drm/i915/dp: don't bother with DP PLL for PCH attached eDP
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slub.c
blob13fffe1f0f3dc5992471ffd590326b9517b0cc3a
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
86 * Overloading of page flags that are otherwise used for LRU management.
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
112 static inline int kmem_cache_debug(struct kmem_cache *s)
114 #ifdef CONFIG_SLUB_DEBUG
115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116 #else
117 return 0;
118 #endif
122 * Issues still to be resolved:
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
126 * - Variable sizing of the per node arrays
129 /* Enable to test recovery from slab corruption on boot */
130 #undef SLUB_RESILIENCY_TEST
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
136 #define MIN_PARTIAL 5
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
143 #define MAX_PARTIAL 10
145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156 * Set of flags that will prevent slab merging
158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 SLAB_CACHE_DMA | SLAB_NOTRACK)
165 #define OO_SHIFT 16
166 #define OO_MASK ((1 << OO_SHIFT) - 1)
167 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
169 /* Internal SLUB flags */
170 #define __OBJECT_POISON 0x80000000UL /* Poison object */
171 #define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */
173 static int kmem_size = sizeof(struct kmem_cache);
175 #ifdef CONFIG_SMP
176 static struct notifier_block slab_notifier;
177 #endif
179 static enum {
180 DOWN, /* No slab functionality available */
181 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
182 UP, /* Everything works but does not show up in sysfs */
183 SYSFS /* Sysfs up */
184 } slab_state = DOWN;
186 /* A list of all slab caches on the system */
187 static DECLARE_RWSEM(slub_lock);
188 static LIST_HEAD(slab_caches);
191 * Tracking user of a slab.
193 struct track {
194 unsigned long addr; /* Called from address */
195 int cpu; /* Was running on cpu */
196 int pid; /* Pid context */
197 unsigned long when; /* When did the operation occur */
200 enum track_item { TRACK_ALLOC, TRACK_FREE };
202 #ifdef CONFIG_SLUB_DEBUG
203 static int sysfs_slab_add(struct kmem_cache *);
204 static int sysfs_slab_alias(struct kmem_cache *, const char *);
205 static void sysfs_slab_remove(struct kmem_cache *);
207 #else
208 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
209 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
210 { return 0; }
211 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 kfree(s);
216 #endif
218 static inline void stat(struct kmem_cache *s, enum stat_item si)
220 #ifdef CONFIG_SLUB_STATS
221 __this_cpu_inc(s->cpu_slab->stat[si]);
222 #endif
225 /********************************************************************
226 * Core slab cache functions
227 *******************************************************************/
229 int slab_is_available(void)
231 return slab_state >= UP;
234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 #ifdef CONFIG_NUMA
237 return s->node[node];
238 #else
239 return &s->local_node;
240 #endif
243 /* Verify that a pointer has an address that is valid within a slab page */
244 static inline int check_valid_pointer(struct kmem_cache *s,
245 struct page *page, const void *object)
247 void *base;
249 if (!object)
250 return 1;
252 base = page_address(page);
253 if (object < base || object >= base + page->objects * s->size ||
254 (object - base) % s->size) {
255 return 0;
258 return 1;
261 static inline void *get_freepointer(struct kmem_cache *s, void *object)
263 return *(void **)(object + s->offset);
266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 *(void **)(object + s->offset) = fp;
271 /* Loop over all objects in a slab */
272 #define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 __p += (__s)->size)
276 /* Scan freelist */
277 #define for_each_free_object(__p, __s, __free) \
278 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 return (p - addr) / s->size;
286 static inline struct kmem_cache_order_objects oo_make(int order,
287 unsigned long size)
289 struct kmem_cache_order_objects x = {
290 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
293 return x;
296 static inline int oo_order(struct kmem_cache_order_objects x)
298 return x.x >> OO_SHIFT;
301 static inline int oo_objects(struct kmem_cache_order_objects x)
303 return x.x & OO_MASK;
306 #ifdef CONFIG_SLUB_DEBUG
308 * Debug settings:
310 #ifdef CONFIG_SLUB_DEBUG_ON
311 static int slub_debug = DEBUG_DEFAULT_FLAGS;
312 #else
313 static int slub_debug;
314 #endif
316 static char *slub_debug_slabs;
317 static int disable_higher_order_debug;
320 * Object debugging
322 static void print_section(char *text, u8 *addr, unsigned int length)
324 int i, offset;
325 int newline = 1;
326 char ascii[17];
328 ascii[16] = 0;
330 for (i = 0; i < length; i++) {
331 if (newline) {
332 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
333 newline = 0;
335 printk(KERN_CONT " %02x", addr[i]);
336 offset = i % 16;
337 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
338 if (offset == 15) {
339 printk(KERN_CONT " %s\n", ascii);
340 newline = 1;
343 if (!newline) {
344 i %= 16;
345 while (i < 16) {
346 printk(KERN_CONT " ");
347 ascii[i] = ' ';
348 i++;
350 printk(KERN_CONT " %s\n", ascii);
354 static struct track *get_track(struct kmem_cache *s, void *object,
355 enum track_item alloc)
357 struct track *p;
359 if (s->offset)
360 p = object + s->offset + sizeof(void *);
361 else
362 p = object + s->inuse;
364 return p + alloc;
367 static void set_track(struct kmem_cache *s, void *object,
368 enum track_item alloc, unsigned long addr)
370 struct track *p = get_track(s, object, alloc);
372 if (addr) {
373 p->addr = addr;
374 p->cpu = smp_processor_id();
375 p->pid = current->pid;
376 p->when = jiffies;
377 } else
378 memset(p, 0, sizeof(struct track));
381 static void init_tracking(struct kmem_cache *s, void *object)
383 if (!(s->flags & SLAB_STORE_USER))
384 return;
386 set_track(s, object, TRACK_FREE, 0UL);
387 set_track(s, object, TRACK_ALLOC, 0UL);
390 static void print_track(const char *s, struct track *t)
392 if (!t->addr)
393 return;
395 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
396 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
399 static void print_tracking(struct kmem_cache *s, void *object)
401 if (!(s->flags & SLAB_STORE_USER))
402 return;
404 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
405 print_track("Freed", get_track(s, object, TRACK_FREE));
408 static void print_page_info(struct page *page)
410 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
411 page, page->objects, page->inuse, page->freelist, page->flags);
415 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
417 va_list args;
418 char buf[100];
420 va_start(args, fmt);
421 vsnprintf(buf, sizeof(buf), fmt, args);
422 va_end(args);
423 printk(KERN_ERR "========================================"
424 "=====================================\n");
425 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
426 printk(KERN_ERR "----------------------------------------"
427 "-------------------------------------\n\n");
430 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
432 va_list args;
433 char buf[100];
435 va_start(args, fmt);
436 vsnprintf(buf, sizeof(buf), fmt, args);
437 va_end(args);
438 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
441 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
443 unsigned int off; /* Offset of last byte */
444 u8 *addr = page_address(page);
446 print_tracking(s, p);
448 print_page_info(page);
450 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
451 p, p - addr, get_freepointer(s, p));
453 if (p > addr + 16)
454 print_section("Bytes b4", p - 16, 16);
456 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
458 if (s->flags & SLAB_RED_ZONE)
459 print_section("Redzone", p + s->objsize,
460 s->inuse - s->objsize);
462 if (s->offset)
463 off = s->offset + sizeof(void *);
464 else
465 off = s->inuse;
467 if (s->flags & SLAB_STORE_USER)
468 off += 2 * sizeof(struct track);
470 if (off != s->size)
471 /* Beginning of the filler is the free pointer */
472 print_section("Padding", p + off, s->size - off);
474 dump_stack();
477 static void object_err(struct kmem_cache *s, struct page *page,
478 u8 *object, char *reason)
480 slab_bug(s, "%s", reason);
481 print_trailer(s, page, object);
484 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
486 va_list args;
487 char buf[100];
489 va_start(args, fmt);
490 vsnprintf(buf, sizeof(buf), fmt, args);
491 va_end(args);
492 slab_bug(s, "%s", buf);
493 print_page_info(page);
494 dump_stack();
497 static void init_object(struct kmem_cache *s, void *object, int active)
499 u8 *p = object;
501 if (s->flags & __OBJECT_POISON) {
502 memset(p, POISON_FREE, s->objsize - 1);
503 p[s->objsize - 1] = POISON_END;
506 if (s->flags & SLAB_RED_ZONE)
507 memset(p + s->objsize,
508 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
509 s->inuse - s->objsize);
512 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
514 while (bytes) {
515 if (*start != (u8)value)
516 return start;
517 start++;
518 bytes--;
520 return NULL;
523 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
524 void *from, void *to)
526 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
527 memset(from, data, to - from);
530 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
531 u8 *object, char *what,
532 u8 *start, unsigned int value, unsigned int bytes)
534 u8 *fault;
535 u8 *end;
537 fault = check_bytes(start, value, bytes);
538 if (!fault)
539 return 1;
541 end = start + bytes;
542 while (end > fault && end[-1] == value)
543 end--;
545 slab_bug(s, "%s overwritten", what);
546 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
547 fault, end - 1, fault[0], value);
548 print_trailer(s, page, object);
550 restore_bytes(s, what, value, fault, end);
551 return 0;
555 * Object layout:
557 * object address
558 * Bytes of the object to be managed.
559 * If the freepointer may overlay the object then the free
560 * pointer is the first word of the object.
562 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
563 * 0xa5 (POISON_END)
565 * object + s->objsize
566 * Padding to reach word boundary. This is also used for Redzoning.
567 * Padding is extended by another word if Redzoning is enabled and
568 * objsize == inuse.
570 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
571 * 0xcc (RED_ACTIVE) for objects in use.
573 * object + s->inuse
574 * Meta data starts here.
576 * A. Free pointer (if we cannot overwrite object on free)
577 * B. Tracking data for SLAB_STORE_USER
578 * C. Padding to reach required alignment boundary or at mininum
579 * one word if debugging is on to be able to detect writes
580 * before the word boundary.
582 * Padding is done using 0x5a (POISON_INUSE)
584 * object + s->size
585 * Nothing is used beyond s->size.
587 * If slabcaches are merged then the objsize and inuse boundaries are mostly
588 * ignored. And therefore no slab options that rely on these boundaries
589 * may be used with merged slabcaches.
592 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
594 unsigned long off = s->inuse; /* The end of info */
596 if (s->offset)
597 /* Freepointer is placed after the object. */
598 off += sizeof(void *);
600 if (s->flags & SLAB_STORE_USER)
601 /* We also have user information there */
602 off += 2 * sizeof(struct track);
604 if (s->size == off)
605 return 1;
607 return check_bytes_and_report(s, page, p, "Object padding",
608 p + off, POISON_INUSE, s->size - off);
611 /* Check the pad bytes at the end of a slab page */
612 static int slab_pad_check(struct kmem_cache *s, struct page *page)
614 u8 *start;
615 u8 *fault;
616 u8 *end;
617 int length;
618 int remainder;
620 if (!(s->flags & SLAB_POISON))
621 return 1;
623 start = page_address(page);
624 length = (PAGE_SIZE << compound_order(page));
625 end = start + length;
626 remainder = length % s->size;
627 if (!remainder)
628 return 1;
630 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
631 if (!fault)
632 return 1;
633 while (end > fault && end[-1] == POISON_INUSE)
634 end--;
636 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
637 print_section("Padding", end - remainder, remainder);
639 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
640 return 0;
643 static int check_object(struct kmem_cache *s, struct page *page,
644 void *object, int active)
646 u8 *p = object;
647 u8 *endobject = object + s->objsize;
649 if (s->flags & SLAB_RED_ZONE) {
650 unsigned int red =
651 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
653 if (!check_bytes_and_report(s, page, object, "Redzone",
654 endobject, red, s->inuse - s->objsize))
655 return 0;
656 } else {
657 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
658 check_bytes_and_report(s, page, p, "Alignment padding",
659 endobject, POISON_INUSE, s->inuse - s->objsize);
663 if (s->flags & SLAB_POISON) {
664 if (!active && (s->flags & __OBJECT_POISON) &&
665 (!check_bytes_and_report(s, page, p, "Poison", p,
666 POISON_FREE, s->objsize - 1) ||
667 !check_bytes_and_report(s, page, p, "Poison",
668 p + s->objsize - 1, POISON_END, 1)))
669 return 0;
671 * check_pad_bytes cleans up on its own.
673 check_pad_bytes(s, page, p);
676 if (!s->offset && active)
678 * Object and freepointer overlap. Cannot check
679 * freepointer while object is allocated.
681 return 1;
683 /* Check free pointer validity */
684 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
685 object_err(s, page, p, "Freepointer corrupt");
687 * No choice but to zap it and thus lose the remainder
688 * of the free objects in this slab. May cause
689 * another error because the object count is now wrong.
691 set_freepointer(s, p, NULL);
692 return 0;
694 return 1;
697 static int check_slab(struct kmem_cache *s, struct page *page)
699 int maxobj;
701 VM_BUG_ON(!irqs_disabled());
703 if (!PageSlab(page)) {
704 slab_err(s, page, "Not a valid slab page");
705 return 0;
708 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
709 if (page->objects > maxobj) {
710 slab_err(s, page, "objects %u > max %u",
711 s->name, page->objects, maxobj);
712 return 0;
714 if (page->inuse > page->objects) {
715 slab_err(s, page, "inuse %u > max %u",
716 s->name, page->inuse, page->objects);
717 return 0;
719 /* Slab_pad_check fixes things up after itself */
720 slab_pad_check(s, page);
721 return 1;
725 * Determine if a certain object on a page is on the freelist. Must hold the
726 * slab lock to guarantee that the chains are in a consistent state.
