drm/i915/dp: don't bother with DP PLL for PCH attached eDP
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / memory-hotplug.txt
blob57e7e9cc1870ad095f7daa21ff051a68ec34d12c
1 ==============
2 Memory Hotplug
3 ==============
5 Created:                                        Jul 28 2007
6 Add description of notifier of memory hotplug   Oct 11 2007
8 This document is about memory hotplug including how-to-use and current status.
9 Because Memory Hotplug is still under development, contents of this text will
10 be changed often.
12 1. Introduction
13   1.1 purpose of memory hotplug
14   1.2. Phases of memory hotplug
15   1.3. Unit of Memory online/offline operation
16 2. Kernel Configuration
17 3. sysfs files for memory hotplug
18 4. Physical memory hot-add phase
19   4.1 Hardware(Firmware) Support
20   4.2 Notify memory hot-add event by hand
21 5. Logical Memory hot-add phase
22   5.1. State of memory
23   5.2. How to online memory
24 6. Logical memory remove
25   6.1 Memory offline and ZONE_MOVABLE
26   6.2. How to offline memory
27 7. Physical memory remove
28 8. Memory hotplug event notifier
29 9. Future Work List
31 Note(1): x86_64's has special implementation for memory hotplug.
32          This text does not describe it.
33 Note(2): This text assumes that sysfs is mounted at /sys.
36 ---------------
37 1. Introduction
38 ---------------
40 1.1 purpose of memory hotplug
41 ------------
42 Memory Hotplug allows users to increase/decrease the amount of memory.
43 Generally, there are two purposes.
45 (A) For changing the amount of memory.
46     This is to allow a feature like capacity on demand.
47 (B) For installing/removing DIMMs or NUMA-nodes physically.
48     This is to exchange DIMMs/NUMA-nodes, reduce power consumption, etc.
50 (A) is required by highly virtualized environments and (B) is required by
51 hardware which supports memory power management.
53 Linux memory hotplug is designed for both purpose.
56 1.2. Phases of memory hotplug
57 ---------------
58 There are 2 phases in Memory Hotplug.
59   1) Physical Memory Hotplug phase
60   2) Logical Memory Hotplug phase.
62 The First phase is to communicate hardware/firmware and make/erase
63 environment for hotplugged memory. Basically, this phase is necessary
64 for the purpose (B), but this is good phase for communication between
65 highly virtualized environments too.
67 When memory is hotplugged, the kernel recognizes new memory, makes new memory
68 management tables, and makes sysfs files for new memory's operation.
70 If firmware supports notification of connection of new memory to OS,
71 this phase is triggered automatically. ACPI can notify this event. If not,
72 "probe" operation by system administration is used instead.
73 (see Section 4.).
75 Logical Memory Hotplug phase is to change memory state into
76 available/unavailable for users. Amount of memory from user's view is
77 changed by this phase. The kernel makes all memory in it as free pages
78 when a memory range is available.
80 In this document, this phase is described as online/offline.
82 Logical Memory Hotplug phase is triggered by write of sysfs file by system
83 administrator. For the hot-add case, it must be executed after Physical Hotplug
84 phase by hand.
85 (However, if you writes udev's hotplug scripts for memory hotplug, these
86  phases can be execute in seamless way.)
89 1.3. Unit of Memory online/offline operation
90 ------------
91 Memory hotplug uses SPARSEMEM memory model. SPARSEMEM divides the whole memory
92 into chunks of the same size. The chunk is called a "section". The size of
93 a section is architecture dependent. For example, power uses 16MiB, ia64 uses
94 1GiB. The unit of online/offline operation is "one section". (see Section 3.)
96 To determine the size of sections, please read this file:
98 /sys/devices/system/memory/block_size_bytes
100 This file shows the size of sections in byte.
102 -----------------------
103 2. Kernel Configuration
104 -----------------------
105 To use memory hotplug feature, kernel must be compiled with following
106 config options.
108 - For all memory hotplug
109     Memory model -> Sparse Memory  (CONFIG_SPARSEMEM)
110     Allow for memory hot-add       (CONFIG_MEMORY_HOTPLUG)
112 - To enable memory removal, the followings are also necessary
113     Allow for memory hot remove    (CONFIG_MEMORY_HOTREMOVE)
114     Page Migration                 (CONFIG_MIGRATION)
116 - For ACPI memory hotplug, the followings are also necessary
117     Memory hotplug (under ACPI Support menu) (CONFIG_ACPI_HOTPLUG_MEMORY)
118     This option can be kernel module.
120 - As a related configuration, if your box has a feature of NUMA-node hotplug
121   via ACPI, then this option is necessary too.
122     ACPI0004,PNP0A05 and PNP0A06 Container Driver (under ACPI Support menu)
123     (CONFIG_ACPI_CONTAINER).
