2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
21 #include <linux/sched.h>
23 #include <linux/file.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
38 #define dprintk printk
40 #define dprintk(x...) do { ; } while (0)
43 /*------ sysctl variables----*/
44 static DEFINE_SPINLOCK(aio_nr_lock
);
45 unsigned long aio_nr
; /* current system wide number of aio requests */
46 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
47 /*----end sysctl variables---*/
49 static kmem_cache_t
*kiocb_cachep
;
50 static kmem_cache_t
*kioctx_cachep
;
52 static struct workqueue_struct
*aio_wq
;
54 /* Used for rare fput completion. */
55 static void aio_fput_routine(void *);
56 static DECLARE_WORK(fput_work
, aio_fput_routine
, NULL
);
58 static DEFINE_SPINLOCK(fput_lock
);
59 static LIST_HEAD(fput_head
);
61 static void aio_kick_handler(void *);
62 static void aio_queue_work(struct kioctx
*);
65 * Creates the slab caches used by the aio routines, panic on
66 * failure as this is done early during the boot sequence.
68 static int __init
aio_setup(void)
70 kiocb_cachep
= kmem_cache_create("kiocb", sizeof(struct kiocb
),
71 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
72 kioctx_cachep
= kmem_cache_create("kioctx", sizeof(struct kioctx
),
73 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
75 aio_wq
= create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
82 static void aio_free_ring(struct kioctx
*ctx
)
84 struct aio_ring_info
*info
= &ctx
->ring_info
;
87 for (i
=0; i
<info
->nr_pages
; i
++)
88 put_page(info
->ring_pages
[i
]);
90 if (info
->mmap_size
) {
91 down_write(&ctx
->mm
->mmap_sem
);
92 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
93 up_write(&ctx
->mm
->mmap_sem
);
96 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
97 kfree(info
->ring_pages
);
98 info
->ring_pages
= NULL
;
102 static int aio_setup_ring(struct kioctx
*ctx
)
104 struct aio_ring
*ring
;
105 struct aio_ring_info
*info
= &ctx
->ring_info
;
106 unsigned nr_events
= ctx
->max_reqs
;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events
+= 2; /* 1 is required, 2 for good luck */
113 size
= sizeof(struct aio_ring
);
114 size
+= sizeof(struct io_event
) * nr_events
;
115 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
120 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
123 info
->ring_pages
= info
->internal_pages
;
124 if (nr_pages
> AIO_RING_PAGES
) {
125 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
126 if (!info
->ring_pages
)
130 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
131 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
132 down_write(&ctx
->mm
->mmap_sem
);
133 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
134 PROT_READ
|PROT_WRITE
, MAP_ANON
|MAP_PRIVATE
,
136 if (IS_ERR((void *)info
->mmap_base
)) {
137 up_write(&ctx
->mm
->mmap_sem
);
138 printk("mmap err: %ld\n", -info
->mmap_base
);
144 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
145 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
146 info
->mmap_base
, nr_pages
,
147 1, 0, info
->ring_pages
, NULL
);
148 up_write(&ctx
->mm
->mmap_sem
);
150 if (unlikely(info
->nr_pages
!= nr_pages
)) {
155 ctx
->user_id
= info
->mmap_base
;
157 info
->nr
= nr_events
; /* trusted copy */
159 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
160 ring
->nr
= nr_events
; /* user copy */
161 ring
->id
= ctx
->user_id
;
162 ring
->head
= ring
->tail
= 0;
163 ring
->magic
= AIO_RING_MAGIC
;
164 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
165 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
166 ring
->header_length
= sizeof(struct aio_ring
);
167 kunmap_atomic(ring
, KM_USER0
);
173 /* aio_ring_event: returns a pointer to the event at the given index from
174 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
176 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
177 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
178 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
180 #define aio_ring_event(info, nr, km) ({ \
181 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
182 struct io_event *__event; \
183 __event = kmap_atomic( \
184 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
185 __event += pos % AIO_EVENTS_PER_PAGE; \
189 #define put_aio_ring_event(event, km) do { \
190 struct io_event *__event = (event); \
192 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
196 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
198 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
200 struct mm_struct
*mm
;
203 /* Prevent overflows */
204 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
205 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
206 pr_debug("ENOMEM: nr_events too high\n");
207 return ERR_PTR(-EINVAL
);
210 if ((unsigned long)nr_events
> aio_max_nr
)
211 return ERR_PTR(-EAGAIN
);
213 ctx
= kmem_cache_alloc(kioctx_cachep
, GFP_KERNEL
);
215 return ERR_PTR(-ENOMEM
);
217 memset(ctx
, 0, sizeof(*ctx
));
218 ctx
->max_reqs
= nr_events
;
219 mm
= ctx
->mm
= current
->mm
;
220 atomic_inc(&mm
->mm_count
);
222 atomic_set(&ctx
->users
, 1);
223 spin_lock_init(&ctx
->ctx_lock
);
224 spin_lock_init(&ctx
->ring_info
.ring_lock
);
225 init_waitqueue_head(&ctx
->wait
);
227 INIT_LIST_HEAD(&ctx
->active_reqs
);
228 INIT_LIST_HEAD(&ctx
->run_list
);
229 INIT_WORK(&ctx
->wq
, aio_kick_handler
, ctx
);
231 if (aio_setup_ring(ctx
) < 0)
234 /* limit the number of system wide aios */
235 spin_lock(&aio_nr_lock
);
236 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
237 aio_nr
+ ctx
->max_reqs
< aio_nr
)
240 aio_nr
+= ctx
->max_reqs
;
241 spin_unlock(&aio_nr_lock
);
242 if (ctx
->max_reqs
== 0)
245 /* now link into global list. kludge. FIXME */
246 write_lock(&mm
->ioctx_list_lock
);
247 ctx
->next
= mm
->ioctx_list
;
248 mm
->ioctx_list
= ctx
;
249 write_unlock(&mm
->ioctx_list_lock
);
251 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
252 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
257 return ERR_PTR(-EAGAIN
);
261 kmem_cache_free(kioctx_cachep
, ctx
);
262 ctx
= ERR_PTR(-ENOMEM
);
264 dprintk("aio: error allocating ioctx %p\n", ctx
);
269 * Cancels all outstanding aio requests on an aio context. Used
270 * when the processes owning a context have all exited to encourage
271 * the rapid destruction of the kioctx.