728 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
730 int nr = 0;
731 void *fp = page->freelist;
732 void *object = NULL;
733 unsigned long max_objects;
735 while (fp && nr <= page->objects) {
736 if (fp == search)
737 return 1;
738 if (!check_valid_pointer(s, page, fp)) {
739 if (object) {
740 object_err(s, page, object,
741 "Freechain corrupt");
742 set_freepointer(s, object, NULL);
743 break;
744 } else {
745 slab_err(s, page, "Freepointer corrupt");
746 page->freelist = NULL;
747 page->inuse = page->objects;
748 slab_fix(s, "Freelist cleared");
749 return 0;
751 break;
753 object = fp;
754 fp = get_freepointer(s, object);
755 nr++;
758 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
759 if (max_objects > MAX_OBJS_PER_PAGE)
760 max_objects = MAX_OBJS_PER_PAGE;
762 if (page->objects != max_objects) {
763 slab_err(s, page, "Wrong number of objects. Found %d but "
764 "should be %d", page->objects, max_objects);
765 page->objects = max_objects;
766 slab_fix(s, "Number of objects adjusted.");
768 if (page->inuse != page->objects - nr) {
769 slab_err(s, page, "Wrong object count. Counter is %d but "
770 "counted were %d", page->inuse, page->objects - nr);
771 page->inuse = page->objects - nr;
772 slab_fix(s, "Object count adjusted.");
774 return search == NULL;
777 static void trace(struct kmem_cache *s, struct page *page, void *object,
778 int alloc)
780 if (s->flags & SLAB_TRACE) {
781 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
782 s->name,
783 alloc ? "alloc" : "free",
784 object, page->inuse,
785 page->freelist);
787 if (!alloc)
788 print_section("Object", (void *)object, s->objsize);
790 dump_stack();
795 * Tracking of fully allocated slabs for debugging purposes.
797 static void add_full(struct kmem_cache_node *n, struct page *page)
799 spin_lock(&n->list_lock);
800 list_add(&page->lru, &n->full);
801 spin_unlock(&n->list_lock);
804 static void remove_full(struct kmem_cache *s, struct page *page)
806 struct kmem_cache_node *n;
808 if (!(s->flags & SLAB_STORE_USER))
809 return;
811 n = get_node(s, page_to_nid(page));
813 spin_lock(&n->list_lock);
814 list_del(&page->lru);
815 spin_unlock(&n->list_lock);
818 /* Tracking of the number of slabs for debugging purposes */
819 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
821 struct kmem_cache_node *n = get_node(s, node);
823 return atomic_long_read(&n->nr_slabs);
826 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
828 return atomic_long_read(&n->nr_slabs);
831 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
833 struct kmem_cache_node *n = get_node(s, node);
836 * May be called early in order to allocate a slab for the
837 * kmem_cache_node structure. Solve the chicken-egg
838 * dilemma by deferring the increment of the count during
839 * bootstrap (see early_kmem_cache_node_alloc).
841 if (!NUMA_BUILD || n) {
842 atomic_long_inc(&n->nr_slabs);
843 atomic_long_add(objects, &n->total_objects);
846 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
848 struct kmem_cache_node *n = get_node(s, node);
850 atomic_long_dec(&n->nr_slabs);
851 atomic_long_sub(objects, &n->total_objects);
854 /* Object debug checks for alloc/free paths */
855 static void setup_object_debug(struct kmem_cache *s, struct page *page,
856 void *object)
858 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
859 return;
861 init_object(s, object, 0);
862 init_tracking(s, object);
865 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
866 void *object, unsigned long addr)
868 if (!check_slab(s, page))
869 goto bad;
871 if (!on_freelist(s, page, object)) {
872 object_err(s, page, object, "Object already allocated");
873 goto bad;
876 if (!check_valid_pointer(s, page, object)) {
877 object_err(s, page, object, "Freelist Pointer check fails");
878 goto bad;
881 if (!check_object(s, page, object, 0))
882 goto bad;
884 /* Success perform special debug activities for allocs */
885 if (s->flags & SLAB_STORE_USER)
886 set_track(s, object, TRACK_ALLOC, addr);
887 trace(s, page, object, 1);
888 init_object(s, object, 1);
889 return 1;
891 bad:
892 if (PageSlab(page)) {
894 * If this is a slab page then lets do the best we can
895 * to avoid issues in the future. Marking all objects
896 * as used avoids touching the remaining objects.
898 slab_fix(s, "Marking all objects used");
899 page->inuse = page->objects;
900 page->freelist = NULL;
902 return 0;
905 static int free_debug_processing(struct kmem_cache *s, struct page *page,
906 void *object, unsigned long addr)
908 if (!check_slab(s, page))
909 goto fail;
911 if (!check_valid_pointer(s, page, object)) {
912 slab_err(s, page, "Invalid object pointer 0x%p", object);
913 goto fail;
916 if (on_freelist(s, page, object)) {
917 object_err(s, page, object, "Object already free");
918 goto fail;
921 if (!check_object(s, page, object, 1))
922 return 0;
924 if (unlikely(s != page->slab)) {
925 if (!PageSlab(page)) {
926 slab_err(s, page, "Attempt to free object(0x%p) "
927 "outside of slab", object);
928 } else if (!page->slab) {
929 printk(KERN_ERR
930 "SLUB <none>: no slab for object 0x%p.\n",
931 object);
932 dump_stack();
933 } else
934 object_err(s, page, object,
935 "page slab pointer corrupt.");
936 goto fail;
939 /* Special debug activities for freeing objects */
940 if (!PageSlubFrozen(page) && !page->freelist)
941 remove_full(s, page);
942 if (s->flags & SLAB_STORE_USER)
943 set_track(s, object, TRACK_FREE, addr);
944 trace(s, page, object, 0);
945 init_object(s, object, 0);
946 return 1;
948 fail:
949 slab_fix(s, "Object at 0x%p not freed", object);
950 return 0;
953 static int __init setup_slub_debug(char *str)
955 slub_debug = DEBUG_DEFAULT_FLAGS;
956 if (*str++ != '=' || !*str)
958 * No options specified. Switch on full debugging.
960 goto out;
962 if (*str == ',')
964 * No options but restriction on slabs. This means full
965 * debugging for slabs matching a pattern.
967 goto check_slabs;
969 if (tolower(*str) == 'o') {
971 * Avoid enabling debugging on caches if its minimum order
972 * would increase as a result.
974 disable_higher_order_debug = 1;
975 goto out;
978 slub_debug = 0;
979 if (*str == '-')
981 * Switch off all debugging measures.
983 goto out;
986 * Determine which debug features should be switched on
988 for (; *str && *str != ','; str++) {
989 switch (tolower(*str)) {
990 case 'f':
991 slub_debug |= SLAB_DEBUG_FREE;
992 break;
993 case 'z':
994 slub_debug |= SLAB_RED_ZONE;
995 break;
996 case 'p':
997 slub_debug |= SLAB_POISON;
998 break;
999 case 'u':
1000 slub_debug |= SLAB_STORE_USER;
1001 break;
1002 case 't':
1003 slub_debug |= SLAB_TRACE;
1004 break;
1005 case 'a':
1006 slub_debug |= SLAB_FAILSLAB;
1007 break;
1008 default:
1009 printk(KERN_ERR "slub_debug option '%c' "
1010 "unknown. skipped\n", *str);
1014 check_slabs:
1015 if (*str == ',')
1016 slub_debug_slabs = str + 1;
1017 out:
1018 return 1;
1021 __setup("slub_debug", setup_slub_debug);
1023 static unsigned long kmem_cache_flags(unsigned long objsize,
1024 unsigned long flags, const char *name,
1025 void (*ctor)(void *))
1028 * Enable debugging if selected on the kernel commandline.
1030 if (slub_debug && (!slub_debug_slabs ||
1031 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1032 flags |= slub_debug;
1034 return flags;
1036 #else
1037 static inline void setup_object_debug(struct kmem_cache *s,
1038 struct page *page, void *object) {}
1040 static inline int alloc_debug_processing(struct kmem_cache *s,
1041 struct page *page, void *object, unsigned long addr) { return 0; }
1043 static inline int free_debug_processing(struct kmem_cache *s,
1044 struct page *page, void *object, unsigned long addr) { return 0; }
1046 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1047 { return 1; }
1048 static inline int check_object(struct kmem_cache *s, struct page *page,
1049 void *object, int active) { return 1; }
1050 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1051 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1052 unsigned long flags, const char *name,
1053 void (*ctor)(void *))
1055 return flags;
1057 #define slub_debug 0
1059 #define disable_higher_order_debug 0
1061 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1062 { return 0; }
1063 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1064 { return 0; }
1065 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1066 int objects) {}
1067 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1068 int objects) {}
1069 #endif
1072 * Slab allocation and freeing
1074 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1075 struct kmem_cache_order_objects oo)
1077 int order = oo_order(oo);
1079 flags |= __GFP_NOTRACK;
1081 if (node == NUMA_NO_NODE)
1082 return alloc_pages(flags, order);
1083 else
1084 return alloc_pages_exact_node(node, flags, order);
1087 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1089 struct page *page;
1090 struct kmem_cache_order_objects oo = s->oo;
1091 gfp_t alloc_gfp;
1093 flags |= s->allocflags;
1096 * Let the initial higher-order allocation fail under memory pressure
1097 * so we fall-back to the minimum order allocation.
1099 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1101 page = alloc_slab_page(alloc_gfp, node, oo);
1102 if (unlikely(!page)) {
1103 oo = s->min;
1105 * Allocation may have failed due to fragmentation.
1106 * Try a lower order alloc if possible
1108 page = alloc_slab_page(flags, node, oo);
1109 if (!page)
1110 return NULL;
1112 stat(s, ORDER_FALLBACK);
1115 if (kmemcheck_enabled
1116 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1117 int pages = 1 << oo_order(oo);
1119 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1122 * Objects from caches that have a constructor don't get
1123 * cleared when they're allocated, so we need to do it here.
1125 if (s->ctor)
1126 kmemcheck_mark_uninitialized_pages(page, pages);
1127 else
1128 kmemcheck_mark_unallocated_pages(page, pages);
1131 page->objects = oo_objects(oo);
1132 mod_zone_page_state(page_zone(page),
1133 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1134 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1135 1 << oo_order(oo));
1137 return page;
1140 static void setup_object(struct kmem_cache *s, struct page *page,
1141 void *object)
1143 setup_object_debug(s, page, object);
1144 if (unlikely(s->ctor))
1145 s->ctor(object);
1148 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1150 struct page *page;
1151 void *start;
1152 void *last;
1153 void *p;
1155 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1157 page = allocate_slab(s,
1158 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1159 if (!page)
1160 goto out;
1162 inc_slabs_node(s, page_to_nid(page), page->objects);
1163 page->slab = s;
1164 page->flags |= 1 << PG_slab;
1166 start = page_address(page);
1168 if (unlikely(s->flags & SLAB_POISON))
1169 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1171 last = start;
1172 for_each_object(p, s, start, page->objects) {
1173 setup_object(s, page, last);
1174 set_freepointer(s, last, p);
1175 last = p;
1177 setup_object(s, page, last);
1178 set_freepointer(s, last, NULL);
1180 page->freelist = start;
1181 page->inuse = 0;
1182 out:
1183 return page;
1186 static void __free_slab(struct kmem_cache *s, struct page *page)
1188 int order = compound_order(page);
1189 int pages = 1 << order;
1191 if (kmem_cache_debug(s)) {
1192 void *p;
1194 slab_pad_check(s, page);
1195 for_each_object(p, s, page_address(page),
1196 page->objects)
1197 check_object(s, page, p, 0);
1200 kmemcheck_free_shadow(page, compound_order(page));
1202 mod_zone_page_state(page_zone(page),
1203 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1204 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1205 -pages);
1207 __ClearPageSlab(page);
1208 reset_page_mapcount(page);
1209 if (current->reclaim_state)
1210 current->reclaim_state->reclaimed_slab += pages;
1211 __free_pages(page, order);
1214 static void rcu_free_slab(struct rcu_head *h)
1216 struct page *page;
1218 page = container_of((struct list_head *)h, struct page, lru);
1219 __free_slab(page->slab, page);
1222 static void free_slab(struct kmem_cache *s, struct page *page)
1224 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1226 * RCU free overloads the RCU head over the LRU
1228 struct rcu_head *head = (void *)&page->lru;
1230 call_rcu(head, rcu_free_slab);
1231 } else
1232 __free_slab(s, page);
1235 static void discard_slab(struct kmem_cache *s, struct page *page)
1237 dec_slabs_node(s, page_to_nid(page), page->objects);
1238 free_slab(s, page);
1242 * Per slab locking using the pagelock
1244 static __always_inline void slab_lock(struct page *page)
1246 bit_spin_lock(PG_locked, &page->flags);
1249 static __always_inline void slab_unlock(struct page *page)
1251 __bit_spin_unlock(PG_locked, &page->flags);
1254 static __always_inline int slab_trylock(struct page *page)
1256 int rc = 1;
1258 rc = bit_spin_trylock(PG_locked, &page->flags);
1259 return rc;
1263 * Management of partially allocated slabs
1265 static void add_partial(struct kmem_cache_node *n,
1266 struct page *page, int tail)
1268 spin_lock(&n->list_lock);
1269 n->nr_partial++;
1270 if (tail)
1271 list_add_tail(&page->lru, &n->partial);
1272 else
1273 list_add(&page->lru, &n->partial);
1274 spin_unlock(&n->list_lock);
1277 static void remove_partial(struct kmem_cache *s, struct page *page)
1279 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1281 spin_lock(&n->list_lock);
1282 list_del(&page->lru);
1283 n->nr_partial--;
1284 spin_unlock(&n->list_lock);
1288 * Lock slab and remove from the partial list.
1290 * Must hold list_lock.
1292 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1293 struct page *page)
1295 if (slab_trylock(page)) {
1296 list_del(&page->lru);
1297 n->nr_partial--;
1298 __SetPageSlubFrozen(page);
1299 return 1;
1301 return 0;
1305 * Try to allocate a partial slab from a specific node.
1307 static struct page *get_partial_node(struct kmem_cache_node *n)
1309 struct page *page;
1312 * Racy check. If we mistakenly see no partial slabs then we
1313 * just allocate an empty slab. If we mistakenly try to get a
1314 * partial slab and there is none available then get_partials()
1315 * will return NULL.
1317 if (!n || !n->nr_partial)
1318 return NULL;
1320 spin_lock(&n->list_lock);
1321 list_for_each_entry(page, &n->partial, lru)
1322 if (lock_and_freeze_slab(n, page))
1323 goto out;
1324 page = NULL;
1325 out:
1326 spin_unlock(&n->list_lock);
1327 return page;
1331 * Get a page from somewhere. Search in increasing NUMA distances.
