btrfs: cleanup duplicate bio allocating functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_log_recover.c
blob6f3f5fa37acf16cec91cf55eb36d0d7c1b20d0b2
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_rw.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
47 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49 #if defined(DEBUG)
50 STATIC void xlog_recover_check_summary(xlog_t *);
51 #else
52 #define xlog_recover_check_summary(log)
53 #endif
56 * Sector aligned buffer routines for buffer create/read/write/access
60 * Verify the given count of basic blocks is valid number of blocks
61 * to specify for an operation involving the given XFS log buffer.
62 * Returns nonzero if the count is valid, 0 otherwise.
65 static inline int
66 xlog_buf_bbcount_valid(
67 xlog_t *log,
68 int bbcount)
70 return bbcount > 0 && bbcount <= log->l_logBBsize;
74 * Allocate a buffer to hold log data. The buffer needs to be able
75 * to map to a range of nbblks basic blocks at any valid (basic
76 * block) offset within the log.
78 STATIC xfs_buf_t *
79 xlog_get_bp(
80 xlog_t *log,
81 int nbblks)
83 if (!xlog_buf_bbcount_valid(log, nbblks)) {
84 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
85 nbblks);
86 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
87 return NULL;
91 * We do log I/O in units of log sectors (a power-of-2
92 * multiple of the basic block size), so we round up the
93 * requested size to acommodate the basic blocks required
94 * for complete log sectors.
96 * In addition, the buffer may be used for a non-sector-
97 * aligned block offset, in which case an I/O of the
98 * requested size could extend beyond the end of the
99 * buffer. If the requested size is only 1 basic block it
100 * will never straddle a sector boundary, so this won't be
101 * an issue. Nor will this be a problem if the log I/O is
102 * done in basic blocks (sector size 1). But otherwise we
103 * extend the buffer by one extra log sector to ensure
104 * there's space to accomodate this possiblility.
106 if (nbblks > 1 && log->l_sectBBsize > 1)
107 nbblks += log->l_sectBBsize;
108 nbblks = round_up(nbblks, log->l_sectBBsize);
110 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
113 STATIC void
114 xlog_put_bp(
115 xfs_buf_t *bp)
117 xfs_buf_free(bp);
121 * Return the address of the start of the given block number's data
122 * in a log buffer. The buffer covers a log sector-aligned region.
124 STATIC xfs_caddr_t
125 xlog_align(
126 xlog_t *log,
127 xfs_daddr_t blk_no,
128 int nbblks,
129 xfs_buf_t *bp)
131 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
133 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
134 return XFS_BUF_PTR(bp) + BBTOB(offset);
139 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
141 STATIC int
142 xlog_bread_noalign(
143 xlog_t *log,
144 xfs_daddr_t blk_no,
145 int nbblks,
146 xfs_buf_t *bp)
148 int error;
150 if (!xlog_buf_bbcount_valid(log, nbblks)) {
151 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
152 nbblks);
153 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
154 return EFSCORRUPTED;
157 blk_no = round_down(blk_no, log->l_sectBBsize);
158 nbblks = round_up(nbblks, log->l_sectBBsize);
160 ASSERT(nbblks > 0);
161 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
163 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
164 XFS_BUF_READ(bp);
165 XFS_BUF_BUSY(bp);
166 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
167 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
169 xfsbdstrat(log->l_mp, bp);
170 error = xfs_iowait(bp);
171 if (error)
172 xfs_ioerror_alert("xlog_bread", log->l_mp,
173 bp, XFS_BUF_ADDR(bp));
174 return error;
177 STATIC int
178 xlog_bread(
179 xlog_t *log,
180 xfs_daddr_t blk_no,
181 int nbblks,
182 xfs_buf_t *bp,
183 xfs_caddr_t *offset)
185 int error;
187 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
188 if (error)
189 return error;
191 *offset = xlog_align(log, blk_no, nbblks, bp);
192 return 0;
196 * Write out the buffer at the given block for the given number of blocks.
197 * The buffer is kept locked across the write and is returned locked.
198 * This can only be used for synchronous log writes.
200 STATIC int
201 xlog_bwrite(
202 xlog_t *log,
203 xfs_daddr_t blk_no,
204 int nbblks,
205 xfs_buf_t *bp)
207 int error;
209 if (!xlog_buf_bbcount_valid(log, nbblks)) {
210 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
211 nbblks);
212 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
213 return EFSCORRUPTED;
216 blk_no = round_down(blk_no, log->l_sectBBsize);
217 nbblks = round_up(nbblks, log->l_sectBBsize);
219 ASSERT(nbblks > 0);
220 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
222 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
223 XFS_BUF_ZEROFLAGS(bp);
224 XFS_BUF_BUSY(bp);
225 XFS_BUF_HOLD(bp);
226 XFS_BUF_PSEMA(bp, PRIBIO);
227 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
228 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
230 if ((error = xfs_bwrite(log->l_mp, bp)))
231 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
232 bp, XFS_BUF_ADDR(bp));
233 return error;
236 #ifdef DEBUG
238 * dump debug superblock and log record information
240 STATIC void
241 xlog_header_check_dump(
242 xfs_mount_t *mp,
243 xlog_rec_header_t *head)
245 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
246 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
247 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
248 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
250 #else
251 #define xlog_header_check_dump(mp, head)
252 #endif
255 * check log record header for recovery
257 STATIC int
258 xlog_header_check_recover(
259 xfs_mount_t *mp,
260 xlog_rec_header_t *head)
262 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
265 * IRIX doesn't write the h_fmt field and leaves it zeroed
266 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
267 * a dirty log created in IRIX.
269 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
270 xlog_warn(
271 "XFS: dirty log written in incompatible format - can't recover");
272 xlog_header_check_dump(mp, head);
273 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
274 XFS_ERRLEVEL_HIGH, mp);
275 return XFS_ERROR(EFSCORRUPTED);
276 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
277 xlog_warn(
278 "XFS: dirty log entry has mismatched uuid - can't recover");
279 xlog_header_check_dump(mp, head);
280 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
281 XFS_ERRLEVEL_HIGH, mp);
282 return XFS_ERROR(EFSCORRUPTED);
284 return 0;
288 * read the head block of the log and check the header
290 STATIC int
291 xlog_header_check_mount(
292 xfs_mount_t *mp,
293 xlog_rec_header_t *head)
295 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
297 if (uuid_is_nil(&head->h_fs_uuid)) {
299 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
300 * h_fs_uuid is nil, we assume this log was last mounted
301 * by IRIX and continue.
303 xlog_warn("XFS: nil uuid in log - IRIX style log");
304 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
305 xlog_warn("XFS: log has mismatched uuid - can't recover");
306 xlog_header_check_dump(mp, head);
307 XFS_ERROR_REPORT("xlog_header_check_mount",
308 XFS_ERRLEVEL_HIGH, mp);
309 return XFS_ERROR(EFSCORRUPTED);
311 return 0;
314 STATIC void
315 xlog_recover_iodone(
316 struct xfs_buf *bp)
318 if (XFS_BUF_GETERROR(bp)) {
320 * We're not going to bother about retrying
321 * this during recovery. One strike!
323 xfs_ioerror_alert("xlog_recover_iodone",
324 bp->b_mount, bp, XFS_BUF_ADDR(bp));
325 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
327 bp->b_mount = NULL;
328 XFS_BUF_CLR_IODONE_FUNC(bp);
329 xfs_biodone(bp);
333 * This routine finds (to an approximation) the first block in the physical
334 * log which contains the given cycle. It uses a binary search algorithm.
335 * Note that the algorithm can not be perfect because the disk will not
336 * necessarily be perfect.
338 STATIC int
339 xlog_find_cycle_start(
340 xlog_t *log,
341 xfs_buf_t *bp,
342 xfs_daddr_t first_blk,
343 xfs_daddr_t *last_blk,
344 uint cycle)
346 xfs_caddr_t offset;
347 xfs_daddr_t mid_blk;
348 xfs_daddr_t end_blk;
349 uint mid_cycle;
350 int error;
352 end_blk = *last_blk;
353 mid_blk = BLK_AVG(first_blk, end_blk);
354 while (mid_blk != first_blk && mid_blk != end_blk) {
355 error = xlog_bread(log, mid_blk, 1, bp, &offset);
356 if (error)
357 return error;
358 mid_cycle = xlog_get_cycle(offset);
359 if (mid_cycle == cycle)
360 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
361 else
362 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
363 mid_blk = BLK_AVG(first_blk, end_blk);
365 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
366 (mid_blk == end_blk && mid_blk-1 == first_blk));
368 *last_blk = end_blk;
370 return 0;
374 * Check that a range of blocks does not contain stop_on_cycle_no.
375 * Fill in *new_blk with the block offset where such a block is
376 * found, or with -1 (an invalid block number) if there is no such
377 * block in the range. The scan needs to occur from front to back
378 * and the pointer into the region must be updated since a later
379 * routine will need to perform another test.
381 STATIC int
382 xlog_find_verify_cycle(
383 xlog_t *log,
384 xfs_daddr_t start_blk,
385 int nbblks,
386 uint stop_on_cycle_no,
387 xfs_daddr_t *new_blk)
389 xfs_daddr_t i, j;
390 uint cycle;
391 xfs_buf_t *bp;
392 xfs_daddr_t bufblks;
393 xfs_caddr_t buf = NULL;
394 int error = 0;
397 * Greedily allocate a buffer big enough to handle the full
398 * range of basic blocks we'll be examining. If that fails,
399 * try a smaller size. We need to be able to read at least
400 * a log sector, or we're out of luck.
402 bufblks = 1 << ffs(nbblks);
403 while (!(bp = xlog_get_bp(log, bufblks))) {
404 bufblks >>= 1;
405 if (bufblks < log->l_sectBBsize)
406 return ENOMEM;
409 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
410 int bcount;
412 bcount = min(bufblks, (start_blk + nbblks - i));
414 error = xlog_bread(log, i, bcount, bp, &buf);
415 if (error)
416 goto out;
418 for (j = 0; j < bcount; j++) {
419 cycle = xlog_get_cycle(buf);
420 if (cycle == stop_on_cycle_no) {
421 *new_blk = i+j;
422 goto out;
425 buf += BBSIZE;
429 *new_blk = -1;
431 out:
432 xlog_put_bp(bp);
433 return error;
437 * Potentially backup over partial log record write.
439 * In the typical case, last_blk is the number of the block directly after
440 * a good log record. Therefore, we subtract one to get the block number
441 * of the last block in the given buffer. extra_bblks contains the number
442 * of blocks we would have read on a previous read. This happens when the
443 * last log record is split over the end of the physical log.
445 * extra_bblks is the number of blocks potentially verified on a previous
446 * call to this routine.
448 STATIC int
449 xlog_find_verify_log_record(
450 xlog_t *log,
451 xfs_daddr_t start_blk,
452 xfs_daddr_t *last_blk,
453 int extra_bblks)
455 xfs_daddr_t i;
456 xfs_buf_t *bp;
457 xfs_caddr_t offset = NULL;
458 xlog_rec_header_t *head = NULL;
459 int error = 0;
460 int smallmem = 0;
461 int num_blks = *last_blk - start_blk;
462 int xhdrs;
464 ASSERT(start_blk != 0 || *last_blk != start_blk);
466 if (!(bp = xlog_get_bp(log, num_blks))) {
467 if (!(bp = xlog_get_bp(log, 1)))
468 return ENOMEM;
469 smallmem = 1;
470 } else {
471 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
472 if (error)
473 goto out;
474 offset += ((num_blks - 1) << BBSHIFT);
477 for (i = (*last_blk) - 1; i >= 0; i--) {
478 if (i < start_blk) {
479 /* valid log record not found */
480 xlog_warn(
481 "XFS: Log inconsistent (didn't find previous header)");
482 ASSERT(0);
483 error = XFS_ERROR(EIO);
484 goto out;
487 if (smallmem) {
488 error = xlog_bread(log, i, 1, bp, &offset);
489 if (error)
490 goto out;
493 head = (xlog_rec_header_t *)offset;
495 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
496 break;
498 if (!smallmem)
499 offset -= BBSIZE;
503 * We hit the beginning of the physical log & still no header. Return
504 * to caller. If caller can handle a return of -1, then this routine
505 * will be called again for the end of the physical log.
507 if (i == -1) {
508 error = -1;
509 goto out;
513 * We have the final block of the good log (the first block
514 * of the log record _before_ the head. So we check the uuid.
516 if ((error = xlog_header_check_mount(log->l_mp, head)))
517 goto out;
520 * We may have found a log record header before we expected one.
521 * last_blk will be the 1st block # with a given cycle #. We may end
522 * up reading an entire log record. In this case, we don't want to
523 * reset last_blk. Only when last_blk points in the middle of a log
524 * record do we update last_blk.
526 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
527 uint h_size = be32_to_cpu(head->h_size);
529 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
530 if (h_size % XLOG_HEADER_CYCLE_SIZE)
531 xhdrs++;
532 } else {
533 xhdrs = 1;
536 if (*last_blk - i + extra_bblks !=
537 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
538 *last_blk = i;
540 out:
541 xlog_put_bp(bp);
542 return error;
546 * Head is defined to be the point of the log where the next log write
547 * write could go. This means that incomplete LR writes at the end are
548 * eliminated when calculating the head. We aren't guaranteed that previous
549 * LR have complete transactions. We only know that a cycle number of
550 * current cycle number -1 won't be present in the log if we start writing
551 * from our current block number.
553 * last_blk contains the block number of the first block with a given
554 * cycle number.
556 * Return: zero if normal, non-zero if error.
