push(skb, (skb->data -
1665 skb_network_header(skb)));
1667 segs = ptype->gso_segment(skb, features);
1668 break;
1671 rcu_read_unlock();
1673 __skb_push(skb, skb->data - skb_mac_header(skb));
1675 return segs;
1677 EXPORT_SYMBOL(skb_gso_segment);
1679 /* Take action when hardware reception checksum errors are detected. */
1680 #ifdef CONFIG_BUG
1681 void netdev_rx_csum_fault(struct net_device *dev)
1683 if (net_ratelimit()) {
1684 printk(KERN_ERR "%s: hw csum failure.\n",
1685 dev ? dev->name : "<unknown>");
1686 dump_stack();
1689 EXPORT_SYMBOL(netdev_rx_csum_fault);
1690 #endif
1692 /* Actually, we should eliminate this check as soon as we know, that:
1693 * 1. IOMMU is present and allows to map all the memory.
1694 * 2. No high memory really exists on this machine.
1697 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1699 #ifdef CONFIG_HIGHMEM
1700 int i;
1702 if (dev->features & NETIF_F_HIGHDMA)
1703 return 0;
1705 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1706 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1707 return 1;
1709 #endif
1710 return 0;
1713 struct dev_gso_cb {
1714 void (*destructor)(struct sk_buff *skb);
1717 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1719 static void dev_gso_skb_destructor(struct sk_buff *skb)
1721 struct dev_gso_cb *cb;
1723 do {
1724 struct sk_buff *nskb = skb->next;
1726 skb->next = nskb->next;
1727 nskb->next = NULL;
1728 kfree_skb(nskb);
1729 } while (skb->next);
1731 cb = DEV_GSO_CB(skb);
1732 if (cb->destructor)
1733 cb->destructor(skb);
1737 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1738 * @skb: buffer to segment
1740 * This function segments the given skb and stores the list of segments
1741 * in skb->next.
1743 static int dev_gso_segment(struct sk_buff *skb)
1745 struct net_device *dev = skb->dev;
1746 struct sk_buff *segs;
1747 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1748 NETIF_F_SG : 0);
1750 segs = skb_gso_segment(skb, features);
1752 /* Verifying header integrity only. */
1753 if (!segs)
1754 return 0;
1756 if (IS_ERR(segs))
1757 return PTR_ERR(segs);
1759 skb->next = segs;
1760 DEV_GSO_CB(skb)->destructor = skb->destructor;
1761 skb->destructor = dev_gso_skb_destructor;
1763 return 0;
1766 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1767 struct netdev_queue *txq)
1769 const struct net_device_ops *ops = dev->netdev_ops;
1770 int rc = NETDEV_TX_OK;
1772 if (likely(!skb->next)) {
1773 if (!list_empty(&ptype_all))
1774 dev_queue_xmit_nit(skb, dev);
1776 if (netif_needs_gso(dev, skb)) {
1777 if (unlikely(dev_gso_segment(skb)))
1778 goto out_kfree_skb;
1779 if (skb->next)
1780 goto gso;
1784 * If device doesnt need skb->dst, release it right now while
1785 * its hot in this cpu cache
1787 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1788 skb_dst_drop(skb);
1790 rc = ops->ndo_start_xmit(skb, dev);
1791 if (rc == NETDEV_TX_OK)
1792 txq_trans_update(txq);
1794 * TODO: if skb_orphan() was called by
1795 * dev->hard_start_xmit() (for example, the unmodified
1796 * igb driver does that; bnx2 doesn't), then
1797 * skb_tx_software_timestamp() will be unable to send
1798 * back the time stamp.
1800 * How can this be prevented? Always create another
1801 * reference to the socket before calling
1802 * dev->hard_start_xmit()? Prevent that skb_orphan()
1803 * does anything in dev->hard_start_xmit() by clearing
1804 * the skb destructor before the call and restoring it
1805 * afterwards, then doing the skb_orphan() ourselves?
1807 return rc;
1810 gso:
1811 do {
1812 struct sk_buff *nskb = skb->next;
1814 skb->next = nskb->next;
1815 nskb->next = NULL;
1816 rc = ops->ndo_start_xmit(nskb, dev);
1817 if (unlikely(rc != NETDEV_TX_OK)) {
1818 if (rc & ~NETDEV_TX_MASK)
1819 goto out_kfree_gso_skb;
1820 nskb->next = skb->next;
1821 skb->next = nskb;
1822 return rc;
1824 txq_trans_update(txq);
1825 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1826 return NETDEV_TX_BUSY;
1827 } while (skb->next);
1829 out_kfree_gso_skb:
1830 if (likely(skb->next == NULL))
1831 skb->destructor = DEV_GSO_CB(skb)->destructor;
1832 out_kfree_skb:
1833 kfree_skb(skb);
1834 return rc;
1837 static u32 skb_tx_hashrnd;
1839 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1841 u32 hash;
1843 if (skb_rx_queue_recorded(skb)) {
1844 hash = skb_get_rx_queue(skb);
1845 while (unlikely(hash >= dev->real_num_tx_queues))
1846 hash -= dev->real_num_tx_queues;
1847 return hash;
1850 if (skb->sk && skb->sk->sk_hash)
1851 hash = skb->sk->sk_hash;
1852 else
1853 hash = skb->protocol;
1855 hash = jhash_1word(hash, skb_tx_hashrnd);
1857 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1859 EXPORT_SYMBOL(skb_tx_hash);
1861 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1863 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1864 if (net_ratelimit()) {
1865 WARN(1, "%s selects TX queue %d, but "
1866 "real number of TX queues is %d\n",
1867 dev->name, queue_index,
1868 dev->real_num_tx_queues);
1870 return 0;
1872 return queue_index;
1875 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1876 struct sk_buff *skb)
1878 u16 queue_index;
1879 struct sock *sk = skb->sk;
1881 if (sk_tx_queue_recorded(sk)) {
1882 queue_index = sk_tx_queue_get(sk);
1883 } else {
1884 const struct net_device_ops *ops = dev->netdev_ops;
1886 if (ops->ndo_select_queue) {
1887 queue_index = ops->ndo_select_queue(dev, skb);
1888 queue_index = dev_cap_txqueue(dev, queue_index);
1889 } else {
1890 queue_index = 0;
1891 if (dev->real_num_tx_queues > 1)
1892 queue_index = skb_tx_hash(dev, skb);
1894 if (sk && sk->sk_dst_cache)
1895 sk_tx_queue_set(sk, queue_index);
1899 skb_set_queue_mapping(skb, queue_index);
1900 return netdev_get_tx_queue(dev, queue_index);
1903 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1904 struct net_device *dev,
1905 struct netdev_queue *txq)
1907 spinlock_t *root_lock = qdisc_lock(q);
1908 int rc;
1910 spin_lock(root_lock);
1911 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1912 kfree_skb(skb);
1913 rc = NET_XMIT_DROP;
1914 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1915 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1917 * This is a work-conserving queue; there are no old skbs
1918 * waiting to be sent out; and the qdisc is not running -
1919 * xmit the skb directly.
1921 __qdisc_update_bstats(q, skb->len);
1922 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1923 __qdisc_run(q);
1924 else
1925 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1927 rc = NET_XMIT_SUCCESS;
1928 } else {
1929 rc = qdisc_enqueue_root(skb, q);
1930 qdisc_run(q);
1932 spin_unlock(root_lock);
1934 return rc;
1938 * dev_queue_xmit - transmit a buffer
1939 * @skb: buffer to transmit
1941 * Queue a buffer for transmission to a network device. The caller must
1942 * have set the device and priority and built the buffer before calling
1943 * this function. The function can be called from an interrupt.
1945 * A negative errno code is returned on a failure. A success does not
1946 * guarantee the frame will be transmitted as it may be dropped due
1947 * to congestion or traffic shaping.
1949 * -----------------------------------------------------------------------------------
1950 * I notice this method can also return errors from the queue disciplines,
1951 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1952 * be positive.
1954 * Regardless of the return value, the skb is consumed, so it is currently
1955 * difficult to retry a send to this method. (You can bump the ref count
1956 * before sending to hold a reference for retry if you are careful.)
1958 * When calling this method, interrupts MUST be enabled. This is because
1959 * the BH enable code must have IRQs enabled so that it will not deadlock.
1960 * --BLG
1962 int dev_queue_xmit(struct sk_buff *skb)
1964 struct net_device *dev = skb->dev;
1965 struct netdev_queue *txq;
1966 struct Qdisc *q;
1967 int rc = -ENOMEM;
1969 /* GSO will handle the following emulations directly. */
1970 if (netif_needs_gso(dev, skb))
1971 goto gso;
1973 if (skb_has_frags(skb) &&
1974 !(dev->features & NETIF_F_FRAGLIST) &&
1975 __skb_linearize(skb))
1976 goto out_kfree_skb;
1978 /* Fragmented skb is linearized if device does not support SG,
1979 * or if at least one of fragments is in highmem and device
1980 * does not support DMA from it.
1982 if (skb_shinfo(skb)->nr_frags &&
1983 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1984 __skb_linearize(skb))
1985 goto out_kfree_skb;
1987 /* If packet is not checksummed and device does not support
1988 * checksumming for this protocol, complete checksumming here.
1990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1991 skb_set_transport_header(skb, skb->csum_start -
1992 skb_headroom(skb));
1993 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1994 goto out_kfree_skb;
1997 gso:
1998 /* Disable soft irqs for various locks below. Also
1999 * stops preemption for RCU.
2001 rcu_read_lock_bh();
2003 txq = dev_pick_tx(dev, skb);
2004 q = rcu_dereference(txq->qdisc);
2006 #ifdef CONFIG_NET_CLS_ACT
2007 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2008 #endif
2009 if (q->enqueue) {
2010 rc = __dev_xmit_skb(skb, q, dev, txq);
2011 goto out;
2014 /* The device has no queue. Common case for software devices:
2015 loopback, all the sorts of tunnels...
2017 Really, it is unlikely that netif_tx_lock protection is necessary
2018 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2019 counters.)
2020 However, it is possible, that they rely on protection
2021 made by us here.
2023 Check this and shot the lock. It is not prone from deadlocks.
2024 Either shot noqueue qdisc, it is even simpler 8)
2026 if (dev->flags & IFF_UP) {
2027 int cpu = smp_processor_id(); /* ok because BHs are off */
2029 if (txq->xmit_lock_owner != cpu) {
2031 HARD_TX_LOCK(dev, txq, cpu);
2033 if (!netif_tx_queue_stopped(txq)) {
2034 rc = dev_hard_start_xmit(skb, dev, txq);
2035 if (dev_xmit_complete(rc)) {
2036 HARD_TX_UNLOCK(dev, txq);
2037 goto out;
2040 HARD_TX_UNLOCK(dev, txq);
2041 if (net_ratelimit())
2042 printk(KERN_CRIT "Virtual device %s asks to "
2043 "queue packet!\n", dev->name);
2044 } else {
2045 /* Recursion is detected! It is possible,
2046 * unfortunately */
2047 if (net_ratelimit())
2048 printk(KERN_CRIT "Dead loop on virtual device "
2049 "%s, fix it urgently!\n", dev->name);
2053 rc = -ENETDOWN;
2054 rcu_read_unlock_bh();
2056 out_kfree_skb:
2057 kfree_skb(skb);
2058 return rc;
2059 out:
2060 rcu_read_unlock_bh();
2061 return rc;
2063 EXPORT_SYMBOL(dev_queue_xmit);
2066 /*=======================================================================
2067 Receiver routines
2068 =======================================================================*/
2070 int netdev_max_backlog __read_mostly = 1000;
2071 int netdev_budget __read_mostly = 300;
2072 int weight_p __read_mostly = 64; /* old backlog weight */
2074 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2078 * netif_rx - post buffer to the network code
2079 * @skb: buffer to post
2081 * This function receives a packet from a device driver and queues it for
2082 * the upper (protocol) levels to process. It always succeeds. The buffer
2083 * may be dropped during processing for congestion control or by the
2084 * protocol layers.
2086 * return values:
2087 * NET_RX_SUCCESS (no congestion)
2088 * NET_RX_DROP (packet was dropped)
2092 int netif_rx(struct sk_buff *skb)
2094 struct softnet_data *queue;
2095 unsigned long flags;
2097 /* if netpoll wants it, pretend we never saw it */
2098 if (netpoll_rx(skb))
2099 return NET_RX_DROP;
2101 if (!skb->tstamp.tv64)
2102 net_timestamp(skb);
2105 * The code is rearranged so that the path is the most
2106 * short when CPU is congested, but is still operating.