273 static void aio_cancel_all(struct kioctx
*ctx
)
275 int (*cancel
)(struct kiocb
*, struct io_event
*);
277 spin_lock_irq(&ctx
->ctx_lock
);
279 while (!list_empty(&ctx
->active_reqs
)) {
280 struct list_head
*pos
= ctx
->active_reqs
.next
;
281 struct kiocb
*iocb
= list_kiocb(pos
);
282 list_del_init(&iocb
->ki_list
);
283 cancel
= iocb
->ki_cancel
;
284 kiocbSetCancelled(iocb
);
287 spin_unlock_irq(&ctx
->ctx_lock
);
289 spin_lock_irq(&ctx
->ctx_lock
);
292 spin_unlock_irq(&ctx
->ctx_lock
);
295 static void wait_for_all_aios(struct kioctx
*ctx
)
297 struct task_struct
*tsk
= current
;
298 DECLARE_WAITQUEUE(wait
, tsk
);
300 if (!ctx
->reqs_active
)
303 add_wait_queue(&ctx
->wait
, &wait
);
304 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
305 while (ctx
->reqs_active
) {
307 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
309 __set_task_state(tsk
, TASK_RUNNING
);
310 remove_wait_queue(&ctx
->wait
, &wait
);
313 /* wait_on_sync_kiocb:
314 * Waits on the given sync kiocb to complete.
316 ssize_t fastcall
wait_on_sync_kiocb(struct kiocb
*iocb
)
318 while (iocb
->ki_users
) {
319 set_current_state(TASK_UNINTERRUPTIBLE
);
324 __set_current_state(TASK_RUNNING
);
325 return iocb
->ki_user_data
;
328 /* exit_aio: called when the last user of mm goes away. At this point,
329 * there is no way for any new requests to be submited or any of the
330 * io_* syscalls to be called on the context. However, there may be
331 * outstanding requests which hold references to the context; as they
332 * go away, they will call put_ioctx and release any pinned memory
333 * associated with the request (held via struct page * references).
335 void fastcall
exit_aio(struct mm_struct
*mm
)
337 struct kioctx
*ctx
= mm
->ioctx_list
;
338 mm
->ioctx_list
= NULL
;
340 struct kioctx
*next
= ctx
->next
;
344 wait_for_all_aios(ctx
);
346 * this is an overkill, but ensures we don't leave
347 * the ctx on the aio_wq
349 flush_workqueue(aio_wq
);
351 if (1 != atomic_read(&ctx
->users
))
353 "exit_aio:ioctx still alive: %d %d %d\n",
354 atomic_read(&ctx
->users
), ctx
->dead
,
362 * Called when the last user of an aio context has gone away,
363 * and the struct needs to be freed.
365 void fastcall
__put_ioctx(struct kioctx
*ctx
)
367 unsigned nr_events
= ctx
->max_reqs
;
369 if (unlikely(ctx
->reqs_active
))
372 cancel_delayed_work(&ctx
->wq
);
373 flush_workqueue(aio_wq
);
377 pr_debug("__put_ioctx: freeing %p\n", ctx
);
378 kmem_cache_free(kioctx_cachep
, ctx
);
381 spin_lock(&aio_nr_lock
);
382 BUG_ON(aio_nr
- nr_events
> aio_nr
);
384 spin_unlock(&aio_nr_lock
);
389 * Allocate a slot for an aio request. Increments the users count
390 * of the kioctx so that the kioctx stays around until all requests are
391 * complete. Returns NULL if no requests are free.
393 * Returns with kiocb->users set to 2. The io submit code path holds
394 * an extra reference while submitting the i/o.
395 * This prevents races between the aio code path referencing the
396 * req (after submitting it) and aio_complete() freeing the req.