558 STATIC int
559 xlog_find_head(
560 xlog_t *log,
561 xfs_daddr_t *return_head_blk)
563 xfs_buf_t *bp;
564 xfs_caddr_t offset;
565 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
566 int num_scan_bblks;
567 uint first_half_cycle, last_half_cycle;
568 uint stop_on_cycle;
569 int error, log_bbnum = log->l_logBBsize;
571 /* Is the end of the log device zeroed? */
572 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
573 *return_head_blk = first_blk;
575 /* Is the whole lot zeroed? */
576 if (!first_blk) {
577 /* Linux XFS shouldn't generate totally zeroed logs -
578 * mkfs etc write a dummy unmount record to a fresh
579 * log so we can store the uuid in there
581 xlog_warn("XFS: totally zeroed log");
584 return 0;
585 } else if (error) {
586 xlog_warn("XFS: empty log check failed");
587 return error;
590 first_blk = 0; /* get cycle # of 1st block */
591 bp = xlog_get_bp(log, 1);
592 if (!bp)
593 return ENOMEM;
595 error = xlog_bread(log, 0, 1, bp, &offset);
596 if (error)
597 goto bp_err;
599 first_half_cycle = xlog_get_cycle(offset);
601 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
602 error = xlog_bread(log, last_blk, 1, bp, &offset);
603 if (error)
604 goto bp_err;
606 last_half_cycle = xlog_get_cycle(offset);
607 ASSERT(last_half_cycle != 0);
610 * If the 1st half cycle number is equal to the last half cycle number,
611 * then the entire log is stamped with the same cycle number. In this
612 * case, head_blk can't be set to zero (which makes sense). The below
613 * math doesn't work out properly with head_blk equal to zero. Instead,
614 * we set it to log_bbnum which is an invalid block number, but this
615 * value makes the math correct. If head_blk doesn't changed through
616 * all the tests below, *head_blk is set to zero at the very end rather
617 * than log_bbnum. In a sense, log_bbnum and zero are the same block
618 * in a circular file.
620 if (first_half_cycle == last_half_cycle) {
622 * In this case we believe that the entire log should have
623 * cycle number last_half_cycle. We need to scan backwards
624 * from the end verifying that there are no holes still
625 * containing last_half_cycle - 1. If we find such a hole,
626 * then the start of that hole will be the new head. The
627 * simple case looks like
628 * x | x ... | x - 1 | x
629 * Another case that fits this picture would be
630 * x | x + 1 | x ... | x
631 * In this case the head really is somewhere at the end of the
632 * log, as one of the latest writes at the beginning was
633 * incomplete.
634 * One more case is
635 * x | x + 1 | x ... | x - 1 | x
636 * This is really the combination of the above two cases, and
637 * the head has to end up at the start of the x-1 hole at the
638 * end of the log.
640 * In the 256k log case, we will read from the beginning to the
641 * end of the log and search for cycle numbers equal to x-1.
642 * We don't worry about the x+1 blocks that we encounter,
643 * because we know that they cannot be the head since the log
644 * started with x.
646 head_blk = log_bbnum;
647 stop_on_cycle = last_half_cycle - 1;
648 } else {
650 * In this case we want to find the first block with cycle
651 * number matching last_half_cycle. We expect the log to be
652 * some variation on
653 * x + 1 ... | x ... | x
654 * The first block with cycle number x (last_half_cycle) will
655 * be where the new head belongs. First we do a binary search
656 * for the first occurrence of last_half_cycle. The binary
657 * search may not be totally accurate, so then we scan back
658 * from there looking for occurrences of last_half_cycle before
659 * us. If that backwards scan wraps around the beginning of
660 * the log, then we look for occurrences of last_half_cycle - 1
661 * at the end of the log. The cases we're looking for look
662 * like
663 * v binary search stopped here
664 * x + 1 ... | x | x + 1 | x ... | x
665 * ^ but we want to locate this spot
666 * or
667 * <---------> less than scan distance
668 * x + 1 ... | x ... | x - 1 | x
669 * ^ we want to locate this spot
671 stop_on_cycle = last_half_cycle;
672 if ((error = xlog_find_cycle_start(log, bp, first_blk,
673 &head_blk, last_half_cycle)))
674 goto bp_err;
678 * Now validate the answer. Scan back some number of maximum possible
679 * blocks and make sure each one has the expected cycle number. The
680 * maximum is determined by the total possible amount of buffering
681 * in the in-core log. The following number can be made tighter if
682 * we actually look at the block size of the filesystem.
684 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
685 if (head_blk >= num_scan_bblks) {
687 * We are guaranteed that the entire check can be performed
688 * in one buffer.
690 start_blk = head_blk - num_scan_bblks;
691 if ((error = xlog_find_verify_cycle(log,
692 start_blk, num_scan_bblks,
693 stop_on_cycle, &new_blk)))
694 goto bp_err;
695 if (new_blk != -1)
696 head_blk = new_blk;
697 } else { /* need to read 2 parts of log */
699 * We are going to scan backwards in the log in two parts.
700 * First we scan the physical end of the log. In this part
701 * of the log, we are looking for blocks with cycle number
702 * last_half_cycle - 1.
703 * If we find one, then we know that the log starts there, as
704 * we've found a hole that didn't get written in going around
705 * the end of the physical log. The simple case for this is
706 * x + 1 ... | x ... | x - 1 | x
707 * <---------> less than scan distance
708 * If all of the blocks at the end of the log have cycle number
709 * last_half_cycle, then we check the blocks at the start of
710 * the log looking for occurrences of last_half_cycle. If we
711 * find one, then our current estimate for the location of the
712 * first occurrence of last_half_cycle is wrong and we move
713 * back to the hole we've found. This case looks like
714 * x + 1 ... | x | x + 1 | x ...
715 * ^ binary search stopped here
716 * Another case we need to handle that only occurs in 256k
717 * logs is
718 * x + 1 ... | x ... | x+1 | x ...
719 * ^ binary search stops here
720 * In a 256k log, the scan at the end of the log will see the
721 * x + 1 blocks. We need to skip past those since that is
722 * certainly not the head of the log. By searching for
723 * last_half_cycle-1 we accomplish that.
725 ASSERT(head_blk <= INT_MAX &&
726 (xfs_daddr_t) num_scan_bblks >= head_blk);
727 start_blk = log_bbnum - (num_scan_bblks - head_blk);
728 if ((error = xlog_find_verify_cycle(log, start_blk,
729 num_scan_bblks - (int)head_blk,
730 (stop_on_cycle - 1), &new_blk)))
731 goto bp_err;
732 if (new_blk != -1) {
733 head_blk = new_blk;
734 goto validate_head;
738 * Scan beginning of log now. The last part of the physical
739 * log is good. This scan needs to verify that it doesn't find
740 * the last_half_cycle.
742 start_blk = 0;
743 ASSERT(head_blk <= INT_MAX);
744 if ((error = xlog_find_verify_cycle(log,
745 start_blk, (int)head_blk,
746 stop_on_cycle, &new_blk)))
747 goto bp_err;
748 if (new_blk != -1)
749 head_blk = new_blk;
752 validate_head:
754 * Now we need to make sure head_blk is not pointing to a block in
755 * the middle of a log record.
757 num_scan_bblks = XLOG_REC_SHIFT(log);
758 if (head_blk >= num_scan_bblks) {
759 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
761 /* start ptr at last block ptr before head_blk */
762 if ((error = xlog_find_verify_log_record(log, start_blk,
763 &head_blk, 0)) == -1) {
764 error = XFS_ERROR(EIO);
765 goto bp_err;
766 } else if (error)
767 goto bp_err;
768 } else {
769 start_blk = 0;
770 ASSERT(head_blk <= INT_MAX);
771 if ((error = xlog_find_verify_log_record(log, start_blk,
772 &head_blk, 0)) == -1) {
773 /* We hit the beginning of the log during our search */
774 start_blk = log_bbnum - (num_scan_bblks - head_blk);
775 new_blk = log_bbnum;
776 ASSERT(start_blk <= INT_MAX &&
777 (xfs_daddr_t) log_bbnum-start_blk >= 0);
778 ASSERT(head_blk <= INT_MAX);
779 if ((error = xlog_find_verify_log_record(log,
780 start_blk, &new_blk,
781 (int)head_blk)) == -1) {
782 error = XFS_ERROR(EIO);
783 goto bp_err;
784 } else if (error)
785 goto bp_err;
786 if (new_blk != log_bbnum)
787 head_blk = new_blk;
788 } else if (error)
789 goto bp_err;
792 xlog_put_bp(bp);
793 if (head_blk == log_bbnum)
794 *return_head_blk = 0;
795 else
796 *return_head_blk = head_blk;
798 * When returning here, we have a good block number. Bad block
799 * means that during a previous crash, we didn't have a clean break
800 * from cycle number N to cycle number N-1. In this case, we need
801 * to find the first block with cycle number N-1.
803 return 0;
805 bp_err:
806 xlog_put_bp(bp);
808 if (error)
809 xlog_warn("XFS: failed to find log head");
810 return error;
814 * Find the sync block number or the tail of the log.
816 * This will be the block number of the last record to have its
817 * associated buffers synced to disk. Every log record header has
818 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
819 * to get a sync block number. The only concern is to figure out which
820 * log record header to believe.
822 * The following algorithm uses the log record header with the largest
823 * lsn. The entire log record does not need to be valid. We only care
824 * that the header is valid.
826 * We could speed up search by using current head_blk buffer, but it is not
827 * available.
829 STATIC int
830 xlog_find_tail(
831 xlog_t *log,
832 xfs_daddr_t *head_blk,
833 xfs_daddr_t *tail_blk)
835 xlog_rec_header_t *rhead;
836 xlog_op_header_t *op_head;
837 xfs_caddr_t offset = NULL;
838 xfs_buf_t *bp;
839 int error, i, found;
840 xfs_daddr_t umount_data_blk;
841 xfs_daddr_t after_umount_blk;
842 xfs_lsn_t tail_lsn;
843 int hblks;
845 found = 0;
848 * Find previous log record
850 if ((error = xlog_find_head(log, head_blk)))
851 return error;
853 bp = xlog_get_bp(log, 1);
854 if (!bp)
855 return ENOMEM;
856 if (*head_blk == 0) { /* special case */
857 error = xlog_bread(log, 0, 1, bp, &offset);
858 if (error)
859 goto done;
861 if (xlog_get_cycle(offset) == 0) {
862 *tail_blk = 0;
863 /* leave all other log inited values alone */
864 goto done;
869 * Search backwards looking for log record header block
871 ASSERT(*head_blk < INT_MAX);
872 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
873 error = xlog_bread(log, i, 1, bp, &offset);
874 if (error)
875 goto done;
877 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
878 found = 1;
879 break;
883 * If we haven't found the log record header block, start looking
884 * again from the end of the physical log. XXXmiken: There should be
885 * a check here to make sure we didn't search more than N blocks in
886 * the previous code.
888 if (!found) {
889 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
890 error = xlog_bread(log, i, 1, bp, &offset);
891 if (error)
892 goto done;
894 if (XLOG_HEADER_MAGIC_NUM ==
895 be32_to_cpu(*(__be32 *)offset)) {
896 found = 2;
897 break;
901 if (!found) {
902 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
903 ASSERT(0);
904 return XFS_ERROR(EIO);
907 /* find blk_no of tail of log */
908 rhead = (xlog_rec_header_t *)offset;
909 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
912 * Reset log values according to the state of the log when we
913 * crashed. In the case where head_blk == 0, we bump curr_cycle
914 * one because the next write starts a new cycle rather than
915 * continuing the cycle of the last good log record. At this
916 * point we have guaranteed that all partial log records have been
917 * accounted for. Therefore, we know that the last good log record
918 * written was complete and ended exactly on the end boundary
919 * of the physical log.
921 log->l_prev_block = i;
922 log->l_curr_block = (int)*head_blk;
923 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
924 if (found == 2)
925 log->l_curr_cycle++;
926 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
927 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
928 log->l_grant_reserve_cycle = log->l_curr_cycle;
929 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
930 log->l_grant_write_cycle = log->l_curr_cycle;
931 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
934 * Look for unmount record. If we find it, then we know there
935 * was a clean unmount. Since 'i' could be the last block in
936 * the physical log, we convert to a log block before comparing
937 * to the head_blk.
939 * Save the current tail lsn to use to pass to
940 * xlog_clear_stale_blocks() below. We won't want to clear the
941 * unmount record if there is one, so we pass the lsn of the
942 * unmount record rather than the block after it.
944 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
945 int h_size = be32_to_cpu(rhead->h_size);
946 int h_version = be32_to_cpu(rhead->h_version);
948 if ((h_version & XLOG_VERSION_2) &&
949 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
950 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
951 if (h_size % XLOG_HEADER_CYCLE_SIZE)
952 hblks++;
953 } else {
954 hblks = 1;
956 } else {
957 hblks = 1;
959 after_umount_blk = (i + hblks + (int)
960 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
961 tail_lsn = log->l_tail_lsn;
962 if (*head_blk == after_umount_blk &&
963 be32_to_cpu(rhead->h_num_logops) == 1) {
964 umount_data_blk = (i + hblks) % log->l_logBBsize;
965 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
966 if (error)
967 goto done;
969 op_head = (xlog_op_header_t *)offset;
970 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
972 * Set tail and last sync so that newly written
973 * log records will point recovery to after the
974 * current unmount record.
976 log->l_tail_lsn =
977 xlog_assign_lsn(log->l_curr_cycle,
978 after_umount_blk);
979 log->l_last_sync_lsn =
980 xlog_assign_lsn(log->l_curr_cycle,
981 after_umount_blk);
982 *tail_blk = after_umount_blk;
985 * Note that the unmount was clean. If the unmount
986 * was not clean, we need to know this to rebuild the
987 * superblock counters from the perag headers if we
988 * have a filesystem using non-persistent counters.
990 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
995 * Make sure that there are no blocks in front of the head
996 * with the same cycle number as the head. This can happen
997 * because we allow multiple outstanding log writes concurrently,
998 * and the later writes might make it out before earlier ones.
1000 * We use the lsn from before modifying it so that we'll never
1001 * overwrite the unmount record after a clean unmount.
1003 * Do this only if we are going to recover the filesystem
1005 * NOTE: This used to say "if (!readonly)"
1006 * However on Linux, we can & do recover a read-only filesystem.
1007 * We only skip recovery if NORECOVERY is specified on mount,
1008 * in which case we would not be here.
1010 * But... if the -device- itself is readonly, just skip this.
1011 * We can't recover this device anyway, so it won't matter.