2108 local_irq_save(flags);
2109 queue = &__get_cpu_var(softnet_data);
2111 __get_cpu_var(netdev_rx_stat).total++;
2112 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2113 if (queue->input_pkt_queue.qlen) {
2114 enqueue:
2115 __skb_queue_tail(&queue->input_pkt_queue, skb);
2116 local_irq_restore(flags);
2117 return NET_RX_SUCCESS;
2120 napi_schedule(&queue->backlog);
2121 goto enqueue;
2124 __get_cpu_var(netdev_rx_stat).dropped++;
2125 local_irq_restore(flags);
2127 kfree_skb(skb);
2128 return NET_RX_DROP;
2130 EXPORT_SYMBOL(netif_rx);
2132 int netif_rx_ni(struct sk_buff *skb)
2134 int err;
2136 preempt_disable();
2137 err = netif_rx(skb);
2138 if (local_softirq_pending())
2139 do_softirq();
2140 preempt_enable();
2142 return err;
2144 EXPORT_SYMBOL(netif_rx_ni);
2146 static void net_tx_action(struct softirq_action *h)
2148 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2150 if (sd->completion_queue) {
2151 struct sk_buff *clist;
2153 local_irq_disable();
2154 clist = sd->completion_queue;
2155 sd->completion_queue = NULL;
2156 local_irq_enable();
2158 while (clist) {
2159 struct sk_buff *skb = clist;
2160 clist = clist->next;
2162 WARN_ON(atomic_read(&skb->users));
2163 __kfree_skb(skb);
2167 if (sd->output_queue) {
2168 struct Qdisc *head;
2170 local_irq_disable();
2171 head = sd->output_queue;
2172 sd->output_queue = NULL;
2173 local_irq_enable();
2175 while (head) {
2176 struct Qdisc *q = head;
2177 spinlock_t *root_lock;
2179 head = head->next_sched;
2181 root_lock = qdisc_lock(q);
2182 if (spin_trylock(root_lock)) {
2183 smp_mb__before_clear_bit();
2184 clear_bit(__QDISC_STATE_SCHED,
2185 &q->state);
2186 qdisc_run(q);
2187 spin_unlock(root_lock);
2188 } else {
2189 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2190 &q->state)) {
2191 __netif_reschedule(q);
2192 } else {
2193 smp_mb__before_clear_bit();
2194 clear_bit(__QDISC_STATE_SCHED,
2195 &q->state);
2202 static inline int deliver_skb(struct sk_buff *skb,
2203 struct packet_type *pt_prev,
2204 struct net_device *orig_dev)
2206 atomic_inc(&skb->users);
2207 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2210 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2212 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2213 /* This hook is defined here for ATM LANE */
2214 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2215 unsigned char *addr) __read_mostly;
2216 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2217 #endif
2220 * If bridge module is loaded call bridging hook.
2221 * returns NULL if packet was consumed.
2223 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2224 struct sk_buff *skb) __read_mostly;
2225 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2227 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2228 struct packet_type **pt_prev, int *ret,
2229 struct net_device *orig_dev)
2231 struct net_bridge_port *port;
2233 if (skb->pkt_type == PACKET_LOOPBACK ||
2234 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2235 return skb;
2237 if (*pt_prev) {
2238 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2239 *pt_prev = NULL;
2242 return br_handle_frame_hook(port, skb);
2244 #else
2245 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2246 #endif
2248 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2249 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2250 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2252 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2253 struct packet_type **pt_prev,
2254 int *ret,
2255 struct net_device *orig_dev)
2257 if (skb->dev->macvlan_port == NULL)
2258 return skb;
2260 if (*pt_prev) {
2261 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2262 *pt_prev = NULL;
2264 return macvlan_handle_frame_hook(skb);
2266 #else
2267 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2268 #endif
2270 #ifdef CONFIG_NET_CLS_ACT
2271 /* TODO: Maybe we should just force sch_ingress to be compiled in
2272 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2273 * a compare and 2 stores extra right now if we dont have it on
2274 * but have CONFIG_NET_CLS_ACT
2275 * NOTE: This doesnt stop any functionality; if you dont have
2276 * the ingress scheduler, you just cant add policies on ingress.
2279 static int ing_filter(struct sk_buff *skb)
2281 struct net_device *dev = skb->dev;
2282 u32 ttl = G_TC_RTTL(skb->tc_verd);
2283 struct netdev_queue *rxq;
2284 int result = TC_ACT_OK;
2285 struct Qdisc *q;
2287 if (MAX_RED_LOOP < ttl++) {
2288 printk(KERN_WARNING
2289 "Redir loop detected Dropping packet (%d->%d)\n",
2290 skb->skb_iif, dev->ifindex);
2291 return TC_ACT_SHOT;
2294 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2295 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2297 rxq = &dev->rx_queue;
2299 q = rxq->qdisc;
2300 if (q != &noop_qdisc) {
2301 spin_lock(qdisc_lock(q));
2302 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2303 result = qdisc_enqueue_root(skb, q);
2304 spin_unlock(qdisc_lock(q));
2307 return result;
2310 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2311 struct packet_type **pt_prev,
2312 int *ret, struct net_device *orig_dev)
2314 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2315 goto out;
2317 if (*pt_prev) {
2318 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2319 *pt_prev = NULL;
2320 } else {
2321 /* Huh? Why does turning on AF_PACKET affect this? */
2322 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2325 switch (ing_filter(skb)) {
2326 case TC_ACT_SHOT:
2327 case TC_ACT_STOLEN:
2328 kfree_skb(skb);
2329 return NULL;
2332 out:
2333 skb->tc_verd = 0;
2334 return skb;
2336 #endif
2339 * netif_nit_deliver - deliver received packets to network taps
2340 * @skb: buffer
2342 * This function is used to deliver incoming packets to network
2343 * taps. It should be used when the normal netif_receive_skb path
2344 * is bypassed, for example because of VLAN acceleration.
2346 void netif_nit_deliver(struct sk_buff *skb)
2348 struct packet_type *ptype;
2350 if (list_empty(&ptype_all))
2351 return;
2353 skb_reset_network_header(skb);
2354 skb_reset_transport_header(skb);
2355 skb->mac_len = skb->network_header - skb->mac_header;
2357 rcu_read_lock();
2358 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2359 if (!ptype->dev || ptype->dev == skb->dev)
2360 deliver_skb(skb, ptype, skb->dev);
2362 rcu_read_unlock();
2366 * netif_receive_skb - process receive buffer from network
2367 * @skb: buffer to process
2369 * netif_receive_skb() is the main receive data processing function.
2370 * It always succeeds. The buffer may be dropped during processing
2371 * for congestion control or by the protocol layers.
2373 * This function may only be called from softirq context and interrupts
2374 * should be enabled.
2376 * Return values (usually ignored):
2377 * NET_RX_SUCCESS: no congestion
2378 * NET_RX_DROP: packet was dropped
2380 int netif_receive_skb(struct sk_buff *skb)
2382 struct packet_type *ptype, *pt_prev;
2383 struct net_device *orig_dev;
2384 struct net_device *null_or_orig;
2385 int ret = NET_RX_DROP;
2386 __be16 type;
2388 if (!skb->tstamp.tv64)
2389 net_timestamp(skb);
2391 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2392 return NET_RX_SUCCESS;
2394 /* if we've gotten here through NAPI, check netpoll */
2395 if (netpoll_receive_skb(skb))
2396 return NET_RX_DROP;
2398 if (!skb->skb_iif)
2399 skb->skb_iif = skb->dev->ifindex;
2401 null_or_orig = NULL;
2402 orig_dev = skb->dev;
2403 if (orig_dev->master) {
2404 if (skb_bond_should_drop(skb))
2405 null_or_orig = orig_dev; /* deliver only exact match */
2406 else
2407 skb->dev = orig_dev->master;
2410 __get_cpu_var(netdev_rx_stat).total++;
2412 skb_reset_network_header(skb);
2413 skb_reset_transport_header(skb);
2414 skb->mac_len = skb->network_header - skb->mac_header;
2416 pt_prev = NULL;
2418 rcu_read_lock();
2420 #ifdef CONFIG_NET_CLS_ACT
2421 if (skb->tc_verd & TC_NCLS) {
2422 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2423 goto ncls;
2425 #endif
2427 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2428 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2429 ptype->dev == orig_dev) {
2430 if (pt_prev)
2431 ret = deliver_skb(skb, pt_prev, orig_dev);
2432 pt_prev = ptype;
2436 #ifdef CONFIG_NET_CLS_ACT
2437 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2438 if (!skb)
2439 goto out;
2440 ncls:
2441 #endif
2443 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2444 if (!skb)
2445 goto out;
2446 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2447 if (!skb)
2448 goto out;
2450 type = skb->protocol;
2451 list_for_each_entry_rcu(ptype,
2452 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2453 if (ptype->type == type &&
2454 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2455 ptype->dev == orig_dev)) {
2456 if (pt_prev)
2457 ret = deliver_skb(skb, pt_prev, orig_dev);
2458 pt_prev = ptype;
2462 if (pt_prev) {
2463 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2464 } else {
2465 kfree_skb(skb);
2466 /* Jamal, now you will not able to escape explaining
2467 * me how you were going to use this. :-)
2469 ret = NET_RX_DROP;
2472 out:
2473 rcu_read_unlock();
2474 return ret;
2476 EXPORT_SYMBOL(netif_receive_skb);
2478 /* Network device is going away, flush any packets still pending */
2479 static void flush_backlog(void *arg)
2481 struct net_device *dev = arg;
2482 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2483 struct sk_buff *skb, *tmp;
2485 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2486 if (skb->dev == dev) {
2487 __skb_unlink(skb, &queue->input_pkt_queue);
2488 kfree_skb(skb);
2492 static int napi_gro_complete(struct sk_buff *skb)
2494 struct packet_type *ptype;
2495 __be16 type = skb->protocol;
2496 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2497 int err = -ENOENT;
2499 if (NAPI_GRO_CB(skb)->count == 1) {
2500 skb_shinfo(skb)->gso_size = 0;
2501 goto out;
2504 rcu_read_lock();
2505 list_for_each_entry_rcu(ptype, head, list) {
2506 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2507 continue;
2509 err = ptype->gro_complete(skb);
2510 break;
2512 rcu_read_unlock();
2514 if (err) {
2515 WARN_ON(&ptype->list == head);
2516 kfree_skb(skb);
2517 return NET_RX_SUCCESS;
2520 out:
2521 return netif_receive_skb(skb);
2524 void napi_gro_flush(struct napi_struct *napi)
2526 struct sk_buff *skb, *next;
2528 for (skb = napi->gro_list; skb; skb = next) {
2529 next = skb->next;
2530 skb->next = NULL;
2531 napi_gro_complete(skb);
2534 napi->gro_count = 0;
2535 napi->gro_list = NULL;
2537 EXPORT_SYMBOL(napi_gro_flush);
2539 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2541 struct sk_buff **pp = NULL;
2542 struct packet_type *ptype;
2543 __be16 type = skb->protocol;
2544 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2545 int same_flow;
2546 int mac_len;
2547 enum gro_result ret;
2549 if (!(skb->dev->features & NETIF_F_GRO))
2550 goto normal;
2552 if (skb_is_gso(skb) || skb_has_frags(skb))
2553 goto normal;
2555 rcu_read_lock();
2556 list_for_each_entry_rcu(ptype, head, list) {
2557 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2558 continue;
2560 skb_set_network_header(skb, skb_gro_offset(skb));
2561 mac_len = skb->network_header - skb->mac_header;
2562 skb->mac_len = mac_len;
2563 NAPI_GRO_CB(skb)->same_flow = 0;
2564 NAPI_GRO_CB(skb)->flush = 0;
2565 NAPI_GRO_CB(skb)->free = 0;
2567 pp = ptype->gro_receive(&napi->gro_list, skb);
2568 break;
2570 rcu_read_unlock();
2572 if (&ptype->list == head)
2573 goto normal;
2575 same_flow = NAPI_GRO_CB(skb)->same_flow;
2576 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2578 if (pp) {
2579 struct sk_buff *nskb = *pp;
2581 *pp = nskb->next;
2582 nskb->next = NULL;
2583 napi_gro_complete(nskb);
2584 napi->gro_count--;
2587 if (same_flow)
2588 goto ok;
2590 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2591 goto normal;
2593 napi->gro_count++;
2594 NAPI_GRO_CB(skb)->count = 1;
2595 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2596 skb->next = napi->gro_list;
2597 napi->gro_list = skb;
2598 ret = GRO_HELD;
2600 pull:
2601 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2602 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2604 BUG_ON(skb->end - skb->tail < grow);
2606 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2608 skb->tail += grow;
2609 skb->data_len -= grow;
2611 skb_shinfo(skb)->frags[0].page_offset += grow;
2612 skb_shinfo(skb)->frags[0].size -= grow;
2614 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2615 put_page(skb_shinfo(skb)->frags[0].page);
2616 memmove(skb_shinfo(skb)->frags,
2617 skb_shinfo(skb)->frags + 1,
2618 --skb_shinfo(skb)->nr_frags);
2623 return ret;
2625 normal:
2626 ret = GRO_NORMAL;
2627 goto pull;
2629 EXPORT_SYMBOL(dev_gro_receive);
2631 static gro_result_t
2632 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2634 struct sk_buff *p;
2636 if (netpoll_rx_on(skb))
2637 return GRO_NORMAL;
2639 for (p = napi->gro_list; p; p = p->next) {
2640 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2641 && !compare_ether_header(skb_mac_header(p),
2642 skb_gro_mac_header(skb));
2643 NAPI_GRO_CB(p)->flush = 0;
2646 return dev_gro_receive(napi, skb);
2649 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2651 switch (ret) {
2652 case GRO_NORMAL:
2653 if (netif_receive_skb(skb))
2654 ret = GRO_DROP;
2655 break;
2657 case GRO_DROP:
2658 case GRO_MERGED_FREE:
2659 kfree_skb(skb);
2660 break;
2662 case GRO_HELD:
2663 case GRO_MERGED:
2664 break;
2667 return ret;
2669 EXPORT_SYMBOL(napi_skb_finish);
2671 void skb_gro_reset_offset(struct sk_buff *skb)
2673 NAPI_GRO_CB(skb)->data_offset = 0;
2674 NAPI_GRO_CB(skb)->frag0 = NULL;
2675 NAPI_GRO_CB(skb)->frag0_len = 0;
2677 if (skb->mac_header == skb->tail &&
2678 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2679 NAPI_GRO_CB(skb)->frag0 =
2680 page_address(skb_shinfo(skb)->frags[0].page) +
2681 skb_shinfo(skb)->frags[0].page_offset;
2682 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2685 EXPORT_SYMBOL(skb_gro_reset_offset);
2687 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2689 skb_gro_reset_offset(skb);
2691 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2693 EXPORT_SYMBOL(napi_gro_receive);
2695 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2697 __skb_pull(skb, skb_headlen(skb));
2698 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2700 napi->skb = skb;
2702 EXPORT_SYMBOL(napi_reuse_skb);
2704 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2706 struct sk_buff *skb = napi->skb;
2708 if (!skb) {
2709 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2710 if (skb)
2711 napi->skb = skb;
2713 return skb;
2715 EXPORT_SYMBOL(napi_get_frags);
2717 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2718 gro_result_t ret)
2720 switch (ret) {
2721 case GRO_NORMAL:
2722 case GRO_HELD:
2723 skb->protocol = eth_type_trans(skb, napi->dev);
2725 if (ret == GRO_HELD)
2726 skb_gro_pull(skb, -ETH_HLEN);
2727 else if (netif_receive_skb(skb))
2728 ret = GRO_DROP;
2729 break;
2731 case GRO_DROP:
2732 case GRO_MERGED_FREE:
2733 napi_reuse_skb(napi, skb);
2734 break;
2736 case GRO_MERGED:
2737 break;
2740 return ret;
2742 EXPORT_SYMBOL(napi_frags_finish);
2744 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2746 struct sk_buff *skb = napi->skb;
2747 struct ethhdr *eth;
2748 unsigned int hlen;
2749 unsigned int off;
2751 napi->skb = NULL;
2753 skb_reset_mac_header(skb);
2754 skb_gro_reset_offset(skb);
2756 off = skb_gro_offset(skb);
2757 hlen = off + sizeof(*eth);
2758 eth = skb_gro_header_fast(skb, off);
2759 if (skb_gro_header_hard(skb, hlen)) {
2760 eth = skb_gro_header_slow(skb, hlen, off);
2761 if (unlikely(!eth)) {
2762 napi_reuse_skb(napi, skb);
2763 skb = NULL;
2764 goto out;
2768 skb_gro_pull(skb, sizeof(*eth));
2771 * This works because the only protocols we care about don't require
2772 * special handling. We'll fix it up properly at the end.