398 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
399 static struct kiocb fastcall
*__aio_get_req(struct kioctx
*ctx
)
401 struct kiocb
*req
= NULL
;
402 struct aio_ring
*ring
;
405 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
413 req
->ki_cancel
= NULL
;
414 req
->ki_retry
= NULL
;
417 INIT_LIST_HEAD(&req
->ki_run_list
);
419 /* Check if the completion queue has enough free space to
420 * accept an event from this io.
422 spin_lock_irq(&ctx
->ctx_lock
);
423 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
424 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
425 list_add(&req
->ki_list
, &ctx
->active_reqs
);
430 kunmap_atomic(ring
, KM_USER0
);
431 spin_unlock_irq(&ctx
->ctx_lock
);
434 kmem_cache_free(kiocb_cachep
, req
);
441 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
444 /* Handle a potential starvation case -- should be exceedingly rare as
445 * requests will be stuck on fput_head only if the aio_fput_routine is
446 * delayed and the requests were the last user of the struct file.
448 req
= __aio_get_req(ctx
);
449 if (unlikely(NULL
== req
)) {
450 aio_fput_routine(NULL
);
451 req
= __aio_get_req(ctx
);
456 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
458 assert_spin_locked(&ctx
->ctx_lock
);
462 kmem_cache_free(kiocb_cachep
, req
);
465 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
469 static void aio_fput_routine(void *data
)
471 spin_lock_irq(&fput_lock
);
472 while (likely(!list_empty(&fput_head
))) {
473 struct kiocb
*req
= list_kiocb(fput_head
.next
);
474 struct kioctx
*ctx
= req
->ki_ctx
;
476 list_del(&req
->ki_list
);
477 spin_unlock_irq(&fput_lock
);
479 /* Complete the fput */
480 __fput(req
->ki_filp
);
482 /* Link the iocb into the context's free list */
483 spin_lock_irq(&ctx
->ctx_lock
);
484 really_put_req(ctx
, req
);
485 spin_unlock_irq(&ctx
->ctx_lock
);
488 spin_lock_irq(&fput_lock
);
490 spin_unlock_irq(&fput_lock
);
494 * Returns true if this put was the last user of the request.
496 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
498 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
499 req
, atomic_read(&req
->ki_filp
->f_count
));
501 assert_spin_locked(&ctx
->ctx_lock
);
504 if (unlikely(req
->ki_users
< 0))
506 if (likely(req
->ki_users
))
508 list_del(&req
->ki_list
); /* remove from active_reqs */
509 req
->ki_cancel
= NULL
;
510 req
->ki_retry
= NULL
;
512 /* Must be done under the lock to serialise against cancellation.
513 * Call this aio_fput as it duplicates fput via the fput_work.
515 if (unlikely(atomic_dec_and_test(&req
->ki_filp
->f_count
))) {
517 spin_lock(&fput_lock
);
518 list_add(&req
->ki_list
, &fput_head
);
519 spin_unlock(&fput_lock
);
520 queue_work(aio_wq
, &fput_work
);
522 really_put_req(ctx
, req
);
527 * Returns true if this put was the last user of the kiocb,
528 * false if the request is still in use.
530 int fastcall
aio_put_req(struct kiocb
*req
)
532 struct kioctx
*ctx
= req
->ki_ctx
;
534 spin_lock_irq(&ctx
->ctx_lock
);
535 ret
= __aio_put_req(ctx
, req
);
536 spin_unlock_irq(&ctx
->ctx_lock
);
542 /* Lookup an ioctx id. ioctx_list is lockless for reads.
543 * FIXME: this is O(n) and is only suitable for development.
545 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
547 struct kioctx
*ioctx
;
548 struct mm_struct
*mm
;
551 read_lock(&mm
->ioctx_list_lock
);
552 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
553 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
557 read_unlock(&mm
->ioctx_list_lock
);
564 * Makes the calling kernel thread take on the specified
566 * Called by the retry thread execute retries within the
567 * iocb issuer's mm context, so that copy_from/to_user
568 * operations work seamlessly for aio.
569 * (Note: this routine is intended to be called only
570 * from a kernel thread context)
572 static void use_mm(struct mm_struct
*mm
)
574 struct mm_struct
*active_mm
;
575 struct task_struct
*tsk
= current
;
578 tsk
->flags
|= PF_BORROWED_MM
;
579 active_mm
= tsk
->active_mm
;
580 atomic_inc(&mm
->mm_count
);
584 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
585 * it won't work. Update it accordingly if you change it here
587 activate_mm(active_mm
, mm
);
595 * Reverses the effect of use_mm, i.e. releases the
596 * specified mm context which was earlier taken on
597 * by the calling kernel thread
598 * (Note: this routine is intended to be called only
599 * from a kernel thread context)
601 * Comments: Called with ctx->ctx_lock held. This nests
602 * task_lock instead ctx_lock.
