btrfs: cleanup duplicate bio allocating functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / rdma / ib_verbs.h
blob857b3b9cf120a4bcac7a19607f8b26ce14f23cae
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
51 #include <asm/atomic.h>
52 #include <asm/uaccess.h>
54 union ib_gid {
55 u8 raw[16];
56 struct {
57 __be64 subnet_prefix;
58 __be64 interface_id;
59 } global;
62 enum rdma_node_type {
63 /* IB values map to NodeInfo:NodeType. */
64 RDMA_NODE_IB_CA = 1,
65 RDMA_NODE_IB_SWITCH,
66 RDMA_NODE_IB_ROUTER,
67 RDMA_NODE_RNIC
70 enum rdma_transport_type {
71 RDMA_TRANSPORT_IB,
72 RDMA_TRANSPORT_IWARP
75 enum rdma_transport_type
76 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
78 enum ib_device_cap_flags {
79 IB_DEVICE_RESIZE_MAX_WR = 1,
80 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
81 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
82 IB_DEVICE_RAW_MULTI = (1<<3),
83 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
84 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
85 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
86 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
87 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
88 IB_DEVICE_INIT_TYPE = (1<<9),
89 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
90 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
91 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
92 IB_DEVICE_SRQ_RESIZE = (1<<13),
93 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
94 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
95 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
96 IB_DEVICE_MEM_WINDOW = (1<<17),
98 * Devices should set IB_DEVICE_UD_IP_SUM if they support
99 * insertion of UDP and TCP checksum on outgoing UD IPoIB
100 * messages and can verify the validity of checksum for
101 * incoming messages. Setting this flag implies that the
102 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
104 IB_DEVICE_UD_IP_CSUM = (1<<18),
105 IB_DEVICE_UD_TSO = (1<<19),
106 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
107 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
110 enum ib_atomic_cap {
111 IB_ATOMIC_NONE,
112 IB_ATOMIC_HCA,
113 IB_ATOMIC_GLOB
116 struct ib_device_attr {
117 u64 fw_ver;
118 __be64 sys_image_guid;
119 u64 max_mr_size;
120 u64 page_size_cap;
121 u32 vendor_id;
122 u32 vendor_part_id;
123 u32 hw_ver;
124 int max_qp;
125 int max_qp_wr;
126 int device_cap_flags;
127 int max_sge;
128 int max_sge_rd;
129 int max_cq;
130 int max_cqe;
131 int max_mr;
132 int max_pd;
133 int max_qp_rd_atom;
134 int max_ee_rd_atom;
135 int max_res_rd_atom;
136 int max_qp_init_rd_atom;
137 int max_ee_init_rd_atom;
138 enum ib_atomic_cap atomic_cap;
139 enum ib_atomic_cap masked_atomic_cap;
140 int max_ee;
141 int max_rdd;
142 int max_mw;
143 int max_raw_ipv6_qp;
144 int max_raw_ethy_qp;
145 int max_mcast_grp;
146 int max_mcast_qp_attach;
147 int max_total_mcast_qp_attach;
148 int max_ah;
149 int max_fmr;
150 int max_map_per_fmr;
151 int max_srq;
152 int max_srq_wr;
153 int max_srq_sge;
154 unsigned int max_fast_reg_page_list_len;
155 u16 max_pkeys;
156 u8 local_ca_ack_delay;
159 enum ib_mtu {
160 IB_MTU_256 = 1,
161 IB_MTU_512 = 2,
162 IB_MTU_1024 = 3,
163 IB_MTU_2048 = 4,
164 IB_MTU_4096 = 5
167 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
169 switch (mtu) {
170 case IB_MTU_256: return 256;
171 case IB_MTU_512: return 512;
172 case IB_MTU_1024: return 1024;
173 case IB_MTU_2048: return 2048;
174 case IB_MTU_4096: return 4096;
175 default: return -1;
179 enum ib_port_state {
180 IB_PORT_NOP = 0,
181 IB_PORT_DOWN = 1,
182 IB_PORT_INIT = 2,
183 IB_PORT_ARMED = 3,
184 IB_PORT_ACTIVE = 4,
185 IB_PORT_ACTIVE_DEFER = 5
188 enum ib_port_cap_flags {
189 IB_PORT_SM = 1 << 1,
190 IB_PORT_NOTICE_SUP = 1 << 2,
191 IB_PORT_TRAP_SUP = 1 << 3,
192 IB_PORT_OPT_IPD_SUP = 1 << 4,
193 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
194 IB_PORT_SL_MAP_SUP = 1 << 6,
195 IB_PORT_MKEY_NVRAM = 1 << 7,
196 IB_PORT_PKEY_NVRAM = 1 << 8,
197 IB_PORT_LED_INFO_SUP = 1 << 9,
198 IB_PORT_SM_DISABLED = 1 << 10,
199 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
200 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
201 IB_PORT_CM_SUP = 1 << 16,
202 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
203 IB_PORT_REINIT_SUP = 1 << 18,
204 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
205 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
206 IB_PORT_DR_NOTICE_SUP = 1 << 21,
207 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
208 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
209 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
210 IB_PORT_CLIENT_REG_SUP = 1 << 25
213 enum ib_port_width {
214 IB_WIDTH_1X = 1,
215 IB_WIDTH_4X = 2,
216 IB_WIDTH_8X = 4,
217 IB_WIDTH_12X = 8
220 static inline int ib_width_enum_to_int(enum ib_port_width width)
222 switch (width) {
223 case IB_WIDTH_1X: return 1;
224 case IB_WIDTH_4X: return 4;
225 case IB_WIDTH_8X: return 8;
226 case IB_WIDTH_12X: return 12;
227 default: return -1;
231 struct ib_protocol_stats {
232 /* TBD... */
235 struct iw_protocol_stats {
236 u64 ipInReceives;
237 u64 ipInHdrErrors;
238 u64 ipInTooBigErrors;
239 u64 ipInNoRoutes;
240 u64 ipInAddrErrors;
241 u64 ipInUnknownProtos;
242 u64 ipInTruncatedPkts;
243 u64 ipInDiscards;
244 u64 ipInDelivers;
245 u64 ipOutForwDatagrams;
246 u64 ipOutRequests;
247 u64 ipOutDiscards;
248 u64 ipOutNoRoutes;
249 u64 ipReasmTimeout;
250 u64 ipReasmReqds;
251 u64 ipReasmOKs;
252 u64 ipReasmFails;
253 u64 ipFragOKs;
254 u64 ipFragFails;
255 u64 ipFragCreates;
256 u64 ipInMcastPkts;
257 u64 ipOutMcastPkts;
258 u64 ipInBcastPkts;
259 u64 ipOutBcastPkts;
261 u64 tcpRtoAlgorithm;
262 u64 tcpRtoMin;
263 u64 tcpRtoMax;
264 u64 tcpMaxConn;
265 u64 tcpActiveOpens;
266 u64 tcpPassiveOpens;
267 u64 tcpAttemptFails;