2774 skb->protocol = eth->h_proto;
2776 out:
2777 return skb;
2779 EXPORT_SYMBOL(napi_frags_skb);
2781 gro_result_t napi_gro_frags(struct napi_struct *napi)
2783 struct sk_buff *skb = napi_frags_skb(napi);
2785 if (!skb)
2786 return GRO_DROP;
2788 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2790 EXPORT_SYMBOL(napi_gro_frags);
2792 static int process_backlog(struct napi_struct *napi, int quota)
2794 int work = 0;
2795 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2796 unsigned long start_time = jiffies;
2798 napi->weight = weight_p;
2799 do {
2800 struct sk_buff *skb;
2802 local_irq_disable();
2803 skb = __skb_dequeue(&queue->input_pkt_queue);
2804 if (!skb) {
2805 __napi_complete(napi);
2806 local_irq_enable();
2807 break;
2809 local_irq_enable();
2811 netif_receive_skb(skb);
2812 } while (++work < quota && jiffies == start_time);
2814 return work;
2818 * __napi_schedule - schedule for receive
2819 * @n: entry to schedule
2821 * The entry's receive function will be scheduled to run
2823 void __napi_schedule(struct napi_struct *n)
2825 unsigned long flags;
2827 local_irq_save(flags);
2828 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2829 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2830 local_irq_restore(flags);
2832 EXPORT_SYMBOL(__napi_schedule);
2834 void __napi_complete(struct napi_struct *n)
2836 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2837 BUG_ON(n->gro_list);
2839 list_del(&n->poll_list);
2840 smp_mb__before_clear_bit();
2841 clear_bit(NAPI_STATE_SCHED, &n->state);
2843 EXPORT_SYMBOL(__napi_complete);
2845 void napi_complete(struct napi_struct *n)
2847 unsigned long flags;
2850 * don't let napi dequeue from the cpu poll list
2851 * just in case its running on a different cpu
2853 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2854 return;
2856 napi_gro_flush(n);
2857 local_irq_save(flags);
2858 __napi_complete(n);
2859 local_irq_restore(flags);
2861 EXPORT_SYMBOL(napi_complete);
2863 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2864 int (*poll)(struct napi_struct *, int), int weight)
2866 INIT_LIST_HEAD(&napi->poll_list);
2867 napi->gro_count = 0;
2868 napi->gro_list = NULL;
2869 napi->skb = NULL;
2870 napi->poll = poll;
2871 napi->weight = weight;
2872 list_add(&napi->dev_list, &dev->napi_list);
2873 napi->dev = dev;
2874 #ifdef CONFIG_NETPOLL
2875 spin_lock_init(&napi->poll_lock);
2876 napi->poll_owner = -1;
2877 #endif
2878 set_bit(NAPI_STATE_SCHED, &napi->state);
2880 EXPORT_SYMBOL(netif_napi_add);
2882 void netif_napi_del(struct napi_struct *napi)
2884 struct sk_buff *skb, *next;
2886 list_del_init(&napi->dev_list);
2887 napi_free_frags(napi);
2889 for (skb = napi->gro_list; skb; skb = next) {
2890 next = skb->next;
2891 skb->next = NULL;
2892 kfree_skb(skb);
2895 napi->gro_list = NULL;
2896 napi->gro_count = 0;
2898 EXPORT_SYMBOL(netif_napi_del);
2901 static void net_rx_action(struct softirq_action *h)
2903 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2904 unsigned long time_limit = jiffies + 2;
2905 int budget = netdev_budget;
2906 void *have;
2908 local_irq_disable();
2910 while (!list_empty(list)) {
2911 struct napi_struct *n;
2912 int work, weight;
2914 /* If softirq window is exhuasted then punt.
2915 * Allow this to run for 2 jiffies since which will allow
2916 * an average latency of 1.5/HZ.
2918 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2919 goto softnet_break;
2921 local_irq_enable();
2923 /* Even though interrupts have been re-enabled, this
2924 * access is safe because interrupts can only add new
2925 * entries to the tail of this list, and only ->poll()
2926 * calls can remove this head entry from the list.
2928 n = list_entry(list->next, struct napi_struct, poll_list);
2930 have = netpoll_poll_lock(n);
2932 weight = n->weight;
2934 /* This NAPI_STATE_SCHED test is for avoiding a race
2935 * with netpoll's poll_napi(). Only the entity which
2936 * obtains the lock and sees NAPI_STATE_SCHED set will
2937 * actually make the ->poll() call. Therefore we avoid
2938 * accidently calling ->poll() when NAPI is not scheduled.
2940 work = 0;
2941 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2942 work = n->poll(n, weight);
2943 trace_napi_poll(n);
2946 WARN_ON_ONCE(work > weight);
2948 budget -= work;
2950 local_irq_disable();
2952 /* Drivers must not modify the NAPI state if they
2953 * consume the entire weight. In such cases this code
2954 * still "owns" the NAPI instance and therefore can
2955 * move the instance around on the list at-will.
2957 if (unlikely(work == weight)) {
2958 if (unlikely(napi_disable_pending(n))) {
2959 local_irq_enable();
2960 napi_complete(n);
2961 local_irq_disable();
2962 } else
2963 list_move_tail(&n->poll_list, list);
2966 netpoll_poll_unlock(have);
2968 out:
2969 local_irq_enable();
2971 #ifdef CONFIG_NET_DMA
2973 * There may not be any more sk_buffs coming right now, so push
2974 * any pending DMA copies to hardware
2976 dma_issue_pending_all();
2977 #endif
2979 return;
2981 softnet_break:
2982 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2983 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2984 goto out;
2987 static gifconf_func_t *gifconf_list[NPROTO];
2990 * register_gifconf - register a SIOCGIF handler
2991 * @family: Address family
2992 * @gifconf: Function handler
2994 * Register protocol dependent address dumping routines. The handler
2995 * that is passed must not be freed or reused until it has been replaced
2996 * by another handler.
2998 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3000 if (family >= NPROTO)
3001 return -EINVAL;
3002 gifconf_list[family] = gifconf;
3003 return 0;
3005 EXPORT_SYMBOL(register_gifconf);
3009 * Map an interface index to its name (SIOCGIFNAME)
3013 * We need this ioctl for efficient implementation of the
3014 * if_indextoname() function required by the IPv6 API. Without
3015 * it, we would have to search all the interfaces to find a
3016 * match. --pb
3019 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3021 struct net_device *dev;
3022 struct ifreq ifr;
3025 * Fetch the caller's info block.
3028 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3029 return -EFAULT;
3031 rcu_read_lock();
3032 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3033 if (!dev) {
3034 rcu_read_unlock();
3035 return -ENODEV;
3038 strcpy(ifr.ifr_name, dev->name);
3039 rcu_read_unlock();
3041 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3042 return -EFAULT;
3043 return 0;
3047 * Perform a SIOCGIFCONF call. This structure will change
3048 * size eventually, and there is nothing I can do about it.
3049 * Thus we will need a 'compatibility mode'.
3052 static int dev_ifconf(struct net *net, char __user *arg)
3054 struct ifconf ifc;
3055 struct net_device *dev;
3056 char __user *pos;
3057 int len;
3058 int total;
3059 int i;
3062 * Fetch the caller's info block.
3065 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3066 return -EFAULT;
3068 pos = ifc.ifc_buf;
3069 len = ifc.ifc_len;
3072 * Loop over the interfaces, and write an info block for each.
3075 total = 0;
3076 for_each_netdev(net, dev) {
3077 for (i = 0; i < NPROTO; i++) {
3078 if (gifconf_list[i]) {
3079 int done;
3080 if (!pos)
3081 done = gifconf_list[i](dev, NULL, 0);
3082 else
3083 done = gifconf_list[i](dev, pos + total,
3084 len - total);
3085 if (done < 0)
3086 return -EFAULT;
3087 total += done;
3093 * All done. Write the updated control block back to the caller.
3095 ifc.ifc_len = total;
3098 * Both BSD and Solaris return 0 here, so we do too.
3100 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3103 #ifdef CONFIG_PROC_FS
3105 * This is invoked by the /proc filesystem handler to display a device
3106 * in detail.