1333 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1335 #ifdef CONFIG_NUMA
1336 struct zonelist *zonelist;
1337 struct zoneref *z;
1338 struct zone *zone;
1339 enum zone_type high_zoneidx = gfp_zone(flags);
1340 struct page *page;
1343 * The defrag ratio allows a configuration of the tradeoffs between
1344 * inter node defragmentation and node local allocations. A lower
1345 * defrag_ratio increases the tendency to do local allocations
1346 * instead of attempting to obtain partial slabs from other nodes.
1348 * If the defrag_ratio is set to 0 then kmalloc() always
1349 * returns node local objects. If the ratio is higher then kmalloc()
1350 * may return off node objects because partial slabs are obtained
1351 * from other nodes and filled up.
1353 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1354 * defrag_ratio = 1000) then every (well almost) allocation will
1355 * first attempt to defrag slab caches on other nodes. This means
1356 * scanning over all nodes to look for partial slabs which may be
1357 * expensive if we do it every time we are trying to find a slab
1358 * with available objects.
1360 if (!s->remote_node_defrag_ratio ||
1361 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1362 return NULL;
1364 get_mems_allowed();
1365 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1366 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1367 struct kmem_cache_node *n;
1369 n = get_node(s, zone_to_nid(zone));
1371 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1372 n->nr_partial > s->min_partial) {
1373 page = get_partial_node(n);
1374 if (page) {
1375 put_mems_allowed();
1376 return page;
1380 put_mems_allowed();
1381 #endif
1382 return NULL;
1386 * Get a partial page, lock it and return it.
1388 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1390 struct page *page;
1391 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1393 page = get_partial_node(get_node(s, searchnode));
1394 if (page || node != -1)
1395 return page;
1397 return get_any_partial(s, flags);
1401 * Move a page back to the lists.
1403 * Must be called with the slab lock held.
1405 * On exit the slab lock will have been dropped.
1407 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1409 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1411 __ClearPageSlubFrozen(page);
1412 if (page->inuse) {
1414 if (page->freelist) {
1415 add_partial(n, page, tail);
1416 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1417 } else {
1418 stat(s, DEACTIVATE_FULL);
1419 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1420 add_full(n, page);
1422 slab_unlock(page);
1423 } else {
1424 stat(s, DEACTIVATE_EMPTY);
1425 if (n->nr_partial < s->min_partial) {
1427 * Adding an empty slab to the partial slabs in order
1428 * to avoid page allocator overhead. This slab needs
1429 * to come after the other slabs with objects in
1430 * so that the others get filled first. That way the
1431 * size of the partial list stays small.
1433 * kmem_cache_shrink can reclaim any empty slabs from
1434 * the partial list.
1436 add_partial(n, page, 1);
1437 slab_unlock(page);
1438 } else {
1439 slab_unlock(page);
1440 stat(s, FREE_SLAB);
1441 discard_slab(s, page);
1447 * Remove the cpu slab
1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1451 struct page *page = c->page;
1452 int tail = 1;
1454 if (page->freelist)
1455 stat(s, DEACTIVATE_REMOTE_FREES);
1457 * Merge cpu freelist into slab freelist. Typically we get here
1458 * because both freelists are empty. So this is unlikely
1459 * to occur.
1461 while (unlikely(c->freelist)) {
1462 void **object;
1464 tail = 0; /* Hot objects. Put the slab first */
1466 /* Retrieve object from cpu_freelist */
1467 object = c->freelist;
1468 c->freelist = get_freepointer(s, c->freelist);
1470 /* And put onto the regular freelist */
1471 set_freepointer(s, object, page->freelist);
1472 page->freelist = object;
1473 page->inuse--;
1475 c->page = NULL;
1476 unfreeze_slab(s, page, tail);
1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1481 stat(s, CPUSLAB_FLUSH);
1482 slab_lock(c->page);
1483 deactivate_slab(s, c);
1487 * Flush cpu slab.
1489 * Called from IPI handler with interrupts disabled.
1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1493 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1495 if (likely(c && c->page))
1496 flush_slab(s, c);
1499 static void flush_cpu_slab(void *d)
1501 struct kmem_cache *s = d;
1503 __flush_cpu_slab(s, smp_processor_id());
1506 static void flush_all(struct kmem_cache *s)
1508 on_each_cpu(flush_cpu_slab, s, 1);
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1517 #ifdef CONFIG_NUMA
1518 if (node != NUMA_NO_NODE && c->node != node)
1519 return 0;
1520 #endif
1521 return 1;
1524 static int count_free(struct page *page)
1526 return page->objects - page->inuse;
1529 static unsigned long count_partial(struct kmem_cache_node *n,
1530 int (*get_count)(struct page *))
1532 unsigned long flags;
1533 unsigned long x = 0;
1534 struct page *page;
1536 spin_lock_irqsave(&n->list_lock, flags);
1537 list_for_each_entry(page, &n->partial, lru)
1538 x += get_count(page);
1539 spin_unlock_irqrestore(&n->list_lock, flags);
1540 return x;
1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1545 #ifdef CONFIG_SLUB_DEBUG
1546 return atomic_long_read(&n->total_objects);
1547 #else
1548 return 0;
1549 #endif
1552 static noinline void
1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1555 int node;
1557 printk(KERN_WARNING
1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1559 nid, gfpflags);
1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1561 "default order: %d, min order: %d\n", s->name, s->objsize,
1562 s->size, oo_order(s->oo), oo_order(s->min));
1564 if (oo_order(s->min) > get_order(s->objsize))
1565 printk(KERN_WARNING " %s debugging increased min order, use "
1566 "slub_debug=O to disable.\n", s->name);
1568 for_each_online_node(node) {
1569 struct kmem_cache_node *n = get_node(s, node);
1570 unsigned long nr_slabs;
1571 unsigned long nr_objs;
1572 unsigned long nr_free;
1574 if (!n)
1575 continue;
1577 nr_free = count_partial(n, count_free);
1578 nr_slabs = node_nr_slabs(n);
1579 nr_objs = node_nr_objs(n);
1581 printk(KERN_WARNING
1582 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1583 node, nr_slabs, nr_objs, nr_free);
1588 * Slow path. The lockless freelist is empty or we need to perform
1589 * debugging duties.
1591 * Interrupts are disabled.
1593 * Processing is still very fast if new objects have been freed to the
1594 * regular freelist. In that case we simply take over the regular freelist
1595 * as the lockless freelist and zap the regular freelist.
1597 * If that is not working then we fall back to the partial lists. We take the
1598 * first element of the freelist as the object to allocate now and move the
1599 * rest of the freelist to the lockless freelist.
1601 * And if we were unable to get a new slab from the partial slab lists then
1602 * we need to allocate a new slab. This is the slowest path since it involves
1603 * a call to the page allocator and the setup of a new slab.
1605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1606 unsigned long addr, struct kmem_cache_cpu *c)
1608 void **object;
1609 struct page *new;
1611 /* We handle __GFP_ZERO in the caller */
1612 gfpflags &= ~__GFP_ZERO;
1614 if (!c->page)
1615 goto new_slab;
1617 slab_lock(c->page);
1618 if (unlikely(!node_match(c, node)))
1619 goto another_slab;
1621 stat(s, ALLOC_REFILL);
1623 load_freelist:
1624 object = c->page->freelist;
1625 if (unlikely(!object))
1626 goto another_slab;
1627 if (kmem_cache_debug(s))
1628 goto debug;
1630 c->freelist = get_freepointer(s, object);
1631 c->page->inuse = c->page->objects;
1632 c->page->freelist = NULL;
1633 c->node = page_to_nid(c->page);
1634 unlock_out:
1635 slab_unlock(c->page);
1636 stat(s, ALLOC_SLOWPATH);
1637 return object;
1639 another_slab:
1640 deactivate_slab(s, c);
1642 new_slab:
1643 new = get_partial(s, gfpflags, node);
1644 if (new) {
1645 c->page = new;
1646 stat(s, ALLOC_FROM_PARTIAL);
1647 goto load_freelist;
1650 if (gfpflags & __GFP_WAIT)
1651 local_irq_enable();
1653 new = new_slab(s, gfpflags, node);
1655 if (gfpflags & __GFP_WAIT)
1656 local_irq_disable();
1658 if (new) {
1659 c = __this_cpu_ptr(s->cpu_slab);
1660 stat(s, ALLOC_SLAB);
1661 if (c->page)
1662 flush_slab(s, c);
1663 slab_lock(new);
1664 __SetPageSlubFrozen(new);
1665 c->page = new;
1666 goto load_freelist;
1668 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1669 slab_out_of_memory(s, gfpflags, node);
1670 return NULL;
1671 debug:
1672 if (!alloc_debug_processing(s, c->page, object, addr))
1673 goto another_slab;
1675 c->page->inuse++;
1676 c->page->freelist = get_freepointer(s, object);
1677 c->node = -1;
1678 goto unlock_out;
1682 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1683 * have the fastpath folded into their functions. So no function call
1684 * overhead for requests that can be satisfied on the fastpath.
1686 * The fastpath works by first checking if the lockless freelist can be used.
1687 * If not then __slab_alloc is called for slow processing.
1689 * Otherwise we can simply pick the next object from the lockless free list.
1691 static __always_inline void *slab_alloc(struct kmem_cache *s,
1692 gfp_t gfpflags, int node, unsigned long addr)
1694 void **object;
1695 struct kmem_cache_cpu *c;
1696 unsigned long flags;
1698 gfpflags &= gfp_allowed_mask;
1700 lockdep_trace_alloc(gfpflags);
1701 might_sleep_if(gfpflags & __GFP_WAIT);
1703 if (should_failslab(s->objsize, gfpflags, s->flags))
1704 return NULL;
1706 local_irq_save(flags);
1707 c = __this_cpu_ptr(s->cpu_slab);
1708 object = c->freelist;
1709 if (unlikely(!object || !node_match(c, node)))
1711 object = __slab_alloc(s, gfpflags, node, addr, c);
1713 else {
1714 c->freelist = get_freepointer(s, object);
1715 stat(s, ALLOC_FASTPATH);
1717 local_irq_restore(flags);
1719 if (unlikely(gfpflags & __GFP_ZERO) && object)
1720 memset(object, 0, s->objsize);
1722 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1723 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1725 return object;
1728 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1730 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1732 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1734 return ret;
1736 EXPORT_SYMBOL(kmem_cache_alloc);
1738 #ifdef CONFIG_TRACING
1739 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1741 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1743 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1744 #endif
1746 #ifdef CONFIG_NUMA
1747 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1749 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1751 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1752 s->objsize, s->size, gfpflags, node);
1754 return ret;
1756 EXPORT_SYMBOL(kmem_cache_alloc_node);
1757 #endif
1759 #ifdef CONFIG_TRACING
1760 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1761 gfp_t gfpflags,
1762 int node)
1764 return slab_alloc(s, gfpflags, node, _RET_IP_);
1766 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1767 #endif
1770 * Slow patch handling. This may still be called frequently since objects
1771 * have a longer lifetime than the cpu slabs in most processing loads.
1773 * So we still attempt to reduce cache line usage. Just take the slab
1774 * lock and free the item. If there is no additional partial page
1775 * handling required then we can return immediately.
1777 static void __slab_free(struct kmem_cache *s, struct page *page,
1778 void *x, unsigned long addr)
1780 void *prior;
1781 void **object = (void *)x;
1783 stat(s, FREE_SLOWPATH);
1784 slab_lock(page);
1786 if (kmem_cache_debug(s))
1787 goto debug;
1789 checks_ok:
1790 prior = page->freelist;
1791 set_freepointer(s, object, prior);
1792 page->freelist = object;
1793 page->inuse--;
1795 if (unlikely(PageSlubFrozen(page))) {
1796 stat(s, FREE_FROZEN);
1797 goto out_unlock;
1800 if (unlikely(!page->inuse))
1801 goto slab_empty;
1804 * Objects left in the slab. If it was not on the partial list before
1805 * then add it.
1807 if (unlikely(!prior)) {
1808 add_partial(get_node(s, page_to_nid(page)), page, 1);
1809 stat(s, FREE_ADD_PARTIAL);
1812 out_unlock:
1813 slab_unlock(page);
1814 return;
1816 slab_empty:
1817 if (prior) {
1819 * Slab still on the partial list.
1821 remove_partial(s, page);
1822 stat(s, FREE_REMOVE_PARTIAL);
1824 slab_unlock(page);
1825 stat(s, FREE_SLAB);
1826 discard_slab(s, page);
1827 return;
1829 debug:
1830 if (!free_debug_processing(s, page, x, addr))
1831 goto out_unlock;
1832 goto checks_ok;
1836 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1837 * can perform fastpath freeing without additional function calls.
1839 * The fastpath is only possible if we are freeing to the current cpu slab
1840 * of this processor. This typically the case if we have just allocated
1841 * the item before.
1843 * If fastpath is not possible then fall back to __slab_free where we deal
1844 * with all sorts of special processing.
1846 static __always_inline void slab_free(struct kmem_cache *s,
1847 struct page *page, void *x, unsigned long addr)
1849 void **object = (void *)x;
1850 struct kmem_cache_cpu *c;
1851 unsigned long flags;
1853 kmemleak_free_recursive(x, s->flags);
1854 local_irq_save(flags);
1855 c = __this_cpu_ptr(s->cpu_slab);
1856 kmemcheck_slab_free(s, object, s->objsize);
1857 debug_check_no_locks_freed(object, s->objsize);
1858 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1859 debug_check_no_obj_freed(object, s->objsize);
1860 if (likely(page == c->page && c->node >= 0)) {
1861 set_freepointer(s, object, c->freelist);
1862 c->freelist = object;
1863 stat(s, FREE_FASTPATH);
1864 } else
1865 __slab_free(s, page, x, addr);
1867 local_irq_restore(flags);
1870 void kmem_cache_free(struct kmem_cache *s, void *x)
1872 struct page *page;
1874 page = virt_to_head_page(x);
1876 slab_free(s, page, x, _RET_IP_);
1878 trace_kmem_cache_free(_RET_IP_, x);
1880 EXPORT_SYMBOL(kmem_cache_free);
1882 /* Figure out on which slab page the object resides */
1883 static struct page *get_object_page(const void *x)
1885 struct page *page = virt_to_head_page(x);
1887 if (!PageSlab(page))
1888 return NULL;
1890 return page;
1894 * Object placement in a slab is made very easy because we always start at
1895 * offset 0. If we tune the size of the object to the alignment then we can
1896 * get the required alignment by putting one properly sized object after
1897 * another.