604 static void unuse_mm(struct mm_struct
*mm
)
606 struct task_struct
*tsk
= current
;
609 tsk
->flags
&= ~PF_BORROWED_MM
;
611 /* active_mm is still 'mm' */
612 enter_lazy_tlb(mm
, tsk
);
617 * Queue up a kiocb to be retried. Assumes that the kiocb
618 * has already been marked as kicked, and places it on
619 * the retry run list for the corresponding ioctx, if it
620 * isn't already queued. Returns 1 if it actually queued
621 * the kiocb (to tell the caller to activate the work
622 * queue to process it), or 0, if it found that it was
625 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
627 struct kioctx
*ctx
= iocb
->ki_ctx
;
629 assert_spin_locked(&ctx
->ctx_lock
);
631 if (list_empty(&iocb
->ki_run_list
)) {
632 list_add_tail(&iocb
->ki_run_list
,
640 * This is the core aio execution routine. It is
641 * invoked both for initial i/o submission and
642 * subsequent retries via the aio_kick_handler.
643 * Expects to be invoked with iocb->ki_ctx->lock
644 * already held. The lock is released and reaquired
645 * as needed during processing.
647 * Calls the iocb retry method (already setup for the
648 * iocb on initial submission) for operation specific
649 * handling, but takes care of most of common retry
650 * execution details for a given iocb. The retry method
651 * needs to be non-blocking as far as possible, to avoid
652 * holding up other iocbs waiting to be serviced by the
653 * retry kernel thread.
655 * The trickier parts in this code have to do with
656 * ensuring that only one retry instance is in progress
657 * for a given iocb at any time. Providing that guarantee
658 * simplifies the coding of individual aio operations as
659 * it avoids various potential races.
661 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
663 struct kioctx
*ctx
= iocb
->ki_ctx
;
664 ssize_t (*retry
)(struct kiocb
*);
667 if (iocb
->ki_retried
++ > 1024*1024) {
668 printk("Maximal retry count. Bytes done %Zd\n",
669 iocb
->ki_nbytes
- iocb
->ki_left
);
673 if (!(iocb
->ki_retried
& 0xff)) {
674 pr_debug("%ld retry: %d of %d\n", iocb
->ki_retried
,
675 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
678 if (!(retry
= iocb
->ki_retry
)) {
679 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
684 * We don't want the next retry iteration for this
685 * operation to start until this one has returned and
686 * updated the iocb state. However, wait_queue functions
687 * can trigger a kick_iocb from interrupt context in the
688 * meantime, indicating that data is available for the next
689 * iteration. We want to remember that and enable the
690 * next retry iteration _after_ we are through with
693 * So, in order to be able to register a "kick", but
694 * prevent it from being queued now, we clear the kick
695 * flag, but make the kick code *think* that the iocb is
696 * still on the run list until we are actually done.
697 * When we are done with this iteration, we check if
698 * the iocb was kicked in the meantime and if so, queue
702 kiocbClearKicked(iocb
);
705 * This is so that aio_complete knows it doesn't need to
706 * pull the iocb off the run list (We can't just call
707 * INIT_LIST_HEAD because we don't want a kick_iocb to
708 * queue this on the run list yet)
710 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
711 spin_unlock_irq(&ctx
->ctx_lock
);
713 /* Quit retrying if the i/o has been cancelled */
714 if (kiocbIsCancelled(iocb
)) {
716 aio_complete(iocb
, ret
, 0);
717 /* must not access the iocb after this */
722 * Now we are all set to call the retry method in async
723 * context. By setting this thread's io_wait context
724 * to point to the wait queue entry inside the currently
725 * running iocb for the duration of the retry, we ensure
726 * that async notification wakeups are queued by the
727 * operation instead of blocking waits, and when notified,
728 * cause the iocb to be kicked for continuation (through
729 * the aio_wake_function callback).
731 BUG_ON(current
->io_wait
!= NULL
);
732 current
->io_wait
= &iocb
->ki_wait
;
734 current
->io_wait
= NULL
;
736 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
737 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
738 aio_complete(iocb
, ret
, 0);
741 spin_lock_irq(&ctx
->ctx_lock
);
743 if (-EIOCBRETRY
== ret
) {
745 * OK, now that we are done with this iteration
746 * and know that there is more left to go,
747 * this is where we let go so that a subsequent
748 * "kick" can start the next iteration
751 /* will make __queue_kicked_iocb succeed from here on */
752 INIT_LIST_HEAD(&iocb
->ki_run_list
);
753 /* we must queue the next iteration ourselves, if it
754 * has already been kicked */
755 if (kiocbIsKicked(iocb
)) {
756 __queue_kicked_iocb(iocb
);
759 * __queue_kicked_iocb will always return 1 here, because
760 * iocb->ki_run_list is empty at this point so it should
761 * be safe to unconditionally queue the context into the
772 * Process all pending retries queued on the ioctx
774 * Assumes it is operating within the aio issuer's mm
777 static int __aio_run_iocbs(struct kioctx
*ctx
)
782 assert_spin_locked(&ctx
->ctx_lock
);
784 list_splice_init(&ctx
->run_list
, &run_list
);
785 while (!list_empty(&run_list
)) {
786 iocb
= list_entry(run_list
.next
, struct kiocb
,
788 list_del(&iocb
->ki_run_list
);
790 * Hold an extra reference while retrying i/o.