268 u64 tcpEstabResets;
269 u64 tcpCurrEstab;
270 u64 tcpInSegs;
271 u64 tcpOutSegs;
272 u64 tcpRetransSegs;
273 u64 tcpInErrs;
274 u64 tcpOutRsts;
277 union rdma_protocol_stats {
278 struct ib_protocol_stats ib;
279 struct iw_protocol_stats iw;
282 struct ib_port_attr {
283 enum ib_port_state state;
284 enum ib_mtu max_mtu;
285 enum ib_mtu active_mtu;
286 int gid_tbl_len;
287 u32 port_cap_flags;
288 u32 max_msg_sz;
289 u32 bad_pkey_cntr;
290 u32 qkey_viol_cntr;
291 u16 pkey_tbl_len;
292 u16 lid;
293 u16 sm_lid;
294 u8 lmc;
295 u8 max_vl_num;
296 u8 sm_sl;
297 u8 subnet_timeout;
298 u8 init_type_reply;
299 u8 active_width;
300 u8 active_speed;
301 u8 phys_state;
304 enum ib_device_modify_flags {
305 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
306 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
309 struct ib_device_modify {
310 u64 sys_image_guid;
311 char node_desc[64];
314 enum ib_port_modify_flags {
315 IB_PORT_SHUTDOWN = 1,
316 IB_PORT_INIT_TYPE = (1<<2),
317 IB_PORT_RESET_QKEY_CNTR = (1<<3)
320 struct ib_port_modify {
321 u32 set_port_cap_mask;
322 u32 clr_port_cap_mask;
323 u8 init_type;
326 enum ib_event_type {
327 IB_EVENT_CQ_ERR,
328 IB_EVENT_QP_FATAL,
329 IB_EVENT_QP_REQ_ERR,
330 IB_EVENT_QP_ACCESS_ERR,
331 IB_EVENT_COMM_EST,
332 IB_EVENT_SQ_DRAINED,
333 IB_EVENT_PATH_MIG,
334 IB_EVENT_PATH_MIG_ERR,
335 IB_EVENT_DEVICE_FATAL,
336 IB_EVENT_PORT_ACTIVE,
337 IB_EVENT_PORT_ERR,
338 IB_EVENT_LID_CHANGE,
339 IB_EVENT_PKEY_CHANGE,
340 IB_EVENT_SM_CHANGE,
341 IB_EVENT_SRQ_ERR,
342 IB_EVENT_SRQ_LIMIT_REACHED,
343 IB_EVENT_QP_LAST_WQE_REACHED,
344 IB_EVENT_CLIENT_REREGISTER
347 struct ib_event {
348 struct ib_device *device;
349 union {
350 struct ib_cq *cq;
351 struct ib_qp *qp;
352 struct ib_srq *srq;
353 u8 port_num;
354 } element;
355 enum ib_event_type event;
358 struct ib_event_handler {
359 struct ib_device *device;
360 void (*handler)(struct ib_event_handler *, struct ib_event *);
361 struct list_head list;
364 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
365 do { \
366 (_ptr)->device = _device; \
367 (_ptr)->handler = _handler; \
368 INIT_LIST_HEAD(&(_ptr)->list); \
369 } while (0)
371 struct ib_global_route {
372 union ib_gid dgid;
373 u32 flow_label;
374 u8 sgid_index;
375 u8 hop_limit;
376 u8 traffic_class;
379 struct ib_grh {
380 __be32 version_tclass_flow;
381 __be16 paylen;
382 u8 next_hdr;
383 u8 hop_limit;
384 union ib_gid sgid;
385 union ib_gid dgid;
388 enum {
389 IB_MULTICAST_QPN = 0xffffff
392 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
394 enum ib_ah_flags {
395 IB_AH_GRH = 1
398 enum ib_rate {
399 IB_RATE_PORT_CURRENT = 0,
400 IB_RATE_2_5_GBPS = 2,
401 IB_RATE_5_GBPS = 5,
402 IB_RATE_10_GBPS = 3,
403 IB_RATE_20_GBPS = 6,
404 IB_RATE_30_GBPS = 4,
405 IB_RATE_40_GBPS = 7,
406 IB_RATE_60_GBPS = 8,
407 IB_RATE_80_GBPS = 9,
408 IB_RATE_120_GBPS = 10
412 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
413 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
414 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
415 * @rate: rate to convert.
417 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
420 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
421 * enum.
422 * @mult: multiple to convert.
424 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
426 struct ib_ah_attr {
427 struct ib_global_route grh;
428 u16 dlid;
429 u8 sl;
430 u8 src_path_bits;
431 u8 static_rate;
432 u8 ah_flags;
433 u8 port_num;
436 enum ib_wc_status {
437 IB_WC_SUCCESS,
438 IB_WC_LOC_LEN_ERR,
439 IB_WC_LOC_QP_OP_ERR,
440 IB_WC_LOC_EEC_OP_ERR,
441 IB_WC_LOC_PROT_ERR,
442 IB_WC_WR_FLUSH_ERR,
443 IB_WC_MW_BIND_ERR,
444 IB_WC_BAD_RESP_ERR,
445 IB_WC_LOC_ACCESS_ERR,
446 IB_WC_REM_INV_REQ_ERR,
447 IB_WC_REM_ACCESS_ERR,
448 IB_WC_REM_OP_ERR,
449 IB_WC_RETRY_EXC_ERR,
450 IB_WC_RNR_RETRY_EXC_ERR,
451 IB_WC_LOC_RDD_VIOL_ERR,
452 IB_WC_REM_INV_RD_REQ_ERR,
453 IB_WC_REM_ABORT_ERR,
454 IB_WC_INV_EECN_ERR,
455 IB_WC_INV_EEC_STATE_ERR,
456 IB_WC_FATAL_ERR,
457 IB_WC_RESP_TIMEOUT_ERR,
458 IB_WC_GENERAL_ERR
461 enum ib_wc_opcode {
462 IB_WC_SEND,
463 IB_WC_RDMA_WRITE,
464 IB_WC_RDMA_READ,
465 IB_WC_COMP_SWAP,
466 IB_WC_FETCH_ADD,
467 IB_WC_BIND_MW,
468 IB_WC_LSO,
469 IB_WC_LOCAL_INV,
470 IB_WC_FAST_REG_MR,
471 IB_WC_MASKED_COMP_SWAP,
472 IB_WC_MASKED_FETCH_ADD,
474 * Set value of IB_WC_RECV so consumers can test if a completion is a
475 * receive by testing (opcode & IB_WC_RECV).
477 IB_WC_RECV = 1 << 7,
478 IB_WC_RECV_RDMA_WITH_IMM
481 enum ib_wc_flags {
482 IB_WC_GRH = 1,
483 IB_WC_WITH_IMM = (1<<1),
484 IB_WC_WITH_INVALIDATE = (1<<2),
487 struct ib_wc {
488 u64 wr_id;
489 enum ib_wc_status status;
490 enum ib_wc_opcode opcode;
491 u32 vendor_err;
492 u32 byte_len;
493 struct ib_qp *qp;
494 union {
495 __be32 imm_data;
496 u32 invalidate_rkey;
497 } ex;
498 u32 src_qp;
499 int wc_flags;
500 u16 pkey_index;
501 u16 slid;
502 u8 sl;
503 u8 dlid_path_bits;
504 u8 port_num; /* valid only for DR SMPs on switches */
505 int csum_ok;
508 enum ib_cq_notify_flags {
509 IB_CQ_SOLICITED = 1 << 0,
510 IB_CQ_NEXT_COMP = 1 << 1,
511 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
512 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
515 enum ib_srq_attr_mask {
516 IB_SRQ_MAX_WR = 1 << 0,
517 IB_SRQ_LIMIT = 1 << 1,
520 struct ib_srq_attr {
521 u32 max_wr;
522 u32 max_sge;
523 u32 srq_limit;
526 struct ib_srq_init_attr {
527 void (*event_handler)(struct ib_event *, void *);
528 void *srq_context;
529 struct ib_srq_attr attr;
532 struct ib_qp_cap {
533 u32 max_send_wr;
534 u32 max_recv_wr;
535 u32 max_send_sge;
536 u32 max_recv_sge;
537 u32 max_inline_data;
540 enum ib_sig_type {
541 IB_SIGNAL_ALL_WR,
542 IB_SIGNAL_REQ_WR
545 enum ib_qp_type {
547 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
548 * here (and in that order) since the MAD layer uses them as
549 * indices into a 2-entry table.