1013 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1014 error = xlog_clear_stale_blocks(log, tail_lsn);
1016 done:
1017 xlog_put_bp(bp);
1019 if (error)
1020 xlog_warn("XFS: failed to locate log tail");
1021 return error;
1025 * Is the log zeroed at all?
1027 * The last binary search should be changed to perform an X block read
1028 * once X becomes small enough. You can then search linearly through
1029 * the X blocks. This will cut down on the number of reads we need to do.
1031 * If the log is partially zeroed, this routine will pass back the blkno
1032 * of the first block with cycle number 0. It won't have a complete LR
1033 * preceding it.
1035 * Return:
1036 * 0 => the log is completely written to
1037 * -1 => use *blk_no as the first block of the log
1038 * >0 => error has occurred
1040 STATIC int
1041 xlog_find_zeroed(
1042 xlog_t *log,
1043 xfs_daddr_t *blk_no)
1045 xfs_buf_t *bp;
1046 xfs_caddr_t offset;
1047 uint first_cycle, last_cycle;
1048 xfs_daddr_t new_blk, last_blk, start_blk;
1049 xfs_daddr_t num_scan_bblks;
1050 int error, log_bbnum = log->l_logBBsize;
1052 *blk_no = 0;
1054 /* check totally zeroed log */
1055 bp = xlog_get_bp(log, 1);
1056 if (!bp)
1057 return ENOMEM;
1058 error = xlog_bread(log, 0, 1, bp, &offset);
1059 if (error)
1060 goto bp_err;
1062 first_cycle = xlog_get_cycle(offset);
1063 if (first_cycle == 0) { /* completely zeroed log */
1064 *blk_no = 0;
1065 xlog_put_bp(bp);
1066 return -1;
1069 /* check partially zeroed log */
1070 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1071 if (error)
1072 goto bp_err;
1074 last_cycle = xlog_get_cycle(offset);
1075 if (last_cycle != 0) { /* log completely written to */
1076 xlog_put_bp(bp);
1077 return 0;
1078 } else if (first_cycle != 1) {
1080 * If the cycle of the last block is zero, the cycle of
1081 * the first block must be 1. If it's not, maybe we're
1082 * not looking at a log... Bail out.
1084 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1085 return XFS_ERROR(EINVAL);
1088 /* we have a partially zeroed log */
1089 last_blk = log_bbnum-1;
1090 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1091 goto bp_err;
1094 * Validate the answer. Because there is no way to guarantee that
1095 * the entire log is made up of log records which are the same size,
1096 * we scan over the defined maximum blocks. At this point, the maximum
1097 * is not chosen to mean anything special. XXXmiken
1099 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1100 ASSERT(num_scan_bblks <= INT_MAX);
1102 if (last_blk < num_scan_bblks)
1103 num_scan_bblks = last_blk;
1104 start_blk = last_blk - num_scan_bblks;
1107 * We search for any instances of cycle number 0 that occur before
1108 * our current estimate of the head. What we're trying to detect is
1109 * 1 ... | 0 | 1 | 0...
1110 * ^ binary search ends here
1112 if ((error = xlog_find_verify_cycle(log, start_blk,
1113 (int)num_scan_bblks, 0, &new_blk)))
1114 goto bp_err;
1115 if (new_blk != -1)
1116 last_blk = new_blk;
1119 * Potentially backup over partial log record write. We don't need
1120 * to search the end of the log because we know it is zero.
1122 if ((error = xlog_find_verify_log_record(log, start_blk,
1123 &last_blk, 0)) == -1) {
1124 error = XFS_ERROR(EIO);
1125 goto bp_err;
1126 } else if (error)
1127 goto bp_err;
1129 *blk_no = last_blk;
1130 bp_err:
1131 xlog_put_bp(bp);
1132 if (error)
1133 return error;
1134 return -1;
1138 * These are simple subroutines used by xlog_clear_stale_blocks() below
1139 * to initialize a buffer full of empty log record headers and write
1140 * them into the log.
1142 STATIC void
1143 xlog_add_record(
1144 xlog_t *log,
1145 xfs_caddr_t buf,
1146 int cycle,
1147 int block,
1148 int tail_cycle,
1149 int tail_block)
1151 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1153 memset(buf, 0, BBSIZE);
1154 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1155 recp->h_cycle = cpu_to_be32(cycle);
1156 recp->h_version = cpu_to_be32(
1157 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1158 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1159 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1160 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1161 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1164 STATIC int
1165 xlog_write_log_records(
1166 xlog_t *log,
1167 int cycle,
1168 int start_block,
1169 int blocks,
1170 int tail_cycle,
1171 int tail_block)
1173 xfs_caddr_t offset;
1174 xfs_buf_t *bp;
1175 int balign, ealign;
1176 int sectbb = log->l_sectBBsize;
1177 int end_block = start_block + blocks;
1178 int bufblks;
1179 int error = 0;
1180 int i, j = 0;
1183 * Greedily allocate a buffer big enough to handle the full
1184 * range of basic blocks to be written. If that fails, try
1185 * a smaller size. We need to be able to write at least a
1186 * log sector, or we're out of luck.
1188 bufblks = 1 << ffs(blocks);
1189 while (!(bp = xlog_get_bp(log, bufblks))) {
1190 bufblks >>= 1;
1191 if (bufblks < sectbb)
1192 return ENOMEM;
1195 /* We may need to do a read at the start to fill in part of
1196 * the buffer in the starting sector not covered by the first
1197 * write below.
1199 balign = round_down(start_block, sectbb);
1200 if (balign != start_block) {
1201 error = xlog_bread_noalign(log, start_block, 1, bp);
1202 if (error)
1203 goto out_put_bp;
1205 j = start_block - balign;
1208 for (i = start_block; i < end_block; i += bufblks) {
1209 int bcount, endcount;
1211 bcount = min(bufblks, end_block - start_block);
1212 endcount = bcount - j;
1214 /* We may need to do a read at the end to fill in part of
1215 * the buffer in the final sector not covered by the write.
1216 * If this is the same sector as the above read, skip it.
1218 ealign = round_down(end_block, sectbb);
1219 if (j == 0 && (start_block + endcount > ealign)) {
1220 offset = XFS_BUF_PTR(bp);
1221 balign = BBTOB(ealign - start_block);
1222 error = XFS_BUF_SET_PTR(bp, offset + balign,
1223 BBTOB(sectbb));
1224 if (error)
1225 break;
1227 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1228 if (error)
1229 break;
1231 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1232 if (error)
1233 break;
1236 offset = xlog_align(log, start_block, endcount, bp);
1237 for (; j < endcount; j++) {
1238 xlog_add_record(log, offset, cycle, i+j,
1239 tail_cycle, tail_block);
1240 offset += BBSIZE;
1242 error = xlog_bwrite(log, start_block, endcount, bp);
1243 if (error)
1244 break;
1245 start_block += endcount;
1246 j = 0;
1249 out_put_bp:
1250 xlog_put_bp(bp);
1251 return error;
1255 * This routine is called to blow away any incomplete log writes out
1256 * in front of the log head. We do this so that we won't become confused
1257 * if we come up, write only a little bit more, and then crash again.
1258 * If we leave the partial log records out there, this situation could
1259 * cause us to think those partial writes are valid blocks since they
1260 * have the current cycle number. We get rid of them by overwriting them
1261 * with empty log records with the old cycle number rather than the
1262 * current one.
1264 * The tail lsn is passed in rather than taken from
1265 * the log so that we will not write over the unmount record after a
1266 * clean unmount in a 512 block log. Doing so would leave the log without
1267 * any valid log records in it until a new one was written. If we crashed
1268 * during that time we would not be able to recover.
1270 STATIC int
1271 xlog_clear_stale_blocks(
1272 xlog_t *log,
1273 xfs_lsn_t tail_lsn)
1275 int tail_cycle, head_cycle;
1276 int tail_block, head_block;
1277 int tail_distance, max_distance;
1278 int distance;
1279 int error;
1281 tail_cycle = CYCLE_LSN(tail_lsn);
1282 tail_block = BLOCK_LSN(tail_lsn);
1283 head_cycle = log->l_curr_cycle;
1284 head_block = log->l_curr_block;
1287 * Figure out the distance between the new head of the log
1288 * and the tail. We want to write over any blocks beyond the
1289 * head that we may have written just before the crash, but
1290 * we don't want to overwrite the tail of the log.
1292 if (head_cycle == tail_cycle) {
1294 * The tail is behind the head in the physical log,
1295 * so the distance from the head to the tail is the
1296 * distance from the head to the end of the log plus
1297 * the distance from the beginning of the log to the
1298 * tail.
1300 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1301 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1302 XFS_ERRLEVEL_LOW, log->l_mp);
1303 return XFS_ERROR(EFSCORRUPTED);
1305 tail_distance = tail_block + (log->l_logBBsize - head_block);
1306 } else {
1308 * The head is behind the tail in the physical log,
1309 * so the distance from the head to the tail is just
1310 * the tail block minus the head block.
1312 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1313 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1314 XFS_ERRLEVEL_LOW, log->l_mp);
1315 return XFS_ERROR(EFSCORRUPTED);
1317 tail_distance = tail_block - head_block;
1321 * If the head is right up against the tail, we can't clear
1322 * anything.
1324 if (tail_distance <= 0) {
1325 ASSERT(tail_distance == 0);
1326 return 0;
1329 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1331 * Take the smaller of the maximum amount of outstanding I/O
1332 * we could have and the distance to the tail to clear out.
1333 * We take the smaller so that we don't overwrite the tail and
1334 * we don't waste all day writing from the head to the tail
1335 * for no reason.
1337 max_distance = MIN(max_distance, tail_distance);
1339 if ((head_block + max_distance) <= log->l_logBBsize) {
1341 * We can stomp all the blocks we need to without
1342 * wrapping around the end of the log. Just do it
1343 * in a single write. Use the cycle number of the
1344 * current cycle minus one so that the log will look like:
1345 * n ... | n - 1 ...
1347 error = xlog_write_log_records(log, (head_cycle - 1),
1348 head_block, max_distance, tail_cycle,
1349 tail_block);
1350 if (error)
1351 return error;
1352 } else {
1354 * We need to wrap around the end of the physical log in
1355 * order to clear all the blocks. Do it in two separate
1356 * I/Os. The first write should be from the head to the
1357 * end of the physical log, and it should use the current
1358 * cycle number minus one just like above.
1360 distance = log->l_logBBsize - head_block;
1361 error = xlog_write_log_records(log, (head_cycle - 1),
1362 head_block, distance, tail_cycle,
1363 tail_block);
1365 if (error)
1366 return error;
1369 * Now write the blocks at the start of the physical log.
1370 * This writes the remainder of the blocks we want to clear.
1371 * It uses the current cycle number since we're now on the
1372 * same cycle as the head so that we get:
1373 * n ... n ... | n - 1 ...
1374 * ^^^^^ blocks we're writing
1376 distance = max_distance - (log->l_logBBsize - head_block);
1377 error = xlog_write_log_records(log, head_cycle, 0, distance,
1378 tail_cycle, tail_block);
1379 if (error)
1380 return error;
1383 return 0;
1386 /******************************************************************************
1388 * Log recover routines
1390 ******************************************************************************
1393 STATIC xlog_recover_t *
1394 xlog_recover_find_tid(
1395 struct hlist_head *head,
1396 xlog_tid_t tid)
1398 xlog_recover_t *trans;
1399 struct hlist_node *n;
1401 hlist_for_each_entry(trans, n, head, r_list) {
1402 if (trans->r_log_tid == tid)
1403 return trans;
1405 return NULL;
1408 STATIC void
1409 xlog_recover_new_tid(
1410 struct hlist_head *head,
1411 xlog_tid_t tid,
1412 xfs_lsn_t lsn)
1414 xlog_recover_t *trans;
1416 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1417 trans->r_log_tid = tid;
1418 trans->r_lsn = lsn;
1419 INIT_LIST_HEAD(&trans->r_itemq);
1421 INIT_HLIST_NODE(&trans->r_list);
1422 hlist_add_head(&trans->r_list, head);
1425 STATIC void
1426 xlog_recover_add_item(
1427 struct list_head *head)
1429 xlog_recover_item_t *item;
1431 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1432 INIT_LIST_HEAD(&item->ri_list);
1433 list_add_tail(&item->ri_list, head);
1436 STATIC int
1437 xlog_recover_add_to_cont_trans(
1438 struct log *log,
1439 xlog_recover_t *trans,
1440 xfs_caddr_t dp,
1441 int len)
1443 xlog_recover_item_t *item;
1444 xfs_caddr_t ptr, old_ptr;
1445 int old_len;
1447 if (list_empty(&trans->r_itemq)) {
1448 /* finish copying rest of trans header */
1449 xlog_recover_add_item(&trans->r_itemq);
1450 ptr = (xfs_caddr_t) &trans->r_theader +
1451 sizeof(xfs_trans_header_t) - len;
1452 memcpy(ptr, dp, len); /* d, s, l */
1453 return 0;
1455 /* take the tail entry */
1456 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1458 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1459 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1461 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1462 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1463 item->ri_buf[item->ri_cnt-1].i_len += len;
1464 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1465 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1466 return 0;
1470 * The next region to add is the start of a new region. It could be
1471 * a whole region or it could be the first part of a new region. Because
1472 * of this, the assumption here is that the type and size fields of all
1473 * format structures fit into the first 32 bits of the structure.
1475 * This works because all regions must be 32 bit aligned. Therefore, we
1476 * either have both fields or we have neither field. In the case we have
1477 * neither field, the data part of the region is zero length. We only have
1478 * a log_op_header and can throw away the header since a new one will appear
1479 * later. If we have at least 4 bytes, then we can determine how many regions
1480 * will appear in the current log item.