3108 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3109 __acquires(RCU)
3111 struct net *net = seq_file_net(seq);
3112 loff_t off;
3113 struct net_device *dev;
3115 rcu_read_lock();
3116 if (!*pos)
3117 return SEQ_START_TOKEN;
3119 off = 1;
3120 for_each_netdev_rcu(net, dev)
3121 if (off++ == *pos)
3122 return dev;
3124 return NULL;
3127 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3129 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3130 first_net_device(seq_file_net(seq)) :
3131 next_net_device((struct net_device *)v);
3133 ++*pos;
3134 return rcu_dereference(dev);
3137 void dev_seq_stop(struct seq_file *seq, void *v)
3138 __releases(RCU)
3140 rcu_read_unlock();
3143 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3145 const struct net_device_stats *stats = dev_get_stats(dev);
3147 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3148 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3149 dev->name, stats->rx_bytes, stats->rx_packets,
3150 stats->rx_errors,
3151 stats->rx_dropped + stats->rx_missed_errors,
3152 stats->rx_fifo_errors,
3153 stats->rx_length_errors + stats->rx_over_errors +
3154 stats->rx_crc_errors + stats->rx_frame_errors,
3155 stats->rx_compressed, stats->multicast,
3156 stats->tx_bytes, stats->tx_packets,
3157 stats->tx_errors, stats->tx_dropped,
3158 stats->tx_fifo_errors, stats->collisions,
3159 stats->tx_carrier_errors +
3160 stats->tx_aborted_errors +
3161 stats->tx_window_errors +
3162 stats->tx_heartbeat_errors,
3163 stats->tx_compressed);
3167 * Called from the PROCfs module. This now uses the new arbitrary sized
3168 * /proc/net interface to create /proc/net/dev
3170 static int dev_seq_show(struct seq_file *seq, void *v)
3172 if (v == SEQ_START_TOKEN)
3173 seq_puts(seq, "Inter-| Receive "
3174 " | Transmit\n"
3175 " face |bytes packets errs drop fifo frame "
3176 "compressed multicast|bytes packets errs "
3177 "drop fifo colls carrier compressed\n");
3178 else
3179 dev_seq_printf_stats(seq, v);
3180 return 0;
3183 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3185 struct netif_rx_stats *rc = NULL;
3187 while (*pos < nr_cpu_ids)
3188 if (cpu_online(*pos)) {
3189 rc = &per_cpu(netdev_rx_stat, *pos);
3190 break;
3191 } else
3192 ++*pos;
3193 return rc;
3196 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3198 return softnet_get_online(pos);
3201 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3203 ++*pos;
3204 return softnet_get_online(pos);
3207 static void softnet_seq_stop(struct seq_file *seq, void *v)
3211 static int softnet_seq_show(struct seq_file *seq, void *v)
3213 struct netif_rx_stats *s = v;
3215 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3216 s->total, s->dropped, s->time_squeeze, 0,
3217 0, 0, 0, 0, /* was fastroute */
3218 s->cpu_collision);
3219 return 0;
3222 static const struct seq_operations dev_seq_ops = {
3223 .start = dev_seq_start,
3224 .next = dev_seq_next,
3225 .stop = dev_seq_stop,
3226 .show = dev_seq_show,
3229 static int dev_seq_open(struct inode *inode, struct file *file)
3231 return seq_open_net(inode, file, &dev_seq_ops,
3232 sizeof(struct seq_net_private));
3235 static const struct file_operations dev_seq_fops = {
3236 .owner = THIS_MODULE,
3237 .open = dev_seq_open,
3238 .read = seq_read,
3239 .llseek = seq_lseek,
3240 .release = seq_release_net,
3243 static const struct seq_operations softnet_seq_ops = {
3244 .start = softnet_seq_start,
3245 .next = softnet_seq_next,
3246 .stop = softnet_seq_stop,
3247 .show = softnet_seq_show,
3250 static int softnet_seq_open(struct inode *inode, struct file *file)
3252 return seq_open(file, &softnet_seq_ops);
3255 static const struct file_operations softnet_seq_fops = {
3256 .owner = THIS_MODULE,
3257 .open = softnet_seq_open,
3258 .read = seq_read,
3259 .llseek = seq_lseek,
3260 .release = seq_release,
3263 static void *ptype_get_idx(loff_t pos)
3265 struct packet_type *pt = NULL;
3266 loff_t i = 0;
3267 int t;
3269 list_for_each_entry_rcu(pt, &ptype_all, list) {
3270 if (i == pos)
3271 return pt;
3272 ++i;
3275 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3276 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3277 if (i == pos)
3278 return pt;
3279 ++i;
3282 return NULL;
3285 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3286 __acquires(RCU)
3288 rcu_read_lock();
3289 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3292 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3294 struct packet_type *pt;
3295 struct list_head *nxt;
3296 int hash;
3298 ++*pos;
3299 if (v == SEQ_START_TOKEN)
3300 return ptype_get_idx(0);
3302 pt = v;
3303 nxt = pt->list.next;
3304 if (pt->type == htons(ETH_P_ALL)) {
3305 if (nxt != &ptype_all)
3306 goto found;
3307 hash = 0;
3308 nxt = ptype_base[0].next;
3309 } else
3310 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3312 while (nxt == &ptype_base[hash]) {
3313 if (++hash >= PTYPE_HASH_SIZE)
3314 return NULL;
3315 nxt = ptype_base[hash].next;
3317 found:
3318 return list_entry(nxt, struct packet_type, list);
3321 static void ptype_seq_stop(struct seq_file *seq, void *v)
3322 __releases(RCU)
3324 rcu_read_unlock();
3327 static int ptype_seq_show(struct seq_file *seq, void *v)
3329 struct packet_type *pt = v;
3331 if (v == SEQ_START_TOKEN)
3332 seq_puts(seq, "Type Device Function\n");
3333 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3334 if (pt->type == htons(ETH_P_ALL))
3335 seq_puts(seq, "ALL ");
3336 else
3337 seq_printf(seq, "%04x", ntohs(pt->type));
3339 seq_printf(seq, " %-8s %pF\n",
3340 pt->dev ? pt->dev->name : "", pt->func);
3343 return 0;
3346 static const struct seq_operations ptype_seq_ops = {
3347 .start = ptype_seq_start,
3348 .next = ptype_seq_next,
3349 .stop = ptype_seq_stop,
3350 .show = ptype_seq_show,
3353 static int ptype_seq_open(struct inode *inode, struct file *file)
3355 return seq_open_net(inode, file, &ptype_seq_ops,
3356 sizeof(struct seq_net_private));
3359 static const struct file_operations ptype_seq_fops = {
3360 .owner = THIS_MODULE,
3361 .open = ptype_seq_open,
3362 .read = seq_read,
3363 .llseek = seq_lseek,
3364 .release = seq_release_net,
3368 static int __net_init dev_proc_net_init(struct net *net)
3370 int rc = -ENOMEM;
3372 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3373 goto out;
3374 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3375 goto out_dev;
3376 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3377 goto out_softnet;
3379 if (wext_proc_init(net))
3380 goto out_ptype;
3381 rc = 0;
3382 out:
3383 return rc;
3384 out_ptype:
3385 proc_net_remove(net, "ptype");
3386 out_softnet:
3387 proc_net_remove(net, "softnet_stat");
3388 out_dev:
3389 proc_net_remove(net, "dev");
3390 goto out;
3393 static void __net_exit dev_proc_net_exit(struct net *net)
3395 wext_proc_exit(net);
3397 proc_net_remove(net, "ptype");
3398 proc_net_remove(net, "softnet_stat");
3399 proc_net_remove(net, "dev");
3402 static struct pernet_operations __net_initdata dev_proc_ops = {
3403 .init = dev_proc_net_init,
3404 .exit = dev_proc_net_exit,
3407 static int __init dev_proc_init(void)
3409 return register_pernet_subsys(&dev_proc_ops);
3411 #else
3412 #define dev_proc_init() 0
3413 #endif /* CONFIG_PROC_FS */
3417 * netdev_set_master - set up master/slave pair
3418 * @slave: slave device
3419 * @master: new master device
3421 * Changes the master device of the slave. Pass %NULL to break the
3422 * bonding. The caller must hold the RTNL semaphore. On a failure
3423 * a negative errno code is returned. On success the reference counts
3424 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3425 * function returns zero.
3427 int netdev_set_master(struct net_device *slave, struct net_device *master)
3429 struct net_device *old = slave->master;
3431 ASSERT_RTNL();
3433 if (master) {
3434 if (old)
3435 return -EBUSY;
3436 dev_hold(master);
3439 slave->master = master;
3441 synchronize_net();
3443 if (old)
3444 dev_put(old);
3446 if (master)
3447 slave->flags |= IFF_SLAVE;
3448 else
3449 slave->flags &= ~IFF_SLAVE;
3451 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3452 return 0;
3454 EXPORT_SYMBOL(netdev_set_master);
3456 static void dev_change_rx_flags(struct net_device *dev, int flags)
3458 const struct net_device_ops *ops = dev->netdev_ops;
3460 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3461 ops->ndo_change_rx_flags(dev, flags);
3464 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3466 unsigned short old_flags = dev->flags;
3467 uid_t uid;
3468 gid_t gid;
3470 ASSERT_RTNL();
3472 dev->flags |= IFF_PROMISC;
3473 dev->promiscuity += inc;
3474 if (dev->promiscuity == 0) {
3476 * Avoid overflow.
3477 * If inc causes overflow, untouch promisc and return error.
3479 if (inc < 0)
3480 dev->flags &= ~IFF_PROMISC;
3481 else {
3482 dev->promiscuity -= inc;
3483 printk(KERN_WARNING "%s: promiscuity touches roof, "
3484 "set promiscuity failed, promiscuity feature "
3485 "of device might be broken.\n", dev->name);
3486 return -EOVERFLOW;
3489 if (dev->flags != old_flags) {
3490 printk(KERN_INFO "device %s %s promiscuous mode\n",
3491 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3492 "left");
3493 if (audit_enabled) {
3494 current_uid_gid(&uid, &gid);
3495 audit_log(current->audit_context, GFP_ATOMIC,
3496 AUDIT_ANOM_PROMISCUOUS,
3497 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3498 dev->name, (dev->flags & IFF_PROMISC),
3499 (old_flags & IFF_PROMISC),
3500 audit_get_loginuid(current),
3501 uid, gid,
3502 audit_get_sessionid(current));
3505 dev_change_rx_flags(dev, IFF_PROMISC);
3507 return 0;
3511 * dev_set_promiscuity - update promiscuity count on a device
3512 * @dev: device
3513 * @inc: modifier
3515 * Add or remove promiscuity from a device. While the count in the device
3516 * remains above zero the interface remains promiscuous. Once it hits zero
3517 * the device reverts back to normal filtering operation. A negative inc
3518 * value is used to drop promiscuity on the device.
3519 * Return 0 if successful or a negative errno code on error.
3521 int dev_set_promiscuity(struct net_device *dev, int inc)
3523 unsigned short old_flags = dev->flags;
3524 int err;
3526 err = __dev_set_promiscuity(dev, inc);
3527 if (err < 0)
3528 return err;
3529 if (dev->flags != old_flags)
3530 dev_set_rx_mode(dev);
3531 return err;
3533 EXPORT_SYMBOL(dev_set_promiscuity);
3536 * dev_set_allmulti - update allmulti count on a device
3537 * @dev: device
3538 * @inc: modifier
3540 * Add or remove reception of all multicast frames to a device. While the
3541 * count in the device remains above zero the interface remains listening
3542 * to all interfaces. Once it hits zero the device reverts back to normal
3543 * filtering operation. A negative @inc value is used to drop the counter
3544 * when releasing a resource needing all multicasts.
3545 * Return 0 if successful or a negative errno code on error.
3548 int dev_set_allmulti(struct net_device *dev, int inc)
3550 unsigned short old_flags = dev->flags;
3552 ASSERT_RTNL();
3554 dev->flags |= IFF_ALLMULTI;
3555 dev->allmulti += inc;
3556 if (dev->allmulti == 0) {
3558 * Avoid overflow.
3559 * If inc causes overflow, untouch allmulti and return error.
3561 if (inc < 0)
3562 dev->flags &= ~IFF_ALLMULTI;
3563 else {
3564 dev->allmulti -= inc;
3565 printk(KERN_WARNING "%s: allmulti touches roof, "
3566 "set allmulti failed, allmulti feature of "
3567 "device might be broken.\n", dev->name);
3568 return -EOVERFLOW;
3571 if (dev->flags ^ old_flags) {
3572 dev_change_rx_flags(dev, IFF_ALLMULTI);
3573 dev_set_rx_mode(dev);
3575 return 0;
3577 EXPORT_SYMBOL(dev_set_allmulti);
3580 * Upload unicast and multicast address lists to device and
3581 * configure RX filtering. When the device doesn't support unicast
3582 * filtering it is put in promiscuous mode while unicast addresses
3583 * are present.
3585 void __dev_set_rx_mode(struct net_device *dev)
3587 const struct net_device_ops *ops = dev->netdev_ops;
3589 /* dev_open will call this function so the list will stay sane. */
3590 if (!(dev->flags&IFF_UP))
3591 return;
3593 if (!netif_device_present(dev))
3594 return;
3596 if (ops->ndo_set_rx_mode)
3597 ops->ndo_set_rx_mode(dev);
3598 else {
3599 /* Unicast addresses changes may only happen under the rtnl,
3600 * therefore calling __dev_set_promiscuity here is safe.
3602 if (dev->uc.count > 0 && !dev->uc_promisc) {
3603 __dev_set_promiscuity(dev, 1);
3604 dev->uc_promisc = 1;
3605 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3606 __dev_set_promiscuity(dev, -1);
3607 dev->uc_promisc = 0;
3610 if (ops->ndo_set_multicast_list)
3611 ops->ndo_set_multicast_list(dev);
3615 void dev_set_rx_mode(struct net_device *dev)
3617 netif_addr_lock_bh(dev);
3618 __dev_set_rx_mode(dev);
3619 netif_addr_unlock_bh(dev);
3622 /* hw addresses list handling functions */
3624 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3625 int addr_len, unsigned char addr_type)
3627 struct netdev_hw_addr *ha;
3628 int alloc_size;
3630 if (addr_len > MAX_ADDR_LEN)
3631 return -EINVAL;
3633 list_for_each_entry(ha, &list->list, list) {
3634 if (!memcmp(ha->addr, addr, addr_len) &&
3635 ha->type == addr_type) {
3636 ha->refcount++;
3637 return 0;
3642 alloc_size = sizeof(*ha);
3643 if (alloc_size < L1_CACHE_BYTES)
3644 alloc_size = L1_CACHE_BYTES;
3645 ha = kmalloc(alloc_size, GFP_ATOMIC);
3646 if (!ha)
3647 return -ENOMEM;
3648 memcpy(ha->addr, addr, addr_len);
3649 ha->type = addr_type;
3650 ha->refcount = 1;
3651 ha->synced = false;
3652 list_add_tail_rcu(&ha->list, &list->list);
3653 list->count++;
3654 return 0;
3657 static void ha_rcu_free(struct rcu_head *head)
3659 struct netdev_hw_addr *ha;
3661 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3662 kfree(ha);
3665 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3666 int addr_len, unsigned char addr_type)
3668 struct netdev_hw_addr *ha;
3670 list_for_each_entry(ha, &list->list, list) {
3671 if (!memcmp(ha->addr, addr, addr_len) &&
3672 (ha->type == addr_type || !addr_type)) {
3673 if (--ha->refcount)
3674 return 0;
3675 list_del_rcu(&ha->list);
3676 call_rcu(&ha->rcu_head, ha_rcu_free);
3677 list->count--;
3678 return 0;
3681 return -ENOENT;
3684 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3685 struct netdev_hw_addr_list *from_list,
3686 int addr_len,
3687 unsigned char addr_type)
3689 int err;
3690 struct netdev_hw_addr *ha, *ha2;
3691 unsigned char type;
3693 list_for_each_entry(ha, &from_list->list, list) {
3694 type = addr_type ? addr_type : ha->type;
3695 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3696 if (err)
3697 goto unroll;
3699 return 0;
3701 unroll:
3702 list_for_each_entry(ha2, &from_list->list, list) {
3703 if (ha2 == ha)
3704 break;
3705 type = addr_type ? addr_type : ha2->type;
3706 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3708 return err;
3711 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3712 struct netdev_hw_addr_list *from_list,
3713 int addr_len,
3714 unsigned char addr_type)
3716 struct netdev_hw_addr *ha;
3717 unsigned char type;
3719 list_for_each_entry(ha, &from_list->list, list) {
3720 type = addr_type ? addr_type : ha->type;
3721 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3725 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3726 struct netdev_hw_addr_list *from_list,
3727 int addr_len)
3729 int err = 0;
3730 struct netdev_hw_addr *ha, *tmp;
3732 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3733 if (!ha->synced) {
3734 err = __hw_addr_add(to_list, ha->addr,
3735 addr_len, ha->type);
3736 if (err)
3737 break;
3738 ha->synced = true;
3739 ha->refcount++;
3740 } else if (ha->refcount == 1) {
3741 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3742 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3745 return err;
3748 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3749 struct netdev_hw_addr_list *from_list,
3750 int addr_len)
3752 struct netdev_hw_addr *ha, *tmp;
3754 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3755 if (ha->synced) {
3756 __hw_addr_del(to_list, ha->addr,
3757 addr_len, ha->type);
3758 ha->synced = false;
3759 __hw_addr_del(from_list, ha->addr,
3760 addr_len, ha->type);
3765 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3767 struct netdev_hw_addr *ha, *tmp;
3769 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3770 list_del_rcu(&ha->list);
3771 call_rcu(&ha->rcu_head, ha_rcu_free);
3773 list->count = 0;
3776 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3778 INIT_LIST_HEAD(&list->list);
3779 list->count = 0;
3782 /* Device addresses handling functions */
3784 static void dev_addr_flush(struct net_device *dev)
3786 /* rtnl_mutex must be held here */
3788 __hw_addr_flush(&dev->dev_addrs);
3789 dev->dev_addr = NULL;
3792 static int dev_addr_init(struct net_device *dev)
3794 unsigned char addr[MAX_ADDR_LEN];
3795 struct netdev_hw_addr *ha;
3796 int err;
3798 /* rtnl_mutex must be held here */
3800 __hw_addr_init(&dev->dev_addrs);
3801 memset(addr, 0, sizeof(addr));
3802 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3803 NETDEV_HW_ADDR_T_LAN);
3804 if (!err) {
3806 * Get the first (previously created) address from the list
3807 * and set dev_addr pointer to this location.