551 IB_QPT_SMI,
552 IB_QPT_GSI,
554 IB_QPT_RC,
555 IB_QPT_UC,
556 IB_QPT_UD,
557 IB_QPT_RAW_IPV6,
558 IB_QPT_RAW_ETHERTYPE
561 enum ib_qp_create_flags {
562 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
563 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
566 struct ib_qp_init_attr {
567 void (*event_handler)(struct ib_event *, void *);
568 void *qp_context;
569 struct ib_cq *send_cq;
570 struct ib_cq *recv_cq;
571 struct ib_srq *srq;
572 struct ib_qp_cap cap;
573 enum ib_sig_type sq_sig_type;
574 enum ib_qp_type qp_type;
575 enum ib_qp_create_flags create_flags;
576 u8 port_num; /* special QP types only */
579 enum ib_rnr_timeout {
580 IB_RNR_TIMER_655_36 = 0,
581 IB_RNR_TIMER_000_01 = 1,
582 IB_RNR_TIMER_000_02 = 2,
583 IB_RNR_TIMER_000_03 = 3,
584 IB_RNR_TIMER_000_04 = 4,
585 IB_RNR_TIMER_000_06 = 5,
586 IB_RNR_TIMER_000_08 = 6,
587 IB_RNR_TIMER_000_12 = 7,
588 IB_RNR_TIMER_000_16 = 8,
589 IB_RNR_TIMER_000_24 = 9,
590 IB_RNR_TIMER_000_32 = 10,
591 IB_RNR_TIMER_000_48 = 11,
592 IB_RNR_TIMER_000_64 = 12,
593 IB_RNR_TIMER_000_96 = 13,
594 IB_RNR_TIMER_001_28 = 14,
595 IB_RNR_TIMER_001_92 = 15,
596 IB_RNR_TIMER_002_56 = 16,
597 IB_RNR_TIMER_003_84 = 17,
598 IB_RNR_TIMER_005_12 = 18,
599 IB_RNR_TIMER_007_68 = 19,
600 IB_RNR_TIMER_010_24 = 20,
601 IB_RNR_TIMER_015_36 = 21,
602 IB_RNR_TIMER_020_48 = 22,
603 IB_RNR_TIMER_030_72 = 23,
604 IB_RNR_TIMER_040_96 = 24,
605 IB_RNR_TIMER_061_44 = 25,
606 IB_RNR_TIMER_081_92 = 26,
607 IB_RNR_TIMER_122_88 = 27,
608 IB_RNR_TIMER_163_84 = 28,
609 IB_RNR_TIMER_245_76 = 29,
610 IB_RNR_TIMER_327_68 = 30,
611 IB_RNR_TIMER_491_52 = 31
614 enum ib_qp_attr_mask {
615 IB_QP_STATE = 1,
616 IB_QP_CUR_STATE = (1<<1),
617 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
618 IB_QP_ACCESS_FLAGS = (1<<3),
619 IB_QP_PKEY_INDEX = (1<<4),
620 IB_QP_PORT = (1<<5),
621 IB_QP_QKEY = (1<<6),
622 IB_QP_AV = (1<<7),
623 IB_QP_PATH_MTU = (1<<8),
624 IB_QP_TIMEOUT = (1<<9),
625 IB_QP_RETRY_CNT = (1<<10),
626 IB_QP_RNR_RETRY = (1<<11),
627 IB_QP_RQ_PSN = (1<<12),
628 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
629 IB_QP_ALT_PATH = (1<<14),
630 IB_QP_MIN_RNR_TIMER = (1<<15),
631 IB_QP_SQ_PSN = (1<<16),
632 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
633 IB_QP_PATH_MIG_STATE = (1<<18),
634 IB_QP_CAP = (1<<19),
635 IB_QP_DEST_QPN = (1<<20)
638 enum ib_qp_state {
639 IB_QPS_RESET,
640 IB_QPS_INIT,
641 IB_QPS_RTR,
642 IB_QPS_RTS,
643 IB_QPS_SQD,
644 IB_QPS_SQE,
645 IB_QPS_ERR
648 enum ib_mig_state {
649 IB_MIG_MIGRATED,
650 IB_MIG_REARM,
651 IB_MIG_ARMED
654 struct ib_qp_attr {
655 enum ib_qp_state qp_state;
656 enum ib_qp_state cur_qp_state;
657 enum ib_mtu path_mtu;
658 enum ib_mig_state path_mig_state;
659 u32 qkey;
660 u32 rq_psn;
661 u32 sq_psn;
662 u32 dest_qp_num;
663 int qp_access_flags;
664 struct ib_qp_cap cap;
665 struct ib_ah_attr ah_attr;
666 struct ib_ah_attr alt_ah_attr;
667 u16 pkey_index;
668 u16 alt_pkey_index;
669 u8 en_sqd_async_notify;
670 u8 sq_draining;
671 u8 max_rd_atomic;
672 u8 max_dest_rd_atomic;
673 u8 min_rnr_timer;
674 u8 port_num;
675 u8 timeout;
676 u8 retry_cnt;
677 u8 rnr_retry;
678 u8 alt_port_num;
679 u8 alt_timeout;
682 enum ib_wr_opcode {
683 IB_WR_RDMA_WRITE,
684 IB_WR_RDMA_WRITE_WITH_IMM,
685 IB_WR_SEND,
686 IB_WR_SEND_WITH_IMM,
687 IB_WR_RDMA_READ,
688 IB_WR_ATOMIC_CMP_AND_SWP,
689 IB_WR_ATOMIC_FETCH_AND_ADD,
690 IB_WR_LSO,
691 IB_WR_SEND_WITH_INV,
692 IB_WR_RDMA_READ_WITH_INV,
693 IB_WR_LOCAL_INV,
694 IB_WR_FAST_REG_MR,
695 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
696 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
699 enum ib_send_flags {
700 IB_SEND_FENCE = 1,
701 IB_SEND_SIGNALED = (1<<1),
702 IB_SEND_SOLICITED = (1<<2),
703 IB_SEND_INLINE = (1<<3),
704 IB_SEND_IP_CSUM = (1<<4)
707 struct ib_sge {
708 u64 addr;
709 u32 length;
710 u32 lkey;
713 struct ib_fast_reg_page_list {
714 struct ib_device *device;
715 u64 *page_list;
716 unsigned int max_page_list_len;
719 struct ib_send_wr {
720 struct ib_send_wr *next;
721 u64 wr_id;
722 struct ib_sge *sg_list;
723 int num_sge;
724 enum ib_wr_opcode opcode;
725 int send_flags;
726 union {
727 __be32 imm_data;
728 u32 invalidate_rkey;
729 } ex;
730 union {
731 struct {
732 u64 remote_addr;
733 u32 rkey;
734 } rdma;
735 struct {
736 u64 remote_addr;
737 u64 compare_add;
738 u64 swap;
739 u64 compare_add_mask;
740 u64 swap_mask;
741 u32 rkey;
742 } atomic;
743 struct {
744 struct ib_ah *ah;
745 void *header;
746 int hlen;
747 int mss;
748 u32 remote_qpn;
749 u32 remote_qkey;
750 u16 pkey_index; /* valid for GSI only */
751 u8 port_num; /* valid for DR SMPs on switch only */
752 } ud;
753 struct {
754 u64 iova_start;
755 struct ib_fast_reg_page_list *page_list;
756 unsigned int page_shift;
757 unsigned int page_list_len;
758 u32 length;
759 int access_flags;
760 u32 rkey;
761 } fast_reg;
762 } wr;
765 struct ib_recv_wr {
766 struct ib_recv_wr *next;
767 u64 wr_id;
768 struct ib_sge *sg_list;
769 int num_sge;
772 enum ib_access_flags {
773 IB_ACCESS_LOCAL_WRITE = 1,
774 IB_ACCESS_REMOTE_WRITE = (1<<1),
775 IB_ACCESS_REMOTE_READ = (1<<2),
776 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
777 IB_ACCESS_MW_BIND = (1<<4)
780 struct ib_phys_buf {
781 u64 addr;
782 u64 size;
785 struct ib_mr_attr {
786 struct ib_pd *pd;
787 u64 device_virt_addr;
788 u64 size;
789 int mr_access_flags;
790 u32 lkey;
791 u32 rkey;
794 enum ib_mr_rereg_flags {
795 IB_MR_REREG_TRANS = 1,
796 IB_MR_REREG_PD = (1<<1),
797 IB_MR_REREG_ACCESS = (1<<2)
800 struct ib_mw_bind {
801 struct ib_mr *mr;
802 u64 wr_id;
803 u64 addr;
804 u32 length;
805 int send_flags;
806 int mw_access_flags;
809 struct ib_fmr_attr {
810 int max_pages;
811 int max_maps;
812 u8 page_shift;
815 struct ib_ucontext {
816 struct ib_device *device;
817 struct list_head pd_list;
818 struct list_head mr_list;
819 struct list_head mw_list;
820 struct list_head cq_list;
821 struct list_head qp_list;
822 struct list_head srq_list;
823 struct list_head ah_list;
824 int closing;
827 struct ib_uobject {
828 u64 user_handle; /* handle given to us by userspace */
829 struct ib_ucontext *context; /* associated user context */
830 void *object; /* containing object */
831 struct list_head list; /* link to context's list */
832 int id; /* index into kernel idr */
833 struct kref ref;
834 struct rw_semaphore mutex; /* protects .live */
835 int live;
838 struct ib_udata {
839 void __user *inbuf;
840 void __user *outbuf;
841 size_t inlen;
842 size_t outlen;
845 struct ib_pd {
846 struct ib_device *device;
847 struct ib_uobject *uobject;
848 atomic_t usecnt; /* count all resources */