1482 STATIC int
1483 xlog_recover_add_to_trans(
1484 struct log *log,
1485 xlog_recover_t *trans,
1486 xfs_caddr_t dp,
1487 int len)
1489 xfs_inode_log_format_t *in_f; /* any will do */
1490 xlog_recover_item_t *item;
1491 xfs_caddr_t ptr;
1493 if (!len)
1494 return 0;
1495 if (list_empty(&trans->r_itemq)) {
1496 /* we need to catch log corruptions here */
1497 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1498 xlog_warn("XFS: xlog_recover_add_to_trans: "
1499 "bad header magic number");
1500 ASSERT(0);
1501 return XFS_ERROR(EIO);
1503 if (len == sizeof(xfs_trans_header_t))
1504 xlog_recover_add_item(&trans->r_itemq);
1505 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1506 return 0;
1509 ptr = kmem_alloc(len, KM_SLEEP);
1510 memcpy(ptr, dp, len);
1511 in_f = (xfs_inode_log_format_t *)ptr;
1513 /* take the tail entry */
1514 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1515 if (item->ri_total != 0 &&
1516 item->ri_total == item->ri_cnt) {
1517 /* tail item is in use, get a new one */
1518 xlog_recover_add_item(&trans->r_itemq);
1519 item = list_entry(trans->r_itemq.prev,
1520 xlog_recover_item_t, ri_list);
1523 if (item->ri_total == 0) { /* first region to be added */
1524 if (in_f->ilf_size == 0 ||
1525 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1526 xlog_warn(
1527 "XFS: bad number of regions (%d) in inode log format",
1528 in_f->ilf_size);
1529 ASSERT(0);
1530 return XFS_ERROR(EIO);
1533 item->ri_total = in_f->ilf_size;
1534 item->ri_buf =
1535 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1536 KM_SLEEP);
1538 ASSERT(item->ri_total > item->ri_cnt);
1539 /* Description region is ri_buf[0] */
1540 item->ri_buf[item->ri_cnt].i_addr = ptr;
1541 item->ri_buf[item->ri_cnt].i_len = len;
1542 item->ri_cnt++;
1543 trace_xfs_log_recover_item_add(log, trans, item, 0);
1544 return 0;
1548 * Sort the log items in the transaction. Cancelled buffers need
1549 * to be put first so they are processed before any items that might
1550 * modify the buffers. If they are cancelled, then the modifications
1551 * don't need to be replayed.
1553 STATIC int
1554 xlog_recover_reorder_trans(
1555 struct log *log,
1556 xlog_recover_t *trans,
1557 int pass)
1559 xlog_recover_item_t *item, *n;
1560 LIST_HEAD(sort_list);
1562 list_splice_init(&trans->r_itemq, &sort_list);
1563 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1564 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1566 switch (ITEM_TYPE(item)) {
1567 case XFS_LI_BUF:
1568 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1569 trace_xfs_log_recover_item_reorder_head(log,
1570 trans, item, pass);
1571 list_move(&item->ri_list, &trans->r_itemq);
1572 break;
1574 case XFS_LI_INODE:
1575 case XFS_LI_DQUOT:
1576 case XFS_LI_QUOTAOFF:
1577 case XFS_LI_EFD:
1578 case XFS_LI_EFI:
1579 trace_xfs_log_recover_item_reorder_tail(log,
1580 trans, item, pass);
1581 list_move_tail(&item->ri_list, &trans->r_itemq);
1582 break;
1583 default:
1584 xlog_warn(
1585 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1586 ASSERT(0);
1587 return XFS_ERROR(EIO);
1590 ASSERT(list_empty(&sort_list));
1591 return 0;
1595 * Build up the table of buf cancel records so that we don't replay
1596 * cancelled data in the second pass. For buffer records that are
1597 * not cancel records, there is nothing to do here so we just return.
1599 * If we get a cancel record which is already in the table, this indicates
1600 * that the buffer was cancelled multiple times. In order to ensure
1601 * that during pass 2 we keep the record in the table until we reach its
1602 * last occurrence in the log, we keep a reference count in the cancel
1603 * record in the table to tell us how many times we expect to see this
1604 * record during the second pass.
1606 STATIC void
1607 xlog_recover_do_buffer_pass1(
1608 xlog_t *log,
1609 xfs_buf_log_format_t *buf_f)
1611 xfs_buf_cancel_t *bcp;
1612 xfs_buf_cancel_t *nextp;
1613 xfs_buf_cancel_t *prevp;
1614 xfs_buf_cancel_t **bucket;
1615 xfs_daddr_t blkno = 0;
1616 uint len = 0;
1617 ushort flags = 0;
1619 switch (buf_f->blf_type) {
1620 case XFS_LI_BUF:
1621 blkno = buf_f->blf_blkno;
1622 len = buf_f->blf_len;
1623 flags = buf_f->blf_flags;
1624 break;
1628 * If this isn't a cancel buffer item, then just return.
1630 if (!(flags & XFS_BLF_CANCEL)) {
1631 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1632 return;
1636 * Insert an xfs_buf_cancel record into the hash table of
1637 * them. If there is already an identical record, bump
1638 * its reference count.
1640 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1641 XLOG_BC_TABLE_SIZE];
1643 * If the hash bucket is empty then just insert a new record into
1644 * the bucket.
1646 if (*bucket == NULL) {
1647 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1648 KM_SLEEP);
1649 bcp->bc_blkno = blkno;
1650 bcp->bc_len = len;
1651 bcp->bc_refcount = 1;
1652 bcp->bc_next = NULL;
1653 *bucket = bcp;
1654 return;
1658 * The hash bucket is not empty, so search for duplicates of our
1659 * record. If we find one them just bump its refcount. If not
1660 * then add us at the end of the list.
1662 prevp = NULL;
1663 nextp = *bucket;
1664 while (nextp != NULL) {
1665 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1666 nextp->bc_refcount++;
1667 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1668 return;
1670 prevp = nextp;
1671 nextp = nextp->bc_next;
1673 ASSERT(prevp != NULL);
1674 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1675 KM_SLEEP);
1676 bcp->bc_blkno = blkno;
1677 bcp->bc_len = len;
1678 bcp->bc_refcount = 1;
1679 bcp->bc_next = NULL;
1680 prevp->bc_next = bcp;
1681 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1685 * Check to see whether the buffer being recovered has a corresponding
1686 * entry in the buffer cancel record table. If it does then return 1
1687 * so that it will be cancelled, otherwise return 0. If the buffer is
1688 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1689 * the refcount on the entry in the table and remove it from the table
1690 * if this is the last reference.
1692 * We remove the cancel record from the table when we encounter its
1693 * last occurrence in the log so that if the same buffer is re-used
1694 * again after its last cancellation we actually replay the changes
1695 * made at that point.
1697 STATIC int
1698 xlog_check_buffer_cancelled(
1699 xlog_t *log,
1700 xfs_daddr_t blkno,
1701 uint len,
1702 ushort flags)
1704 xfs_buf_cancel_t *bcp;
1705 xfs_buf_cancel_t *prevp;
1706 xfs_buf_cancel_t **bucket;
1708 if (log->l_buf_cancel_table == NULL) {
1710 * There is nothing in the table built in pass one,
1711 * so this buffer must not be cancelled.
1713 ASSERT(!(flags & XFS_BLF_CANCEL));
1714 return 0;
1717 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1718 XLOG_BC_TABLE_SIZE];
1719 bcp = *bucket;
1720 if (bcp == NULL) {
1722 * There is no corresponding entry in the table built
1723 * in pass one, so this buffer has not been cancelled.
1725 ASSERT(!(flags & XFS_BLF_CANCEL));
1726 return 0;
1730 * Search for an entry in the buffer cancel table that
1731 * matches our buffer.
1733 prevp = NULL;
1734 while (bcp != NULL) {
1735 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1737 * We've go a match, so return 1 so that the
1738 * recovery of this buffer is cancelled.
1739 * If this buffer is actually a buffer cancel
1740 * log item, then decrement the refcount on the
1741 * one in the table and remove it if this is the
1742 * last reference.
1744 if (flags & XFS_BLF_CANCEL) {
1745 bcp->bc_refcount--;
1746 if (bcp->bc_refcount == 0) {
1747 if (prevp == NULL) {
1748 *bucket = bcp->bc_next;
1749 } else {
1750 prevp->bc_next = bcp->bc_next;
1752 kmem_free(bcp);
1755 return 1;
1757 prevp = bcp;
1758 bcp = bcp->bc_next;
1761 * We didn't find a corresponding entry in the table, so
1762 * return 0 so that the buffer is NOT cancelled.
1764 ASSERT(!(flags & XFS_BLF_CANCEL));
1765 return 0;
1768 STATIC int
1769 xlog_recover_do_buffer_pass2(
1770 xlog_t *log,
1771 xfs_buf_log_format_t *buf_f)
1773 xfs_daddr_t blkno = 0;
1774 ushort flags = 0;
1775 uint len = 0;
1777 switch (buf_f->blf_type) {
1778 case XFS_LI_BUF:
1779 blkno = buf_f->blf_blkno;
1780 flags = buf_f->blf_flags;
1781 len = buf_f->blf_len;
1782 break;
1785 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1789 * Perform recovery for a buffer full of inodes. In these buffers,
1790 * the only data which should be recovered is that which corresponds
1791 * to the di_next_unlinked pointers in the on disk inode structures.
1792 * The rest of the data for the inodes is always logged through the
1793 * inodes themselves rather than the inode buffer and is recovered
1794 * in xlog_recover_do_inode_trans().
1796 * The only time when buffers full of inodes are fully recovered is
1797 * when the buffer is full of newly allocated inodes. In this case
1798 * the buffer will not be marked as an inode buffer and so will be
1799 * sent to xlog_recover_do_reg_buffer() below during recovery.
1801 STATIC int
1802 xlog_recover_do_inode_buffer(
1803 xfs_mount_t *mp,
1804 xlog_recover_item_t *item,
1805 xfs_buf_t *bp,
1806 xfs_buf_log_format_t *buf_f)
1808 int i;
1809 int item_index;
1810 int bit;
1811 int nbits;
1812 int reg_buf_offset;
1813 int reg_buf_bytes;
1814 int next_unlinked_offset;
1815 int inodes_per_buf;
1816 xfs_agino_t *logged_nextp;
1817 xfs_agino_t *buffer_nextp;
1818 unsigned int *data_map = NULL;
1819 unsigned int map_size = 0;
1821 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1823 switch (buf_f->blf_type) {
1824 case XFS_LI_BUF:
1825 data_map = buf_f->blf_data_map;
1826 map_size = buf_f->blf_map_size;
1827 break;
1830 * Set the variables corresponding to the current region to
1831 * 0 so that we'll initialize them on the first pass through
1832 * the loop.
1834 reg_buf_offset = 0;
1835 reg_buf_bytes = 0;
1836 bit = 0;
1837 nbits = 0;
1838 item_index = 0;
1839 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1840 for (i = 0; i < inodes_per_buf; i++) {
1841 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1842 offsetof(xfs_dinode_t, di_next_unlinked);
1844 while (next_unlinked_offset >=
1845 (reg_buf_offset + reg_buf_bytes)) {
1847 * The next di_next_unlinked field is beyond
1848 * the current logged region. Find the next
1849 * logged region that contains or is beyond
1850 * the current di_next_unlinked field.
1852 bit += nbits;
1853 bit = xfs_next_bit(data_map, map_size, bit);
1856 * If there are no more logged regions in the
1857 * buffer, then we're done.
1859 if (bit == -1) {
1860 return 0;
1863 nbits = xfs_contig_bits(data_map, map_size,
1864 bit);
1865 ASSERT(nbits > 0);
1866 reg_buf_offset = bit << XFS_BLF_SHIFT;
1867 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1868 item_index++;
1872 * If the current logged region starts after the current
1873 * di_next_unlinked field, then move on to the next
1874 * di_next_unlinked field.
1876 if (next_unlinked_offset < reg_buf_offset) {
1877 continue;
1880 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1881 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1882 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1885 * The current logged region contains a copy of the
1886 * current di_next_unlinked field. Extract its value
1887 * and copy it to the buffer copy.
1889 logged_nextp = item->ri_buf[item_index].i_addr +
1890 next_unlinked_offset - reg_buf_offset;
1891 if (unlikely(*logged_nextp == 0)) {
1892 xfs_fs_cmn_err(CE_ALERT, mp,
1893 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1894 item, bp);
1895 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1896 XFS_ERRLEVEL_LOW, mp);
1897 return XFS_ERROR(EFSCORRUPTED);
1900 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1901 next_unlinked_offset);
1902 *buffer_nextp = *logged_nextp;
1905 return 0;
1909 * Perform a 'normal' buffer recovery. Each logged region of the
1910 * buffer should be copied over the corresponding region in the
1911 * given buffer. The bitmap in the buf log format structure indicates
1912 * where to place the logged data.
1914 /*ARGSUSED*/
1915 STATIC void
1916 xlog_recover_do_reg_buffer(
1917 struct xfs_mount *mp,
1918 xlog_recover_item_t *item,
1919 xfs_buf_t *bp,
1920 xfs_buf_log_format_t *buf_f)
1922 int i;
1923 int bit;
1924 int nbits;
1925 unsigned int *data_map = NULL;
1926 unsigned int map_size = 0;
1927 int error;
1929 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1931 switch (buf_f->blf_type) {
1932 case XFS_LI_BUF:
1933 data_map = buf_f->blf_data_map;
1934 map_size = buf_f->blf_map_size;
1935 break;
1937 bit = 0;
1938 i = 1; /* 0 is the buf format structure */
1939 while (1) {
1940 bit = xfs_next_bit(data_map, map_size, bit);
1941 if (bit == -1)
1942 break;
1943 nbits = xfs_contig_bits(data_map, map_size, bit);
1944 ASSERT(nbits > 0);
1945 ASSERT(item->ri_buf[i].i_addr != NULL);
1946 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1947 ASSERT(XFS_BUF_COUNT(bp) >=
1948 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1951 * Do a sanity check if this is a dquot buffer. Just checking
1952 * the first dquot in the buffer should do. XXXThis is
1953 * probably a good thing to do for other buf types also.