3809 ha = list_first_entry(&dev->dev_addrs.list,
3810 struct netdev_hw_addr, list);
3811 dev->dev_addr = ha->addr;
3813 return err;
3817 * dev_addr_add - Add a device address
3818 * @dev: device
3819 * @addr: address to add
3820 * @addr_type: address type
3822 * Add a device address to the device or increase the reference count if
3823 * it already exists.
3825 * The caller must hold the rtnl_mutex.
3827 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3828 unsigned char addr_type)
3830 int err;
3832 ASSERT_RTNL();
3834 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3835 if (!err)
3836 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3837 return err;
3839 EXPORT_SYMBOL(dev_addr_add);
3842 * dev_addr_del - Release a device address.
3843 * @dev: device
3844 * @addr: address to delete
3845 * @addr_type: address type
3847 * Release reference to a device address and remove it from the device
3848 * if the reference count drops to zero.
3850 * The caller must hold the rtnl_mutex.
3852 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3853 unsigned char addr_type)
3855 int err;
3856 struct netdev_hw_addr *ha;
3858 ASSERT_RTNL();
3861 * We can not remove the first address from the list because
3862 * dev->dev_addr points to that.
3864 ha = list_first_entry(&dev->dev_addrs.list,
3865 struct netdev_hw_addr, list);
3866 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3867 return -ENOENT;
3869 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3870 addr_type);
3871 if (!err)
3872 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3873 return err;
3875 EXPORT_SYMBOL(dev_addr_del);
3878 * dev_addr_add_multiple - Add device addresses from another device
3879 * @to_dev: device to which addresses will be added
3880 * @from_dev: device from which addresses will be added
3881 * @addr_type: address type - 0 means type will be used from from_dev
3883 * Add device addresses of the one device to another.
3885 * The caller must hold the rtnl_mutex.
3887 int dev_addr_add_multiple(struct net_device *to_dev,
3888 struct net_device *from_dev,
3889 unsigned char addr_type)
3891 int err;
3893 ASSERT_RTNL();
3895 if (from_dev->addr_len != to_dev->addr_len)
3896 return -EINVAL;
3897 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3898 to_dev->addr_len, addr_type);
3899 if (!err)
3900 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3901 return err;
3903 EXPORT_SYMBOL(dev_addr_add_multiple);
3906 * dev_addr_del_multiple - Delete device addresses by another device
3907 * @to_dev: device where the addresses will be deleted
3908 * @from_dev: device by which addresses the addresses will be deleted
3909 * @addr_type: address type - 0 means type will used from from_dev
3911 * Deletes addresses in to device by the list of addresses in from device.
3913 * The caller must hold the rtnl_mutex.
3915 int dev_addr_del_multiple(struct net_device *to_dev,
3916 struct net_device *from_dev,
3917 unsigned char addr_type)
3919 ASSERT_RTNL();
3921 if (from_dev->addr_len != to_dev->addr_len)
3922 return -EINVAL;
3923 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3924 to_dev->addr_len, addr_type);
3925 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3926 return 0;
3928 EXPORT_SYMBOL(dev_addr_del_multiple);
3930 /* multicast addresses handling functions */
3932 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3933 void *addr, int alen, int glbl)
3935 struct dev_addr_list *da;
3937 for (; (da = *list) != NULL; list = &da->next) {
3938 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3939 alen == da->da_addrlen) {
3940 if (glbl) {
3941 int old_glbl = da->da_gusers;
3942 da->da_gusers = 0;
3943 if (old_glbl == 0)
3944 break;
3946 if (--da->da_users)
3947 return 0;
3949 *list = da->next;
3950 kfree(da);
3951 (*count)--;
3952 return 0;
3955 return -ENOENT;
3958 int __dev_addr_add(struct dev_addr_list **list, int *count,
3959 void *addr, int alen, int glbl)
3961 struct dev_addr_list *da;
3963 for (da = *list; da != NULL; da = da->next) {
3964 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3965 da->da_addrlen == alen) {
3966 if (glbl) {
3967 int old_glbl = da->da_gusers;
3968 da->da_gusers = 1;
3969 if (old_glbl)
3970 return 0;
3972 da->da_users++;
3973 return 0;
3977 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3978 if (da == NULL)
3979 return -ENOMEM;
3980 memcpy(da->da_addr, addr, alen);
3981 da->da_addrlen = alen;
3982 da->da_users = 1;
3983 da->da_gusers = glbl ? 1 : 0;
3984 da->next = *list;
3985 *list = da;
3986 (*count)++;
3987 return 0;
3991 * dev_unicast_delete - Release secondary unicast address.
3992 * @dev: device
3993 * @addr: address to delete
3995 * Release reference to a secondary unicast address and remove it
3996 * from the device if the reference count drops to zero.
3998 * The caller must hold the rtnl_mutex.
4000 int dev_unicast_delete(struct net_device *dev, void *addr)
4002 int err;
4004 ASSERT_RTNL();
4006 netif_addr_lock_bh(dev);
4007 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4008 NETDEV_HW_ADDR_T_UNICAST);
4009 if (!err)
4010 __dev_set_rx_mode(dev);
4011 netif_addr_unlock_bh(dev);
4012 return err;
4014 EXPORT_SYMBOL(dev_unicast_delete);
4017 * dev_unicast_add - add a secondary unicast address
4018 * @dev: device
4019 * @addr: address to add
4021 * Add a secondary unicast address to the device or increase
4022 * the reference count if it already exists.
4024 * The caller must hold the rtnl_mutex.
4026 int dev_unicast_add(struct net_device *dev, void *addr)
4028 int err;
4030 ASSERT_RTNL();
4032 netif_addr_lock_bh(dev);
4033 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4034 NETDEV_HW_ADDR_T_UNICAST);
4035 if (!err)
4036 __dev_set_rx_mode(dev);
4037 netif_addr_unlock_bh(dev);
4038 return err;
4040 EXPORT_SYMBOL(dev_unicast_add);
4042 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4043 struct dev_addr_list **from, int *from_count)
4045 struct dev_addr_list *da, *next;
4046 int err = 0;
4048 da = *from;
4049 while (da != NULL) {
4050 next = da->next;
4051 if (!da->da_synced) {
4052 err = __dev_addr_add(to, to_count,
4053 da->da_addr, da->da_addrlen, 0);
4054 if (err < 0)
4055 break;
4056 da->da_synced = 1;
4057 da->da_users++;
4058 } else if (da->da_users == 1) {
4059 __dev_addr_delete(to, to_count,
4060 da->da_addr, da->da_addrlen, 0);
4061 __dev_addr_delete(from, from_count,
4062 da->da_addr, da->da_addrlen, 0);
4064 da = next;
4066 return err;
4068 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4070 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4071 struct dev_addr_list **from, int *from_count)
4073 struct dev_addr_list *da, *next;
4075 da = *from;
4076 while (da != NULL) {
4077 next = da->next;
4078 if (da->da_synced) {
4079 __dev_addr_delete(to, to_count,
4080 da->da_addr, da->da_addrlen, 0);
4081 da->da_synced = 0;
4082 __dev_addr_delete(from, from_count,
4083 da->da_addr, da->da_addrlen, 0);
4085 da = next;
4088 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4091 * dev_unicast_sync - Synchronize device's unicast list to another device
4092 * @to: destination device
4093 * @from: source device
4095 * Add newly added addresses to the destination device and release
4096 * addresses that have no users left. The source device must be
4097 * locked by netif_tx_lock_bh.
4099 * This function is intended to be called from the dev->set_rx_mode
4100 * function of layered software devices.
4102 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4104 int err = 0;
4106 if (to->addr_len != from->addr_len)
4107 return -EINVAL;
4109 netif_addr_lock_bh(to);
4110 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4111 if (!err)
4112 __dev_set_rx_mode(to);
4113 netif_addr_unlock_bh(to);
4114 return err;
4116 EXPORT_SYMBOL(dev_unicast_sync);
4119 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4120 * @to: destination device
4121 * @from: source device
4123 * Remove all addresses that were added to the destination device by
4124 * dev_unicast_sync(). This function is intended to be called from the
4125 * dev->stop function of layered software devices.
4127 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4129 if (to->addr_len != from->addr_len)
4130 return;
4132 netif_addr_lock_bh(from);
4133 netif_addr_lock(to);
4134 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4135 __dev_set_rx_mode(to);
4136 netif_addr_unlock(to);
4137 netif_addr_unlock_bh(from);
4139 EXPORT_SYMBOL(dev_unicast_unsync);
4141 static void dev_unicast_flush(struct net_device *dev)
4143 netif_addr_lock_bh(dev);
4144 __hw_addr_flush(&dev->uc);
4145 netif_addr_unlock_bh(dev);
4148 static void dev_unicast_init(struct net_device *dev)
4150 __hw_addr_init(&dev->uc);
4154 static void __dev_addr_discard(struct dev_addr_list **list)
4156 struct dev_addr_list *tmp;
4158 while (*list != NULL) {
4159 tmp = *list;
4160 *list = tmp->next;
4161 if (tmp->da_users > tmp->da_gusers)
4162 printk("__dev_addr_discard: address leakage! "
4163 "da_users=%d\n", tmp->da_users);
4164 kfree(tmp);
4168 static void dev_addr_discard(struct net_device *dev)
4170 netif_addr_lock_bh(dev);
4172 __dev_addr_discard(&dev->mc_list);
4173 dev->mc_count = 0;
4175 netif_addr_unlock_bh(dev);
4179 * dev_get_flags - get flags reported to userspace
4180 * @dev: device
4182 * Get the combination of flag bits exported through APIs to userspace.
4184 unsigned dev_get_flags(const struct net_device *dev)
4186 unsigned flags;
4188 flags = (dev->flags & ~(IFF_PROMISC |
4189 IFF_ALLMULTI |
4190 IFF_RUNNING |
4191 IFF_LOWER_UP |
4192 IFF_DORMANT)) |
4193 (dev->gflags & (IFF_PROMISC |
4194 IFF_ALLMULTI));
4196 if (netif_running(dev)) {
4197 if (netif_oper_up(dev))
4198 flags |= IFF_RUNNING;
4199 if (netif_carrier_ok(dev))
4200 flags |= IFF_LOWER_UP;
4201 if (netif_dormant(dev))
4202 flags |= IFF_DORMANT;
4205 return flags;
4207 EXPORT_SYMBOL(dev_get_flags);
4210 * dev_change_flags - change device settings
4211 * @dev: device
4212 * @flags: device state flags
4214 * Change settings on device based state flags. The flags are
4215 * in the userspace exported format.
4217 int dev_change_flags(struct net_device *dev, unsigned flags)
4219 int ret, changes;
4220 int old_flags = dev->flags;
4222 ASSERT_RTNL();
4225 * Set the flags on our device.
4228 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4229 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4230 IFF_AUTOMEDIA)) |
4231 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4232 IFF_ALLMULTI));
4235 * Load in the correct multicast list now the flags have changed.
4238 if ((old_flags ^ flags) & IFF_MULTICAST)
4239 dev_change_rx_flags(dev, IFF_MULTICAST);
4241 dev_set_rx_mode(dev);
4244 * Have we downed the interface. We handle IFF_UP ourselves
4245 * according to user attempts to set it, rather than blindly
4246 * setting it.
4249 ret = 0;
4250 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4251 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4253 if (!ret)
4254 dev_set_rx_mode(dev);
4257 if (dev->flags & IFF_UP &&
4258 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4259 IFF_VOLATILE)))
4260 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4262 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4263 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4265 dev->gflags ^= IFF_PROMISC;
4266 dev_set_promiscuity(dev, inc);
4269 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4270 is important. Some (broken) drivers set IFF_PROMISC, when
4271 IFF_ALLMULTI is requested not asking us and not reporting.
4273 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4274 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4276 dev->gflags ^= IFF_ALLMULTI;
4277 dev_set_allmulti(dev, inc);
4280 /* Exclude state transition flags, already notified */
4281 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4282 if (changes)
4283 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4285 return ret;
4287 EXPORT_SYMBOL(dev_change_flags);
4290 * dev_set_mtu - Change maximum transfer unit
4291 * @dev: device
4292 * @new_mtu: new transfer unit
4294 * Change the maximum transfer size of the network device.