851 struct ib_ah {
852 struct ib_device *device;
853 struct ib_pd *pd;
854 struct ib_uobject *uobject;
857 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
859 struct ib_cq {
860 struct ib_device *device;
861 struct ib_uobject *uobject;
862 ib_comp_handler comp_handler;
863 void (*event_handler)(struct ib_event *, void *);
864 void *cq_context;
865 int cqe;
866 atomic_t usecnt; /* count number of work queues */
869 struct ib_srq {
870 struct ib_device *device;
871 struct ib_pd *pd;
872 struct ib_uobject *uobject;
873 void (*event_handler)(struct ib_event *, void *);
874 void *srq_context;
875 atomic_t usecnt;
878 struct ib_qp {
879 struct ib_device *device;
880 struct ib_pd *pd;
881 struct ib_cq *send_cq;
882 struct ib_cq *recv_cq;
883 struct ib_srq *srq;
884 struct ib_uobject *uobject;
885 void (*event_handler)(struct ib_event *, void *);
886 void *qp_context;
887 u32 qp_num;
888 enum ib_qp_type qp_type;
891 struct ib_mr {
892 struct ib_device *device;
893 struct ib_pd *pd;
894 struct ib_uobject *uobject;
895 u32 lkey;
896 u32 rkey;
897 atomic_t usecnt; /* count number of MWs */
900 struct ib_mw {
901 struct ib_device *device;
902 struct ib_pd *pd;
903 struct ib_uobject *uobject;
904 u32 rkey;
907 struct ib_fmr {
908 struct ib_device *device;
909 struct ib_pd *pd;
910 struct list_head list;
911 u32 lkey;
912 u32 rkey;
915 struct ib_mad;
916 struct ib_grh;
918 enum ib_process_mad_flags {
919 IB_MAD_IGNORE_MKEY = 1,
920 IB_MAD_IGNORE_BKEY = 2,
921 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
924 enum ib_mad_result {
925 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
926 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
927 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
928 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
931 #define IB_DEVICE_NAME_MAX 64
933 struct ib_cache {
934 rwlock_t lock;
935 struct ib_event_handler event_handler;
936 struct ib_pkey_cache **pkey_cache;
937 struct ib_gid_cache **gid_cache;
938 u8 *lmc_cache;
941 struct ib_dma_mapping_ops {
942 int (*mapping_error)(struct ib_device *dev,
943 u64 dma_addr);
944 u64 (*map_single)(struct ib_device *dev,
945 void *ptr, size_t size,
946 enum dma_data_direction direction);
947 void (*unmap_single)(struct ib_device *dev,
948 u64 addr, size_t size,
949 enum dma_data_direction direction);
950 u64 (*map_page)(struct ib_device *dev,
951 struct page *page, unsigned long offset,
952 size_t size,
953 enum dma_data_direction direction);
954 void (*unmap_page)(struct ib_device *dev,
955 u64 addr, size_t size,
956 enum dma_data_direction direction);
957 int (*map_sg)(struct ib_device *dev,
958 struct scatterlist *sg, int nents,
959 enum dma_data_direction direction);
960 void (*unmap_sg)(struct ib_device *dev,
961 struct scatterlist *sg, int nents,
962 enum dma_data_direction direction);
963 u64 (*dma_address)(struct ib_device *dev,
964 struct scatterlist *sg);
965 unsigned int (*dma_len)(struct ib_device *dev,
966 struct scatterlist *sg);
967 void (*sync_single_for_cpu)(struct ib_device *dev,
968 u64 dma_handle,
969 size_t size,
970 enum dma_data_direction dir);
971 void (*sync_single_for_device)(struct ib_device *dev,
972 u64 dma_handle,
973 size_t size,
974 enum dma_data_direction dir);
975 void *(*alloc_coherent)(struct ib_device *dev,
976 size_t size,
977 u64 *dma_handle,
978 gfp_t flag);
979 void (*free_coherent)(struct ib_device *dev,
980 size_t size, void *cpu_addr,
981 u64 dma_handle);
984 struct iw_cm_verbs;
986 struct ib_device {
987 struct device *dma_device;
989 char name[IB_DEVICE_NAME_MAX];
991 struct list_head event_handler_list;
992 spinlock_t event_handler_lock;
994 spinlock_t client_data_lock;
995 struct list_head core_list;
996 struct list_head client_data_list;
998 struct ib_cache cache;
999 int *pkey_tbl_len;
1000 int *gid_tbl_len;
1002 int num_comp_vectors;
1004 struct iw_cm_verbs *iwcm;
1006 int (*get_protocol_stats)(struct ib_device *device,
1007 union rdma_protocol_stats *stats);
1008 int (*query_device)(struct ib_device *device,
1009 struct ib_device_attr *device_attr);
1010 int (*query_port)(struct ib_device *device,
1011 u8 port_num,
1012 struct ib_port_attr *port_attr);
1013 int (*query_gid)(struct ib_device *device,
1014 u8 port_num, int index,
1015 union ib_gid *gid);
1016 int (*query_pkey)(struct ib_device *device,
1017 u8 port_num, u16 index, u16 *pkey);
1018 int (*modify_device)(struct ib_device *device,
1019 int device_modify_mask,
1020 struct ib_device_modify *device_modify);
1021 int (*modify_port)(struct ib_device *device,
1022 u8 port_num, int port_modify_mask,
1023 struct ib_port_modify *port_modify);
1024 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1025 struct ib_udata *udata);
1026 int (*dealloc_ucontext)(struct ib_ucontext *context);
1027 int (*mmap)(struct ib_ucontext *context,
1028 struct vm_area_struct *vma);
1029 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1030 struct ib_ucontext *context,
1031 struct ib_udata *udata);
1032 int (*dealloc_pd)(struct ib_pd *pd);
1033 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1034 struct ib_ah_attr *ah_attr);
1035 int (*modify_ah)(struct ib_ah *ah,
1036 struct ib_ah_attr *ah_attr);
1037 int (*query_ah)(struct ib_ah *ah,
1038 struct ib_ah_attr *ah_attr);
1039 int (*destroy_ah)(struct ib_ah *ah);
1040 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1041 struct ib_srq_init_attr *srq_init_attr,
1042 struct ib_udata *udata);
1043 int (*modify_srq)(struct ib_srq *srq,
1044 struct ib_srq_attr *srq_attr,
1045 enum ib_srq_attr_mask srq_attr_mask,
1046 struct ib_udata *udata);
1047 int (*query_srq)(struct ib_srq *srq,
1048 struct ib_srq_attr *srq_attr);
1049 int (*destroy_srq)(struct ib_srq *srq);
1050 int (*post_srq_recv)(struct ib_srq *srq,
1051 struct ib_recv_wr *recv_wr,
1052 struct ib_recv_wr **bad_recv_wr);
1053 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1054 struct ib_qp_init_attr *qp_init_attr,
1055 struct ib_udata *udata);
1056 int (*modify_qp)(struct ib_qp *qp,
1057 struct ib_qp_attr *qp_attr,
1058 int qp_attr_mask,
1059 struct ib_udata *udata);
1060 int (*query_qp)(struct ib_qp *qp,
1061 struct ib_qp_attr *qp_attr,
1062 int qp_attr_mask,
1063 struct ib_qp_init_attr *qp_init_attr);
1064 int (*destroy_qp)(struct ib_qp *qp);
1065 int (*post_send)(struct ib_qp *qp,
1066 struct ib_send_wr *send_wr,
1067 struct ib_send_wr **bad_send_wr);
1068 int (*post_recv)(struct ib_qp *qp,
1069 struct ib_recv_wr *recv_wr,
1070 struct ib_recv_wr **bad_recv_wr);
1071 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
1072 int comp_vector,