1955 error = 0;
1956 if (buf_f->blf_flags &
1957 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1958 if (item->ri_buf[i].i_addr == NULL) {
1959 cmn_err(CE_ALERT,
1960 "XFS: NULL dquot in %s.", __func__);
1961 goto next;
1963 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1964 cmn_err(CE_ALERT,
1965 "XFS: dquot too small (%d) in %s.",
1966 item->ri_buf[i].i_len, __func__);
1967 goto next;
1969 error = xfs_qm_dqcheck(item->ri_buf[i].i_addr,
1970 -1, 0, XFS_QMOPT_DOWARN,
1971 "dquot_buf_recover");
1972 if (error)
1973 goto next;
1976 memcpy(xfs_buf_offset(bp,
1977 (uint)bit << XFS_BLF_SHIFT), /* dest */
1978 item->ri_buf[i].i_addr, /* source */
1979 nbits<<XFS_BLF_SHIFT); /* length */
1980 next:
1981 i++;
1982 bit += nbits;
1985 /* Shouldn't be any more regions */
1986 ASSERT(i == item->ri_total);
1990 * Do some primitive error checking on ondisk dquot data structures.
1993 xfs_qm_dqcheck(
1994 xfs_disk_dquot_t *ddq,
1995 xfs_dqid_t id,
1996 uint type, /* used only when IO_dorepair is true */
1997 uint flags,
1998 char *str)
2000 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2001 int errs = 0;
2004 * We can encounter an uninitialized dquot buffer for 2 reasons:
2005 * 1. If we crash while deleting the quotainode(s), and those blks got
2006 * used for user data. This is because we take the path of regular
2007 * file deletion; however, the size field of quotainodes is never
2008 * updated, so all the tricks that we play in itruncate_finish
2009 * don't quite matter.
2011 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2012 * But the allocation will be replayed so we'll end up with an
2013 * uninitialized quota block.
2015 * This is all fine; things are still consistent, and we haven't lost
2016 * any quota information. Just don't complain about bad dquot blks.
2018 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2019 if (flags & XFS_QMOPT_DOWARN)
2020 cmn_err(CE_ALERT,
2021 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2022 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2023 errs++;
2025 if (ddq->d_version != XFS_DQUOT_VERSION) {
2026 if (flags & XFS_QMOPT_DOWARN)
2027 cmn_err(CE_ALERT,
2028 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2029 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2030 errs++;
2033 if (ddq->d_flags != XFS_DQ_USER &&
2034 ddq->d_flags != XFS_DQ_PROJ &&
2035 ddq->d_flags != XFS_DQ_GROUP) {
2036 if (flags & XFS_QMOPT_DOWARN)
2037 cmn_err(CE_ALERT,
2038 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2039 str, id, ddq->d_flags);
2040 errs++;
2043 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2044 if (flags & XFS_QMOPT_DOWARN)
2045 cmn_err(CE_ALERT,
2046 "%s : ondisk-dquot 0x%p, ID mismatch: "
2047 "0x%x expected, found id 0x%x",
2048 str, ddq, id, be32_to_cpu(ddq->d_id));
2049 errs++;
2052 if (!errs && ddq->d_id) {
2053 if (ddq->d_blk_softlimit &&
2054 be64_to_cpu(ddq->d_bcount) >=
2055 be64_to_cpu(ddq->d_blk_softlimit)) {
2056 if (!ddq->d_btimer) {
2057 if (flags & XFS_QMOPT_DOWARN)
2058 cmn_err(CE_ALERT,
2059 "%s : Dquot ID 0x%x (0x%p) "
2060 "BLK TIMER NOT STARTED",
2061 str, (int)be32_to_cpu(ddq->d_id), ddq);
2062 errs++;
2065 if (ddq->d_ino_softlimit &&
2066 be64_to_cpu(ddq->d_icount) >=
2067 be64_to_cpu(ddq->d_ino_softlimit)) {
2068 if (!ddq->d_itimer) {
2069 if (flags & XFS_QMOPT_DOWARN)
2070 cmn_err(CE_ALERT,
2071 "%s : Dquot ID 0x%x (0x%p) "
2072 "INODE TIMER NOT STARTED",
2073 str, (int)be32_to_cpu(ddq->d_id), ddq);
2074 errs++;
2077 if (ddq->d_rtb_softlimit &&
2078 be64_to_cpu(ddq->d_rtbcount) >=
2079 be64_to_cpu(ddq->d_rtb_softlimit)) {
2080 if (!ddq->d_rtbtimer) {
2081 if (flags & XFS_QMOPT_DOWARN)
2082 cmn_err(CE_ALERT,
2083 "%s : Dquot ID 0x%x (0x%p) "
2084 "RTBLK TIMER NOT STARTED",
2085 str, (int)be32_to_cpu(ddq->d_id), ddq);
2086 errs++;
2091 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2092 return errs;
2094 if (flags & XFS_QMOPT_DOWARN)
2095 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2098 * Typically, a repair is only requested by quotacheck.
2100 ASSERT(id != -1);
2101 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2102 memset(d, 0, sizeof(xfs_dqblk_t));
2104 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2105 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2106 d->dd_diskdq.d_flags = type;
2107 d->dd_diskdq.d_id = cpu_to_be32(id);
2109 return errs;
2113 * Perform a dquot buffer recovery.
2114 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2115 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2116 * Else, treat it as a regular buffer and do recovery.
2118 STATIC void
2119 xlog_recover_do_dquot_buffer(
2120 xfs_mount_t *mp,
2121 xlog_t *log,
2122 xlog_recover_item_t *item,
2123 xfs_buf_t *bp,
2124 xfs_buf_log_format_t *buf_f)
2126 uint type;
2128 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2131 * Filesystems are required to send in quota flags at mount time.
2133 if (mp->m_qflags == 0) {
2134 return;
2137 type = 0;
2138 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2139 type |= XFS_DQ_USER;
2140 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2141 type |= XFS_DQ_PROJ;
2142 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2143 type |= XFS_DQ_GROUP;
2145 * This type of quotas was turned off, so ignore this buffer
2147 if (log->l_quotaoffs_flag & type)
2148 return;
2150 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2154 * This routine replays a modification made to a buffer at runtime.
2155 * There are actually two types of buffer, regular and inode, which
2156 * are handled differently. Inode buffers are handled differently
2157 * in that we only recover a specific set of data from them, namely
2158 * the inode di_next_unlinked fields. This is because all other inode
2159 * data is actually logged via inode records and any data we replay
2160 * here which overlaps that may be stale.
2162 * When meta-data buffers are freed at run time we log a buffer item
2163 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2164 * of the buffer in the log should not be replayed at recovery time.
2165 * This is so that if the blocks covered by the buffer are reused for
2166 * file data before we crash we don't end up replaying old, freed
2167 * meta-data into a user's file.
2169 * To handle the cancellation of buffer log items, we make two passes
2170 * over the log during recovery. During the first we build a table of
2171 * those buffers which have been cancelled, and during the second we
2172 * only replay those buffers which do not have corresponding cancel
2173 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2174 * for more details on the implementation of the table of cancel records.
2176 STATIC int
2177 xlog_recover_do_buffer_trans(
2178 xlog_t *log,
2179 xlog_recover_item_t *item,
2180 int pass)
2182 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2183 xfs_mount_t *mp;
2184 xfs_buf_t *bp;
2185 int error;
2186 int cancel;
2187 xfs_daddr_t blkno;
2188 int len;
2189 ushort flags;
2190 uint buf_flags;
2192 if (pass == XLOG_RECOVER_PASS1) {
2194 * In this pass we're only looking for buf items
2195 * with the XFS_BLF_CANCEL bit set.
2197 xlog_recover_do_buffer_pass1(log, buf_f);
2198 return 0;
2199 } else {
2201 * In this pass we want to recover all the buffers
2202 * which have not been cancelled and are not
2203 * cancellation buffers themselves. The routine
2204 * we call here will tell us whether or not to
2205 * continue with the replay of this buffer.
2207 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2208 if (cancel) {
2209 trace_xfs_log_recover_buf_cancel(log, buf_f);
2210 return 0;
2213 trace_xfs_log_recover_buf_recover(log, buf_f);
2214 switch (buf_f->blf_type) {
2215 case XFS_LI_BUF:
2216 blkno = buf_f->blf_blkno;
2217 len = buf_f->blf_len;
2218 flags = buf_f->blf_flags;
2219 break;
2220 default:
2221 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2222 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2223 buf_f->blf_type, log->l_mp->m_logname ?
2224 log->l_mp->m_logname : "internal");
2225 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2226 XFS_ERRLEVEL_LOW, log->l_mp);
2227 return XFS_ERROR(EFSCORRUPTED);
2230 mp = log->l_mp;
2231 buf_flags = XBF_LOCK;
2232 if (!(flags & XFS_BLF_INODE_BUF))
2233 buf_flags |= XBF_MAPPED;
2235 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
2236 if (XFS_BUF_ISERROR(bp)) {
2237 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2238 bp, blkno);
2239 error = XFS_BUF_GETERROR(bp);
2240 xfs_buf_relse(bp);
2241 return error;
2244 error = 0;
2245 if (flags & XFS_BLF_INODE_BUF) {
2246 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2247 } else if (flags &
2248 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2249 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2250 } else {
2251 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2253 if (error)
2254 return XFS_ERROR(error);
2257 * Perform delayed write on the buffer. Asynchronous writes will be
2258 * slower when taking into account all the buffers to be flushed.
2260 * Also make sure that only inode buffers with good sizes stay in
2261 * the buffer cache. The kernel moves inodes in buffers of 1 block
2262 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2263 * buffers in the log can be a different size if the log was generated
2264 * by an older kernel using unclustered inode buffers or a newer kernel
2265 * running with a different inode cluster size. Regardless, if the
2266 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2267 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2268 * the buffer out of the buffer cache so that the buffer won't
2269 * overlap with future reads of those inodes.
2271 if (XFS_DINODE_MAGIC ==
2272 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2273 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2274 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2275 XFS_BUF_STALE(bp);
2276 error = xfs_bwrite(mp, bp);
2277 } else {
2278 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2279 bp->b_mount = mp;
2280 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2281 xfs_bdwrite(mp, bp);
2284 return (error);
2287 STATIC int
2288 xlog_recover_do_inode_trans(
2289 xlog_t *log,
2290 xlog_recover_item_t *item,
2291 int pass)
2293 xfs_inode_log_format_t *in_f;
2294 xfs_mount_t *mp;
2295 xfs_buf_t *bp;
2296 xfs_dinode_t *dip;
2297 xfs_ino_t ino;
2298 int len;
2299 xfs_caddr_t src;
2300 xfs_caddr_t dest;
2301 int error;
2302 int attr_index;
2303 uint fields;
2304 xfs_icdinode_t *dicp;
2305 int need_free = 0;
2307 if (pass == XLOG_RECOVER_PASS1) {
2308 return 0;
2311 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2312 in_f = item->ri_buf[0].i_addr;
2313 } else {
2314 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2315 need_free = 1;
2316 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2317 if (error)
2318 goto error;
2320 ino = in_f->ilf_ino;
2321 mp = log->l_mp;
2324 * Inode buffers can be freed, look out for it,
2325 * and do not replay the inode.
2327 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2328 in_f->ilf_len, 0)) {
2329 error = 0;
2330 trace_xfs_log_recover_inode_cancel(log, in_f);
2331 goto error;
2333 trace_xfs_log_recover_inode_recover(log, in_f);
2335 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2336 XBF_LOCK);
2337 if (XFS_BUF_ISERROR(bp)) {
2338 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2339 bp, in_f->ilf_blkno);
2340 error = XFS_BUF_GETERROR(bp);
2341 xfs_buf_relse(bp);
2342 goto error;
2344 error = 0;
2345 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2346 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2349 * Make sure the place we're flushing out to really looks
2350 * like an inode!
2352 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2353 xfs_buf_relse(bp);
2354 xfs_fs_cmn_err(CE_ALERT, mp,
2355 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2356 dip, bp, ino);
2357 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2358 XFS_ERRLEVEL_LOW, mp);
2359 error = EFSCORRUPTED;
2360 goto error;
2362 dicp = item->ri_buf[1].i_addr;
2363 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2364 xfs_buf_relse(bp);
2365 xfs_fs_cmn_err(CE_ALERT, mp,
2366 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2367 item, ino);
2368 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2369 XFS_ERRLEVEL_LOW, mp);
2370 error = EFSCORRUPTED;
2371 goto error;
2374 /* Skip replay when the on disk inode is newer than the log one */
2375 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2377 * Deal with the wrap case, DI_MAX_FLUSH is less
2378 * than smaller numbers
2380 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2381 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2382 /* do nothing */
2383 } else {
2384 xfs_buf_relse(bp);
2385 trace_xfs_log_recover_inode_skip(log, in_f);
2386 error = 0;
2387 goto error;
2390 /* Take the opportunity to reset the flush iteration count */
2391 dicp->di_flushiter = 0;
2393 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2394 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2395 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2396 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2397 XFS_ERRLEVEL_LOW, mp, dicp);
2398 xfs_buf_relse(bp);
2399 xfs_fs_cmn_err(CE_ALERT, mp,
2400 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2401 item, dip, bp, ino);
2402 error = EFSCORRUPTED;
2403 goto error;
2405 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2406 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2407 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2408 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2409 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2410 XFS_ERRLEVEL_LOW, mp, dicp);
2411 xfs_buf_relse(bp);
2412 xfs_fs_cmn_err(CE_ALERT, mp,
2413 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2414 item, dip, bp, ino);
2415 error = EFSCORRUPTED;
2416 goto error;
2419 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2420 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2421 XFS_ERRLEVEL_LOW, mp, dicp);
2422 xfs_buf_relse(bp);
2423 xfs_fs_cmn_err(CE_ALERT, mp,
2424 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2425 item, dip, bp, ino,
2426 dicp->di_nextents + dicp->di_anextents,
2427 dicp->di_nblocks);
2428 error = EFSCORRUPTED;
2429 goto error;
2431 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2432 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2433 XFS_ERRLEVEL_LOW, mp, dicp);
2434 xfs_buf_relse(bp);
2435 xfs_fs_cmn_err(CE_ALERT, mp,
2436 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2437 item, dip, bp, ino, dicp->di_forkoff);
2438 error = EFSCORRUPTED;
2439 goto error;
2441 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2442 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2443 XFS_ERRLEVEL_LOW, mp, dicp);
2444 xfs_buf_relse(bp);
2445 xfs_fs_cmn_err(CE_ALERT, mp,
2446 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2447 item->ri_buf[1].i_len, item);
2448 error = EFSCORRUPTED;
2449 goto error;
2452 /* The core is in in-core format */
2453 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2455 /* the rest is in on-disk format */
2456 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2457 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2458 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2459 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2462 fields = in_f->ilf_fields;
2463 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2464 case XFS_ILOG_DEV:
2465 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2466 break;
2467 case XFS_ILOG_UUID:
2468 memcpy(XFS_DFORK_DPTR(dip),
2469 &in_f->ilf_u.ilfu_uuid,
2470 sizeof(uuid_t));
2471 break;
2474 if (in_f->ilf_size == 2)
2475 goto write_inode_buffer;
2476 len = item->ri_buf[2].i_len;
2477 src = item->ri_buf[2].i_addr;
2478 ASSERT(in_f->ilf_size <= 4);
2479 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2480 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2481 (len == in_f->ilf_dsize));
2483 switch (fields & XFS_ILOG_DFORK) {
2484 case XFS_ILOG_DDATA:
2485 case XFS_ILOG_DEXT:
2486 memcpy(XFS_DFORK_DPTR(dip), src, len);
2487 break;
2489 case XFS_ILOG_DBROOT:
2490 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2491 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2492 XFS_DFORK_DSIZE(dip, mp));
2493 break;
2495 default:
2497 * There are no data fork flags set.