792 iocb
->ki_users
++; /* grab extra reference */
794 if (__aio_put_req(ctx
, iocb
)) /* drop extra ref */
797 if (!list_empty(&ctx
->run_list
))
802 static void aio_queue_work(struct kioctx
* ctx
)
804 unsigned long timeout
;
806 * if someone is waiting, get the work started right
807 * away, otherwise, use a longer delay
810 if (waitqueue_active(&ctx
->wait
))
814 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
820 * Process all pending retries queued on the ioctx
822 * Assumes it is operating within the aio issuer's mm
825 static inline void aio_run_iocbs(struct kioctx
*ctx
)
829 spin_lock_irq(&ctx
->ctx_lock
);
831 requeue
= __aio_run_iocbs(ctx
);
832 spin_unlock_irq(&ctx
->ctx_lock
);
838 * just like aio_run_iocbs, but keeps running them until
839 * the list stays empty
841 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
843 spin_lock_irq(&ctx
->ctx_lock
);
844 while (__aio_run_iocbs(ctx
))
846 spin_unlock_irq(&ctx
->ctx_lock
);
851 * Work queue handler triggered to process pending
852 * retries on an ioctx. Takes on the aio issuer's
853 * mm context before running the iocbs, so that
854 * copy_xxx_user operates on the issuer's address
856 * Run on aiod's context.
858 static void aio_kick_handler(void *data
)
860 struct kioctx
*ctx
= data
;
861 mm_segment_t oldfs
= get_fs();
866 spin_lock_irq(&ctx
->ctx_lock
);
867 requeue
=__aio_run_iocbs(ctx
);
869 spin_unlock_irq(&ctx
->ctx_lock
);
872 * we're in a worker thread already, don't use queue_delayed_work,
875 queue_work(aio_wq
, &ctx
->wq
);
880 * Called by kick_iocb to queue the kiocb for retry
881 * and if required activate the aio work queue to process
884 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
886 struct kioctx
*ctx
= iocb
->ki_ctx
;
890 /* We're supposed to be the only path putting the iocb back on the run
891 * list. If we find that the iocb is *back* on a wait queue already
892 * than retry has happened before we could queue the iocb. This also
893 * means that the retry could have completed and freed our iocb, no
895 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
897 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
898 /* set this inside the lock so that we can't race with aio_run_iocb()
899 * testing it and putting the iocb on the run list under the lock */
900 if (!kiocbTryKick(iocb
))
901 run
= __queue_kicked_iocb(iocb
);
902 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
909 * Called typically from a wait queue callback context
910 * (aio_wake_function) to trigger a retry of the iocb.
911 * The retry is usually executed by aio workqueue
912 * threads (See aio_kick_handler).
914 void fastcall
kick_iocb(struct kiocb
*iocb
)
916 /* sync iocbs are easy: they can only ever be executing from a
918 if (is_sync_kiocb(iocb
)) {
919 kiocbSetKicked(iocb
);
920 wake_up_process(iocb
->ki_obj
.tsk
);
924 try_queue_kicked_iocb(iocb
);
926 EXPORT_SYMBOL(kick_iocb
);
929 * Called when the io request on the given iocb is complete.
930 * Returns true if this is the last user of the request. The
931 * only other user of the request can be the cancellation code.
933 int fastcall
aio_complete(struct kiocb
*iocb
, long res
, long res2
)
935 struct kioctx
*ctx
= iocb
->ki_ctx
;
936 struct aio_ring_info
*info
;
937 struct aio_ring
*ring
;
938 struct io_event
*event
;
944 * Special case handling for sync iocbs:
945 * - events go directly into the iocb for fast handling
946 * - the sync task with the iocb in its stack holds the single iocb
947 * ref, no other paths have a way to get another ref
948 * - the sync task helpfully left a reference to itself in the iocb
950 if (is_sync_kiocb(iocb
)) {
951 BUG_ON(iocb
->ki_users
!= 1);
952 iocb
->ki_user_data
= res
;
954 wake_up_process(iocb
->ki_obj
.tsk
);
958 info
= &ctx
->ring_info
;
960 /* add a completion event to the ring buffer.
961 * must be done holding ctx->ctx_lock to prevent
962 * other code from messing with the tail
963 * pointer since we might be called from irq
966 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
968 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
969 list_del_init(&iocb
->ki_run_list
);
972 * cancelled requests don't get events, userland was given one
973 * when the event got cancelled.
975 if (kiocbIsCancelled(iocb
))
978 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
981 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
982 if (++tail
>= info
->nr
)
985 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
986 event
->data
= iocb
->ki_user_data
;
990 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
991 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
994 /* after flagging the request as done, we
995 * must never even look at it again
997 smp_wmb(); /* make event visible before updating tail */
1002 put_aio_ring_event(event
, KM_IRQ0
);
1003 kunmap_atomic(ring
, KM_IRQ1
);
1005 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
1007 pr_debug("%ld retries: %d of %d\n", iocb
->ki_retried
,
1008 iocb
->ki_nbytes
- iocb
->ki_left
, iocb
->ki_nbytes
);
1010 /* everything turned out well, dispose of the aiocb. */
1011 ret
= __aio_put_req(ctx
, iocb
);
1013 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1015 if (waitqueue_active(&ctx
->wait
))
1016 wake_up(&ctx
->wait
);
1025 * Pull an event off of the ioctx's event ring. Returns the number of
1026 * events fetched (0 or 1 ;-)
1027 * FIXME: make this use cmpxchg.