1073 struct ib_ucontext *context,
1074 struct ib_udata *udata);
1075 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1076 u16 cq_period);
1077 int (*destroy_cq)(struct ib_cq *cq);
1078 int (*resize_cq)(struct ib_cq *cq, int cqe,
1079 struct ib_udata *udata);
1080 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1081 struct ib_wc *wc);
1082 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1083 int (*req_notify_cq)(struct ib_cq *cq,
1084 enum ib_cq_notify_flags flags);
1085 int (*req_ncomp_notif)(struct ib_cq *cq,
1086 int wc_cnt);
1087 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1088 int mr_access_flags);
1089 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1090 struct ib_phys_buf *phys_buf_array,
1091 int num_phys_buf,
1092 int mr_access_flags,
1093 u64 *iova_start);
1094 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1095 u64 start, u64 length,
1096 u64 virt_addr,
1097 int mr_access_flags,
1098 struct ib_udata *udata);
1099 int (*query_mr)(struct ib_mr *mr,
1100 struct ib_mr_attr *mr_attr);
1101 int (*dereg_mr)(struct ib_mr *mr);
1102 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1103 int max_page_list_len);
1104 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1105 int page_list_len);
1106 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1107 int (*rereg_phys_mr)(struct ib_mr *mr,
1108 int mr_rereg_mask,
1109 struct ib_pd *pd,
1110 struct ib_phys_buf *phys_buf_array,
1111 int num_phys_buf,
1112 int mr_access_flags,
1113 u64 *iova_start);
1114 struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
1115 int (*bind_mw)(struct ib_qp *qp,
1116 struct ib_mw *mw,
1117 struct ib_mw_bind *mw_bind);
1118 int (*dealloc_mw)(struct ib_mw *mw);
1119 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1120 int mr_access_flags,
1121 struct ib_fmr_attr *fmr_attr);
1122 int (*map_phys_fmr)(struct ib_fmr *fmr,
1123 u64 *page_list, int list_len,
1124 u64 iova);
1125 int (*unmap_fmr)(struct list_head *fmr_list);
1126 int (*dealloc_fmr)(struct ib_fmr *fmr);
1127 int (*attach_mcast)(struct ib_qp *qp,
1128 union ib_gid *gid,
1129 u16 lid);
1130 int (*detach_mcast)(struct ib_qp *qp,
1131 union ib_gid *gid,
1132 u16 lid);
1133 int (*process_mad)(struct ib_device *device,
1134 int process_mad_flags,
1135 u8 port_num,
1136 struct ib_wc *in_wc,
1137 struct ib_grh *in_grh,
1138 struct ib_mad *in_mad,
1139 struct ib_mad *out_mad);
1141 struct ib_dma_mapping_ops *dma_ops;
1143 struct module *owner;
1144 struct device dev;
1145 struct kobject *ports_parent;
1146 struct list_head port_list;
1148 enum {
1149 IB_DEV_UNINITIALIZED,
1150 IB_DEV_REGISTERED,
1151 IB_DEV_UNREGISTERED
1152 } reg_state;
1154 int uverbs_abi_ver;
1155 u64 uverbs_cmd_mask;
1157 char node_desc[64];
1158 __be64 node_guid;
1159 u32 local_dma_lkey;
1160 u8 node_type;
1161 u8 phys_port_cnt;
1164 struct ib_client {
1165 char *name;
1166 void (*add) (struct ib_device *);
1167 void (*remove)(struct ib_device *);
1169 struct list_head list;
1172 struct ib_device *ib_alloc_device(size_t size);
1173 void ib_dealloc_device(struct ib_device *device);
1175 int ib_register_device(struct ib_device *device,
1176 int (*port_callback)(struct ib_device *,
1177 u8, struct kobject *));
1178 void ib_unregister_device(struct ib_device *device);
1180 int ib_register_client (struct ib_client *client);
1181 void ib_unregister_client(struct ib_client *client);
1183 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1184 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1185 void *data);
1187 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1189 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1192 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1194 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1198 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1199 * contains all required attributes and no attributes not allowed for
1200 * the given QP state transition.
1201 * @cur_state: Current QP state
1202 * @next_state: Next QP state
1203 * @type: QP type
1204 * @mask: Mask of supplied QP attributes
1206 * This function is a helper function that a low-level driver's
1207 * modify_qp method can use to validate the consumer's input. It
1208 * checks that cur_state and next_state are valid QP states, that a
1209 * transition from cur_state to next_state is allowed by the IB spec,
1210 * and that the attribute mask supplied is allowed for the transition.
1212 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1213 enum ib_qp_type type, enum ib_qp_attr_mask mask);
1215 int ib_register_event_handler (struct ib_event_handler *event_handler);
1216 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1217 void ib_dispatch_event(struct ib_event *event);
1219 int ib_query_device(struct ib_device *device,
1220 struct ib_device_attr *device_attr);
1222 int ib_query_port(struct ib_device *device,
1223 u8 port_num, struct ib_port_attr *port_attr);
1225 int ib_query_gid(struct ib_device *device,
1226 u8 port_num, int index, union ib_gid *gid);
1228 int ib_query_pkey(struct ib_device *device,
1229 u8 port_num, u16 index, u16 *pkey);
1231 int ib_modify_device(struct ib_device *device,
1232 int device_modify_mask,
1233 struct ib_device_modify *device_modify);
1235 int ib_modify_port(struct ib_device *device,
1236 u8 port_num, int port_modify_mask,
1237 struct ib_port_modify *port_modify);
1239 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1240 u8 *port_num, u16 *index);
1242 int ib_find_pkey(struct ib_device *device,
1243 u8 port_num, u16 pkey, u16 *index);
1246 * ib_alloc_pd - Allocates an unused protection domain.
1247 * @device: The device on which to allocate the protection domain.
1249 * A protection domain object provides an association between QPs, shared
1250 * receive queues, address handles, memory regions, and memory windows.
1252 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1255 * ib_dealloc_pd - Deallocates a protection domain.
1256 * @pd: The protection domain to deallocate.
1258 int ib_dealloc_pd(struct ib_pd *pd);
1261 * ib_create_ah - Creates an address handle for the given address vector.
1262 * @pd: The protection domain associated with the address handle.
1263 * @ah_attr: The attributes of the address vector.
1265 * The address handle is used to reference a local or global destination
1266 * in all UD QP post sends.
1268 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1271 * ib_init_ah_from_wc - Initializes address handle attributes from a
1272 * work completion.
1273 * @device: Device on which the received message arrived.