2499 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2500 break;
2504 * If we logged any attribute data, recover it. There may or
2505 * may not have been any other non-core data logged in this
2506 * transaction.
2508 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2509 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2510 attr_index = 3;
2511 } else {
2512 attr_index = 2;
2514 len = item->ri_buf[attr_index].i_len;
2515 src = item->ri_buf[attr_index].i_addr;
2516 ASSERT(len == in_f->ilf_asize);
2518 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2519 case XFS_ILOG_ADATA:
2520 case XFS_ILOG_AEXT:
2521 dest = XFS_DFORK_APTR(dip);
2522 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2523 memcpy(dest, src, len);
2524 break;
2526 case XFS_ILOG_ABROOT:
2527 dest = XFS_DFORK_APTR(dip);
2528 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2529 len, (xfs_bmdr_block_t*)dest,
2530 XFS_DFORK_ASIZE(dip, mp));
2531 break;
2533 default:
2534 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2535 ASSERT(0);
2536 xfs_buf_relse(bp);
2537 error = EIO;
2538 goto error;
2542 write_inode_buffer:
2543 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2544 bp->b_mount = mp;
2545 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2546 xfs_bdwrite(mp, bp);
2547 error:
2548 if (need_free)
2549 kmem_free(in_f);
2550 return XFS_ERROR(error);
2554 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2555 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2556 * of that type.
2558 STATIC int
2559 xlog_recover_do_quotaoff_trans(
2560 xlog_t *log,
2561 xlog_recover_item_t *item,
2562 int pass)
2564 xfs_qoff_logformat_t *qoff_f;
2566 if (pass == XLOG_RECOVER_PASS2) {
2567 return (0);
2570 qoff_f = item->ri_buf[0].i_addr;
2571 ASSERT(qoff_f);
2574 * The logitem format's flag tells us if this was user quotaoff,
2575 * group/project quotaoff or both.
2577 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2578 log->l_quotaoffs_flag |= XFS_DQ_USER;
2579 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2580 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2581 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2582 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2584 return (0);
2588 * Recover a dquot record
2590 STATIC int
2591 xlog_recover_do_dquot_trans(
2592 xlog_t *log,
2593 xlog_recover_item_t *item,
2594 int pass)
2596 xfs_mount_t *mp;
2597 xfs_buf_t *bp;
2598 struct xfs_disk_dquot *ddq, *recddq;
2599 int error;
2600 xfs_dq_logformat_t *dq_f;
2601 uint type;
2603 if (pass == XLOG_RECOVER_PASS1) {
2604 return 0;
2606 mp = log->l_mp;
2609 * Filesystems are required to send in quota flags at mount time.
2611 if (mp->m_qflags == 0)
2612 return (0);
2614 recddq = item->ri_buf[1].i_addr;
2615 if (recddq == NULL) {
2616 cmn_err(CE_ALERT,
2617 "XFS: NULL dquot in %s.", __func__);
2618 return XFS_ERROR(EIO);
2620 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2621 cmn_err(CE_ALERT,
2622 "XFS: dquot too small (%d) in %s.",
2623 item->ri_buf[1].i_len, __func__);
2624 return XFS_ERROR(EIO);
2628 * This type of quotas was turned off, so ignore this record.
2630 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2631 ASSERT(type);
2632 if (log->l_quotaoffs_flag & type)
2633 return (0);
2636 * At this point we know that quota was _not_ turned off.
2637 * Since the mount flags are not indicating to us otherwise, this
2638 * must mean that quota is on, and the dquot needs to be replayed.
2639 * Remember that we may not have fully recovered the superblock yet,
2640 * so we can't do the usual trick of looking at the SB quota bits.
2642 * The other possibility, of course, is that the quota subsystem was
2643 * removed since the last mount - ENOSYS.
2645 dq_f = item->ri_buf[0].i_addr;
2646 ASSERT(dq_f);
2647 if ((error = xfs_qm_dqcheck(recddq,
2648 dq_f->qlf_id,
2649 0, XFS_QMOPT_DOWARN,
2650 "xlog_recover_do_dquot_trans (log copy)"))) {
2651 return XFS_ERROR(EIO);
2653 ASSERT(dq_f->qlf_len == 1);
2655 error = xfs_read_buf(mp, mp->m_ddev_targp,
2656 dq_f->qlf_blkno,
2657 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2658 0, &bp);
2659 if (error) {
2660 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2661 bp, dq_f->qlf_blkno);
2662 return error;
2664 ASSERT(bp);
2665 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2668 * At least the magic num portion should be on disk because this
2669 * was among a chunk of dquots created earlier, and we did some
2670 * minimal initialization then.
2672 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2673 "xlog_recover_do_dquot_trans")) {
2674 xfs_buf_relse(bp);
2675 return XFS_ERROR(EIO);
2678 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2680 ASSERT(dq_f->qlf_size == 2);
2681 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2682 bp->b_mount = mp;
2683 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2684 xfs_bdwrite(mp, bp);
2686 return (0);
2690 * This routine is called to create an in-core extent free intent
2691 * item from the efi format structure which was logged on disk.
2692 * It allocates an in-core efi, copies the extents from the format
2693 * structure into it, and adds the efi to the AIL with the given
2694 * LSN.
2696 STATIC int
2697 xlog_recover_do_efi_trans(
2698 xlog_t *log,
2699 xlog_recover_item_t *item,
2700 xfs_lsn_t lsn,
2701 int pass)
2703 int error;
2704 xfs_mount_t *mp;
2705 xfs_efi_log_item_t *efip;
2706 xfs_efi_log_format_t *efi_formatp;
2708 if (pass == XLOG_RECOVER_PASS1) {
2709 return 0;
2712 efi_formatp = item->ri_buf[0].i_addr;
2714 mp = log->l_mp;
2715 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2716 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2717 &(efip->efi_format)))) {
2718 xfs_efi_item_free(efip);
2719 return error;
2721 efip->efi_next_extent = efi_formatp->efi_nextents;
2722 efip->efi_flags |= XFS_EFI_COMMITTED;
2724 spin_lock(&log->l_ailp->xa_lock);
2726 * xfs_trans_ail_update() drops the AIL lock.
2728 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2729 return 0;
2734 * This routine is called when an efd format structure is found in
2735 * a committed transaction in the log. It's purpose is to cancel
2736 * the corresponding efi if it was still in the log. To do this
2737 * it searches the AIL for the efi with an id equal to that in the
2738 * efd format structure. If we find it, we remove the efi from the
2739 * AIL and free it.
2741 STATIC void
2742 xlog_recover_do_efd_trans(
2743 xlog_t *log,
2744 xlog_recover_item_t *item,
2745 int pass)
2747 xfs_efd_log_format_t *efd_formatp;
2748 xfs_efi_log_item_t *efip = NULL;
2749 xfs_log_item_t *lip;
2750 __uint64_t efi_id;
2751 struct xfs_ail_cursor cur;
2752 struct xfs_ail *ailp = log->l_ailp;
2754 if (pass == XLOG_RECOVER_PASS1) {
2755 return;
2758 efd_formatp = item->ri_buf[0].i_addr;
2759 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2760 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2761 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2762 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2763 efi_id = efd_formatp->efd_efi_id;
2766 * Search for the efi with the id in the efd format structure
2767 * in the AIL.
2769 spin_lock(&ailp->xa_lock);
2770 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2771 while (lip != NULL) {
2772 if (lip->li_type == XFS_LI_EFI) {
2773 efip = (xfs_efi_log_item_t *)lip;
2774 if (efip->efi_format.efi_id == efi_id) {
2776 * xfs_trans_ail_delete() drops the
2777 * AIL lock.
2779 xfs_trans_ail_delete(ailp, lip);
2780 xfs_efi_item_free(efip);
2781 spin_lock(&ailp->xa_lock);
2782 break;
2785 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2787 xfs_trans_ail_cursor_done(ailp, &cur);
2788 spin_unlock(&ailp->xa_lock);
2792 * Perform the transaction
2794 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2795 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2797 STATIC int
2798 xlog_recover_do_trans(
2799 xlog_t *log,
2800 xlog_recover_t *trans,
2801 int pass)
2803 int error = 0;
2804 xlog_recover_item_t *item;
2806 error = xlog_recover_reorder_trans(log, trans, pass);
2807 if (error)
2808 return error;
2810 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2811 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2812 switch (ITEM_TYPE(item)) {
2813 case XFS_LI_BUF:
2814 error = xlog_recover_do_buffer_trans(log, item, pass);
2815 break;
2816 case XFS_LI_INODE:
2817 error = xlog_recover_do_inode_trans(log, item, pass);
2818 break;
2819 case XFS_LI_EFI:
2820 error = xlog_recover_do_efi_trans(log, item,
2821 trans->r_lsn, pass);
2822 break;
2823 case XFS_LI_EFD:
2824 xlog_recover_do_efd_trans(log, item, pass);
2825 error = 0;
2826 break;
2827 case XFS_LI_DQUOT:
2828 error = xlog_recover_do_dquot_trans(log, item, pass);
2829 break;
2830 case XFS_LI_QUOTAOFF:
2831 error = xlog_recover_do_quotaoff_trans(log, item,
2832 pass);
2833 break;
2834 default:
2835 xlog_warn(
2836 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
2837 ASSERT(0);
2838 error = XFS_ERROR(EIO);
2839 break;
2842 if (error)
2843 return error;
2846 return 0;
2850 * Free up any resources allocated by the transaction
2852 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2854 STATIC void
2855 xlog_recover_free_trans(
2856 xlog_recover_t *trans)
2858 xlog_recover_item_t *item, *n;
2859 int i;
2861 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2862 /* Free the regions in the item. */
2863 list_del(&item->ri_list);
2864 for (i = 0; i < item->ri_cnt; i++)
2865 kmem_free(item->ri_buf[i].i_addr);
2866 /* Free the item itself */
2867 kmem_free(item->ri_buf);
2868 kmem_free(item);
2870 /* Free the transaction recover structure */
2871 kmem_free(trans);
2874 STATIC int
2875 xlog_recover_commit_trans(
2876 xlog_t *log,
2877 xlog_recover_t *trans,
2878 int pass)
2880 int error;
2882 hlist_del(&trans->r_list);
2883 if ((error = xlog_recover_do_trans(log, trans, pass)))
2884 return error;
2885 xlog_recover_free_trans(trans); /* no error */
2886 return 0;
2889 STATIC int
2890 xlog_recover_unmount_trans(
2891 xlog_recover_t *trans)
2893 /* Do nothing now */
2894 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2895 return 0;
2899 * There are two valid states of the r_state field. 0 indicates that the
2900 * transaction structure is in a normal state. We have either seen the
2901 * start of the transaction or the last operation we added was not a partial
2902 * operation. If the last operation we added to the transaction was a
2903 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2905 * NOTE: skip LRs with 0 data length.