1028 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1030 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1032 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1033 struct aio_ring
*ring
;
1037 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1038 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1039 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1040 (unsigned long)ring
->nr
);
1042 if (ring
->head
== ring
->tail
)
1045 spin_lock(&info
->ring_lock
);
1047 head
= ring
->head
% info
->nr
;
1048 if (head
!= ring
->tail
) {
1049 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1051 head
= (head
+ 1) % info
->nr
;
1052 smp_mb(); /* finish reading the event before updatng the head */
1055 put_aio_ring_event(evp
, KM_USER1
);
1057 spin_unlock(&info
->ring_lock
);
1060 kunmap_atomic(ring
, KM_USER0
);
1061 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1062 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1066 struct aio_timeout
{
1067 struct timer_list timer
;
1069 struct task_struct
*p
;
1072 static void timeout_func(unsigned long data
)
1074 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1077 wake_up_process(to
->p
);
1080 static inline void init_timeout(struct aio_timeout
*to
)
1082 init_timer(&to
->timer
);
1083 to
->timer
.data
= (unsigned long)to
;
1084 to
->timer
.function
= timeout_func
;
1089 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1090 const struct timespec
*ts
)
1092 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1093 if (time_after(to
->timer
.expires
, jiffies
))
1094 add_timer(&to
->timer
);
1099 static inline void clear_timeout(struct aio_timeout
*to
)
1101 del_singleshot_timer_sync(&to
->timer
);
1104 static int read_events(struct kioctx
*ctx
,
1105 long min_nr
, long nr
,
1106 struct io_event __user
*event
,
1107 struct timespec __user
*timeout
)
1109 long start_jiffies
= jiffies
;
1110 struct task_struct
*tsk
= current
;
1111 DECLARE_WAITQUEUE(wait
, tsk
);
1114 struct io_event ent
;
1115 struct aio_timeout to
;
1118 /* needed to zero any padding within an entry (there shouldn't be
1119 * any, but C is fun!
1121 memset(&ent
, 0, sizeof(ent
));
1124 while (likely(i
< nr
)) {
1125 ret
= aio_read_evt(ctx
, &ent
);
1126 if (unlikely(ret
<= 0))
1129 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1130 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1132 /* Could we split the check in two? */
1134 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1135 dprintk("aio: lost an event due to EFAULT.\n");
1140 /* Good, event copied to userland, update counts. */
1152 /* racey check, but it gets redone */
1153 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1155 aio_run_all_iocbs(ctx
);
1163 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1166 set_timeout(start_jiffies
, &to
, &ts
);
1169 while (likely(i
< nr
)) {
1170 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1172 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1173 ret
= aio_read_evt(ctx
, &ent
);
1179 if (to
.timed_out
) /* Only check after read evt */
1182 if (signal_pending(tsk
)) {
1186 /*ret = aio_read_evt(ctx, &ent);*/
1189 set_task_state(tsk
, TASK_RUNNING
);
1190 remove_wait_queue(&ctx
->wait
, &wait
);
1192 if (unlikely(ret
<= 0))
1196 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1197 dprintk("aio: lost an event due to EFAULT.\n");
1201 /* Good, event copied to userland, update counts. */
1212 /* Take an ioctx and remove it from the list of ioctx's. Protects
1213 * against races with itself via ->dead.
1215 static void io_destroy(struct kioctx
*ioctx
)
1217 struct mm_struct
*mm
= current
->mm
;
1218 struct kioctx
**tmp
;
1221 /* delete the entry from the list is someone else hasn't already */
1222 write_lock(&mm
->ioctx_list_lock
);
1223 was_dead
= ioctx
->dead
;
1225 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1226 tmp
= &(*tmp
)->next
)
1230 write_unlock(&mm
->ioctx_list_lock
);
1232 dprintk("aio_release(%p)\n", ioctx
);
1233 if (likely(!was_dead
))
1234 put_ioctx(ioctx
); /* twice for the list */
1236 aio_cancel_all(ioctx
);
1237 wait_for_all_aios(ioctx
);
1238 put_ioctx(ioctx
); /* once for the lookup */
1242 * Create an aio_context capable of receiving at least nr_events.