1899 * Notice that the allocation order determines the sizes of the per cpu
1900 * caches. Each processor has always one slab available for allocations.
1901 * Increasing the allocation order reduces the number of times that slabs
1902 * must be moved on and off the partial lists and is therefore a factor in
1903 * locking overhead.
1907 * Mininum / Maximum order of slab pages. This influences locking overhead
1908 * and slab fragmentation. A higher order reduces the number of partial slabs
1909 * and increases the number of allocations possible without having to
1910 * take the list_lock.
1912 static int slub_min_order;
1913 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1914 static int slub_min_objects;
1917 * Merge control. If this is set then no merging of slab caches will occur.
1918 * (Could be removed. This was introduced to pacify the merge skeptics.)
1920 static int slub_nomerge;
1923 * Calculate the order of allocation given an slab object size.
1925 * The order of allocation has significant impact on performance and other
1926 * system components. Generally order 0 allocations should be preferred since
1927 * order 0 does not cause fragmentation in the page allocator. Larger objects
1928 * be problematic to put into order 0 slabs because there may be too much
1929 * unused space left. We go to a higher order if more than 1/16th of the slab
1930 * would be wasted.
1932 * In order to reach satisfactory performance we must ensure that a minimum
1933 * number of objects is in one slab. Otherwise we may generate too much
1934 * activity on the partial lists which requires taking the list_lock. This is
1935 * less a concern for large slabs though which are rarely used.
1937 * slub_max_order specifies the order where we begin to stop considering the
1938 * number of objects in a slab as critical. If we reach slub_max_order then
1939 * we try to keep the page order as low as possible. So we accept more waste
1940 * of space in favor of a small page order.
1942 * Higher order allocations also allow the placement of more objects in a
1943 * slab and thereby reduce object handling overhead. If the user has
1944 * requested a higher mininum order then we start with that one instead of
1945 * the smallest order which will fit the object.
1947 static inline int slab_order(int size, int min_objects,
1948 int max_order, int fract_leftover)
1950 int order;
1951 int rem;
1952 int min_order = slub_min_order;
1954 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1955 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1957 for (order = max(min_order,
1958 fls(min_objects * size - 1) - PAGE_SHIFT);
1959 order <= max_order; order++) {
1961 unsigned long slab_size = PAGE_SIZE << order;
1963 if (slab_size < min_objects * size)
1964 continue;
1966 rem = slab_size % size;
1968 if (rem <= slab_size / fract_leftover)
1969 break;
1973 return order;
1976 static inline int calculate_order(int size)
1978 int order;
1979 int min_objects;
1980 int fraction;
1981 int max_objects;
1984 * Attempt to find best configuration for a slab. This
1985 * works by first attempting to generate a layout with
1986 * the best configuration and backing off gradually.
1988 * First we reduce the acceptable waste in a slab. Then
1989 * we reduce the minimum objects required in a slab.
1991 min_objects = slub_min_objects;
1992 if (!min_objects)
1993 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1994 max_objects = (PAGE_SIZE << slub_max_order)/size;
1995 min_objects = min(min_objects, max_objects);
1997 while (min_objects > 1) {
1998 fraction = 16;
1999 while (fraction >= 4) {
2000 order = slab_order(size, min_objects,
2001 slub_max_order, fraction);
2002 if (order <= slub_max_order)
2003 return order;
2004 fraction /= 2;
2006 min_objects--;
2010 * We were unable to place multiple objects in a slab. Now
2011 * lets see if we can place a single object there.
2013 order = slab_order(size, 1, slub_max_order, 1);
2014 if (order <= slub_max_order)
2015 return order;
2018 * Doh this slab cannot be placed using slub_max_order.
2020 order = slab_order(size, 1, MAX_ORDER, 1);
2021 if (order < MAX_ORDER)
2022 return order;
2023 return -ENOSYS;
2027 * Figure out what the alignment of the objects will be.
2029 static unsigned long calculate_alignment(unsigned long flags,
2030 unsigned long align, unsigned long size)
2033 * If the user wants hardware cache aligned objects then follow that
2034 * suggestion if the object is sufficiently large.
2036 * The hardware cache alignment cannot override the specified
2037 * alignment though. If that is greater then use it.
2039 if (flags & SLAB_HWCACHE_ALIGN) {
2040 unsigned long ralign = cache_line_size();
2041 while (size <= ralign / 2)
2042 ralign /= 2;
2043 align = max(align, ralign);
2046 if (align < ARCH_SLAB_MINALIGN)
2047 align = ARCH_SLAB_MINALIGN;
2049 return ALIGN(align, sizeof(void *));
2052 static void
2053 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2055 n->nr_partial = 0;
2056 spin_lock_init(&n->list_lock);
2057 INIT_LIST_HEAD(&n->partial);
2058 #ifdef CONFIG_SLUB_DEBUG
2059 atomic_long_set(&n->nr_slabs, 0);
2060 atomic_long_set(&n->total_objects, 0);
2061 INIT_LIST_HEAD(&n->full);
2062 #endif
2065 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2067 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2069 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2071 * Boot time creation of the kmalloc array. Use static per cpu data
2072 * since the per cpu allocator is not available yet.
2074 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2075 else
2076 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2078 if (!s->cpu_slab)
2079 return 0;
2081 return 1;
2084 #ifdef CONFIG_NUMA
2086 * No kmalloc_node yet so do it by hand. We know that this is the first
2087 * slab on the node for this slabcache. There are no concurrent accesses
2088 * possible.
2090 * Note that this function only works on the kmalloc_node_cache
2091 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2092 * memory on a fresh node that has no slab structures yet.
2094 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2096 struct page *page;
2097 struct kmem_cache_node *n;
2098 unsigned long flags;
2100 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2102 page = new_slab(kmalloc_caches, gfpflags, node);
2104 BUG_ON(!page);
2105 if (page_to_nid(page) != node) {
2106 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2107 "node %d\n", node);
2108 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2109 "in order to be able to continue\n");
2112 n = page->freelist;
2113 BUG_ON(!n);
2114 page->freelist = get_freepointer(kmalloc_caches, n);
2115 page->inuse++;
2116 kmalloc_caches->node[node] = n;
2117 #ifdef CONFIG_SLUB_DEBUG
2118 init_object(kmalloc_caches, n, 1);
2119 init_tracking(kmalloc_caches, n);
2120 #endif
2121 init_kmem_cache_node(n, kmalloc_caches);
2122 inc_slabs_node(kmalloc_caches, node, page->objects);
2125 * lockdep requires consistent irq usage for each lock
2126 * so even though there cannot be a race this early in
2127 * the boot sequence, we still disable irqs.
2129 local_irq_save(flags);
2130 add_partial(n, page, 0);
2131 local_irq_restore(flags);
2134 static void free_kmem_cache_nodes(struct kmem_cache *s)
2136 int node;
2138 for_each_node_state(node, N_NORMAL_MEMORY) {
2139 struct kmem_cache_node *n = s->node[node];
2140 if (n)
2141 kmem_cache_free(kmalloc_caches, n);
2142 s->node[node] = NULL;
2146 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2148 int node;
2150 for_each_node_state(node, N_NORMAL_MEMORY) {
2151 struct kmem_cache_node *n;
2153 if (slab_state == DOWN) {
2154 early_kmem_cache_node_alloc(gfpflags, node);
2155 continue;
2157 n = kmem_cache_alloc_node(kmalloc_caches,
2158 gfpflags, node);
2160 if (!n) {
2161 free_kmem_cache_nodes(s);
2162 return 0;
2165 s->node[node] = n;
2166 init_kmem_cache_node(n, s);
2168 return 1;
2170 #else
2171 static void free_kmem_cache_nodes(struct kmem_cache *s)
2175 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2177 init_kmem_cache_node(&s->local_node, s);
2178 return 1;
2180 #endif
2182 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2184 if (min < MIN_PARTIAL)
2185 min = MIN_PARTIAL;
2186 else if (min > MAX_PARTIAL)
2187 min = MAX_PARTIAL;
2188 s->min_partial = min;
2192 * calculate_sizes() determines the order and the distribution of data within
2193 * a slab object.
2195 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2197 unsigned long flags = s->flags;
2198 unsigned long size = s->objsize;
2199 unsigned long align = s->align;
2200 int order;
2203 * Round up object size to the next word boundary. We can only
2204 * place the free pointer at word boundaries and this determines
2205 * the possible location of the free pointer.
2207 size = ALIGN(size, sizeof(void *));
2209 #ifdef CONFIG_SLUB_DEBUG
2211 * Determine if we can poison the object itself. If the user of
2212 * the slab may touch the object after free or before allocation
2213 * then we should never poison the object itself.
2215 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2216 !s->ctor)
2217 s->flags |= __OBJECT_POISON;
2218 else
2219 s->flags &= ~__OBJECT_POISON;
2223 * If we are Redzoning then check if there is some space between the
2224 * end of the object and the free pointer. If not then add an
2225 * additional word to have some bytes to store Redzone information.
2227 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2228 size += sizeof(void *);
2229 #endif
2232 * With that we have determined the number of bytes in actual use
2233 * by the object. This is the potential offset to the free pointer.
2235 s->inuse = size;
2237 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2238 s->ctor)) {
2240 * Relocate free pointer after the object if it is not
2241 * permitted to overwrite the first word of the object on
2242 * kmem_cache_free.
2244 * This is the case if we do RCU, have a constructor or
2245 * destructor or are poisoning the objects.
2247 s->offset = size;
2248 size += sizeof(void *);
2251 #ifdef CONFIG_SLUB_DEBUG
2252 if (flags & SLAB_STORE_USER)
2254 * Need to store information about allocs and frees after
2255 * the object.
2257 size += 2 * sizeof(struct track);
2259 if (flags & SLAB_RED_ZONE)
2261 * Add some empty padding so that we can catch
2262 * overwrites from earlier objects rather than let
2263 * tracking information or the free pointer be
2264 * corrupted if a user writes before the start
2265 * of the object.
2267 size += sizeof(void *);
2268 #endif
2271 * Determine the alignment based on various parameters that the
2272 * user specified and the dynamic determination of cache line size
2273 * on bootup.
2275 align = calculate_alignment(flags, align, s->objsize);
2276 s->align = align;
2279 * SLUB stores one object immediately after another beginning from
2280 * offset 0. In order to align the objects we have to simply size
2281 * each object to conform to the alignment.
2283 size = ALIGN(size, align);
2284 s->size = size;
2285 if (forced_order >= 0)
2286 order = forced_order;
2287 else
2288 order = calculate_order(size);
2290 if (order < 0)
2291 return 0;
2293 s->allocflags = 0;
2294 if (order)
2295 s->allocflags |= __GFP_COMP;
2297 if (s->flags & SLAB_CACHE_DMA)
2298 s->allocflags |= SLUB_DMA;
2300 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2301 s->allocflags |= __GFP_RECLAIMABLE;
2304 * Determine the number of objects per slab
2306 s->oo = oo_make(order, size);
2307 s->min = oo_make(get_order(size), size);
2308 if (oo_objects(s->oo) > oo_objects(s->max))
2309 s->max = s->oo;
2311 return !!oo_objects(s->oo);
2315 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2316 const char *name, size_t size,
2317 size_t align, unsigned long flags,
2318 void (*ctor)(void *))
2320 memset(s, 0, kmem_size);
2321 s->name = name;
2322 s->ctor = ctor;
2323 s->objsize = size;
2324 s->align = align;
2325 s->flags = kmem_cache_flags(size, flags, name, ctor);
2327 if (!calculate_sizes(s, -1))
2328 goto error;
2329 if (disable_higher_order_debug) {
2331 * Disable debugging flags that store metadata if the min slab
2332 * order increased.
2334 if (get_order(s->size) > get_order(s->objsize)) {
2335 s->flags &= ~DEBUG_METADATA_FLAGS;
2336 s->offset = 0;
2337 if (!calculate_sizes(s, -1))
2338 goto error;
2343 * The larger the object size is, the more pages we want on the partial
2344 * list to avoid pounding the page allocator excessively.
2346 set_min_partial(s, ilog2(s->size));
2347 s->refcount = 1;
2348 #ifdef CONFIG_NUMA
2349 s->remote_node_defrag_ratio = 1000;
2350 #endif
2351 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2352 goto error;
2354 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2355 return 1;
2357 free_kmem_cache_nodes(s);
2358 error:
2359 if (flags & SLAB_PANIC)
2360 panic("Cannot create slab %s size=%lu realsize=%u "
2361 "order=%u offset=%u flags=%lx\n",
2362 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2363 s->offset, flags);
2364 return 0;
2368 * Check if a given pointer is valid
2370 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2372 struct page *page;
2374 if (!kern_ptr_validate(object, s->size))
2375 return 0;
2377 page = get_object_page(object);
2379 if (!page || s != page->slab)
2380 /* No slab or wrong slab */
2381 return 0;
2383 if (!check_valid_pointer(s, page, object))
2384 return 0;
2387 * We could also check if the object is on the slabs freelist.
2388 * But this would be too expensive and it seems that the main
2389 * purpose of kmem_ptr_valid() is to check if the object belongs
2390 * to a certain slab.
2392 return 1;
2394 EXPORT_SYMBOL(kmem_ptr_validate);
2397 * Determine the size of a slab object
2399 unsigned int kmem_cache_size(struct kmem_cache *s)
2401 return s->objsize;
2403 EXPORT_SYMBOL(kmem_cache_size);
2405 const char *kmem_cache_name(struct kmem_cache *s)
2407 return s->name;
2409 EXPORT_SYMBOL(kmem_cache_name);
2411 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2412 const char *text)
2414 #ifdef CONFIG_SLUB_DEBUG
2415 void *addr = page_address(page);
2416 void *p;
2417 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2418 GFP_ATOMIC);
2420 if (!map)
2421 return;
2422 slab_err(s, page, "%s", text);
2423 slab_lock(page);
2424 for_each_free_object(p, s, page->freelist)
2425 set_bit(slab_index(p, s, addr), map);
2427 for_each_object(p, s, addr, page->objects) {
2429 if (!test_bit(slab_index(p, s, addr), map)) {
2430 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2431 p, p - addr);
2432 print_tracking(s, p);
2435 slab_unlock(page);
2436 kfree(map);
2437 #endif
2441 * Attempt to free all partial slabs on a node.