2907 STATIC int
2908 xlog_recover_process_data(
2909 xlog_t *log,
2910 struct hlist_head rhash[],
2911 xlog_rec_header_t *rhead,
2912 xfs_caddr_t dp,
2913 int pass)
2915 xfs_caddr_t lp;
2916 int num_logops;
2917 xlog_op_header_t *ohead;
2918 xlog_recover_t *trans;
2919 xlog_tid_t tid;
2920 int error;
2921 unsigned long hash;
2922 uint flags;
2924 lp = dp + be32_to_cpu(rhead->h_len);
2925 num_logops = be32_to_cpu(rhead->h_num_logops);
2927 /* check the log format matches our own - else we can't recover */
2928 if (xlog_header_check_recover(log->l_mp, rhead))
2929 return (XFS_ERROR(EIO));
2931 while ((dp < lp) && num_logops) {
2932 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2933 ohead = (xlog_op_header_t *)dp;
2934 dp += sizeof(xlog_op_header_t);
2935 if (ohead->oh_clientid != XFS_TRANSACTION &&
2936 ohead->oh_clientid != XFS_LOG) {
2937 xlog_warn(
2938 "XFS: xlog_recover_process_data: bad clientid");
2939 ASSERT(0);
2940 return (XFS_ERROR(EIO));
2942 tid = be32_to_cpu(ohead->oh_tid);
2943 hash = XLOG_RHASH(tid);
2944 trans = xlog_recover_find_tid(&rhash[hash], tid);
2945 if (trans == NULL) { /* not found; add new tid */
2946 if (ohead->oh_flags & XLOG_START_TRANS)
2947 xlog_recover_new_tid(&rhash[hash], tid,
2948 be64_to_cpu(rhead->h_lsn));
2949 } else {
2950 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2951 xlog_warn(
2952 "XFS: xlog_recover_process_data: bad length");
2953 WARN_ON(1);
2954 return (XFS_ERROR(EIO));
2956 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2957 if (flags & XLOG_WAS_CONT_TRANS)
2958 flags &= ~XLOG_CONTINUE_TRANS;
2959 switch (flags) {
2960 case XLOG_COMMIT_TRANS:
2961 error = xlog_recover_commit_trans(log,
2962 trans, pass);
2963 break;
2964 case XLOG_UNMOUNT_TRANS:
2965 error = xlog_recover_unmount_trans(trans);
2966 break;
2967 case XLOG_WAS_CONT_TRANS:
2968 error = xlog_recover_add_to_cont_trans(log,
2969 trans, dp,
2970 be32_to_cpu(ohead->oh_len));
2971 break;
2972 case XLOG_START_TRANS:
2973 xlog_warn(
2974 "XFS: xlog_recover_process_data: bad transaction");
2975 ASSERT(0);
2976 error = XFS_ERROR(EIO);
2977 break;
2978 case 0:
2979 case XLOG_CONTINUE_TRANS:
2980 error = xlog_recover_add_to_trans(log, trans,
2981 dp, be32_to_cpu(ohead->oh_len));
2982 break;
2983 default:
2984 xlog_warn(
2985 "XFS: xlog_recover_process_data: bad flag");
2986 ASSERT(0);
2987 error = XFS_ERROR(EIO);
2988 break;
2990 if (error)
2991 return error;
2993 dp += be32_to_cpu(ohead->oh_len);
2994 num_logops--;
2996 return 0;
3000 * Process an extent free intent item that was recovered from
3001 * the log. We need to free the extents that it describes.
3003 STATIC int
3004 xlog_recover_process_efi(
3005 xfs_mount_t *mp,
3006 xfs_efi_log_item_t *efip)
3008 xfs_efd_log_item_t *efdp;
3009 xfs_trans_t *tp;
3010 int i;
3011 int error = 0;
3012 xfs_extent_t *extp;
3013 xfs_fsblock_t startblock_fsb;
3015 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3018 * First check the validity of the extents described by the
3019 * EFI. If any are bad, then assume that all are bad and
3020 * just toss the EFI.
3022 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3023 extp = &(efip->efi_format.efi_extents[i]);
3024 startblock_fsb = XFS_BB_TO_FSB(mp,
3025 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3026 if ((startblock_fsb == 0) ||
3027 (extp->ext_len == 0) ||
3028 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3029 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3031 * This will pull the EFI from the AIL and
3032 * free the memory associated with it.
3034 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3035 return XFS_ERROR(EIO);
3039 tp = xfs_trans_alloc(mp, 0);
3040 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3041 if (error)
3042 goto abort_error;
3043 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3045 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3046 extp = &(efip->efi_format.efi_extents[i]);
3047 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3048 if (error)
3049 goto abort_error;
3050 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3051 extp->ext_len);
3054 efip->efi_flags |= XFS_EFI_RECOVERED;
3055 error = xfs_trans_commit(tp, 0);
3056 return error;
3058 abort_error:
3059 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3060 return error;
3064 * When this is called, all of the EFIs which did not have
3065 * corresponding EFDs should be in the AIL. What we do now
3066 * is free the extents associated with each one.
3068 * Since we process the EFIs in normal transactions, they
3069 * will be removed at some point after the commit. This prevents
3070 * us from just walking down the list processing each one.
3071 * We'll use a flag in the EFI to skip those that we've already
3072 * processed and use the AIL iteration mechanism's generation
3073 * count to try to speed this up at least a bit.
3075 * When we start, we know that the EFIs are the only things in
3076 * the AIL. As we process them, however, other items are added
3077 * to the AIL. Since everything added to the AIL must come after
3078 * everything already in the AIL, we stop processing as soon as
3079 * we see something other than an EFI in the AIL.
3081 STATIC int
3082 xlog_recover_process_efis(
3083 xlog_t *log)
3085 xfs_log_item_t *lip;
3086 xfs_efi_log_item_t *efip;
3087 int error = 0;
3088 struct xfs_ail_cursor cur;
3089 struct xfs_ail *ailp;
3091 ailp = log->l_ailp;
3092 spin_lock(&ailp->xa_lock);
3093 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3094 while (lip != NULL) {
3096 * We're done when we see something other than an EFI.
3097 * There should be no EFIs left in the AIL now.
3099 if (lip->li_type != XFS_LI_EFI) {
3100 #ifdef DEBUG
3101 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3102 ASSERT(lip->li_type != XFS_LI_EFI);
3103 #endif
3104 break;
3108 * Skip EFIs that we've already processed.
3110 efip = (xfs_efi_log_item_t *)lip;
3111 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3112 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3113 continue;
3116 spin_unlock(&ailp->xa_lock);
3117 error = xlog_recover_process_efi(log->l_mp, efip);
3118 spin_lock(&ailp->xa_lock);
3119 if (error)
3120 goto out;
3121 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3123 out:
3124 xfs_trans_ail_cursor_done(ailp, &cur);
3125 spin_unlock(&ailp->xa_lock);
3126 return error;
3130 * This routine performs a transaction to null out a bad inode pointer
3131 * in an agi unlinked inode hash bucket.
3133 STATIC void
3134 xlog_recover_clear_agi_bucket(
3135 xfs_mount_t *mp,
3136 xfs_agnumber_t agno,
3137 int bucket)
3139 xfs_trans_t *tp;
3140 xfs_agi_t *agi;
3141 xfs_buf_t *agibp;
3142 int offset;
3143 int error;
3145 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3146 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3147 0, 0, 0);
3148 if (error)
3149 goto out_abort;
3151 error = xfs_read_agi(mp, tp, agno, &agibp);
3152 if (error)
3153 goto out_abort;
3155 agi = XFS_BUF_TO_AGI(agibp);
3156 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3157 offset = offsetof(xfs_agi_t, agi_unlinked) +
3158 (sizeof(xfs_agino_t) * bucket);
3159 xfs_trans_log_buf(tp, agibp, offset,
3160 (offset + sizeof(xfs_agino_t) - 1));
3162 error = xfs_trans_commit(tp, 0);
3163 if (error)
3164 goto out_error;
3165 return;
3167 out_abort:
3168 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3169 out_error:
3170 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3171 "failed to clear agi %d. Continuing.", agno);
3172 return;
3175 STATIC xfs_agino_t
3176 xlog_recover_process_one_iunlink(
3177 struct xfs_mount *mp,
3178 xfs_agnumber_t agno,
3179 xfs_agino_t agino,
3180 int bucket)
3182 struct xfs_buf *ibp;
3183 struct xfs_dinode *dip;
3184 struct xfs_inode *ip;
3185 xfs_ino_t ino;
3186 int error;
3188 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3189 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3190 if (error)
3191 goto fail;
3194 * Get the on disk inode to find the next inode in the bucket.
3196 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3197 if (error)
3198 goto fail_iput;
3200 ASSERT(ip->i_d.di_nlink == 0);
3201 ASSERT(ip->i_d.di_mode != 0);
3203 /* setup for the next pass */
3204 agino = be32_to_cpu(dip->di_next_unlinked);
3205 xfs_buf_relse(ibp);
3208 * Prevent any DMAPI event from being sent when the reference on
3209 * the inode is dropped.
3211 ip->i_d.di_dmevmask = 0;
3213 IRELE(ip);
3214 return agino;
3216 fail_iput:
3217 IRELE(ip);
3218 fail:
3220 * We can't read in the inode this bucket points to, or this inode
3221 * is messed up. Just ditch this bucket of inodes. We will lose
3222 * some inodes and space, but at least we won't hang.
3224 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3225 * clear the inode pointer in the bucket.
3227 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3228 return NULLAGINO;
3232 * xlog_iunlink_recover
3234 * This is called during recovery to process any inodes which
3235 * we unlinked but not freed when the system crashed. These
3236 * inodes will be on the lists in the AGI blocks. What we do
3237 * here is scan all the AGIs and fully truncate and free any
3238 * inodes found on the lists. Each inode is removed from the
3239 * lists when it has been fully truncated and is freed. The
3240 * freeing of the inode and its removal from the list must be
3241 * atomic.
3243 STATIC void
3244 xlog_recover_process_iunlinks(
3245 xlog_t *log)
3247 xfs_mount_t *mp;
3248 xfs_agnumber_t agno;
3249 xfs_agi_t *agi;
3250 xfs_buf_t *agibp;
3251 xfs_agino_t agino;
3252 int bucket;
3253 int error;
3254 uint mp_dmevmask;
3256 mp = log->l_mp;
3259 * Prevent any DMAPI event from being sent while in this function.
3261 mp_dmevmask = mp->m_dmevmask;
3262 mp->m_dmevmask = 0;
3264 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3266 * Find the agi for this ag.
3268 error = xfs_read_agi(mp, NULL, agno, &agibp);
3269 if (error) {
3271 * AGI is b0rked. Don't process it.
3273 * We should probably mark the filesystem as corrupt
3274 * after we've recovered all the ag's we can....
3276 continue;
3278 agi = XFS_BUF_TO_AGI(agibp);
3280 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3281 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3282 while (agino != NULLAGINO) {
3284 * Release the agi buffer so that it can
3285 * be acquired in the normal course of the
3286 * transaction to truncate and free the inode.
3288 xfs_buf_relse(agibp);
3290 agino = xlog_recover_process_one_iunlink(mp,
3291 agno, agino, bucket);
3294 * Reacquire the agibuffer and continue around
3295 * the loop. This should never fail as we know
3296 * the buffer was good earlier on.
3298 error = xfs_read_agi(mp, NULL, agno, &agibp);
3299 ASSERT(error == 0);
3300 agi = XFS_BUF_TO_AGI(agibp);
3305 * Release the buffer for the current agi so we can
3306 * go on to the next one.
3308 xfs_buf_relse(agibp);
3311 mp->m_dmevmask = mp_dmevmask;
3315 #ifdef DEBUG
3316 STATIC void
3317 xlog_pack_data_checksum(
3318 xlog_t *log,
3319 xlog_in_core_t *iclog,
3320 int size)
3322 int i;
3323 __be32 *up;
3324 uint chksum = 0;
3326 up = (__be32 *)iclog->ic_datap;
3327 /* divide length by 4 to get # words */
3328 for (i = 0; i < (size >> 2); i++) {
3329 chksum ^= be32_to_cpu(*up);
3330 up++;
3332 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3334 #else
3335 #define xlog_pack_data_checksum(log, iclog, size)
3336 #endif
3339 * Stamp cycle number in every block
3341 void
3342 xlog_pack_data(
3343 xlog_t *log,
3344 xlog_in_core_t *iclog,
3345 int roundoff)
3347 int i, j, k;
3348 int size = iclog->ic_offset + roundoff;
3349 __be32 cycle_lsn;
3350 xfs_caddr_t dp;
3352 xlog_pack_data_checksum(log, iclog, size);
3354 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3356 dp = iclog->ic_datap;
3357 for (i = 0; i < BTOBB(size) &&
3358 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3359 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3360 *(__be32 *)dp = cycle_lsn;
3361 dp += BBSIZE;
3364 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3365 xlog_in_core_2_t *xhdr = iclog->ic_data;
3367 for ( ; i < BTOBB(size); i++) {
3368 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3369 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3370 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3371 *(__be32 *)dp = cycle_lsn;
3372 dp += BBSIZE;
3375 for (i = 1; i < log->l_iclog_heads; i++) {
3376 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3381 STATIC void
3382 xlog_unpack_data(
3383 xlog_rec_header_t *rhead,
3384 xfs_caddr_t dp,
3385 xlog_t *log)
3387 int i, j, k;
3389 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3390 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3391 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3392 dp += BBSIZE;
3395 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3396 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3397 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3398 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3399 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3400 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3401 dp += BBSIZE;
3406 STATIC int
3407 xlog_valid_rec_header(
3408 xlog_t *log,
3409 xlog_rec_header_t *rhead,
3410 xfs_daddr_t blkno)
3412 int hlen;
3414 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3415 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3416 XFS_ERRLEVEL_LOW, log->l_mp);
3417 return XFS_ERROR(EFSCORRUPTED);
3419 if (unlikely(
3420 (!rhead->h_version ||
3421 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3422 xlog_warn("XFS: %s: unrecognised log version (%d).",
3423 __func__, be32_to_cpu(rhead->h_version));
3424 return XFS_ERROR(EIO);
3427 /* LR body must have data or it wouldn't have been written */
3428 hlen = be32_to_cpu(rhead->h_len);
3429 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3430 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3431 XFS_ERRLEVEL_LOW, log->l_mp);
3432 return XFS_ERROR(EFSCORRUPTED);
3434 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3435 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3436 XFS_ERRLEVEL_LOW, log->l_mp);
3437 return XFS_ERROR(EFSCORRUPTED);
3439 return 0;
3443 * Read the log from tail to head and process the log records found.
3444 * Handle the two cases where the tail and head are in the same cycle
3445 * and where the active portion of the log wraps around the end of
3446 * the physical log separately. The pass parameter is passed through
3447 * to the routines called to process the data and is not looked at
3448 * here.
3450 STATIC int
3451 xlog_do_recovery_pass(
3452 xlog_t *log,
3453 xfs_daddr_t head_blk,
3454 xfs_daddr_t tail_blk,
3455 int pass)
3457 xlog_rec_header_t *rhead;
3458 xfs_daddr_t blk_no;
3459 xfs_caddr_t offset;
3460 xfs_buf_t *hbp, *dbp;
3461 int error = 0, h_size;
3462 int bblks, split_bblks;
3463 int hblks, split_hblks, wrapped_hblks;
3464 struct hlist_head rhash[XLOG_RHASH_SIZE];
3466 ASSERT(head_blk != tail_blk);
3469 * Read the header of the tail block and get the iclog buffer size from
3470 * h_size. Use this to tell how many sectors make up the log header.