4296 int dev_set_mtu(struct net_device *dev, int new_mtu)
4298 const struct net_device_ops *ops = dev->netdev_ops;
4299 int err;
4301 if (new_mtu == dev->mtu)
4302 return 0;
4304 /* MTU must be positive. */
4305 if (new_mtu < 0)
4306 return -EINVAL;
4308 if (!netif_device_present(dev))
4309 return -ENODEV;
4311 err = 0;
4312 if (ops->ndo_change_mtu)
4313 err = ops->ndo_change_mtu(dev, new_mtu);
4314 else
4315 dev->mtu = new_mtu;
4317 if (!err && dev->flags & IFF_UP)
4318 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4319 return err;
4321 EXPORT_SYMBOL(dev_set_mtu);
4324 * dev_set_mac_address - Change Media Access Control Address
4325 * @dev: device
4326 * @sa: new address
4328 * Change the hardware (MAC) address of the device
4330 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4332 const struct net_device_ops *ops = dev->netdev_ops;
4333 int err;
4335 if (!ops->ndo_set_mac_address)
4336 return -EOPNOTSUPP;
4337 if (sa->sa_family != dev->type)
4338 return -EINVAL;
4339 if (!netif_device_present(dev))
4340 return -ENODEV;
4341 err = ops->ndo_set_mac_address(dev, sa);
4342 if (!err)
4343 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4344 return err;
4346 EXPORT_SYMBOL(dev_set_mac_address);
4349 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4351 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4353 int err;
4354 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4356 if (!dev)
4357 return -ENODEV;
4359 switch (cmd) {
4360 case SIOCGIFFLAGS: /* Get interface flags */
4361 ifr->ifr_flags = (short) dev_get_flags(dev);
4362 return 0;
4364 case SIOCGIFMETRIC: /* Get the metric on the interface
4365 (currently unused) */
4366 ifr->ifr_metric = 0;
4367 return 0;
4369 case SIOCGIFMTU: /* Get the MTU of a device */
4370 ifr->ifr_mtu = dev->mtu;
4371 return 0;
4373 case SIOCGIFHWADDR:
4374 if (!dev->addr_len)
4375 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4376 else
4377 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4378 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4379 ifr->ifr_hwaddr.sa_family = dev->type;
4380 return 0;
4382 case SIOCGIFSLAVE:
4383 err = -EINVAL;
4384 break;
4386 case SIOCGIFMAP:
4387 ifr->ifr_map.mem_start = dev->mem_start;
4388 ifr->ifr_map.mem_end = dev->mem_end;
4389 ifr->ifr_map.base_addr = dev->base_addr;
4390 ifr->ifr_map.irq = dev->irq;
4391 ifr->ifr_map.dma = dev->dma;
4392 ifr->ifr_map.port = dev->if_port;
4393 return 0;
4395 case SIOCGIFINDEX:
4396 ifr->ifr_ifindex = dev->ifindex;
4397 return 0;
4399 case SIOCGIFTXQLEN:
4400 ifr->ifr_qlen = dev->tx_queue_len;
4401 return 0;
4403 default:
4404 /* dev_ioctl() should ensure this case
4405 * is never reached
4407 WARN_ON(1);
4408 err = -EINVAL;
4409 break;
4412 return err;
4416 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4418 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4420 int err;
4421 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4422 const struct net_device_ops *ops;
4424 if (!dev)
4425 return -ENODEV;
4427 ops = dev->netdev_ops;
4429 switch (cmd) {
4430 case SIOCSIFFLAGS: /* Set interface flags */
4431 return dev_change_flags(dev, ifr->ifr_flags);
4433 case SIOCSIFMETRIC: /* Set the metric on the interface
4434 (currently unused) */
4435 return -EOPNOTSUPP;
4437 case SIOCSIFMTU: /* Set the MTU of a device */
4438 return dev_set_mtu(dev, ifr->ifr_mtu);
4440 case SIOCSIFHWADDR:
4441 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4443 case SIOCSIFHWBROADCAST:
4444 if (ifr->ifr_hwaddr.sa_family != dev->type)
4445 return -EINVAL;
4446 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4447 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4448 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4449 return 0;
4451 case SIOCSIFMAP:
4452 if (ops->ndo_set_config) {
4453 if (!netif_device_present(dev))
4454 return -ENODEV;
4455 return ops->ndo_set_config(dev, &ifr->ifr_map);
4457 return -EOPNOTSUPP;
4459 case SIOCADDMULTI:
4460 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4461 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4462 return -EINVAL;
4463 if (!netif_device_present(dev))
4464 return -ENODEV;
4465 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4466 dev->addr_len, 1);
4468 case SIOCDELMULTI:
4469 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4470 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4471 return -EINVAL;
4472 if (!netif_device_present(dev))
4473 return -ENODEV;
4474 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4475 dev->addr_len, 1);
4477 case SIOCSIFTXQLEN:
4478 if (ifr->ifr_qlen < 0)
4479 return -EINVAL;
4480 dev->tx_queue_len = ifr->ifr_qlen;
4481 return 0;
4483 case SIOCSIFNAME:
4484 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4485 return dev_change_name(dev, ifr->ifr_newname);
4488 * Unknown or private ioctl
4490 default:
4491 if ((cmd >= SIOCDEVPRIVATE &&
4492 cmd <= SIOCDEVPRIVATE + 15) ||
4493 cmd == SIOCBONDENSLAVE ||
4494 cmd == SIOCBONDRELEASE ||
4495 cmd == SIOCBONDSETHWADDR ||
4496 cmd == SIOCBONDSLAVEINFOQUERY ||
4497 cmd == SIOCBONDINFOQUERY ||
4498 cmd == SIOCBONDCHANGEACTIVE ||
4499 cmd == SIOCGMIIPHY ||
4500 cmd == SIOCGMIIREG ||
4501 cmd == SIOCSMIIREG ||
4502 cmd == SIOCBRADDIF ||
4503 cmd == SIOCBRDELIF ||
4504 cmd == SIOCSHWTSTAMP ||
4505 cmd == SIOCWANDEV) {
4506 err = -EOPNOTSUPP;
4507 if (ops->ndo_do_ioctl) {
4508 if (netif_device_present(dev))
4509 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4510 else
4511 err = -ENODEV;
4513 } else
4514 err = -EINVAL;
4517 return err;
4521 * This function handles all "interface"-type I/O control requests. The actual
4522 * 'doing' part of this is dev_ifsioc above.
4526 * dev_ioctl - network device ioctl
4527 * @net: the applicable net namespace
4528 * @cmd: command to issue
4529 * @arg: pointer to a struct ifreq in user space
4531 * Issue ioctl functions to devices. This is normally called by the
4532 * user space syscall interfaces but can sometimes be useful for
4533 * other purposes. The return value is the return from the syscall if
4534 * positive or a negative errno code on error.
4537 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4539 struct ifreq ifr;
4540 int ret;
4541 char *colon;
4543 /* One special case: SIOCGIFCONF takes ifconf argument
4544 and requires shared lock, because it sleeps writing
4545 to user space.
4548 if (cmd == SIOCGIFCONF) {
4549 rtnl_lock();
4550 ret = dev_ifconf(net, (char __user *) arg);
4551 rtnl_unlock();
4552 return ret;
4554 if (cmd == SIOCGIFNAME)
4555 return dev_ifname(net, (struct ifreq __user *)arg);
4557 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4558 return -EFAULT;
4560 ifr.ifr_name[IFNAMSIZ-1] = 0;
4562 colon = strchr(ifr.ifr_name, ':');
4563 if (colon)
4564 *colon = 0;
4567 * See which interface the caller is talking about.
4570 switch (cmd) {
4572 * These ioctl calls:
4573 * - can be done by all.
4574 * - atomic and do not require locking.
4575 * - return a value
4577 case SIOCGIFFLAGS:
4578 case SIOCGIFMETRIC:
4579 case SIOCGIFMTU:
4580 case SIOCGIFHWADDR:
4581 case SIOCGIFSLAVE:
4582 case SIOCGIFMAP:
4583 case SIOCGIFINDEX:
4584 case SIOCGIFTXQLEN:
4585 dev_load(net, ifr.ifr_name);
4586 rcu_read_lock();
4587 ret = dev_ifsioc_locked(net, &ifr, cmd);
4588 rcu_read_unlock();
4589 if (!ret) {
4590 if (colon)
4591 *colon = ':';
4592 if (copy_to_user(arg, &ifr,
4593 sizeof(struct ifreq)))
4594 ret = -EFAULT;
4596 return ret;
4598 case SIOCETHTOOL:
4599 dev_load(net, ifr.ifr_name);
4600 rtnl_lock();
4601 ret = dev_ethtool(net, &ifr);
4602 rtnl_unlock();
4603 if (!ret) {
4604 if (colon)
4605 *colon = ':';
4606 if (copy_to_user(arg, &ifr,
4607 sizeof(struct ifreq)))
4608 ret = -EFAULT;
4610 return ret;
4613 * These ioctl calls:
4614 * - require superuser power.
4615 * - require strict serialization.
4616 * - return a value
4618 case SIOCGMIIPHY:
4619 case SIOCGMIIREG:
4620 case SIOCSIFNAME:
4621 if (!capable(CAP_NET_ADMIN))
4622 return -EPERM;
4623 dev_load(net, ifr.ifr_name);
4624 rtnl_lock();
4625 ret = dev_ifsioc(net, &ifr, cmd);
4626 rtnl_unlock();
4627 if (!ret) {
4628 if (colon)
4629 *colon = ':';
4630 if (copy_to_user(arg, &ifr,
4631 sizeof(struct ifreq)))
4632 ret = -EFAULT;
4634 return ret;
4637 * These ioctl calls:
4638 * - require superuser power.
4639 * - require strict serialization.
4640 * - do not return a value
4642 case SIOCSIFFLAGS:
4643 case SIOCSIFMETRIC:
4644 case SIOCSIFMTU:
4645 case SIOCSIFMAP:
4646 case SIOCSIFHWADDR:
4647 case SIOCSIFSLAVE:
4648 case SIOCADDMULTI:
4649 case SIOCDELMULTI:
4650 case SIOCSIFHWBROADCAST:
4651 case SIOCSIFTXQLEN:
4652 case SIOCSMIIREG:
4653 case SIOCBONDENSLAVE:
4654 case SIOCBONDRELEASE:
4655 case SIOCBONDSETHWADDR:
4656 case SIOCBONDCHANGEACTIVE:
4657 case SIOCBRADDIF:
4658 case SIOCBRDELIF:
4659 case SIOCSHWTSTAMP:
4660 if (!capable(CAP_NET_ADMIN))
4661 return -EPERM;
4662 /* fall through */
4663 case SIOCBONDSLAVEINFOQUERY:
4664 case SIOCBONDINFOQUERY:
4665 dev_load(net, ifr.ifr_name);
4666 rtnl_lock();
4667 ret = dev_ifsioc(net, &ifr, cmd);
4668 rtnl_unlock();
4669 return ret;
4671 case SIOCGIFMEM:
4672 /* Get the per device memory space. We can add this but
4673 * currently do not support it */
4674 case SIOCSIFMEM:
4675 /* Set the per device memory buffer space.
4676 * Not applicable in our case */
4677 case SIOCSIFLINK:
4678 return -EINVAL;
4681 * Unknown or private ioctl.
4683 default:
4684 if (cmd == SIOCWANDEV ||
4685 (cmd >= SIOCDEVPRIVATE &&
4686 cmd <= SIOCDEVPRIVATE + 15)) {
4687 dev_load(net, ifr.ifr_name);
4688 rtnl_lock();
4689 ret = dev_ifsioc(net, &ifr, cmd);
4690 rtnl_unlock();
4691 if (!ret && copy_to_user(arg, &ifr,
4692 sizeof(struct ifreq)))
4693 ret = -EFAULT;
4694 return ret;
4696 /* Take care of Wireless Extensions */
4697 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4698 return wext_handle_ioctl(net, &ifr, cmd, arg);
4699 return -EINVAL;
4705 * dev_new_index - allocate an ifindex
4706 * @net: the applicable net namespace
4708 * Returns a suitable unique value for a new device interface
4709 * number. The caller must hold the rtnl semaphore or the
4710 * dev_base_lock to be sure it remains unique.
4712 static int dev_new_index(struct net *net)
4714 static int ifindex;
4715 for (;;) {
4716 if (++ifindex <= 0)
4717 ifindex = 1;
4718 if (!__dev_get_by_index(net, ifindex))
4719 return ifindex;
4723 /* Delayed registration/unregisteration */
4724 static LIST_HEAD(net_todo_list);
4726 static void net_set_todo(struct net_device *dev)
4728 list_add_tail(&dev->todo_list, &net_todo_list);
4731 static void rollback_registered_many(struct list_head *head)
4733 struct net_device *dev, *aux, *fdev;
4734 LIST_HEAD(pernet_list);
4736 BUG_ON(dev_boot_phase);
4737 ASSERT_RTNL();
4739 list_for_each_entry(dev, head, unreg_list) {
4740 /* Some devices call without registering
4741 * for initialization unwind.
4743 if (dev->reg_state == NETREG_UNINITIALIZED) {
4744 pr_debug("unregister_netdevice: device %s/%p never "
4745 "was registered\n", dev->name, dev);
4747 WARN_ON(1);
4748 return;
4751 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4753 /* If device is running, close it first. */
4754 dev_close(dev);
4756 /* And unlink it from device chain. */
4757 unlist_netdevice(dev);
4759 dev->reg_state = NETREG_UNREGISTERING;
4762 synchronize_net();
4764 list_for_each_entry(dev, head, unreg_list) {
4765 /* Shutdown queueing discipline. */
4766 dev_shutdown(dev);
4769 /* Notify protocols, that we are about to destroy
4770 this device. They should clean all the things.