2443 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2445 unsigned long flags;
2446 struct page *page, *h;
2448 spin_lock_irqsave(&n->list_lock, flags);
2449 list_for_each_entry_safe(page, h, &n->partial, lru) {
2450 if (!page->inuse) {
2451 list_del(&page->lru);
2452 discard_slab(s, page);
2453 n->nr_partial--;
2454 } else {
2455 list_slab_objects(s, page,
2456 "Objects remaining on kmem_cache_close()");
2459 spin_unlock_irqrestore(&n->list_lock, flags);
2463 * Release all resources used by a slab cache.
2465 static inline int kmem_cache_close(struct kmem_cache *s)
2467 int node;
2469 flush_all(s);
2470 free_percpu(s->cpu_slab);
2471 /* Attempt to free all objects */
2472 for_each_node_state(node, N_NORMAL_MEMORY) {
2473 struct kmem_cache_node *n = get_node(s, node);
2475 free_partial(s, n);
2476 if (n->nr_partial || slabs_node(s, node))
2477 return 1;
2479 free_kmem_cache_nodes(s);
2480 return 0;
2484 * Close a cache and release the kmem_cache structure
2485 * (must be used for caches created using kmem_cache_create)
2487 void kmem_cache_destroy(struct kmem_cache *s)
2489 down_write(&slub_lock);
2490 s->refcount--;
2491 if (!s->refcount) {
2492 list_del(&s->list);
2493 if (kmem_cache_close(s)) {
2494 printk(KERN_ERR "SLUB %s: %s called for cache that "
2495 "still has objects.\n", s->name, __func__);
2496 dump_stack();
2498 if (s->flags & SLAB_DESTROY_BY_RCU)
2499 rcu_barrier();
2500 sysfs_slab_remove(s);
2502 up_write(&slub_lock);
2504 EXPORT_SYMBOL(kmem_cache_destroy);
2506 /********************************************************************
2507 * Kmalloc subsystem
2508 *******************************************************************/
2510 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2511 EXPORT_SYMBOL(kmalloc_caches);
2513 static int __init setup_slub_min_order(char *str)
2515 get_option(&str, &slub_min_order);
2517 return 1;
2520 __setup("slub_min_order=", setup_slub_min_order);
2522 static int __init setup_slub_max_order(char *str)
2524 get_option(&str, &slub_max_order);
2525 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2527 return 1;
2530 __setup("slub_max_order=", setup_slub_max_order);
2532 static int __init setup_slub_min_objects(char *str)
2534 get_option(&str, &slub_min_objects);
2536 return 1;
2539 __setup("slub_min_objects=", setup_slub_min_objects);
2541 static int __init setup_slub_nomerge(char *str)
2543 slub_nomerge = 1;
2544 return 1;
2547 __setup("slub_nomerge", setup_slub_nomerge);
2549 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2550 const char *name, int size, gfp_t gfp_flags)
2552 unsigned int flags = 0;
2554 if (gfp_flags & SLUB_DMA)
2555 flags = SLAB_CACHE_DMA;
2558 * This function is called with IRQs disabled during early-boot on
2559 * single CPU so there's no need to take slub_lock here.
2561 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2562 flags, NULL))
2563 goto panic;
2565 list_add(&s->list, &slab_caches);
2567 if (sysfs_slab_add(s))
2568 goto panic;
2569 return s;
2571 panic:
2572 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2575 #ifdef CONFIG_ZONE_DMA
2576 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2578 static void sysfs_add_func(struct work_struct *w)
2580 struct kmem_cache *s;
2582 down_write(&slub_lock);
2583 list_for_each_entry(s, &slab_caches, list) {
2584 if (s->flags & __SYSFS_ADD_DEFERRED) {
2585 s->flags &= ~__SYSFS_ADD_DEFERRED;
2586 sysfs_slab_add(s);
2589 up_write(&slub_lock);
2592 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2594 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2596 struct kmem_cache *s;
2597 char *text;
2598 size_t realsize;
2599 unsigned long slabflags;
2600 int i;
2602 s = kmalloc_caches_dma[index];
2603 if (s)
2604 return s;
2606 /* Dynamically create dma cache */
2607 if (flags & __GFP_WAIT)
2608 down_write(&slub_lock);
2609 else {
2610 if (!down_write_trylock(&slub_lock))
2611 goto out;
2614 if (kmalloc_caches_dma[index])
2615 goto unlock_out;
2617 realsize = kmalloc_caches[index].objsize;
2618 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2619 (unsigned int)realsize);
2621 s = NULL;
2622 for (i = 0; i < KMALLOC_CACHES; i++)
2623 if (!kmalloc_caches[i].size)
2624 break;
2626 BUG_ON(i >= KMALLOC_CACHES);
2627 s = kmalloc_caches + i;
2630 * Must defer sysfs creation to a workqueue because we don't know
2631 * what context we are called from. Before sysfs comes up, we don't
2632 * need to do anything because our sysfs initcall will start by
2633 * adding all existing slabs to sysfs.
2635 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2636 if (slab_state >= SYSFS)
2637 slabflags |= __SYSFS_ADD_DEFERRED;
2639 if (!text || !kmem_cache_open(s, flags, text,
2640 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2641 s->size = 0;
2642 kfree(text);
2643 goto unlock_out;
2646 list_add(&s->list, &slab_caches);
2647 kmalloc_caches_dma[index] = s;
2649 if (slab_state >= SYSFS)
2650 schedule_work(&sysfs_add_work);
2652 unlock_out:
2653 up_write(&slub_lock);
2654 out:
2655 return kmalloc_caches_dma[index];
2657 #endif
2660 * Conversion table for small slabs sizes / 8 to the index in the
2661 * kmalloc array. This is necessary for slabs < 192 since we have non power
2662 * of two cache sizes there. The size of larger slabs can be determined using
2663 * fls.
2665 static s8 size_index[24] = {
2666 3, /* 8 */
2667 4, /* 16 */
2668 5, /* 24 */
2669 5, /* 32 */
2670 6, /* 40 */
2671 6, /* 48 */
2672 6, /* 56 */
2673 6, /* 64 */
2674 1, /* 72 */
2675 1, /* 80 */
2676 1, /* 88 */
2677 1, /* 96 */
2678 7, /* 104 */
2679 7, /* 112 */
2680 7, /* 120 */
2681 7, /* 128 */
2682 2, /* 136 */
2683 2, /* 144 */
2684 2, /* 152 */
2685 2, /* 160 */
2686 2, /* 168 */
2687 2, /* 176 */
2688 2, /* 184 */
2689 2 /* 192 */
2692 static inline int size_index_elem(size_t bytes)
2694 return (bytes - 1) / 8;
2697 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2699 int index;
2701 if (size <= 192) {
2702 if (!size)
2703 return ZERO_SIZE_PTR;
2705 index = size_index[size_index_elem(size)];
2706 } else
2707 index = fls(size - 1);
2709 #ifdef CONFIG_ZONE_DMA
2710 if (unlikely((flags & SLUB_DMA)))
2711 return dma_kmalloc_cache(index, flags);
2713 #endif
2714 return &kmalloc_caches[index];
2717 void *__kmalloc(size_t size, gfp_t flags)
2719 struct kmem_cache *s;
2720 void *ret;
2722 if (unlikely(size > SLUB_MAX_SIZE))
2723 return kmalloc_large(size, flags);
2725 s = get_slab(size, flags);
2727 if (unlikely(ZERO_OR_NULL_PTR(s)))
2728 return s;
2730 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2732 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2734 return ret;
2736 EXPORT_SYMBOL(__kmalloc);
2738 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2740 struct page *page;
2741 void *ptr = NULL;
2743 flags |= __GFP_COMP | __GFP_NOTRACK;
2744 page = alloc_pages_node(node, flags, get_order(size));
2745 if (page)
2746 ptr = page_address(page);
2748 kmemleak_alloc(ptr, size, 1, flags);
2749 return ptr;
2752 #ifdef CONFIG_NUMA
2753 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2755 struct kmem_cache *s;
2756 void *ret;
2758 if (unlikely(size > SLUB_MAX_SIZE)) {
2759 ret = kmalloc_large_node(size, flags, node);
2761 trace_kmalloc_node(_RET_IP_, ret,
2762 size, PAGE_SIZE << get_order(size),
2763 flags, node);
2765 return ret;
2768 s = get_slab(size, flags);
2770 if (unlikely(ZERO_OR_NULL_PTR(s)))
2771 return s;
2773 ret = slab_alloc(s, flags, node, _RET_IP_);
2775 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2777 return ret;
2779 EXPORT_SYMBOL(__kmalloc_node);
2780 #endif
2782 size_t ksize(const void *object)
2784 struct page *page;
2785 struct kmem_cache *s;
2787 if (unlikely(object == ZERO_SIZE_PTR))
2788 return 0;
2790 page = virt_to_head_page(object);
2792 if (unlikely(!PageSlab(page))) {
2793 WARN_ON(!PageCompound(page));
2794 return PAGE_SIZE << compound_order(page);
2796 s = page->slab;
2798 #ifdef CONFIG_SLUB_DEBUG
2800 * Debugging requires use of the padding between object
2801 * and whatever may come after it.
2803 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2804 return s->objsize;
2806 #endif
2808 * If we have the need to store the freelist pointer
2809 * back there or track user information then we can
2810 * only use the space before that information.
2812 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2813 return s->inuse;
2815 * Else we can use all the padding etc for the allocation
2817 return s->size;
2819 EXPORT_SYMBOL(ksize);
2821 void kfree(const void *x)
2823 struct page *page;
2824 void *object = (void *)x;
2826 trace_kfree(_RET_IP_, x);
2828 if (unlikely(ZERO_OR_NULL_PTR(x)))
2829 return;
2831 page = virt_to_head_page(x);
2832 if (unlikely(!PageSlab(page))) {
2833 BUG_ON(!PageCompound(page));
2834 kmemleak_free(x);
2835 put_page(page);
2836 return;
2838 slab_free(page->slab, page, object, _RET_IP_);
2840 EXPORT_SYMBOL(kfree);
2843 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2844 * the remaining slabs by the number of items in use. The slabs with the
2845 * most items in use come first. New allocations will then fill those up
2846 * and thus they can be removed from the partial lists.
2848 * The slabs with the least items are placed last. This results in them
2849 * being allocated from last increasing the chance that the last objects
2850 * are freed in them.
2852 int kmem_cache_shrink(struct kmem_cache *s)
2854 int node;
2855 int i;
2856 struct kmem_cache_node *n;
2857 struct page *page;
2858 struct page *t;
2859 int objects = oo_objects(s->max);
2860 struct list_head *slabs_by_inuse =
2861 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2862 unsigned long flags;
2864 if (!slabs_by_inuse)
2865 return -ENOMEM;
2867 flush_all(s);
2868 for_each_node_state(node, N_NORMAL_MEMORY) {
2869 n = get_node(s, node);
2871 if (!n->nr_partial)
2872 continue;
2874 for (i = 0; i < objects; i++)
2875 INIT_LIST_HEAD(slabs_by_inuse + i);
2877 spin_lock_irqsave(&n->list_lock, flags);
2880 * Build lists indexed by the items in use in each slab.
2882 * Note that concurrent frees may occur while we hold the
2883 * list_lock. page->inuse here is the upper limit.
2885 list_for_each_entry_safe(page, t, &n->partial, lru) {
2886 if (!page->inuse && slab_trylock(page)) {
2888 * Must hold slab lock here because slab_free
2889 * may have freed the last object and be
2890 * waiting to release the slab.
2892 list_del(&page->lru);
2893 n->nr_partial--;
2894 slab_unlock(page);
2895 discard_slab(s, page);
2896 } else {
2897 list_move(&page->lru,
2898 slabs_by_inuse + page->inuse);
2903 * Rebuild the partial list with the slabs filled up most
2904 * first and the least used slabs at the end.
2906 for (i = objects - 1; i >= 0; i--)
2907 list_splice(slabs_by_inuse + i, n->partial.prev);
2909 spin_unlock_irqrestore(&n->list_lock, flags);
2912 kfree(slabs_by_inuse);
2913 return 0;
2915 EXPORT_SYMBOL(kmem_cache_shrink);
2917 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2918 static int slab_mem_going_offline_callback(void *arg)
2920 struct kmem_cache *s;
2922 down_read(&slub_lock);
2923 list_for_each_entry(s, &slab_caches, list)
2924 kmem_cache_shrink(s);
2925 up_read(&slub_lock);
2927 return 0;
2930 static void slab_mem_offline_callback(void *arg)
2932 struct kmem_cache_node *n;
2933 struct kmem_cache *s;
2934 struct memory_notify *marg = arg;
2935 int offline_node;
2937 offline_node = marg->status_change_nid;
2940 * If the node still has available memory. we need kmem_cache_node
2941 * for it yet.
2943 if (offline_node < 0)
2944 return;
2946 down_read(&slub_lock);
2947 list_for_each_entry(s, &slab_caches, list) {
2948 n = get_node(s, offline_node);
2949 if (n) {
2951 * if n->nr_slabs > 0, slabs still exist on the node
2952 * that is going down. We were unable to free them,
2953 * and offline_pages() function shouldn't call this
2954 * callback. So, we must fail.
2956 BUG_ON(slabs_node(s, offline_node));
2958 s->node[offline_node] = NULL;
2959 kmem_cache_free(kmalloc_caches, n);
2962 up_read(&slub_lock);
2965 static int slab_mem_going_online_callback(void *arg)
2967 struct kmem_cache_node *n;
2968 struct kmem_cache *s;
2969 struct memory_notify *marg = arg;
2970 int nid = marg->status_change_nid;
2971 int ret = 0;
2974 * If the node's memory is already available, then kmem_cache_node is
2975 * already created. Nothing to do.