1274 * @port_num: Port on which the received message arrived.
1275 * @wc: Work completion associated with the received message.
1276 * @grh: References the received global route header. This parameter is
1277 * ignored unless the work completion indicates that the GRH is valid.
1278 * @ah_attr: Returned attributes that can be used when creating an address
1279 * handle for replying to the message.
1281 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1282 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1285 * ib_create_ah_from_wc - Creates an address handle associated with the
1286 * sender of the specified work completion.
1287 * @pd: The protection domain associated with the address handle.
1288 * @wc: Work completion information associated with a received message.
1289 * @grh: References the received global route header. This parameter is
1290 * ignored unless the work completion indicates that the GRH is valid.
1291 * @port_num: The outbound port number to associate with the address.
1293 * The address handle is used to reference a local or global destination
1294 * in all UD QP post sends.
1296 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1297 struct ib_grh *grh, u8 port_num);
1300 * ib_modify_ah - Modifies the address vector associated with an address
1301 * handle.
1302 * @ah: The address handle to modify.
1303 * @ah_attr: The new address vector attributes to associate with the
1304 * address handle.
1306 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1309 * ib_query_ah - Queries the address vector associated with an address
1310 * handle.
1311 * @ah: The address handle to query.
1312 * @ah_attr: The address vector attributes associated with the address
1313 * handle.
1315 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1318 * ib_destroy_ah - Destroys an address handle.
1319 * @ah: The address handle to destroy.
1321 int ib_destroy_ah(struct ib_ah *ah);
1324 * ib_create_srq - Creates a SRQ associated with the specified protection
1325 * domain.
1326 * @pd: The protection domain associated with the SRQ.
1327 * @srq_init_attr: A list of initial attributes required to create the
1328 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1329 * the actual capabilities of the created SRQ.
1331 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1332 * requested size of the SRQ, and set to the actual values allocated
1333 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1334 * will always be at least as large as the requested values.
1336 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1337 struct ib_srq_init_attr *srq_init_attr);
1340 * ib_modify_srq - Modifies the attributes for the specified SRQ.
1341 * @srq: The SRQ to modify.
1342 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
1343 * the current values of selected SRQ attributes are returned.
1344 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1345 * are being modified.
1347 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1348 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1349 * the number of receives queued drops below the limit.
1351 int ib_modify_srq(struct ib_srq *srq,
1352 struct ib_srq_attr *srq_attr,
1353 enum ib_srq_attr_mask srq_attr_mask);
1356 * ib_query_srq - Returns the attribute list and current values for the
1357 * specified SRQ.
1358 * @srq: The SRQ to query.
1359 * @srq_attr: The attributes of the specified SRQ.
1361 int ib_query_srq(struct ib_srq *srq,
1362 struct ib_srq_attr *srq_attr);
1365 * ib_destroy_srq - Destroys the specified SRQ.
1366 * @srq: The SRQ to destroy.
1368 int ib_destroy_srq(struct ib_srq *srq);
1371 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1372 * @srq: The SRQ to post the work request on.
1373 * @recv_wr: A list of work requests to post on the receive queue.
1374 * @bad_recv_wr: On an immediate failure, this parameter will reference
1375 * the work request that failed to be posted on the QP.
1377 static inline int ib_post_srq_recv(struct ib_srq *srq,
1378 struct ib_recv_wr *recv_wr,
1379 struct ib_recv_wr **bad_recv_wr)
1381 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1385 * ib_create_qp - Creates a QP associated with the specified protection
1386 * domain.
1387 * @pd: The protection domain associated with the QP.
1388 * @qp_init_attr: A list of initial attributes required to create the
1389 * QP. If QP creation succeeds, then the attributes are updated to
1390 * the actual capabilities of the created QP.
1392 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1393 struct ib_qp_init_attr *qp_init_attr);
1396 * ib_modify_qp - Modifies the attributes for the specified QP and then
1397 * transitions the QP to the given state.
1398 * @qp: The QP to modify.
1399 * @qp_attr: On input, specifies the QP attributes to modify. On output,
1400 * the current values of selected QP attributes are returned.
1401 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1402 * are being modified.
1404 int ib_modify_qp(struct ib_qp *qp,
1405 struct ib_qp_attr *qp_attr,
1406 int qp_attr_mask);
1409 * ib_query_qp - Returns the attribute list and current values for the
1410 * specified QP.
1411 * @qp: The QP to query.
1412 * @qp_attr: The attributes of the specified QP.
1413 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1414 * @qp_init_attr: Additional attributes of the selected QP.
1416 * The qp_attr_mask may be used to limit the query to gathering only the
1417 * selected attributes.
1419 int ib_query_qp(struct ib_qp *qp,
1420 struct ib_qp_attr *qp_attr,
1421 int qp_attr_mask,
1422 struct ib_qp_init_attr *qp_init_attr);
1425 * ib_destroy_qp - Destroys the specified QP.
1426 * @qp: The QP to destroy.
1428 int ib_destroy_qp(struct ib_qp *qp);
1431 * ib_post_send - Posts a list of work requests to the send queue of
1432 * the specified QP.
1433 * @qp: The QP to post the work request on.
1434 * @send_wr: A list of work requests to post on the send queue.
1435 * @bad_send_wr: On an immediate failure, this parameter will reference
1436 * the work request that failed to be posted on the QP.
1438 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1439 * error is returned, the QP state shall not be affected,
1440 * ib_post_send() will return an immediate error after queueing any
1441 * earlier work requests in the list.
1443 static inline int ib_post_send(struct ib_qp *qp,
1444 struct ib_send_wr *send_wr,
1445 struct ib_send_wr **bad_send_wr)
1447 return qp->device->post_send(qp, send_wr, bad_send_wr);
1451 * ib_post_recv - Posts a list of work requests to the receive queue of
1452 * the specified QP.
1453 * @qp: The QP to post the work request on.
1454 * @recv_wr: A list of work requests to post on the receive queue.
1455 * @bad_recv_wr: On an immediate failure, this parameter will reference
1456 * the work request that failed to be posted on the QP.
1458 static inline int ib_post_recv(struct ib_qp *qp,
1459 struct ib_recv_wr *recv_wr,
1460 struct ib_recv_wr **bad_recv_wr)
1462 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1466 * ib_create_cq - Creates a CQ on the specified device.
1467 * @device: The device on which to create the CQ.
1468 * @comp_handler: A user-specified callback that is invoked when a
1469 * completion event occurs on the CQ.
1470 * @event_handler: A user-specified callback that is invoked when an
1471 * asynchronous event not associated with a completion occurs on the CQ.
1472 * @cq_context: Context associated with the CQ returned to the user via
1473 * the associated completion and event handlers.
1474 * @cqe: The minimum size of the CQ.
1475 * @comp_vector - Completion vector used to signal completion events.
1476 * Must be >= 0 and < context->num_comp_vectors.
1478 * Users can examine the cq structure to determine the actual CQ size.
1480 struct ib_cq *ib_create_cq(struct ib_device *device,
1481 ib_comp_handler comp_handler,
1482 void (*event_handler)(struct ib_event *, void *),
1483 void *cq_context, int cqe, int comp_vector);
1486 * ib_resize_cq - Modifies the capacity of the CQ.
1487 * @cq: The CQ to resize.
1488 * @cqe: The minimum size of the CQ.
1490 * Users can examine the cq structure to determine the actual CQ size.
1492 int ib_resize_cq(struct ib_cq *cq, int cqe);
1495 * ib_modify_cq - Modifies moderation params of the CQ
1496 * @cq: The CQ to modify.
1497 * @cq_count: number of CQEs that will trigger an event
1498 * @cq_period: max period of time in usec before triggering an event
1501 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1504 * ib_destroy_cq - Destroys the specified CQ.
1505 * @cq: The CQ to destroy.