4772 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4775 * Flush the unicast and multicast chains
4777 dev_unicast_flush(dev);
4778 dev_addr_discard(dev);
4780 if (dev->netdev_ops->ndo_uninit)
4781 dev->netdev_ops->ndo_uninit(dev);
4783 /* Notifier chain MUST detach us from master device. */
4784 WARN_ON(dev->master);
4786 /* Remove entries from kobject tree */
4787 netdev_unregister_kobject(dev);
4790 synchronize_net();
4792 list_for_each_entry_safe(dev, aux, head, unreg_list) {
4793 int new_net = 1;
4794 list_for_each_entry(fdev, &pernet_list, unreg_list) {
4795 if (dev_net(dev) == dev_net(fdev)) {
4796 new_net = 0;
4797 dev_put(dev);
4798 break;
4801 if (new_net)
4802 list_move(&dev->unreg_list, &pernet_list);
4805 list_for_each_entry_safe(dev, aux, &pernet_list, unreg_list) {
4806 call_netdevice_notifiers(NETDEV_UNREGISTER_PERNET, dev);
4807 list_move(&dev->unreg_list, head);
4808 dev_put(dev);
4812 static void rollback_registered(struct net_device *dev)
4814 LIST_HEAD(single);
4816 list_add(&dev->unreg_list, &single);
4817 rollback_registered_many(&single);
4820 static void __netdev_init_queue_locks_one(struct net_device *dev,
4821 struct netdev_queue *dev_queue,
4822 void *_unused)
4824 spin_lock_init(&dev_queue->_xmit_lock);
4825 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4826 dev_queue->xmit_lock_owner = -1;
4829 static void netdev_init_queue_locks(struct net_device *dev)
4831 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4832 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4835 unsigned long netdev_fix_features(unsigned long features, const char *name)
4837 /* Fix illegal SG+CSUM combinations. */
4838 if ((features & NETIF_F_SG) &&
4839 !(features & NETIF_F_ALL_CSUM)) {
4840 if (name)
4841 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4842 "checksum feature.\n", name);
4843 features &= ~NETIF_F_SG;
4846 /* TSO requires that SG is present as well. */
4847 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4848 if (name)
4849 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4850 "SG feature.\n", name);
4851 features &= ~NETIF_F_TSO;
4854 if (features & NETIF_F_UFO) {
4855 if (!(features & NETIF_F_GEN_CSUM)) {
4856 if (name)
4857 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4858 "since no NETIF_F_HW_CSUM feature.\n",
4859 name);
4860 features &= ~NETIF_F_UFO;
4863 if (!(features & NETIF_F_SG)) {
4864 if (name)
4865 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4866 "since no NETIF_F_SG feature.\n", name);
4867 features &= ~NETIF_F_UFO;
4871 return features;
4873 EXPORT_SYMBOL(netdev_fix_features);
4876 * register_netdevice - register a network device
4877 * @dev: device to register
4879 * Take a completed network device structure and add it to the kernel
4880 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4881 * chain. 0 is returned on success. A negative errno code is returned
4882 * on a failure to set up the device, or if the name is a duplicate.
4884 * Callers must hold the rtnl semaphore. You may want
4885 * register_netdev() instead of this.
4887 * BUGS:
4888 * The locking appears insufficient to guarantee two parallel registers
4889 * will not get the same name.
4892 int register_netdevice(struct net_device *dev)
4894 int ret;
4895 struct net *net = dev_net(dev);
4897 BUG_ON(dev_boot_phase);
4898 ASSERT_RTNL();
4900 might_sleep();
4902 /* When net_device's are persistent, this will be fatal. */
4903 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4904 BUG_ON(!net);
4906 spin_lock_init(&dev->addr_list_lock);
4907 netdev_set_addr_lockdep_class(dev);
4908 netdev_init_queue_locks(dev);
4910 dev->iflink = -1;
4912 /* Init, if this function is available */
4913 if (dev->netdev_ops->ndo_init) {
4914 ret = dev->netdev_ops->ndo_init(dev);
4915 if (ret) {
4916 if (ret > 0)
4917 ret = -EIO;
4918 goto out;
4922 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4923 if (ret)
4924 goto err_uninit;
4926 dev->ifindex = dev_new_index(net);
4927 if (dev->iflink == -1)
4928 dev->iflink = dev->ifindex;
4930 /* Fix illegal checksum combinations */
4931 if ((dev->features & NETIF_F_HW_CSUM) &&
4932 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4933 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4934 dev->name);
4935 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4938 if ((dev->features & NETIF_F_NO_CSUM) &&
4939 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4940 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4941 dev->name);
4942 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4945 dev->features = netdev_fix_features(dev->features, dev->name);
4947 /* Enable software GSO if SG is supported. */
4948 if (dev->features & NETIF_F_SG)
4949 dev->features |= NETIF_F_GSO;
4951 netdev_initialize_kobject(dev);
4953 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4954 ret = notifier_to_errno(ret);
4955 if (ret)
4956 goto err_uninit;
4958 ret = netdev_register_kobject(dev);
4959 if (ret)
4960 goto err_uninit;
4961 dev->reg_state = NETREG_REGISTERED;
4964 * Default initial state at registry is that the
4965 * device is present.
4968 set_bit(__LINK_STATE_PRESENT, &dev->state);
4970 dev_init_scheduler(dev);
4971 dev_hold(dev);
4972 list_netdevice(dev);
4974 /* Notify protocols, that a new device appeared. */
4975 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4976 ret = notifier_to_errno(ret);
4977 if (ret) {
4978 rollback_registered(dev);
4979 dev->reg_state = NETREG_UNREGISTERED;
4982 out:
4983 return ret;
4985 err_uninit:
4986 if (dev->netdev_ops->ndo_uninit)
4987 dev->netdev_ops->ndo_uninit(dev);
4988 goto out;
4990 EXPORT_SYMBOL(register_netdevice);
4993 * init_dummy_netdev - init a dummy network device for NAPI
4994 * @dev: device to init
4996 * This takes a network device structure and initialize the minimum
4997 * amount of fields so it can be used to schedule NAPI polls without
4998 * registering a full blown interface. This is to be used by drivers
4999 * that need to tie several hardware interfaces to a single NAPI
5000 * poll scheduler due to HW limitations.
5002 int init_dummy_netdev(struct net_device *dev)
5004 /* Clear everything. Note we don't initialize spinlocks
5005 * are they aren't supposed to be taken by any of the
5006 * NAPI code and this dummy netdev is supposed to be
5007 * only ever used for NAPI polls
5009 memset(dev, 0, sizeof(struct net_device));
5011 /* make sure we BUG if trying to hit standard
5012 * register/unregister code path
5014 dev->reg_state = NETREG_DUMMY;
5016 /* initialize the ref count */
5017 atomic_set(&dev->refcnt, 1);
5019 /* NAPI wants this */
5020 INIT_LIST_HEAD(&dev->napi_list);
5022 /* a dummy interface is started by default */
5023 set_bit(__LINK_STATE_PRESENT, &dev->state);
5024 set_bit(__LINK_STATE_START, &dev->state);
5026 return 0;
5028 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5032 * register_netdev - register a network device
5033 * @dev: device to register
5035 * Take a completed network device structure and add it to the kernel
5036 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5037 * chain. 0 is returned on success. A negative errno code is returned
5038 * on a failure to set up the device, or if the name is a duplicate.
5040 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5041 * and expands the device name if you passed a format string to
5042 * alloc_netdev.
5044 int register_netdev(struct net_device *dev)
5046 int err;
5048 rtnl_lock();
5051 * If the name is a format string the caller wants us to do a
5052 * name allocation.
5054 if (strchr(dev->name, '%')) {
5055 err = dev_alloc_name(dev, dev->name);
5056 if (err < 0)
5057 goto out;
5060 err = register_netdevice(dev);
5061 out:
5062 rtnl_unlock();
5063 return err;
5065 EXPORT_SYMBOL(register_netdev);
5068 * netdev_wait_allrefs - wait until all references are gone.
5070 * This is called when unregistering network devices.
5072 * Any protocol or device that holds a reference should register
5073 * for netdevice notification, and cleanup and put back the
5074 * reference if they receive an UNREGISTER event.
5075 * We can get stuck here if buggy protocols don't correctly
5076 * call dev_put.
5078 static void netdev_wait_allrefs(struct net_device *dev)
5080 unsigned long rebroadcast_time, warning_time;
5082 linkwatch_forget_dev(dev);
5084 rebroadcast_time = warning_time = jiffies;
5085 while (atomic_read(&dev->refcnt) != 0) {
5086 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5087 rtnl_lock();
5089 /* Rebroadcast unregister notification */
5090 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5091 /* don't resend NETDEV_UNREGISTER_PERNET, _PERNET users
5092 * should have already handle it the first time */
5094 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5095 &dev->state)) {
5096 /* We must not have linkwatch events
5097 * pending on unregister. If this
5098 * happens, we simply run the queue
5099 * unscheduled, resulting in a noop
5100 * for this device.
5102 linkwatch_run_queue();
5105 __rtnl_unlock();
5107 rebroadcast_time = jiffies;
5110 msleep(250);
5112 if (time_after(jiffies, warning_time + 10 * HZ)) {
5113 printk(KERN_EMERG "unregister_netdevice: "
5114 "waiting for %s to become free. Usage "
5115 "count = %d\n",
5116 dev->name, atomic_read(&dev->refcnt));
5117 warning_time = jiffies;
5122 /* The sequence is:
5124 * rtnl_lock();
5125 * ...
5126 * register_netdevice(x1);
5127 * register_netdevice(x2);
5128 * ...
5129 * unregister_netdevice(y1);
5130 * unregister_netdevice(y2);
5131 * ...
5132 * rtnl_unlock();
5133 * free_netdev(y1);
5134 * free_netdev(y2);
5136 * We are invoked by rtnl_unlock().
5137 * This allows us to deal with problems:
5138 * 1) We can delete sysfs objects which invoke hotplug
5139 * without deadlocking with linkwatch via keventd.
5140 * 2) Since we run with the RTNL semaphore not held, we can sleep
5141 * safely in order to wait for the netdev refcnt to drop to zero.
5143 * We must not return until all unregister events added during
5144 * the interval the lock was held have been completed.
5146 void netdev_run_todo(void)
5148 struct list_head list;
5150 /* Snapshot list, allow later requests */
5151 list_replace_init(&net_todo_list, &list);
5153 __rtnl_unlock();
5155 while (!list_empty(&list)) {
5156 struct net_device *dev
5157 = list_entry(list.next, struct net_device, todo_list);
5158 list_del(&dev->todo_list);
5160 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5161 printk(KERN_ERR "network todo '%s' but state %d\n",
5162 dev->name, dev->reg_state);
5163 dump_stack();
5164 continue;
5167 dev->reg_state = NETREG_UNREGISTERED;
5169 on_each_cpu(flush_backlog, dev, 1);
5171 netdev_wait_allrefs(dev);
5173 /* paranoia */
5174 BUG_ON(atomic_read(&dev->refcnt));
5175 WARN_ON(dev->ip_ptr);
5176 WARN_ON(dev->ip6_ptr);
5177 WARN_ON(dev->dn_ptr);
5179 if (dev->destructor)
5180 dev->destructor(dev);
5182 /* Free network device */
5183 kobject_put(&dev->dev.kobj);
5188 * dev_txq_stats_fold - fold tx_queues stats
5189 * @dev: device to get statistics from
5190 * @stats: struct net_device_stats to hold results
5192 void dev_txq_stats_fold(const struct net_device *dev,
5193 struct net_device_stats *stats)
5195 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5196 unsigned int i;
5197 struct netdev_queue *txq;
5199 for (i = 0; i < dev->num_tx_queues; i++) {
5200 txq = netdev_get_tx_queue(dev, i);
5201 tx_bytes += txq->tx_bytes;
5202 tx_packets += txq->tx_packets;
5203 tx_dropped += txq->tx_dropped;
5205 if (tx_bytes || tx_packets || tx_dropped) {
5206 stats->tx_bytes = tx_bytes;
5207 stats->tx_packets = tx_packets;
5208 stats->tx_dropped = tx_dropped;
5211 EXPORT_SYMBOL(dev_txq_stats_fold);
5214 * dev_get_stats - get network device statistics
5215 * @dev: device to get statistics from
5217 * Get network statistics from device. The device driver may provide
5218 * its own method by setting dev->netdev_ops->get_stats; otherwise
5219 * the internal statistics structure is used.
5221 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5223 const struct net_device_ops *ops = dev->netdev_ops;
5225 if (ops->ndo_get_stats)
5226 return ops->ndo_get_stats(dev);
5228 dev_txq_stats_fold(dev, &dev->stats);
5229 return &dev->stats;
5231 EXPORT_SYMBOL(dev_get_stats);
5233 static void netdev_init_one_queue(struct net_device *dev,
5234 struct netdev_queue *queue,
5235 void *_unused)
5237 queue->dev = dev;
5240 static void netdev_init_queues(struct net_device *dev)
5242 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5243 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5244 spin_lock_init(&dev->tx_global_lock);
5248 * alloc_netdev_mq - allocate network device
5249 * @sizeof_priv: size of private data to allocate space for
5250 * @name: device name format string
5251 * @setup: callback to initialize device
5252 * @queue_count: the number of subqueues to allocate
5254 * Allocates a struct net_device with private data area for driver use
5255 * and performs basic initialization. Also allocates subquue structs
5256 * for each queue on the device at the end of the netdevice.
5258 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5259 void (*setup)(struct net_device *), unsigned int queue_count)
5261 struct netdev_queue *tx;
5262 struct net_device *dev;
5263 size_t alloc_size;
5264 struct net_device *p;
5266 BUG_ON(strlen(name) >= sizeof(dev->name));
5268 alloc_size = sizeof(struct net_device);
5269 if (sizeof_priv) {
5270 /* ensure 32-byte alignment of private area */
5271 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5272 alloc_size += sizeof_priv;
5274 /* ensure 32-byte alignment of whole construct */
5275 alloc_size += NETDEV_ALIGN - 1;
5277 p = kzalloc(alloc_size, GFP_KERNEL);
5278 if (!p) {
5279 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5280 return NULL;
5283 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5284 if (!tx) {
5285 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5286 "tx qdiscs.\n");
5287 goto free_p;
5290 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5291 dev->padded = (char *)dev - (char *)p;
5293 if (dev_addr_init(dev))
5294 goto free_tx;
5296 dev_unicast_init(dev);
5298 dev_net_set(dev, &init_net);
5300 dev->_tx = tx;
5301 dev->num_tx_queues = queue_count;
5302 dev->real_num_tx_queues = queue_count;
5304 dev->gso_max_size = GSO_MAX_SIZE;
5306 netdev_init_queues(dev);
5308 INIT_LIST_HEAD(&dev->napi_list);
5309 INIT_LIST_HEAD(&dev->unreg_list);
5310 INIT_LIST_HEAD(&dev->link_watch_list);
5311 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5312 setup(dev);
5313 strcpy(dev->name, name);
5314 return dev;
5316 free_tx:
5317 kfree(tx);
5319 free_p:
5320 kfree(p);
5321 return NULL;
5323 EXPORT_SYMBOL(alloc_netdev_mq);
5326 * free_netdev - free network device
5327 * @dev: device
5329 * This function does the last stage of destroying an allocated device
5330 * interface. The reference to the device object is released.