2977 if (nid < 0)
2978 return 0;
2981 * We are bringing a node online. No memory is available yet. We must
2982 * allocate a kmem_cache_node structure in order to bring the node
2983 * online.
2985 down_read(&slub_lock);
2986 list_for_each_entry(s, &slab_caches, list) {
2988 * XXX: kmem_cache_alloc_node will fallback to other nodes
2989 * since memory is not yet available from the node that
2990 * is brought up.
2992 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2993 if (!n) {
2994 ret = -ENOMEM;
2995 goto out;
2997 init_kmem_cache_node(n, s);
2998 s->node[nid] = n;
3000 out:
3001 up_read(&slub_lock);
3002 return ret;
3005 static int slab_memory_callback(struct notifier_block *self,
3006 unsigned long action, void *arg)
3008 int ret = 0;
3010 switch (action) {
3011 case MEM_GOING_ONLINE:
3012 ret = slab_mem_going_online_callback(arg);
3013 break;
3014 case MEM_GOING_OFFLINE:
3015 ret = slab_mem_going_offline_callback(arg);
3016 break;
3017 case MEM_OFFLINE:
3018 case MEM_CANCEL_ONLINE:
3019 slab_mem_offline_callback(arg);
3020 break;
3021 case MEM_ONLINE:
3022 case MEM_CANCEL_OFFLINE:
3023 break;
3025 if (ret)
3026 ret = notifier_from_errno(ret);
3027 else
3028 ret = NOTIFY_OK;
3029 return ret;
3032 #endif /* CONFIG_MEMORY_HOTPLUG */
3034 /********************************************************************
3035 * Basic setup of slabs
3036 *******************************************************************/
3038 void __init kmem_cache_init(void)
3040 int i;
3041 int caches = 0;
3043 #ifdef CONFIG_NUMA
3045 * Must first have the slab cache available for the allocations of the
3046 * struct kmem_cache_node's. There is special bootstrap code in
3047 * kmem_cache_open for slab_state == DOWN.
3049 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3050 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3051 kmalloc_caches[0].refcount = -1;
3052 caches++;
3054 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3055 #endif
3057 /* Able to allocate the per node structures */
3058 slab_state = PARTIAL;
3060 /* Caches that are not of the two-to-the-power-of size */
3061 if (KMALLOC_MIN_SIZE <= 32) {
3062 create_kmalloc_cache(&kmalloc_caches[1],
3063 "kmalloc-96", 96, GFP_NOWAIT);
3064 caches++;
3066 if (KMALLOC_MIN_SIZE <= 64) {
3067 create_kmalloc_cache(&kmalloc_caches[2],
3068 "kmalloc-192", 192, GFP_NOWAIT);
3069 caches++;
3072 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3073 create_kmalloc_cache(&kmalloc_caches[i],
3074 "kmalloc", 1 << i, GFP_NOWAIT);
3075 caches++;
3080 * Patch up the size_index table if we have strange large alignment
3081 * requirements for the kmalloc array. This is only the case for
3082 * MIPS it seems. The standard arches will not generate any code here.
3084 * Largest permitted alignment is 256 bytes due to the way we
3085 * handle the index determination for the smaller caches.
3087 * Make sure that nothing crazy happens if someone starts tinkering
3088 * around with ARCH_KMALLOC_MINALIGN
3090 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3091 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3093 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3094 int elem = size_index_elem(i);
3095 if (elem >= ARRAY_SIZE(size_index))
3096 break;
3097 size_index[elem] = KMALLOC_SHIFT_LOW;
3100 if (KMALLOC_MIN_SIZE == 64) {
3102 * The 96 byte size cache is not used if the alignment
3103 * is 64 byte.
3105 for (i = 64 + 8; i <= 96; i += 8)
3106 size_index[size_index_elem(i)] = 7;
3107 } else if (KMALLOC_MIN_SIZE == 128) {
3109 * The 192 byte sized cache is not used if the alignment
3110 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3111 * instead.
3113 for (i = 128 + 8; i <= 192; i += 8)
3114 size_index[size_index_elem(i)] = 8;
3117 slab_state = UP;
3119 /* Provide the correct kmalloc names now that the caches are up */
3120 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3121 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3123 BUG_ON(!s);
3124 kmalloc_caches[i].name = s;
3127 #ifdef CONFIG_SMP
3128 register_cpu_notifier(&slab_notifier);
3129 #endif
3130 #ifdef CONFIG_NUMA
3131 kmem_size = offsetof(struct kmem_cache, node) +
3132 nr_node_ids * sizeof(struct kmem_cache_node *);
3133 #else
3134 kmem_size = sizeof(struct kmem_cache);
3135 #endif
3137 printk(KERN_INFO
3138 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3139 " CPUs=%d, Nodes=%d\n",
3140 caches, cache_line_size(),
3141 slub_min_order, slub_max_order, slub_min_objects,
3142 nr_cpu_ids, nr_node_ids);
3145 void __init kmem_cache_init_late(void)
3150 * Find a mergeable slab cache
3152 static int slab_unmergeable(struct kmem_cache *s)
3154 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3155 return 1;
3157 if (s->ctor)
3158 return 1;
3161 * We may have set a slab to be unmergeable during bootstrap.
3163 if (s->refcount < 0)
3164 return 1;
3166 return 0;
3169 static struct kmem_cache *find_mergeable(size_t size,
3170 size_t align, unsigned long flags, const char *name,
3171 void (*ctor)(void *))
3173 struct kmem_cache *s;
3175 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3176 return NULL;
3178 if (ctor)
3179 return NULL;
3181 size = ALIGN(size, sizeof(void *));
3182 align = calculate_alignment(flags, align, size);
3183 size = ALIGN(size, align);
3184 flags = kmem_cache_flags(size, flags, name, NULL);
3186 list_for_each_entry(s, &slab_caches, list) {
3187 if (slab_unmergeable(s))
3188 continue;
3190 if (size > s->size)
3191 continue;
3193 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3194 continue;
3196 * Check if alignment is compatible.
3197 * Courtesy of Adrian Drzewiecki
3199 if ((s->size & ~(align - 1)) != s->size)
3200 continue;
3202 if (s->size - size >= sizeof(void *))
3203 continue;
3205 return s;
3207 return NULL;
3210 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3211 size_t align, unsigned long flags, void (*ctor)(void *))
3213 struct kmem_cache *s;
3215 if (WARN_ON(!name))
3216 return NULL;
3218 down_write(&slub_lock);
3219 s = find_mergeable(size, align, flags, name, ctor);
3220 if (s) {
3221 s->refcount++;
3223 * Adjust the object sizes so that we clear
3224 * the complete object on kzalloc.
3226 s->objsize = max(s->objsize, (int)size);
3227 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3229 if (sysfs_slab_alias(s, name)) {
3230 s->refcount--;
3231 goto err;
3233 up_write(&slub_lock);
3234 return s;
3237 s = kmalloc(kmem_size, GFP_KERNEL);
3238 if (s) {
3239 if (kmem_cache_open(s, GFP_KERNEL, name,
3240 size, align, flags, ctor)) {
3241 list_add(&s->list, &slab_caches);
3242 if (sysfs_slab_add(s)) {
3243 list_del(&s->list);
3244 kfree(s);
3245 goto err;
3247 up_write(&slub_lock);
3248 return s;
3250 kfree(s);
3252 up_write(&slub_lock);
3254 err:
3255 if (flags & SLAB_PANIC)
3256 panic("Cannot create slabcache %s\n", name);
3257 else
3258 s = NULL;
3259 return s;
3261 EXPORT_SYMBOL(kmem_cache_create);
3263 #ifdef CONFIG_SMP
3265 * Use the cpu notifier to insure that the cpu slabs are flushed when
3266 * necessary.
3268 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3269 unsigned long action, void *hcpu)
3271 long cpu = (long)hcpu;
3272 struct kmem_cache *s;
3273 unsigned long flags;
3275 switch (action) {
3276 case CPU_UP_CANCELED:
3277 case CPU_UP_CANCELED_FROZEN:
3278 case CPU_DEAD:
3279 case CPU_DEAD_FROZEN:
3280 down_read(&slub_lock);
3281 list_for_each_entry(s, &slab_caches, list) {
3282 local_irq_save(flags);
3283 __flush_cpu_slab(s, cpu);
3284 local_irq_restore(flags);
3286 up_read(&slub_lock);
3287 break;
3288 default:
3289 break;
3291 return NOTIFY_OK;
3294 static struct notifier_block __cpuinitdata slab_notifier = {
3295 .notifier_call = slab_cpuup_callback
3298 #endif
3300 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3302 struct kmem_cache *s;
3303 void *ret;
3305 if (unlikely(size > SLUB_MAX_SIZE))
3306 return kmalloc_large(size, gfpflags);
3308 s = get_slab(size, gfpflags);
3310 if (unlikely(ZERO_OR_NULL_PTR(s)))
3311 return s;
3313 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3315 /* Honor the call site pointer we recieved. */
3316 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3318 return ret;
3321 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3322 int node, unsigned long caller)
3324 struct kmem_cache *s;
3325 void *ret;
3327 if (unlikely(size > SLUB_MAX_SIZE)) {
3328 ret = kmalloc_large_node(size, gfpflags, node);
3330 trace_kmalloc_node(caller, ret,
3331 size, PAGE_SIZE << get_order(size),
3332 gfpflags, node);
3334 return ret;
3337 s = get_slab(size, gfpflags);
3339 if (unlikely(ZERO_OR_NULL_PTR(s)))
3340 return s;
3342 ret = slab_alloc(s, gfpflags, node, caller);
3344 /* Honor the call site pointer we recieved. */
3345 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3347 return ret;
3350 #ifdef CONFIG_SLUB_DEBUG
3351 static int count_inuse(struct page *page)
3353 return page->inuse;
3356 static int count_total(struct page *page)
3358 return page->objects;
3361 static int validate_slab(struct kmem_cache *s, struct page *page,
3362 unsigned long *map)
3364 void *p;
3365 void *addr = page_address(page);
3367 if (!check_slab(s, page) ||
3368 !on_freelist(s, page, NULL))
3369 return 0;
3371 /* Now we know that a valid freelist exists */
3372 bitmap_zero(map, page->objects);
3374 for_each_free_object(p, s, page->freelist) {
3375 set_bit(slab_index(p, s, addr), map);
3376 if (!check_object(s, page, p, 0))
3377 return 0;
3380 for_each_object(p, s, addr, page->objects)
3381 if (!test_bit(slab_index(p, s, addr), map))
3382 if (!check_object(s, page, p, 1))
3383 return 0;
3384 return 1;
3387 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3388 unsigned long *map)
3390 if (slab_trylock(page)) {
3391 validate_slab(s, page, map);
3392 slab_unlock(page);
3393 } else
3394 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3395 s->name, page);
3398 static int validate_slab_node(struct kmem_cache *s,
3399 struct kmem_cache_node *n, unsigned long *map)
3401 unsigned long count = 0;
3402 struct page *page;
3403 unsigned long flags;
3405 spin_lock_irqsave(&n->list_lock, flags);
3407 list_for_each_entry(page, &n->partial, lru) {
3408 validate_slab_slab(s, page, map);
3409 count++;
3411 if (count != n->nr_partial)
3412 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3413 "counter=%ld\n", s->name, count, n->nr_partial);
3415 if (!(s->flags & SLAB_STORE_USER))
3416 goto out;
3418 list_for_each_entry(page, &n->full, lru) {
3419 validate_slab_slab(s, page, map);
3420 count++;
3422 if (count != atomic_long_read(&n->nr_slabs))
3423 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3424 "counter=%ld\n", s->name, count,
3425 atomic_long_read(&n->nr_slabs));
3427 out:
3428 spin_unlock_irqrestore(&n->list_lock, flags);
3429 return count;
3432 static long validate_slab_cache(struct kmem_cache *s)
3434 int node;
3435 unsigned long count = 0;
3436 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3437 sizeof(unsigned long), GFP_KERNEL);
3439 if (!map)
3440 return -ENOMEM;
3442 flush_all(s);
3443 for_each_node_state(node, N_NORMAL_MEMORY) {
3444 struct kmem_cache_node *n = get_node(s, node);
3446 count += validate_slab_node(s, n, map);
3448 kfree(map);
3449 return count;
3452 #ifdef SLUB_RESILIENCY_TEST
3453 static void resiliency_test(void)
3455 u8 *p;
3457 printk(KERN_ERR "SLUB resiliency testing\n");
3458 printk(KERN_ERR "-----------------------\n");
3459 printk(KERN_ERR "A. Corruption after allocation\n");
3461 p = kzalloc(16, GFP_KERNEL);
3462 p[16] = 0x12;
3463 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3464 " 0x12->0x%p\n\n", p + 16);
3466 validate_slab_cache(kmalloc_caches + 4);
3468 /* Hmmm... The next two are dangerous */
3469 p = kzalloc(32, GFP_KERNEL);
3470 p[32 + sizeof(void *)] = 0x34;
3471 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3472 " 0x34 -> -0x%p\n", p);
3473 printk(KERN_ERR
3474 "If allocated object is overwritten then not detectable\n\n");
3476 validate_slab_cache(kmalloc_caches + 5);
3477 p = kzalloc(64, GFP_KERNEL);
3478 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3479 *p = 0x56;
3480 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3482 printk(KERN_ERR
3483 "If allocated object is overwritten then not detectable\n\n");
3484 validate_slab_cache(kmalloc_caches + 6);
3486 printk(KERN_ERR "\nB. Corruption after free\n");
3487 p = kzalloc(128, GFP_KERNEL);
3488 kfree(p);
3489 *p = 0x78;
3490 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3491 validate_slab_cache(kmalloc_caches + 7);
3493 p = kzalloc(256, GFP_KERNEL);
3494 kfree(p);
3495 p[50] = 0x9a;
3496 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3498 validate_slab_cache(kmalloc_caches + 8);
3500 p = kzalloc(512, GFP_KERNEL);
3501 kfree(p);
3502 p[512] = 0xab;
3503 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3504 validate_slab_cache(kmalloc_caches + 9);
3506 #else
3507 static void resiliency_test(void) {};
3508 #endif
3511 * Generate lists of code addresses where slabcache objects are allocated
3512 * and freed.