1507 int ib_destroy_cq(struct ib_cq *cq);
1510 * ib_poll_cq - poll a CQ for completion(s)
1511 * @cq:the CQ being polled
1512 * @num_entries:maximum number of completions to return
1513 * @wc:array of at least @num_entries &struct ib_wc where completions
1514 * will be returned
1516 * Poll a CQ for (possibly multiple) completions. If the return value
1517 * is < 0, an error occurred. If the return value is >= 0, it is the
1518 * number of completions returned. If the return value is
1519 * non-negative and < num_entries, then the CQ was emptied.
1521 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1522 struct ib_wc *wc)
1524 return cq->device->poll_cq(cq, num_entries, wc);
1528 * ib_peek_cq - Returns the number of unreaped completions currently
1529 * on the specified CQ.
1530 * @cq: The CQ to peek.
1531 * @wc_cnt: A minimum number of unreaped completions to check for.
1533 * If the number of unreaped completions is greater than or equal to wc_cnt,
1534 * this function returns wc_cnt, otherwise, it returns the actual number of
1535 * unreaped completions.
1537 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1540 * ib_req_notify_cq - Request completion notification on a CQ.
1541 * @cq: The CQ to generate an event for.
1542 * @flags:
1543 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1544 * to request an event on the next solicited event or next work
1545 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1546 * may also be |ed in to request a hint about missed events, as
1547 * described below.
1549 * Return Value:
1550 * < 0 means an error occurred while requesting notification
1551 * == 0 means notification was requested successfully, and if
1552 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1553 * were missed and it is safe to wait for another event. In
1554 * this case is it guaranteed that any work completions added
1555 * to the CQ since the last CQ poll will trigger a completion
1556 * notification event.
1557 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1558 * in. It means that the consumer must poll the CQ again to
1559 * make sure it is empty to avoid missing an event because of a
1560 * race between requesting notification and an entry being
1561 * added to the CQ. This return value means it is possible
1562 * (but not guaranteed) that a work completion has been added
1563 * to the CQ since the last poll without triggering a
1564 * completion notification event.
1566 static inline int ib_req_notify_cq(struct ib_cq *cq,
1567 enum ib_cq_notify_flags flags)
1569 return cq->device->req_notify_cq(cq, flags);
1573 * ib_req_ncomp_notif - Request completion notification when there are
1574 * at least the specified number of unreaped completions on the CQ.
1575 * @cq: The CQ to generate an event for.
1576 * @wc_cnt: The number of unreaped completions that should be on the
1577 * CQ before an event is generated.
1579 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1581 return cq->device->req_ncomp_notif ?
1582 cq->device->req_ncomp_notif(cq, wc_cnt) :
1583 -ENOSYS;
1587 * ib_get_dma_mr - Returns a memory region for system memory that is
1588 * usable for DMA.
1589 * @pd: The protection domain associated with the memory region.
1590 * @mr_access_flags: Specifies the memory access rights.
1592 * Note that the ib_dma_*() functions defined below must be used
1593 * to create/destroy addresses used with the Lkey or Rkey returned
1594 * by ib_get_dma_mr().
1596 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1599 * ib_dma_mapping_error - check a DMA addr for error
1600 * @dev: The device for which the dma_addr was created
1601 * @dma_addr: The DMA address to check
1603 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1605 if (dev->dma_ops)
1606 return dev->dma_ops->mapping_error(dev, dma_addr);
1607 return dma_mapping_error(dev->dma_device, dma_addr);
1611 * ib_dma_map_single - Map a kernel virtual address to DMA address
1612 * @dev: The device for which the dma_addr is to be created
1613 * @cpu_addr: The kernel virtual address
1614 * @size: The size of the region in bytes
1615 * @direction: The direction of the DMA
1617 static inline u64 ib_dma_map_single(struct ib_device *dev,
1618 void *cpu_addr, size_t size,
1619 enum dma_data_direction direction)
1621 if (dev->dma_ops)
1622 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1623 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1627 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1628 * @dev: The device for which the DMA address was created
1629 * @addr: The DMA address
1630 * @size: The size of the region in bytes
1631 * @direction: The direction of the DMA
1633 static inline void ib_dma_unmap_single(struct ib_device *dev,
1634 u64 addr, size_t size,
1635 enum dma_data_direction direction)
1637 if (dev->dma_ops)
1638 dev->dma_ops->unmap_single(dev, addr, size, direction);
1639 else
1640 dma_unmap_single(dev->dma_device, addr, size, direction);
1643 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1644 void *cpu_addr, size_t size,
1645 enum dma_data_direction direction,
1646 struct dma_attrs *attrs)
1648 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1649 direction, attrs);
1652 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1653 u64 addr, size_t size,
1654 enum dma_data_direction direction,
1655 struct dma_attrs *attrs)
1657 return dma_unmap_single_attrs(dev->dma_device, addr, size,
1658 direction, attrs);
1662 * ib_dma_map_page - Map a physical page to DMA address
1663 * @dev: The device for which the dma_addr is to be created
1664 * @page: The page to be mapped
1665 * @offset: The offset within the page
1666 * @size: The size of the region in bytes
1667 * @direction: The direction of the DMA
1669 static inline u64 ib_dma_map_page(struct ib_device *dev,
1670 struct page *page,
1671 unsigned long offset,
1672 size_t size,
1673 enum dma_data_direction direction)
1675 if (dev->dma_ops)
1676 return dev->dma_ops->map_page(dev, page, offset, size, direction);
1677 return dma_map_page(dev->dma_device, page, offset, size, direction);
1681 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1682 * @dev: The device for which the DMA address was created
1683 * @addr: The DMA address
1684 * @size: The size of the region in bytes
1685 * @direction: The direction of the DMA
1687 static inline void ib_dma_unmap_page(struct ib_device *dev,
1688 u64 addr, size_t size,
1689 enum dma_data_direction direction)
1691 if (dev->dma_ops)
1692 dev->dma_ops->unmap_page(dev, addr, size, direction);
1693 else
1694 dma_unmap_page(dev->dma_device, addr, size, direction);
1698 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1699 * @dev: The device for which the DMA addresses are to be created
1700 * @sg: The array of scatter/gather entries
1701 * @nents: The number of scatter/gather entries
1702 * @direction: The direction of the DMA
1704 static inline int ib_dma_map_sg(struct ib_device *dev,
1705 struct scatterlist *sg, int nents,
1706 enum dma_data_direction direction)
1708 if (dev->dma_ops)
1709 return dev->dma_ops->map_sg(dev, sg, nents, direction);
1710 return dma_map_sg(dev->dma_device, sg, nents, direction);
1714 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1715 * @dev: The device for which the DMA addresses were created
1716 * @sg: The array of scatter/gather entries
1717 * @nents: The number of scatter/gather entries
1718 * @direction: The direction of the DMA
1720 static inline void ib_dma_unmap_sg(struct ib_device *dev,
1721 struct scatterlist *sg, int nents,
1722 enum dma_data_direction direction)
1724 if (dev->dma_ops)
1725 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1726 else
1727 dma_unmap_sg(dev->dma_device, sg, nents, direction);
1730 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1731 struct scatterlist *sg, int nents,
1732 enum dma_data_direction direction,
1733 struct dma_attrs *attrs)
1735 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1738 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1739 struct scatterlist *sg, int nents,
1740 enum dma_data_direction direction,
1741 struct dma_attrs *attrs)
1743 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1746 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1747 * @dev: The device for which the DMA addresses were created
1748 * @sg: The scatter/gather entry
1750 static inline u64 ib_sg_dma_address(struct ib_device *dev,
1751 struct scatterlist *sg)
1753 if (dev->dma_ops)
1754 return dev->dma_ops->dma_address(dev, sg);
1755 return sg_dma_address(sg);
1759 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1760 * @dev: The device for which the DMA addresses were created
1761 * @sg: The scatter/gather entry
1763 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1764 struct scatterlist *sg)
1766 if (dev->dma_ops)
1767 return dev->dma_ops->dma_len(dev, sg);
1768 return sg_dma_len(sg);
1772 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1773 * @dev: The device for which the DMA address was created
1774 * @addr: The DMA address
1775 * @size: The size of the region in bytes
1776 * @dir: The direction of the DMA
1778 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1779 u64 addr,
1780 size_t size,
1781 enum dma_data_direction dir)
1783 if (dev->dma_ops)
1784 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1785 else
1786 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1790 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1791 * @dev: The device for which the DMA address was created
1792 * @addr: The DMA address
1793 * @size: The size of the region in bytes
1794 * @dir: The direction of the DMA
1796 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1797 u64 addr,
1798 size_t size,
1799 enum dma_data_direction dir)
1801 if (dev->dma_ops)
1802 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1803 else
1804 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1808 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1809 * @dev: The device for which the DMA address is requested
1810 * @size: The size of the region to allocate in bytes
1811 * @dma_handle: A pointer for returning the DMA address of the region
1812 * @flag: memory allocator flags
1814 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1815 size_t size,
1816 u64 *dma_handle,
1817 gfp_t flag)
1819 if (dev->dma_ops)
1820 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1821 else {
1822 dma_addr_t handle;
1823 void *ret;
1825 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1826 *dma_handle = handle;
1827 return ret;
1832 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1833 * @dev: The device for which the DMA addresses were allocated
1834 * @size: The size of the region
1835 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1836 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1838 static inline void ib_dma_free_coherent(struct ib_device *dev,
1839 size_t size, void *cpu_addr,
1840 u64 dma_handle)
1842 if (dev->dma_ops)
1843 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1844 else
1845 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1849 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1850 * by an HCA.