124     This option can be kernel module too.
126 --------------------------------
127 4 sysfs files for memory hotplug
128 --------------------------------
129 All sections have their device information under /sys/devices/system/memory as
131 /sys/devices/system/memory/memoryXXX
132 (XXX is section id.)
134 Now, XXX is defined as start_address_of_section / section_size.
136 For example, assume 1GiB section size. A device for a memory starting at
137 0x100000000 is /sys/device/system/memory/memory4
138 (0x100000000 / 1Gib = 4)
139 This device covers address range [0x100000000 ... 0x140000000)
141 Under each section, you can see 4 files.
143 /sys/devices/system/memory/memoryXXX/phys_index
144 /sys/devices/system/memory/memoryXXX/phys_device
145 /sys/devices/system/memory/memoryXXX/state
146 /sys/devices/system/memory/memoryXXX/removable
148 'phys_index' : read-only and contains section id, same as XXX.
149 'state'      : read-write
150                at read:  contains online/offline state of memory.
151                at write: user can specify "online", "offline" command
152 'phys_device': read-only: designed to show the name of physical memory device.
153                This is not well implemented now.
154 'removable'  : read-only: contains an integer value indicating
155                whether the memory section is removable or not
156                removable.  A value of 1 indicates that the memory
157                section is removable and a value of 0 indicates that
158                it is not removable.
160 NOTE:
161   These directories/files appear after physical memory hotplug phase.
163 If CONFIG_NUMA is enabled the memoryXXX/ directories can also be accessed
164 via symbolic links located in the /sys/devices/system/node/node* directories.
166 For example:
167 /sys/devices/system/node/node0/memory9 -> ../../memory/memory9
169 A backlink will also be created:
170 /sys/devices/system/memory/memory9/node0 -> ../../node/node0
172 --------------------------------
173 4. Physical memory hot-add phase
174 --------------------------------
176 4.1 Hardware(Firmware) Support
177 ------------
178 On x86_64/ia64 platform, memory hotplug by ACPI is supported.
180 In general, the firmware (ACPI) which supports memory hotplug defines
181 memory class object of _HID "PNP0C80". When a notify is asserted to PNP0C80,
182 Linux's ACPI handler does hot-add memory to the system and calls a hotplug udev
183 script. This will be done automatically.
185 But scripts for memory hotplug are not contained in generic udev package(now).
186 You may have to write it by yourself or online/offline memory by hand.
187 Please see "How to online memory", "How to offline memory" in this text.
189 If firmware supports NUMA-node hotplug, and defines an object _HID "ACPI0004",
190 "PNP0A05", or "PNP0A06", notification is asserted to it, and ACPI handler
191 calls hotplug code for all of objects which are defined in it.
192 If memory device is found, memory hotplug code will be called.
195 4.2 Notify memory hot-add event by hand
196 ------------
197 In some environments, especially virtualized environment, firmware will not
198 notify memory hotplug event to the kernel. For such environment, "probe"
199 interface is supported. This interface depends on CONFIG_ARCH_MEMORY_PROBE.
201 Now, CONFIG_ARCH_MEMORY_PROBE is supported only by powerpc but it does not
202 contain highly architecture codes. Please add config if you need "probe"
203 interface.
205 Probe interface is located at
206 /sys/devices/system/memory/probe
208 You can tell the physical address of new memory to the kernel by
210 % echo start_address_of_new_memory > /sys/devices/system/memory/probe
212 Then, [start_address_of_new_memory, start_address_of_new_memory + section_size)
213 memory range is hot-added. In this case, hotplug script is not called (in
214 current implementation). You'll have to online memory by yourself.
215 Please see "How to online memory" in this text.
219 ------------------------------
220 5. Logical Memory hot-add phase
221 ------------------------------
223 5.1. State of memory
224 ------------
225 To see (online/offline) state of memory section, read 'state' file.
227 % cat /sys/device/system/memory/memoryXXX/state
230 If the memory section is online, you'll read "online".
231 If the memory section is offline, you'll read "offline".
234 5.2. How to online memory
235 ------------
236 Even if the memory is hot-added, it is not at ready-to-use state.
237 For using newly added memory, you have to "online" the memory section.
239 For onlining, you have to write "online" to the section's state file as:
241 % echo online > /sys/devices/system/memory/memoryXXX/state
243 After this, section memoryXXX's state will be 'online' and the amount of
244 available memory will be increased.
246 Currently, newly added memory is added as ZONE_NORMAL (for powerpc, ZONE_DMA).
247 This may be changed in future.
251 ------------------------
252 6. Logical memory remove
253 ------------------------
255 6.1 Memory offline and ZONE_MOVABLE
256 ------------
257 Memory offlining is more complicated than memory online. Because memory offline
258 has to make the whole memory section be unused, memory offline can fail if
259 the section includes memory which cannot be freed.
261 In general, memory offline can use 2 techniques.
263 (1) reclaim and free all memory in the section.