3515 struct location {
3516 unsigned long count;
3517 unsigned long addr;
3518 long long sum_time;
3519 long min_time;
3520 long max_time;
3521 long min_pid;
3522 long max_pid;
3523 DECLARE_BITMAP(cpus, NR_CPUS);
3524 nodemask_t nodes;
3527 struct loc_track {
3528 unsigned long max;
3529 unsigned long count;
3530 struct location *loc;
3533 static void free_loc_track(struct loc_track *t)
3535 if (t->max)
3536 free_pages((unsigned long)t->loc,
3537 get_order(sizeof(struct location) * t->max));
3540 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3542 struct location *l;
3543 int order;
3545 order = get_order(sizeof(struct location) * max);
3547 l = (void *)__get_free_pages(flags, order);
3548 if (!l)
3549 return 0;
3551 if (t->count) {
3552 memcpy(l, t->loc, sizeof(struct location) * t->count);
3553 free_loc_track(t);
3555 t->max = max;
3556 t->loc = l;
3557 return 1;
3560 static int add_location(struct loc_track *t, struct kmem_cache *s,
3561 const struct track *track)
3563 long start, end, pos;
3564 struct location *l;
3565 unsigned long caddr;
3566 unsigned long age = jiffies - track->when;
3568 start = -1;
3569 end = t->count;
3571 for ( ; ; ) {
3572 pos = start + (end - start + 1) / 2;
3575 * There is nothing at "end". If we end up there
3576 * we need to add something to before end.
3578 if (pos == end)
3579 break;
3581 caddr = t->loc[pos].addr;
3582 if (track->addr == caddr) {
3584 l = &t->loc[pos];
3585 l->count++;
3586 if (track->when) {
3587 l->sum_time += age;
3588 if (age < l->min_time)
3589 l->min_time = age;
3590 if (age > l->max_time)
3591 l->max_time = age;
3593 if (track->pid < l->min_pid)
3594 l->min_pid = track->pid;
3595 if (track->pid > l->max_pid)
3596 l->max_pid = track->pid;
3598 cpumask_set_cpu(track->cpu,
3599 to_cpumask(l->cpus));
3601 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3602 return 1;
3605 if (track->addr < caddr)
3606 end = pos;
3607 else
3608 start = pos;
3612 * Not found. Insert new tracking element.
3614 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3615 return 0;
3617 l = t->loc + pos;
3618 if (pos < t->count)
3619 memmove(l + 1, l,
3620 (t->count - pos) * sizeof(struct location));
3621 t->count++;
3622 l->count = 1;
3623 l->addr = track->addr;
3624 l->sum_time = age;
3625 l->min_time = age;
3626 l->max_time = age;
3627 l->min_pid = track->pid;
3628 l->max_pid = track->pid;
3629 cpumask_clear(to_cpumask(l->cpus));
3630 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3631 nodes_clear(l->nodes);
3632 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3633 return 1;
3636 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3637 struct page *page, enum track_item alloc,
3638 long *map)
3640 void *addr = page_address(page);
3641 void *p;
3643 bitmap_zero(map, page->objects);
3644 for_each_free_object(p, s, page->freelist)
3645 set_bit(slab_index(p, s, addr), map);
3647 for_each_object(p, s, addr, page->objects)
3648 if (!test_bit(slab_index(p, s, addr), map))
3649 add_location(t, s, get_track(s, p, alloc));
3652 static int list_locations(struct kmem_cache *s, char *buf,
3653 enum track_item alloc)
3655 int len = 0;
3656 unsigned long i;
3657 struct loc_track t = { 0, 0, NULL };
3658 int node;
3659 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3660 sizeof(unsigned long), GFP_KERNEL);
3662 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3663 GFP_TEMPORARY)) {
3664 kfree(map);
3665 return sprintf(buf, "Out of memory\n");
3667 /* Push back cpu slabs */
3668 flush_all(s);
3670 for_each_node_state(node, N_NORMAL_MEMORY) {
3671 struct kmem_cache_node *n = get_node(s, node);
3672 unsigned long flags;
3673 struct page *page;
3675 if (!atomic_long_read(&n->nr_slabs))
3676 continue;
3678 spin_lock_irqsave(&n->list_lock, flags);
3679 list_for_each_entry(page, &n->partial, lru)
3680 process_slab(&t, s, page, alloc, map);
3681 list_for_each_entry(page, &n->full, lru)
3682 process_slab(&t, s, page, alloc, map);
3683 spin_unlock_irqrestore(&n->list_lock, flags);
3686 for (i = 0; i < t.count; i++) {
3687 struct location *l = &t.loc[i];
3689 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3690 break;
3691 len += sprintf(buf + len, "%7ld ", l->count);
3693 if (l->addr)
3694 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3695 else
3696 len += sprintf(buf + len, "<not-available>");
3698 if (l->sum_time != l->min_time) {
3699 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3700 l->min_time,
3701 (long)div_u64(l->sum_time, l->count),
3702 l->max_time);
3703 } else
3704 len += sprintf(buf + len, " age=%ld",
3705 l->min_time);
3707 if (l->min_pid != l->max_pid)
3708 len += sprintf(buf + len, " pid=%ld-%ld",
3709 l->min_pid, l->max_pid);
3710 else
3711 len += sprintf(buf + len, " pid=%ld",
3712 l->min_pid);
3714 if (num_online_cpus() > 1 &&
3715 !cpumask_empty(to_cpumask(l->cpus)) &&
3716 len < PAGE_SIZE - 60) {
3717 len += sprintf(buf + len, " cpus=");
3718 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3719 to_cpumask(l->cpus));
3722 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3723 len < PAGE_SIZE - 60) {
3724 len += sprintf(buf + len, " nodes=");
3725 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3726 l->nodes);
3729 len += sprintf(buf + len, "\n");
3732 free_loc_track(&t);
3733 kfree(map);
3734 if (!t.count)
3735 len += sprintf(buf, "No data\n");
3736 return len;
3739 enum slab_stat_type {
3740 SL_ALL, /* All slabs */
3741 SL_PARTIAL, /* Only partially allocated slabs */
3742 SL_CPU, /* Only slabs used for cpu caches */
3743 SL_OBJECTS, /* Determine allocated objects not slabs */
3744 SL_TOTAL /* Determine object capacity not slabs */
3747 #define SO_ALL (1 << SL_ALL)
3748 #define SO_PARTIAL (1 << SL_PARTIAL)
3749 #define SO_CPU (1 << SL_CPU)
3750 #define SO_OBJECTS (1 << SL_OBJECTS)
3751 #define SO_TOTAL (1 << SL_TOTAL)
3753 static ssize_t show_slab_objects(struct kmem_cache *s,
3754 char *buf, unsigned long flags)
3756 unsigned long total = 0;
3757 int node;
3758 int x;
3759 unsigned long *nodes;
3760 unsigned long *per_cpu;
3762 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3763 if (!nodes)
3764 return -ENOMEM;
3765 per_cpu = nodes + nr_node_ids;
3767 if (flags & SO_CPU) {
3768 int cpu;
3770 for_each_possible_cpu(cpu) {
3771 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3773 if (!c || c->node < 0)
3774 continue;
3776 if (c->page) {
3777 if (flags & SO_TOTAL)
3778 x = c->page->objects;
3779 else if (flags & SO_OBJECTS)
3780 x = c->page->inuse;
3781 else
3782 x = 1;
3784 total += x;
3785 nodes[c->node] += x;
3787 per_cpu[c->node]++;
3791 if (flags & SO_ALL) {
3792 for_each_node_state(node, N_NORMAL_MEMORY) {
3793 struct kmem_cache_node *n = get_node(s, node);
3795 if (flags & SO_TOTAL)
3796 x = atomic_long_read(&n->total_objects);
3797 else if (flags & SO_OBJECTS)
3798 x = atomic_long_read(&n->total_objects) -
3799 count_partial(n, count_free);
3801 else
3802 x = atomic_long_read(&n->nr_slabs);
3803 total += x;
3804 nodes[node] += x;
3807 } else if (flags & SO_PARTIAL) {
3808 for_each_node_state(node, N_NORMAL_MEMORY) {
3809 struct kmem_cache_node *n = get_node(s, node);
3811 if (flags & SO_TOTAL)
3812 x = count_partial(n, count_total);
3813 else if (flags & SO_OBJECTS)
3814 x = count_partial(n, count_inuse);
3815 else
3816 x = n->nr_partial;
3817 total += x;
3818 nodes[node] += x;
3821 x = sprintf(buf, "%lu", total);
3822 #ifdef CONFIG_NUMA
3823 for_each_node_state(node, N_NORMAL_MEMORY)
3824 if (nodes[node])
3825 x += sprintf(buf + x, " N%d=%lu",
3826 node, nodes[node]);
3827 #endif
3828 kfree(nodes);
3829 return x + sprintf(buf + x, "\n");
3832 static int any_slab_objects(struct kmem_cache *s)
3834 int node;
3836 for_each_online_node(node) {
3837 struct kmem_cache_node *n = get_node(s, node);
3839 if (!n)
3840 continue;
3842 if (atomic_long_read(&n->total_objects))
3843 return 1;
3845 return 0;
3848 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3849 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3851 struct slab_attribute {
3852 struct attribute attr;
3853 ssize_t (*show)(struct kmem_cache *s, char *buf);
3854 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3857 #define SLAB_ATTR_RO(_name) \
3858 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3860 #define SLAB_ATTR(_name) \
3861 static struct slab_attribute _name##_attr = \
3862 __ATTR(_name, 0644, _name##_show, _name##_store)
3864 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3866 return sprintf(buf, "%d\n", s->size);
3868 SLAB_ATTR_RO(slab_size);
3870 static ssize_t align_show(struct kmem_cache *s, char *buf)
3872 return sprintf(buf, "%d\n", s->align);
3874 SLAB_ATTR_RO(align);
3876 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3878 return sprintf(buf, "%d\n", s->objsize);
3880 SLAB_ATTR_RO(object_size);
3882 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3884 return sprintf(buf, "%d\n", oo_objects(s->oo));
3886 SLAB_ATTR_RO(objs_per_slab);
3888 static ssize_t order_store(struct kmem_cache *s,
3889 const char *buf, size_t length)
3891 unsigned long order;
3892 int err;
3894 err = strict_strtoul(buf, 10, &order);
3895 if (err)
3896 return err;
3898 if (order > slub_max_order || order < slub_min_order)
3899 return -EINVAL;
3901 calculate_sizes(s, order);
3902 return length;
3905 static ssize_t order_show(struct kmem_cache *s, char *buf)
3907 return sprintf(buf, "%d\n", oo_order(s->oo));
3909 SLAB_ATTR(order);
3911 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3913 return sprintf(buf, "%lu\n", s->min_partial);
3916 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3917 size_t length)
3919 unsigned long min;
3920 int err;
3922 err = strict_strtoul(buf, 10, &min);
3923 if (err)
3924 return err;
3926 set_min_partial(s, min);
3927 return length;
3929 SLAB_ATTR(min_partial);
3931 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3933 if (s->ctor) {
3934 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3936 return n + sprintf(buf + n, "\n");
3938 return 0;
3940 SLAB_ATTR_RO(ctor);
3942 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3944 return sprintf(buf, "%d\n", s->refcount - 1);
3946 SLAB_ATTR_RO(aliases);
3948 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3950 return show_slab_objects(s, buf, SO_ALL);
3952 SLAB_ATTR_RO(slabs);
3954 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3956 return show_slab_objects(s, buf, SO_PARTIAL);
3958 SLAB_ATTR_RO(partial);
3960 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3962 return show_slab_objects(s, buf, SO_CPU);
3964 SLAB_ATTR_RO(cpu_slabs);
3966 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3968 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3970 SLAB_ATTR_RO(objects);
3972 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3974 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3976 SLAB_ATTR_RO(objects_partial);
3978 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3980 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3982 SLAB_ATTR_RO(total_objects);
3984 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3986 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3989 static ssize_t sanity_checks_store(struct kmem_cache *s,
3990 const char *buf, size_t length)
3992 s->flags &= ~SLAB_DEBUG_FREE;
3993 if (buf[0] == '1')
3994 s->flags |= SLAB_DEBUG_FREE;
3995 return length;
3997 SLAB_ATTR(sanity_checks);
3999 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4001 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4004 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4005 size_t length)
4007 s->flags &= ~SLAB_TRACE;
4008 if (buf[0] == '1')
4009 s->flags |= SLAB_TRACE;
4010 return length;
4012 SLAB_ATTR(trace);
4014 #ifdef CONFIG_FAILSLAB
4015 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4017 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4020 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4021 size_t length)
4023 s->flags &= ~SLAB_FAILSLAB;
4024 if (buf[0] == '1')
4025 s->flags |= SLAB_FAILSLAB;
4026 return length;
4028 SLAB_ATTR(failslab);
4029 #endif
4031 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4033 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4036 static ssize_t reclaim_account_store(struct kmem_cache *s,
4037 const char *buf, size_t length)
4039 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4040 if (buf[0] == '1')
4041 s->flags |= SLAB_RECLAIM_ACCOUNT;
4042 return length;
4044 SLAB_ATTR(reclaim_account);
4046 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4048 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4050 SLAB_ATTR_RO(hwcache_align);
4052 #ifdef CONFIG_ZONE_DMA
4053 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4057 SLAB_ATTR_RO(cache_dma);
4058 #endif
4060 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4064 SLAB_ATTR_RO(destroy_by_rcu);
4066 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4068 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4071 static ssize_t red_zone_store(struct kmem_cache *s,
4072 const char *buf, size_t length)
4074 if (any_slab_objects(s))
4075 return -EBUSY;
4077 s->flags &= ~SLAB_RED_ZONE;
4078 if (buf[0] == '1')
4079 s->flags |= SLAB_RED_ZONE;
4080 calculate_sizes(s, -1);
4081 return length;
4083 SLAB_ATTR(red_zone);
4085 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4090 static ssize_t poison_store(struct kmem_cache *s,
4091 const char *buf, size_t length)
4093 if (any_slab_objects(s))
4094 return -EBUSY;
4096 s->flags &= ~SLAB_POISON;
4097 if (buf[0] == '1')
4098 s->flags |= SLAB_POISON;