1851 * @pd: The protection domain associated assigned to the registered region.
1852 * @phys_buf_array: Specifies a list of physical buffers to use in the
1853 * memory region.
1854 * @num_phys_buf: Specifies the size of the phys_buf_array.
1855 * @mr_access_flags: Specifies the memory access rights.
1856 * @iova_start: The offset of the region's starting I/O virtual address.
1858 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1859 struct ib_phys_buf *phys_buf_array,
1860 int num_phys_buf,
1861 int mr_access_flags,
1862 u64 *iova_start);
1865 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1866 * Conceptually, this call performs the functions deregister memory region
1867 * followed by register physical memory region. Where possible,
1868 * resources are reused instead of deallocated and reallocated.
1869 * @mr: The memory region to modify.
1870 * @mr_rereg_mask: A bit-mask used to indicate which of the following
1871 * properties of the memory region are being modified.
1872 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1873 * the new protection domain to associated with the memory region,
1874 * otherwise, this parameter is ignored.
1875 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1876 * field specifies a list of physical buffers to use in the new
1877 * translation, otherwise, this parameter is ignored.
1878 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1879 * field specifies the size of the phys_buf_array, otherwise, this
1880 * parameter is ignored.
1881 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1882 * field specifies the new memory access rights, otherwise, this
1883 * parameter is ignored.
1884 * @iova_start: The offset of the region's starting I/O virtual address.
1886 int ib_rereg_phys_mr(struct ib_mr *mr,
1887 int mr_rereg_mask,
1888 struct ib_pd *pd,
1889 struct ib_phys_buf *phys_buf_array,
1890 int num_phys_buf,
1891 int mr_access_flags,
1892 u64 *iova_start);
1895 * ib_query_mr - Retrieves information about a specific memory region.
1896 * @mr: The memory region to retrieve information about.
1897 * @mr_attr: The attributes of the specified memory region.
1899 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1902 * ib_dereg_mr - Deregisters a memory region and removes it from the
1903 * HCA translation table.
1904 * @mr: The memory region to deregister.
1906 int ib_dereg_mr(struct ib_mr *mr);
1909 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1910 * IB_WR_FAST_REG_MR send work request.
1911 * @pd: The protection domain associated with the region.
1912 * @max_page_list_len: requested max physical buffer list length to be
1913 * used with fast register work requests for this MR.
1915 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1918 * ib_alloc_fast_reg_page_list - Allocates a page list array
1919 * @device - ib device pointer.
1920 * @page_list_len - size of the page list array to be allocated.
1922 * This allocates and returns a struct ib_fast_reg_page_list * and a
1923 * page_list array that is at least page_list_len in size. The actual
1924 * size is returned in max_page_list_len. The caller is responsible
1925 * for initializing the contents of the page_list array before posting
1926 * a send work request with the IB_WC_FAST_REG_MR opcode.
1928 * The page_list array entries must be translated using one of the
1929 * ib_dma_*() functions just like the addresses passed to
1930 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
1931 * ib_fast_reg_page_list must not be modified by the caller until the
1932 * IB_WC_FAST_REG_MR work request completes.
1934 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1935 struct ib_device *device, int page_list_len);
1938 * ib_free_fast_reg_page_list - Deallocates a previously allocated
1939 * page list array.
1940 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1942 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1945 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1946 * R_Key and L_Key.
1947 * @mr - struct ib_mr pointer to be updated.
1948 * @newkey - new key to be used.
1950 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1952 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1953 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1957 * ib_alloc_mw - Allocates a memory window.
1958 * @pd: The protection domain associated with the memory window.
1960 struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1963 * ib_bind_mw - Posts a work request to the send queue of the specified
1964 * QP, which binds the memory window to the given address range and
1965 * remote access attributes.
1966 * @qp: QP to post the bind work request on.
1967 * @mw: The memory window to bind.
1968 * @mw_bind: Specifies information about the memory window, including
1969 * its address range, remote access rights, and associated memory region.
1971 static inline int ib_bind_mw(struct ib_qp *qp,
1972 struct ib_mw *mw,
1973 struct ib_mw_bind *mw_bind)
1975 /* XXX reference counting in corresponding MR? */
1976 return mw->device->bind_mw ?
1977 mw->device->bind_mw(qp, mw, mw_bind) :
1978 -ENOSYS;
1982 * ib_dealloc_mw - Deallocates a memory window.
1983 * @mw: The memory window to deallocate.
1985 int ib_dealloc_mw(struct ib_mw *mw);
1988 * ib_alloc_fmr - Allocates a unmapped fast memory region.
1989 * @pd: The protection domain associated with the unmapped region.
1990 * @mr_access_flags: Specifies the memory access rights.
1991 * @fmr_attr: Attributes of the unmapped region.
1993 * A fast memory region must be mapped before it can be used as part of
1994 * a work request.
1996 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1997 int mr_access_flags,
1998 struct ib_fmr_attr *fmr_attr);
2001 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2002 * @fmr: The fast memory region to associate with the pages.
2003 * @page_list: An array of physical pages to map to the fast memory region.
2004 * @list_len: The number of pages in page_list.
2005 * @iova: The I/O virtual address to use with the mapped region.
2007 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2008 u64 *page_list, int list_len,
2009 u64 iova)
2011 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2015 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2016 * @fmr_list: A linked list of fast memory regions to unmap.
2018 int ib_unmap_fmr(struct list_head *fmr_list);
2021 * ib_dealloc_fmr - Deallocates a fast memory region.
2022 * @fmr: The fast memory region to deallocate.
2024 int ib_dealloc_fmr(struct ib_fmr *fmr);
2027 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2028 * @qp: QP to attach to the multicast group. The QP must be type
2029 * IB_QPT_UD.
2030 * @gid: Multicast group GID.
2031 * @lid: Multicast group LID in host byte order.
2033 * In order to send and receive multicast packets, subnet
2034 * administration must have created the multicast group and configured
2035 * the fabric appropriately. The port associated with the specified
2036 * QP must also be a member of the multicast group.
2038 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2041 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2042 * @qp: QP to detach from the multicast group.
2043 * @gid: Multicast group GID.
2044 * @lid: Multicast group LID in host byte order.
2046 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2048 #endif /* IB_VERBS_H */