5331 * If this is the last reference then it will be freed.
5333 void free_netdev(struct net_device *dev)
5335 struct napi_struct *p, *n;
5337 release_net(dev_net(dev));
5339 kfree(dev->_tx);
5341 /* Flush device addresses */
5342 dev_addr_flush(dev);
5344 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5345 netif_napi_del(p);
5347 /* Compatibility with error handling in drivers */
5348 if (dev->reg_state == NETREG_UNINITIALIZED) {
5349 kfree((char *)dev - dev->padded);
5350 return;
5353 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5354 dev->reg_state = NETREG_RELEASED;
5356 /* will free via device release */
5357 put_device(&dev->dev);
5359 EXPORT_SYMBOL(free_netdev);
5362 * synchronize_net - Synchronize with packet receive processing
5364 * Wait for packets currently being received to be done.
5365 * Does not block later packets from starting.
5367 void synchronize_net(void)
5369 might_sleep();
5370 synchronize_rcu();
5372 EXPORT_SYMBOL(synchronize_net);
5375 * unregister_netdevice_queue - remove device from the kernel
5376 * @dev: device
5377 * @head: list
5379 * This function shuts down a device interface and removes it
5380 * from the kernel tables.
5381 * If head not NULL, device is queued to be unregistered later.
5383 * Callers must hold the rtnl semaphore. You may want
5384 * unregister_netdev() instead of this.
5387 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5389 ASSERT_RTNL();
5391 if (head) {
5392 list_move_tail(&dev->unreg_list, head);
5393 } else {
5394 rollback_registered(dev);
5395 /* Finish processing unregister after unlock */
5396 net_set_todo(dev);
5399 EXPORT_SYMBOL(unregister_netdevice_queue);
5402 * unregister_netdevice_many - unregister many devices
5403 * @head: list of devices
5405 * WARNING: Calling this modifies the given list
5406 * (in rollback_registered_many). It may change the order of the elements
5407 * in the list. However, you can assume it does not add or delete elements
5408 * to/from the list.
5410 void unregister_netdevice_many(struct list_head *head)
5412 struct net_device *dev;
5414 if (!list_empty(head)) {
5415 rollback_registered_many(head);
5416 list_for_each_entry(dev, head, unreg_list)
5417 net_set_todo(dev);
5420 EXPORT_SYMBOL(unregister_netdevice_many);
5423 * unregister_netdev - remove device from the kernel
5424 * @dev: device
5426 * This function shuts down a device interface and removes it
5427 * from the kernel tables.
5429 * This is just a wrapper for unregister_netdevice that takes
5430 * the rtnl semaphore. In general you want to use this and not
5431 * unregister_netdevice.
5433 void unregister_netdev(struct net_device *dev)
5435 rtnl_lock();
5436 unregister_netdevice(dev);
5437 rtnl_unlock();
5439 EXPORT_SYMBOL(unregister_netdev);
5442 * dev_change_net_namespace - move device to different nethost namespace
5443 * @dev: device
5444 * @net: network namespace
5445 * @pat: If not NULL name pattern to try if the current device name
5446 * is already taken in the destination network namespace.
5448 * This function shuts down a device interface and moves it
5449 * to a new network namespace. On success 0 is returned, on
5450 * a failure a netagive errno code is returned.
5452 * Callers must hold the rtnl semaphore.
5455 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5457 int err;
5459 ASSERT_RTNL();
5461 /* Don't allow namespace local devices to be moved. */
5462 err = -EINVAL;
5463 if (dev->features & NETIF_F_NETNS_LOCAL)
5464 goto out;
5466 #ifdef CONFIG_SYSFS
5467 /* Don't allow real devices to be moved when sysfs
5468 * is enabled.
5470 err = -EINVAL;
5471 if (dev->dev.parent)
5472 goto out;
5473 #endif
5475 /* Ensure the device has been registrered */
5476 err = -EINVAL;
5477 if (dev->reg_state != NETREG_REGISTERED)
5478 goto out;
5480 /* Get out if there is nothing todo */
5481 err = 0;
5482 if (net_eq(dev_net(dev), net))
5483 goto out;
5485 /* Pick the destination device name, and ensure
5486 * we can use it in the destination network namespace.
5488 err = -EEXIST;
5489 if (__dev_get_by_name(net, dev->name)) {
5490 /* We get here if we can't use the current device name */
5491 if (!pat)
5492 goto out;
5493 if (dev_get_valid_name(net, pat, dev->name, 1))
5494 goto out;
5498 * And now a mini version of register_netdevice unregister_netdevice.
5501 /* If device is running close it first. */
5502 dev_close(dev);
5504 /* And unlink it from device chain */
5505 err = -ENODEV;
5506 unlist_netdevice(dev);
5508 synchronize_net();
5510 /* Shutdown queueing discipline. */
5511 dev_shutdown(dev);
5513 /* Notify protocols, that we are about to destroy
5514 this device. They should clean all the things.
5516 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5517 call_netdevice_notifiers(NETDEV_UNREGISTER_PERNET, dev);
5520 * Flush the unicast and multicast chains
5522 dev_unicast_flush(dev);
5523 dev_addr_discard(dev);
5525 netdev_unregister_kobject(dev);
5527 /* Actually switch the network namespace */
5528 dev_net_set(dev, net);
5530 /* If there is an ifindex conflict assign a new one */
5531 if (__dev_get_by_index(net, dev->ifindex)) {
5532 int iflink = (dev->iflink == dev->ifindex);
5533 dev->ifindex = dev_new_index(net);
5534 if (iflink)
5535 dev->iflink = dev->ifindex;
5538 /* Fixup kobjects */
5539 err = netdev_register_kobject(dev);
5540 WARN_ON(err);
5542 /* Add the device back in the hashes */
5543 list_netdevice(dev);
5545 /* Notify protocols, that a new device appeared. */
5546 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5548 synchronize_net();
5549 err = 0;
5550 out:
5551 return err;
5553 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5555 static int dev_cpu_callback(struct notifier_block *nfb,
5556 unsigned long action,
5557 void *ocpu)
5559 struct sk_buff **list_skb;
5560 struct Qdisc **list_net;
5561 struct sk_buff *skb;
5562 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5563 struct softnet_data *sd, *oldsd;
5565 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5566 return NOTIFY_OK;
5568 local_irq_disable();
5569 cpu = smp_processor_id();
5570 sd = &per_cpu(softnet_data, cpu);
5571 oldsd = &per_cpu(softnet_data, oldcpu);
5573 /* Find end of our completion_queue. */
5574 list_skb = &sd->completion_queue;
5575 while (*list_skb)
5576 list_skb = &(*list_skb)->next;
5577 /* Append completion queue from offline CPU. */
5578 *list_skb = oldsd->completion_queue;
5579 oldsd->completion_queue = NULL;
5581 /* Find end of our output_queue. */
5582 list_net = &sd->output_queue;
5583 while (*list_net)
5584 list_net = &(*list_net)->next_sched;
5585 /* Append output queue from offline CPU. */
5586 *list_net = oldsd->output_queue;
5587 oldsd->output_queue = NULL;
5589 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5590 local_irq_enable();
5592 /* Process offline CPU's input_pkt_queue */
5593 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5594 netif_rx(skb);
5596 return NOTIFY_OK;
5601 * netdev_increment_features - increment feature set by one
5602 * @all: current feature set
5603 * @one: new feature set
5604 * @mask: mask feature set
5606 * Computes a new feature set after adding a device with feature set
5607 * @one to the master device with current feature set @all. Will not
5608 * enable anything that is off in @mask. Returns the new feature set.
5610 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5611 unsigned long mask)
5613 /* If device needs checksumming, downgrade to it. */
5614 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5615 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5616 else if (mask & NETIF_F_ALL_CSUM) {
5617 /* If one device supports v4/v6 checksumming, set for all. */
5618 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5619 !(all & NETIF_F_GEN_CSUM)) {
5620 all &= ~NETIF_F_ALL_CSUM;
5621 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5624 /* If one device supports hw checksumming, set for all. */
5625 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5626 all &= ~NETIF_F_ALL_CSUM;
5627 all |= NETIF_F_HW_CSUM;
5631 one |= NETIF_F_ALL_CSUM;
5633 one |= all & NETIF_F_ONE_FOR_ALL;
5634 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5635 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5637 return all;
5639 EXPORT_SYMBOL(netdev_increment_features);
5641 static struct hlist_head *netdev_create_hash(void)
5643 int i;
5644 struct hlist_head *hash;
5646 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5647 if (hash != NULL)
5648 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5649 INIT_HLIST_HEAD(&hash[i]);
5651 return hash;
5654 /* Initialize per network namespace state */
5655 static int __net_init netdev_init(struct net *net)
5657 INIT_LIST_HEAD(&net->dev_base_head);
5659 net->dev_name_head = netdev_create_hash();
5660 if (net->dev_name_head == NULL)
5661 goto err_name;
5663 net->dev_index_head = netdev_create_hash();
5664 if (net->dev_index_head == NULL)
5665 goto err_idx;
5667 return 0;
5669 err_idx:
5670 kfree(net->dev_name_head);
5671 err_name:
5672 return -ENOMEM;
5676 * netdev_drivername - network driver for the device
5677 * @dev: network device
5678 * @buffer: buffer for resulting name
5679 * @len: size of buffer
5681 * Determine network driver for device.
5683 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5685 const struct device_driver *driver;
5686 const struct device *parent;
5688 if (len <= 0 || !buffer)
5689 return buffer;
5690 buffer[0] = 0;
5692 parent = dev->dev.parent;
5694 if (!parent)
5695 return buffer;
5697 driver = parent->driver;
5698 if (driver && driver->name)
5699 strlcpy(buffer, driver->name, len);
5700 return buffer;
5703 static void __net_exit netdev_exit(struct net *net)
5705 kfree(net->dev_name_head);
5706 kfree(net->dev_index_head);
5709 static struct pernet_operations __net_initdata netdev_net_ops = {
5710 .init = netdev_init,
5711 .exit = netdev_exit,
5714 static void __net_exit default_device_exit(struct net *net)
5716 struct net_device *dev;
5718 * Push all migratable of the network devices back to the
5719 * initial network namespace
5721 rtnl_lock();
5722 restart:
5723 for_each_netdev(net, dev) {
5724 int err;
5725 char fb_name[IFNAMSIZ];
5727 /* Ignore unmoveable devices (i.e. loopback) */
5728 if (dev->features & NETIF_F_NETNS_LOCAL)
5729 continue;
5731 /* Delete virtual devices */
5732 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5733 dev->rtnl_link_ops->dellink(dev, NULL);
5734 goto restart;
5737 /* Push remaing network devices to init_net */
5738 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5739 err = dev_change_net_namespace(dev, &init_net, fb_name);
5740 if (err) {
5741 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5742 __func__, dev->name, err);
5743 BUG();
5745 goto restart;
5747 rtnl_unlock();
5750 static struct pernet_operations __net_initdata default_device_ops = {
5751 .exit = default_device_exit,
5755 * Initialize the DEV module. At boot time this walks the device list and
5756 * unhooks any devices that fail to initialise (normally hardware not
5757 * present) and leaves us with a valid list of present and active devices.
5762 * This is called single threaded during boot, so no need
5763 * to take the rtnl semaphore.
5765 static int __init net_dev_init(void)
5767 int i, rc = -ENOMEM;
5769 BUG_ON(!dev_boot_phase);
5771 if (dev_proc_init())
5772 goto out;
5774 if (netdev_kobject_init())
5775 goto out;
5777 INIT_LIST_HEAD(&ptype_all);
5778 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5779 INIT_LIST_HEAD(&ptype_base[i]);
5781 if (register_pernet_subsys(&netdev_net_ops))
5782 goto out;
5785 * Initialise the packet receive queues.
5788 for_each_possible_cpu(i) {
5789 struct softnet_data *queue;
5791 queue = &per_cpu(softnet_data, i);
5792 skb_queue_head_init(&queue->input_pkt_queue);
5793 queue->completion_queue = NULL;
5794 INIT_LIST_HEAD(&queue->poll_list);
5796 queue->backlog.poll = process_backlog;
5797 queue->backlog.weight = weight_p;
5798 queue->backlog.gro_list = NULL;
5799 queue->backlog.gro_count = 0;
5802 dev_boot_phase = 0;
5804 /* The loopback device is special if any other network devices
5805 * is present in a network namespace the loopback device must
5806 * be present. Since we now dynamically allocate and free the
5807 * loopback device ensure this invariant is maintained by
5808 * keeping the loopback device as the first device on the
5809 * list of network devices. Ensuring the loopback devices
5810 * is the first device that appears and the last network device
5811 * that disappears.
5813 if (register_pernet_device(&loopback_net_ops))
5814 goto out;
5816 if (register_pernet_device(&default_device_ops))
5817 goto out;
5819 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5820 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5822 hotcpu_notifier(dev_cpu_callback, 0);
5823 dst_init();
5824 dev_mcast_init();
5825 rc = 0;
5826 out:
5827 return rc;
5830 subsys_initcall(net_dev_init);
5832 static int __init initialize_hashrnd(void)
5834 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5835 return 0;
5838 late_initcall_sync(initialize_hashrnd);