4099 calculate_sizes(s, -1);
4100 return length;
4102 SLAB_ATTR(poison);
4104 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4109 static ssize_t store_user_store(struct kmem_cache *s,
4110 const char *buf, size_t length)
4112 if (any_slab_objects(s))
4113 return -EBUSY;
4115 s->flags &= ~SLAB_STORE_USER;
4116 if (buf[0] == '1')
4117 s->flags |= SLAB_STORE_USER;
4118 calculate_sizes(s, -1);
4119 return length;
4121 SLAB_ATTR(store_user);
4123 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4125 return 0;
4128 static ssize_t validate_store(struct kmem_cache *s,
4129 const char *buf, size_t length)
4131 int ret = -EINVAL;
4133 if (buf[0] == '1') {
4134 ret = validate_slab_cache(s);
4135 if (ret >= 0)
4136 ret = length;
4138 return ret;
4140 SLAB_ATTR(validate);
4142 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4144 return 0;
4147 static ssize_t shrink_store(struct kmem_cache *s,
4148 const char *buf, size_t length)
4150 if (buf[0] == '1') {
4151 int rc = kmem_cache_shrink(s);
4153 if (rc)
4154 return rc;
4155 } else
4156 return -EINVAL;
4157 return length;
4159 SLAB_ATTR(shrink);
4161 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4163 if (!(s->flags & SLAB_STORE_USER))
4164 return -ENOSYS;
4165 return list_locations(s, buf, TRACK_ALLOC);
4167 SLAB_ATTR_RO(alloc_calls);
4169 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4171 if (!(s->flags & SLAB_STORE_USER))
4172 return -ENOSYS;
4173 return list_locations(s, buf, TRACK_FREE);
4175 SLAB_ATTR_RO(free_calls);
4177 #ifdef CONFIG_NUMA
4178 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4180 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4183 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4184 const char *buf, size_t length)
4186 unsigned long ratio;
4187 int err;
4189 err = strict_strtoul(buf, 10, &ratio);
4190 if (err)
4191 return err;
4193 if (ratio <= 100)
4194 s->remote_node_defrag_ratio = ratio * 10;
4196 return length;
4198 SLAB_ATTR(remote_node_defrag_ratio);
4199 #endif
4201 #ifdef CONFIG_SLUB_STATS
4202 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4204 unsigned long sum = 0;
4205 int cpu;
4206 int len;
4207 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4209 if (!data)
4210 return -ENOMEM;
4212 for_each_online_cpu(cpu) {
4213 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4215 data[cpu] = x;
4216 sum += x;
4219 len = sprintf(buf, "%lu", sum);
4221 #ifdef CONFIG_SMP
4222 for_each_online_cpu(cpu) {
4223 if (data[cpu] && len < PAGE_SIZE - 20)
4224 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4226 #endif
4227 kfree(data);
4228 return len + sprintf(buf + len, "\n");
4231 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4233 int cpu;
4235 for_each_online_cpu(cpu)
4236 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4239 #define STAT_ATTR(si, text) \
4240 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4242 return show_stat(s, buf, si); \
4244 static ssize_t text##_store(struct kmem_cache *s, \
4245 const char *buf, size_t length) \
4247 if (buf[0] != '0') \
4248 return -EINVAL; \
4249 clear_stat(s, si); \
4250 return length; \
4252 SLAB_ATTR(text); \
4254 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4255 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4256 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4257 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4258 STAT_ATTR(FREE_FROZEN, free_frozen);
4259 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4260 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4261 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4262 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4263 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4264 STAT_ATTR(FREE_SLAB, free_slab);
4265 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4266 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4267 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4268 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4269 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4270 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4271 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4272 #endif
4274 static struct attribute *slab_attrs[] = {
4275 &slab_size_attr.attr,
4276 &object_size_attr.attr,
4277 &objs_per_slab_attr.attr,
4278 &order_attr.attr,
4279 &min_partial_attr.attr,
4280 &objects_attr.attr,
4281 &objects_partial_attr.attr,
4282 &total_objects_attr.attr,
4283 &slabs_attr.attr,
4284 &partial_attr.attr,
4285 &cpu_slabs_attr.attr,
4286 &ctor_attr.attr,
4287 &aliases_attr.attr,
4288 &align_attr.attr,
4289 &sanity_checks_attr.attr,
4290 &trace_attr.attr,
4291 &hwcache_align_attr.attr,
4292 &reclaim_account_attr.attr,
4293 &destroy_by_rcu_attr.attr,
4294 &red_zone_attr.attr,
4295 &poison_attr.attr,
4296 &store_user_attr.attr,
4297 &validate_attr.attr,
4298 &shrink_attr.attr,
4299 &alloc_calls_attr.attr,
4300 &free_calls_attr.attr,
4301 #ifdef CONFIG_ZONE_DMA
4302 &cache_dma_attr.attr,
4303 #endif
4304 #ifdef CONFIG_NUMA
4305 &remote_node_defrag_ratio_attr.attr,
4306 #endif
4307 #ifdef CONFIG_SLUB_STATS
4308 &alloc_fastpath_attr.attr,
4309 &alloc_slowpath_attr.attr,
4310 &free_fastpath_attr.attr,
4311 &free_slowpath_attr.attr,
4312 &free_frozen_attr.attr,
4313 &free_add_partial_attr.attr,
4314 &free_remove_partial_attr.attr,
4315 &alloc_from_partial_attr.attr,
4316 &alloc_slab_attr.attr,
4317 &alloc_refill_attr.attr,
4318 &free_slab_attr.attr,
4319 &cpuslab_flush_attr.attr,
4320 &deactivate_full_attr.attr,
4321 &deactivate_empty_attr.attr,
4322 &deactivate_to_head_attr.attr,
4323 &deactivate_to_tail_attr.attr,
4324 &deactivate_remote_frees_attr.attr,
4325 &order_fallback_attr.attr,
4326 #endif
4327 #ifdef CONFIG_FAILSLAB
4328 &failslab_attr.attr,
4329 #endif
4331 NULL
4334 static struct attribute_group slab_attr_group = {
4335 .attrs = slab_attrs,
4338 static ssize_t slab_attr_show(struct kobject *kobj,
4339 struct attribute *attr,
4340 char *buf)
4342 struct slab_attribute *attribute;
4343 struct kmem_cache *s;
4344 int err;
4346 attribute = to_slab_attr(attr);
4347 s = to_slab(kobj);
4349 if (!attribute->show)
4350 return -EIO;
4352 err = attribute->show(s, buf);
4354 return err;
4357 static ssize_t slab_attr_store(struct kobject *kobj,
4358 struct attribute *attr,
4359 const char *buf, size_t len)
4361 struct slab_attribute *attribute;
4362 struct kmem_cache *s;
4363 int err;
4365 attribute = to_slab_attr(attr);
4366 s = to_slab(kobj);
4368 if (!attribute->store)
4369 return -EIO;
4371 err = attribute->store(s, buf, len);
4373 return err;
4376 static void kmem_cache_release(struct kobject *kobj)
4378 struct kmem_cache *s = to_slab(kobj);
4380 kfree(s);
4383 static const struct sysfs_ops slab_sysfs_ops = {
4384 .show = slab_attr_show,
4385 .store = slab_attr_store,
4388 static struct kobj_type slab_ktype = {
4389 .sysfs_ops = &slab_sysfs_ops,
4390 .release = kmem_cache_release
4393 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4395 struct kobj_type *ktype = get_ktype(kobj);
4397 if (ktype == &slab_ktype)
4398 return 1;
4399 return 0;
4402 static const struct kset_uevent_ops slab_uevent_ops = {
4403 .filter = uevent_filter,
4406 static struct kset *slab_kset;
4408 #define ID_STR_LENGTH 64
4410 /* Create a unique string id for a slab cache:
4412 * Format :[flags-]size
4414 static char *create_unique_id(struct kmem_cache *s)
4416 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4417 char *p = name;
4419 BUG_ON(!name);
4421 *p++ = ':';
4423 * First flags affecting slabcache operations. We will only
4424 * get here for aliasable slabs so we do not need to support
4425 * too many flags. The flags here must cover all flags that
4426 * are matched during merging to guarantee that the id is
4427 * unique.
4429 if (s->flags & SLAB_CACHE_DMA)
4430 *p++ = 'd';
4431 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4432 *p++ = 'a';
4433 if (s->flags & SLAB_DEBUG_FREE)
4434 *p++ = 'F';
4435 if (!(s->flags & SLAB_NOTRACK))
4436 *p++ = 't';
4437 if (p != name + 1)
4438 *p++ = '-';
4439 p += sprintf(p, "%07d", s->size);
4440 BUG_ON(p > name + ID_STR_LENGTH - 1);
4441 return name;
4444 static int sysfs_slab_add(struct kmem_cache *s)
4446 int err;
4447 const char *name;
4448 int unmergeable;
4450 if (slab_state < SYSFS)
4451 /* Defer until later */
4452 return 0;
4454 unmergeable = slab_unmergeable(s);
4455 if (unmergeable) {
4457 * Slabcache can never be merged so we can use the name proper.
4458 * This is typically the case for debug situations. In that
4459 * case we can catch duplicate names easily.
4461 sysfs_remove_link(&slab_kset->kobj, s->name);
4462 name = s->name;
4463 } else {
4465 * Create a unique name for the slab as a target
4466 * for the symlinks.
4468 name = create_unique_id(s);
4471 s->kobj.kset = slab_kset;
4472 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4473 if (err) {
4474 kobject_put(&s->kobj);
4475 return err;
4478 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4479 if (err) {
4480 kobject_del(&s->kobj);
4481 kobject_put(&s->kobj);
4482 return err;
4484 kobject_uevent(&s->kobj, KOBJ_ADD);
4485 if (!unmergeable) {
4486 /* Setup first alias */
4487 sysfs_slab_alias(s, s->name);
4488 kfree(name);
4490 return 0;
4493 static void sysfs_slab_remove(struct kmem_cache *s)
4495 if (slab_state < SYSFS)
4497 * Sysfs has not been setup yet so no need to remove the
4498 * cache from sysfs.
4500 return;
4502 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4503 kobject_del(&s->kobj);
4504 kobject_put(&s->kobj);
4508 * Need to buffer aliases during bootup until sysfs becomes
4509 * available lest we lose that information.
4511 struct saved_alias {
4512 struct kmem_cache *s;
4513 const char *name;
4514 struct saved_alias *next;
4517 static struct saved_alias *alias_list;
4519 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4521 struct saved_alias *al;
4523 if (slab_state == SYSFS) {
4525 * If we have a leftover link then remove it.
4527 sysfs_remove_link(&slab_kset->kobj, name);
4528 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4531 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4532 if (!al)
4533 return -ENOMEM;
4535 al->s = s;
4536 al->name = name;
4537 al->next = alias_list;
4538 alias_list = al;
4539 return 0;
4542 static int __init slab_sysfs_init(void)
4544 struct kmem_cache *s;
4545 int err;
4547 down_write(&slub_lock);
4549 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4550 if (!slab_kset) {
4551 up_write(&slub_lock);
4552 printk(KERN_ERR "Cannot register slab subsystem.\n");
4553 return -ENOSYS;
4556 slab_state = SYSFS;
4558 list_for_each_entry(s, &slab_caches, list) {
4559 err = sysfs_slab_add(s);
4560 if (err)
4561 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4562 " to sysfs\n", s->name);
4565 while (alias_list) {
4566 struct saved_alias *al = alias_list;
4568 alias_list = alias_list->next;
4569 err = sysfs_slab_alias(al->s, al->name);
4570 if (err)
4571 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4572 " %s to sysfs\n", s->name);
4573 kfree(al);
4576 up_write(&slub_lock);
4577 resiliency_test();
4578 return 0;
4581 __initcall(slab_sysfs_init);
4582 #endif
4585 * The /proc/slabinfo ABI
4587 #ifdef CONFIG_SLABINFO
4588 static void print_slabinfo_header(struct seq_file *m)
4590 seq_puts(m, "slabinfo - version: 2.1\n");
4591 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4592 "<objperslab> <pagesperslab>");
4593 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4594 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4595 seq_putc(m, '\n');
4598 static void *s_start(struct seq_file *m, loff_t *pos)
4600 loff_t n = *pos;
4602 down_read(&slub_lock);
4603 if (!n)
4604 print_slabinfo_header(m);
4606 return seq_list_start(&slab_caches, *pos);
4609 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4611 return seq_list_next(p, &slab_caches, pos);
4614 static void s_stop(struct seq_file *m, void *p)
4616 up_read(&slub_lock);
4619 static int s_show(struct seq_file *m, void *p)
4621 unsigned long nr_partials = 0;
4622 unsigned long nr_slabs = 0;
4623 unsigned long nr_inuse = 0;
4624 unsigned long nr_objs = 0;
4625 unsigned long nr_free = 0;
4626 struct kmem_cache *s;
4627 int node;
4629 s = list_entry(p, struct kmem_cache, list);
4631 for_each_online_node(node) {
4632 struct kmem_cache_node *n = get_node(s, node);
4634 if (!n)
4635 continue;
4637 nr_partials += n->nr_partial;
4638 nr_slabs += atomic_long_read(&n->nr_slabs);
4639 nr_objs += atomic_long_read(&n->total_objects);
4640 nr_free += count_partial(n, count_free);
4643 nr_inuse = nr_objs - nr_free;
4645 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4646 nr_objs, s->size, oo_objects(s->oo),
4647 (1 << oo_order(s->oo)));
4648 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4649 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4650 0UL);
4651 seq_putc(m, '\n');
4652 return 0;
4655 static const struct seq_operations slabinfo_op = {
4656 .start = s_start,
4657 .next = s_next,
4658 .stop = s_stop,
4659 .show = s_show,
4662 static int slabinfo_open(struct inode *inode, struct file *file)
4664 return seq_open(file, &slabinfo_op);
4667 static const struct file_operations proc_slabinfo_operations = {
4668 .open = slabinfo_open,
4669 .read = seq_read,
4670 .llseek = seq_lseek,
4671 .release = seq_release,
4674 static int __init slab_proc_init(void)
4676 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4677 return 0;
4679 module_init(slab_proc_init);
4680 #endif /* CONFIG_SLABINFO */