264 (2) migrate all pages in the section.
266 In the current implementation, Linux's memory offline uses method (2), freeing
267 all  pages in the section by page migration. But not all pages are
268 migratable. Under current Linux, migratable pages are anonymous pages and
269 page caches. For offlining a section by migration, the kernel has to guarantee
270 that the section contains only migratable pages.
272 Now, a boot option for making a section which consists of migratable pages is
273 supported. By specifying "kernelcore=" or "movablecore=" boot option, you can
274 create ZONE_MOVABLE...a zone which is just used for movable pages.
275 (See also Documentation/kernel-parameters.txt)
277 Assume the system has "TOTAL" amount of memory at boot time, this boot option
278 creates ZONE_MOVABLE as following.
280 1) When kernelcore=YYYY boot option is used,
281   Size of memory not for movable pages (not for offline) is YYYY.
282   Size of memory for movable pages (for offline) is TOTAL-YYYY.
284 2) When movablecore=ZZZZ boot option is used,
285   Size of memory not for movable pages (not for offline) is TOTAL - ZZZZ.
286   Size of memory for movable pages (for offline) is ZZZZ.
289 Note) Unfortunately, there is no information to show which section belongs
290 to ZONE_MOVABLE. This is TBD.
293 6.2. How to offline memory
294 ------------
295 You can offline a section by using the same sysfs interface that was used in
296 memory onlining.
298 % echo offline > /sys/devices/system/memory/memoryXXX/state
300 If offline succeeds, the state of the memory section is changed to be "offline".
301 If it fails, some error core (like -EBUSY) will be returned by the kernel.
302 Even if a section does not belong to ZONE_MOVABLE, you can try to offline it.
303 If it doesn't contain 'unmovable' memory, you'll get success.
305 A section under ZONE_MOVABLE is considered to be able to be offlined easily.
306 But under some busy state, it may return -EBUSY. Even if a memory section
307 cannot be offlined due to -EBUSY, you can retry offlining it and may be able to
308 offline it (or not).
309 (For example, a page is referred to by some kernel internal call and released
310  soon.)
312 Consideration:
313 Memory hotplug's design direction is to make the possibility of memory offlining
314 higher and to guarantee unplugging memory under any situation. But it needs
315 more work. Returning -EBUSY under some situation may be good because the user
316 can decide to retry more or not by himself. Currently, memory offlining code
317 does some amount of retry with 120 seconds timeout.
319 -------------------------
320 7. Physical memory remove
321 -------------------------
322 Need more implementation yet....
323  - Notification completion of remove works by OS to firmware.
324  - Guard from remove if not yet.
326 --------------------------------
327 8. Memory hotplug event notifier
328 --------------------------------
329 Memory hotplug has event notifer. There are 6 types of notification.
331 MEMORY_GOING_ONLINE
332   Generated before new memory becomes available in order to be able to
333   prepare subsystems to handle memory. The page allocator is still unable
334   to allocate from the new memory.
336 MEMORY_CANCEL_ONLINE
337   Generated if MEMORY_GOING_ONLINE fails.
339 MEMORY_ONLINE
340   Generated when memory has successfully brought online. The callback may
341   allocate pages from the new memory.
343 MEMORY_GOING_OFFLINE
344   Generated to begin the process of offlining memory. Allocations are no
345   longer possible from the memory but some of the memory to be offlined
346   is still in use. The callback can be used to free memory known to a
347   subsystem from the indicated memory section.
349 MEMORY_CANCEL_OFFLINE
350   Generated if MEMORY_GOING_OFFLINE fails. Memory is available again from
351   the section that we attempted to offline.
353 MEMORY_OFFLINE
354   Generated after offlining memory is complete.
356 A callback routine can be registered by
357   hotplug_memory_notifier(callback_func, priority)
359 The second argument of callback function (action) is event types of above.
360 The third argument is passed by pointer of struct memory_notify.
362 struct memory_notify {
363        unsigned long start_pfn;
364        unsigned long nr_pages;
365        int status_change_nid;
368 start_pfn is start_pfn of online/offline memory.
369 nr_pages is # of pages of online/offline memory.
370 status_change_nid is set node id when N_HIGH_MEMORY of nodemask is (will be)
371 set/clear. It means a new(memoryless) node gets new memory by online and a
372 node loses all memory. If this is -1, then nodemask status is not changed.
373 If status_changed_nid >= 0, callback should create/discard structures for the
374 node if necessary.
376 --------------
377 9. Future Work
378 --------------
379   - allowing memory hot-add to ZONE_MOVABLE. maybe we need some switch like
380     sysctl or new control file.
381   - showing memory section and physical device relationship.
382   - showing memory section is under ZONE_MOVABLE or not
383   - test and make it better memory offlining.
384   - support HugeTLB page migration and offlining.
385   - memmap removing at memory offline.
386   - physical remove memory.