1243 * ctxp must not point to an aio_context that already exists, and
1244 * must be initialized to 0 prior to the call. On successful
1245 * creation of the aio_context, *ctxp is filled in with the resulting
1246 * handle. May fail with -EINVAL if *ctxp is not initialized,
1247 * if the specified nr_events exceeds internal limits. May fail
1248 * with -EAGAIN if the specified nr_events exceeds the user's limit
1249 * of available events. May fail with -ENOMEM if insufficient kernel
1250 * resources are available. May fail with -EFAULT if an invalid
1251 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1254 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t __user
*ctxp
)
1256 struct kioctx
*ioctx
= NULL
;
1260 ret
= get_user(ctx
, ctxp
);
1265 if (unlikely(ctx
|| nr_events
== 0)) {
1266 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1271 ioctx
= ioctx_alloc(nr_events
);
1272 ret
= PTR_ERR(ioctx
);
1273 if (!IS_ERR(ioctx
)) {
1274 ret
= put_user(ioctx
->user_id
, ctxp
);
1278 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1287 * Destroy the aio_context specified. May cancel any outstanding
1288 * AIOs and block on completion. Will fail with -ENOSYS if not
1289 * implemented. May fail with -EFAULT if the context pointed to
1292 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
1294 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1295 if (likely(NULL
!= ioctx
)) {
1299 pr_debug("EINVAL: io_destroy: invalid context id\n");
1304 * aio_p{read,write} are the default ki_retry methods for
1305 * IO_CMD_P{READ,WRITE}. They maintains kiocb retry state around potentially
1306 * multiple calls to f_op->aio_read(). They loop around partial progress
1307 * instead of returning -EIOCBRETRY because they don't have the means to call
1310 static ssize_t
aio_pread(struct kiocb
*iocb
)
1312 struct file
*file
= iocb
->ki_filp
;
1313 struct address_space
*mapping
= file
->f_mapping
;
1314 struct inode
*inode
= mapping
->host
;
1318 ret
= file
->f_op
->aio_read(iocb
, iocb
->ki_buf
,
1319 iocb
->ki_left
, iocb
->ki_pos
);
1321 * Can't just depend on iocb->ki_left to determine
1322 * whether we are done. This may have been a short read.
1325 iocb
->ki_buf
+= ret
;
1326 iocb
->ki_left
-= ret
;
1330 * For pipes and sockets we return once we have some data; for
1331 * regular files we retry till we complete the entire read or
1332 * find that we can't read any more data (e.g short reads).
1334 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1335 !S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
));
1337 /* This means we must have transferred all that we could */
1338 /* No need to retry anymore */
1339 if ((ret
== 0) || (iocb
->ki_left
== 0))
1340 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1345 /* see aio_pread() */
1346 static ssize_t
aio_pwrite(struct kiocb
*iocb
)
1348 struct file
*file
= iocb
->ki_filp
;
1352 ret
= file
->f_op
->aio_write(iocb
, iocb
->ki_buf
,
1353 iocb
->ki_left
, iocb
->ki_pos
);
1355 iocb
->ki_buf
+= ret
;
1356 iocb
->ki_left
-= ret
;
1358 } while (ret
> 0 && iocb
->ki_left
> 0);
1360 if ((ret
== 0) || (iocb
->ki_left
== 0))
1361 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1366 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1368 struct file
*file
= iocb
->ki_filp
;
1369 ssize_t ret
= -EINVAL
;
1371 if (file
->f_op
->aio_fsync
)
1372 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1376 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1378 struct file
*file
= iocb
->ki_filp
;
1379 ssize_t ret
= -EINVAL
;
1381 if (file
->f_op
->aio_fsync
)
1382 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1388 * Performs the initial checks and aio retry method
1389 * setup for the kiocb at the time of io submission.
1391 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1393 struct file
*file
= kiocb
->ki_filp
;
1396 switch (kiocb
->ki_opcode
) {
1397 case IOCB_CMD_PREAD
:
1399 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1402 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1405 ret
= security_file_permission(file
, MAY_READ
);
1409 if (file
->f_op
->aio_read
)
1410 kiocb
->ki_retry
= aio_pread
;
1412 case IOCB_CMD_PWRITE
:
1414 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1417 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1420 ret
= security_file_permission(file
, MAY_WRITE
);
1424 if (file
->f_op
->aio_write
)
1425 kiocb
->ki_retry
= aio_pwrite
;
1427 case IOCB_CMD_FDSYNC
:
1429 if (file
->f_op
->aio_fsync
)
1430 kiocb
->ki_retry
= aio_fdsync
;
1432 case IOCB_CMD_FSYNC
:
1434 if (file
->f_op
->aio_fsync
)
1435 kiocb
->ki_retry
= aio_fsync
;
1438 dprintk("EINVAL: io_submit: no operation provided\n");
1442 if (!kiocb
->ki_retry
)
1449 * aio_wake_function:
1450 * wait queue callback function for aio notification,
1451 * Simply triggers a retry of the operation via kick_iocb.
1453 * This callback is specified in the wait queue entry in
1454 * a kiocb (current->io_wait points to this wait queue
1455 * entry when an aio operation executes; it is used
1456 * instead of a synchronous wait when an i/o blocking
1457 * condition is encountered during aio).
1460 * This routine is executed with the wait queue lock held.
1461 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1462 * the ioctx lock inside the wait queue lock. This is safe
1463 * because this callback isn't used for wait queues which
1464 * are nested inside ioctx lock (i.e. ctx->wait)
1466 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1467 int sync
, void *key
)
1469 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1471 list_del_init(&wait
->task_list
);
1476 int fastcall
io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1483 /* enforce forwards compatibility on users */
1484 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
||
1485 iocb
->aio_reserved3
)) {
1486 pr_debug("EINVAL: io_submit: reserve field set\n");
1490 /* prevent overflows */
1492 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1493 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1494 ((ssize_t
)iocb
->aio_nbytes
< 0)
1496 pr_debug("EINVAL: io_submit: overflow check\n");
1500 file
= fget(iocb
->aio_fildes
);
1501 if (unlikely(!file
))
1504 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1505 if (unlikely(!req
)) {
1510 req
->ki_filp
= file
;
1511 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1512 if (unlikely(ret
)) {
1513 dprintk("EFAULT: aio_key\n");
1517 req
->ki_obj
.user
= user_iocb
;
1518 req
->ki_user_data
= iocb
->aio_data
;
1519 req
->ki_pos
= iocb
->aio_offset
;
1521 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1522 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1523 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1524 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1525 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1526 req
->ki_retried
= 0;
1528 ret
= aio_setup_iocb(req
);
1533 spin_lock_irq(&ctx
->ctx_lock
);
1535 if (!list_empty(&ctx
->run_list
)) {
1536 /* drain the run list */
1537 while (__aio_run_iocbs(ctx
))
1540 spin_unlock_irq(&ctx
->ctx_lock
);
1541 aio_put_req(req
); /* drop extra ref to req */
1545 aio_put_req(req
); /* drop extra ref to req */
1546 aio_put_req(req
); /* drop i/o ref to req */
1551 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1552 * the number of iocbs queued. May return -EINVAL if the aio_context
1553 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1554 * *iocbpp[0] is not properly initialized, if the operation specified
1555 * is invalid for the file descriptor in the iocb. May fail with
1556 * -EFAULT if any of the data structures point to invalid data. May
1557 * fail with -EBADF if the file descriptor specified in the first
1558 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1559 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1560 * fail with -ENOSYS if not implemented.
1562 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1563 struct iocb __user
* __user
*iocbpp
)
1569 if (unlikely(nr
< 0))
1572 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1575 ctx
= lookup_ioctx(ctx_id
);
1576 if (unlikely(!ctx
)) {
1577 pr_debug("EINVAL: io_submit: invalid context id\n");
1582 * AKPM: should this return a partial result if some of the IOs were
1583 * successfully submitted?
1585 for (i
=0; i
<nr
; i
++) {
1586 struct iocb __user
*user_iocb
;
1589 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1594 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1599 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1609 * Finds a given iocb for cancellation.
1611 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1614 struct list_head
*pos
;
1616 assert_spin_locked(&ctx
->ctx_lock
);
1618 /* TODO: use a hash or array, this sucks. */
1619 list_for_each(pos
, &ctx
->active_reqs
) {
1620 struct kiocb
*kiocb
= list_kiocb(pos
);
1621 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1628 * Attempts to cancel an iocb previously passed to io_submit. If
1629 * the operation is successfully cancelled, the resulting event is
1630 * copied into the memory pointed to by result without being placed
1631 * into the completion queue and 0 is returned. May fail with
1632 * -EFAULT if any of the data structures pointed to are invalid.
1633 * May fail with -EINVAL if aio_context specified by ctx_id is
1634 * invalid. May fail with -EAGAIN if the iocb specified was not
1635 * cancelled. Will fail with -ENOSYS if not implemented.
1637 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb __user
*iocb
,
1638 struct io_event __user
*result
)
1640 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1642 struct kiocb
*kiocb
;
1646 ret
= get_user(key
, &iocb
->aio_key
);
1650 ctx
= lookup_ioctx(ctx_id
);
1654 spin_lock_irq(&ctx
->ctx_lock
);
1656 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1657 if (kiocb
&& kiocb
->ki_cancel
) {
1658 cancel
= kiocb
->ki_cancel
;
1660 kiocbSetCancelled(kiocb
);
1663 spin_unlock_irq(&ctx
->ctx_lock
);
1665 if (NULL
!= cancel
) {
1666 struct io_event tmp
;
1667 pr_debug("calling cancel\n");
1668 memset(&tmp
, 0, sizeof(tmp
));
1669 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1670 tmp
.data
= kiocb
->ki_user_data
;
1671 ret
= cancel(kiocb
, &tmp
);
1673 /* Cancellation succeeded -- copy the result
1674 * into the user's buffer.
1676 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1688 * Attempts to read at least min_nr events and up to nr events from
1689 * the completion queue for the aio_context specified by ctx_id. May
1690 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1691 * if nr is out of range, if when is out of range. May fail with
1692 * -EFAULT if any of the memory specified to is invalid. May return
1693 * 0 or < min_nr if no events are available and the timeout specified
1694 * by when has elapsed, where when == NULL specifies an infinite
1695 * timeout. Note that the timeout pointed to by when is relative and
1696 * will be updated if not NULL and the operation blocks. Will fail
1697 * with -ENOSYS if not implemented.
1699 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1702 struct io_event __user
*events
,
1703 struct timespec __user
*timeout
)
1705 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1708 if (likely(ioctx
)) {
1709 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1710 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1717 __initcall(aio_setup
);
1719 EXPORT_SYMBOL(aio_complete
);
1720 EXPORT_SYMBOL(aio_put_req
);
1721 EXPORT_SYMBOL(wait_on_sync_kiocb
);