3472 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3474 * When using variable length iclogs, read first sector of
3475 * iclog header and extract the header size from it. Get a
3476 * new hbp that is the correct size.
3478 hbp = xlog_get_bp(log, 1);
3479 if (!hbp)
3480 return ENOMEM;
3482 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3483 if (error)
3484 goto bread_err1;
3486 rhead = (xlog_rec_header_t *)offset;
3487 error = xlog_valid_rec_header(log, rhead, tail_blk);
3488 if (error)
3489 goto bread_err1;
3490 h_size = be32_to_cpu(rhead->h_size);
3491 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3492 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3493 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3494 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3495 hblks++;
3496 xlog_put_bp(hbp);
3497 hbp = xlog_get_bp(log, hblks);
3498 } else {
3499 hblks = 1;
3501 } else {
3502 ASSERT(log->l_sectBBsize == 1);
3503 hblks = 1;
3504 hbp = xlog_get_bp(log, 1);
3505 h_size = XLOG_BIG_RECORD_BSIZE;
3508 if (!hbp)
3509 return ENOMEM;
3510 dbp = xlog_get_bp(log, BTOBB(h_size));
3511 if (!dbp) {
3512 xlog_put_bp(hbp);
3513 return ENOMEM;
3516 memset(rhash, 0, sizeof(rhash));
3517 if (tail_blk <= head_blk) {
3518 for (blk_no = tail_blk; blk_no < head_blk; ) {
3519 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3520 if (error)
3521 goto bread_err2;
3523 rhead = (xlog_rec_header_t *)offset;
3524 error = xlog_valid_rec_header(log, rhead, blk_no);
3525 if (error)
3526 goto bread_err2;
3528 /* blocks in data section */
3529 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3530 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3531 &offset);
3532 if (error)
3533 goto bread_err2;
3535 xlog_unpack_data(rhead, offset, log);
3536 if ((error = xlog_recover_process_data(log,
3537 rhash, rhead, offset, pass)))
3538 goto bread_err2;
3539 blk_no += bblks + hblks;
3541 } else {
3543 * Perform recovery around the end of the physical log.
3544 * When the head is not on the same cycle number as the tail,
3545 * we can't do a sequential recovery as above.
3547 blk_no = tail_blk;
3548 while (blk_no < log->l_logBBsize) {
3550 * Check for header wrapping around physical end-of-log
3552 offset = XFS_BUF_PTR(hbp);
3553 split_hblks = 0;
3554 wrapped_hblks = 0;
3555 if (blk_no + hblks <= log->l_logBBsize) {
3556 /* Read header in one read */
3557 error = xlog_bread(log, blk_no, hblks, hbp,
3558 &offset);
3559 if (error)
3560 goto bread_err2;
3561 } else {
3562 /* This LR is split across physical log end */
3563 if (blk_no != log->l_logBBsize) {
3564 /* some data before physical log end */
3565 ASSERT(blk_no <= INT_MAX);
3566 split_hblks = log->l_logBBsize - (int)blk_no;
3567 ASSERT(split_hblks > 0);
3568 error = xlog_bread(log, blk_no,
3569 split_hblks, hbp,
3570 &offset);
3571 if (error)
3572 goto bread_err2;
3576 * Note: this black magic still works with
3577 * large sector sizes (non-512) only because:
3578 * - we increased the buffer size originally
3579 * by 1 sector giving us enough extra space
3580 * for the second read;
3581 * - the log start is guaranteed to be sector
3582 * aligned;
3583 * - we read the log end (LR header start)
3584 * _first_, then the log start (LR header end)
3585 * - order is important.
3587 wrapped_hblks = hblks - split_hblks;
3588 error = XFS_BUF_SET_PTR(hbp,
3589 offset + BBTOB(split_hblks),
3590 BBTOB(hblks - split_hblks));
3591 if (error)
3592 goto bread_err2;
3594 error = xlog_bread_noalign(log, 0,
3595 wrapped_hblks, hbp);
3596 if (error)
3597 goto bread_err2;
3599 error = XFS_BUF_SET_PTR(hbp, offset,
3600 BBTOB(hblks));
3601 if (error)
3602 goto bread_err2;
3604 rhead = (xlog_rec_header_t *)offset;
3605 error = xlog_valid_rec_header(log, rhead,
3606 split_hblks ? blk_no : 0);
3607 if (error)
3608 goto bread_err2;
3610 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3611 blk_no += hblks;
3613 /* Read in data for log record */
3614 if (blk_no + bblks <= log->l_logBBsize) {
3615 error = xlog_bread(log, blk_no, bblks, dbp,
3616 &offset);
3617 if (error)
3618 goto bread_err2;
3619 } else {
3620 /* This log record is split across the
3621 * physical end of log */
3622 offset = XFS_BUF_PTR(dbp);
3623 split_bblks = 0;
3624 if (blk_no != log->l_logBBsize) {
3625 /* some data is before the physical
3626 * end of log */
3627 ASSERT(!wrapped_hblks);
3628 ASSERT(blk_no <= INT_MAX);
3629 split_bblks =
3630 log->l_logBBsize - (int)blk_no;
3631 ASSERT(split_bblks > 0);
3632 error = xlog_bread(log, blk_no,
3633 split_bblks, dbp,
3634 &offset);
3635 if (error)
3636 goto bread_err2;
3640 * Note: this black magic still works with
3641 * large sector sizes (non-512) only because:
3642 * - we increased the buffer size originally
3643 * by 1 sector giving us enough extra space
3644 * for the second read;
3645 * - the log start is guaranteed to be sector
3646 * aligned;
3647 * - we read the log end (LR header start)
3648 * _first_, then the log start (LR header end)
3649 * - order is important.
3651 error = XFS_BUF_SET_PTR(dbp,
3652 offset + BBTOB(split_bblks),
3653 BBTOB(bblks - split_bblks));
3654 if (error)
3655 goto bread_err2;
3657 error = xlog_bread_noalign(log, wrapped_hblks,
3658 bblks - split_bblks,
3659 dbp);
3660 if (error)
3661 goto bread_err2;
3663 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3664 if (error)
3665 goto bread_err2;
3667 xlog_unpack_data(rhead, offset, log);
3668 if ((error = xlog_recover_process_data(log, rhash,
3669 rhead, offset, pass)))
3670 goto bread_err2;
3671 blk_no += bblks;
3674 ASSERT(blk_no >= log->l_logBBsize);
3675 blk_no -= log->l_logBBsize;
3677 /* read first part of physical log */
3678 while (blk_no < head_blk) {
3679 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3680 if (error)
3681 goto bread_err2;
3683 rhead = (xlog_rec_header_t *)offset;
3684 error = xlog_valid_rec_header(log, rhead, blk_no);
3685 if (error)
3686 goto bread_err2;
3688 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3689 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3690 &offset);
3691 if (error)
3692 goto bread_err2;
3694 xlog_unpack_data(rhead, offset, log);
3695 if ((error = xlog_recover_process_data(log, rhash,
3696 rhead, offset, pass)))
3697 goto bread_err2;
3698 blk_no += bblks + hblks;
3702 bread_err2:
3703 xlog_put_bp(dbp);
3704 bread_err1:
3705 xlog_put_bp(hbp);
3706 return error;
3710 * Do the recovery of the log. We actually do this in two phases.
3711 * The two passes are necessary in order to implement the function
3712 * of cancelling a record written into the log. The first pass
3713 * determines those things which have been cancelled, and the
3714 * second pass replays log items normally except for those which
3715 * have been cancelled. The handling of the replay and cancellations
3716 * takes place in the log item type specific routines.
3718 * The table of items which have cancel records in the log is allocated
3719 * and freed at this level, since only here do we know when all of
3720 * the log recovery has been completed.
3722 STATIC int
3723 xlog_do_log_recovery(
3724 xlog_t *log,
3725 xfs_daddr_t head_blk,
3726 xfs_daddr_t tail_blk)
3728 int error;
3730 ASSERT(head_blk != tail_blk);
3733 * First do a pass to find all of the cancelled buf log items.
3734 * Store them in the buf_cancel_table for use in the second pass.
3736 log->l_buf_cancel_table =
3737 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3738 sizeof(xfs_buf_cancel_t*),
3739 KM_SLEEP);
3740 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3741 XLOG_RECOVER_PASS1);
3742 if (error != 0) {
3743 kmem_free(log->l_buf_cancel_table);
3744 log->l_buf_cancel_table = NULL;
3745 return error;
3748 * Then do a second pass to actually recover the items in the log.
3749 * When it is complete free the table of buf cancel items.
3751 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3752 XLOG_RECOVER_PASS2);
3753 #ifdef DEBUG
3754 if (!error) {
3755 int i;
3757 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3758 ASSERT(log->l_buf_cancel_table[i] == NULL);
3760 #endif /* DEBUG */
3762 kmem_free(log->l_buf_cancel_table);
3763 log->l_buf_cancel_table = NULL;
3765 return error;
3769 * Do the actual recovery
3771 STATIC int
3772 xlog_do_recover(
3773 xlog_t *log,
3774 xfs_daddr_t head_blk,
3775 xfs_daddr_t tail_blk)
3777 int error;
3778 xfs_buf_t *bp;
3779 xfs_sb_t *sbp;
3782 * First replay the images in the log.
3784 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3785 if (error) {
3786 return error;
3789 XFS_bflush(log->l_mp->m_ddev_targp);
3792 * If IO errors happened during recovery, bail out.
3794 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3795 return (EIO);
3799 * We now update the tail_lsn since much of the recovery has completed
3800 * and there may be space available to use. If there were no extent
3801 * or iunlinks, we can free up the entire log and set the tail_lsn to
3802 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3803 * lsn of the last known good LR on disk. If there are extent frees
3804 * or iunlinks they will have some entries in the AIL; so we look at
3805 * the AIL to determine how to set the tail_lsn.
3807 xlog_assign_tail_lsn(log->l_mp);
3810 * Now that we've finished replaying all buffer and inode
3811 * updates, re-read in the superblock.
3813 bp = xfs_getsb(log->l_mp, 0);
3814 XFS_BUF_UNDONE(bp);
3815 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3816 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3817 XFS_BUF_READ(bp);
3818 XFS_BUF_UNASYNC(bp);
3819 xfsbdstrat(log->l_mp, bp);
3820 error = xfs_iowait(bp);
3821 if (error) {
3822 xfs_ioerror_alert("xlog_do_recover",
3823 log->l_mp, bp, XFS_BUF_ADDR(bp));
3824 ASSERT(0);
3825 xfs_buf_relse(bp);
3826 return error;
3829 /* Convert superblock from on-disk format */
3830 sbp = &log->l_mp->m_sb;
3831 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3832 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3833 ASSERT(xfs_sb_good_version(sbp));
3834 xfs_buf_relse(bp);
3836 /* We've re-read the superblock so re-initialize per-cpu counters */
3837 xfs_icsb_reinit_counters(log->l_mp);
3839 xlog_recover_check_summary(log);
3841 /* Normal transactions can now occur */
3842 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3843 return 0;
3847 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3849 * Return error or zero.
3852 xlog_recover(
3853 xlog_t *log)
3855 xfs_daddr_t head_blk, tail_blk;
3856 int error;
3858 /* find the tail of the log */
3859 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3860 return error;
3862 if (tail_blk != head_blk) {
3863 /* There used to be a comment here:
3865 * disallow recovery on read-only mounts. note -- mount
3866 * checks for ENOSPC and turns it into an intelligent
3867 * error message.
3868 * ...but this is no longer true. Now, unless you specify
3869 * NORECOVERY (in which case this function would never be
3870 * called), we just go ahead and recover. We do this all
3871 * under the vfs layer, so we can get away with it unless
3872 * the device itself is read-only, in which case we fail.
3874 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3875 return error;
3878 cmn_err(CE_NOTE,
3879 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3880 log->l_mp->m_fsname, log->l_mp->m_logname ?
3881 log->l_mp->m_logname : "internal");
3883 error = xlog_do_recover(log, head_blk, tail_blk);
3884 log->l_flags |= XLOG_RECOVERY_NEEDED;
3886 return error;
3890 * In the first part of recovery we replay inodes and buffers and build
3891 * up the list of extent free items which need to be processed. Here
3892 * we process the extent free items and clean up the on disk unlinked
3893 * inode lists. This is separated from the first part of recovery so
3894 * that the root and real-time bitmap inodes can be read in from disk in
3895 * between the two stages. This is necessary so that we can free space
3896 * in the real-time portion of the file system.
3899 xlog_recover_finish(
3900 xlog_t *log)
3903 * Now we're ready to do the transactions needed for the
3904 * rest of recovery. Start with completing all the extent
3905 * free intent records and then process the unlinked inode
3906 * lists. At this point, we essentially run in normal mode
3907 * except that we're still performing recovery actions
3908 * rather than accepting new requests.
3910 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3911 int error;
3912 error = xlog_recover_process_efis(log);
3913 if (error) {
3914 cmn_err(CE_ALERT,
3915 "Failed to recover EFIs on filesystem: %s",
3916 log->l_mp->m_fsname);
3917 return error;
3920 * Sync the log to get all the EFIs out of the AIL.
3921 * This isn't absolutely necessary, but it helps in
3922 * case the unlink transactions would have problems
3923 * pushing the EFIs out of the way.
3925 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3927 xlog_recover_process_iunlinks(log);
3929 xlog_recover_check_summary(log);
3931 cmn_err(CE_NOTE,
3932 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3933 log->l_mp->m_fsname, log->l_mp->m_logname ?
3934 log->l_mp->m_logname : "internal");
3935 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3936 } else {
3937 cmn_err(CE_DEBUG,
3938 "!Ending clean XFS mount for filesystem: %s\n",
3939 log->l_mp->m_fsname);
3941 return 0;
3945 #if defined(DEBUG)
3947 * Read all of the agf and agi counters and check that they
3948 * are consistent with the superblock counters.
3950 void
3951 xlog_recover_check_summary(
3952 xlog_t *log)
3954 xfs_mount_t *mp;
3955 xfs_agf_t *agfp;
3956 xfs_buf_t *agfbp;
3957 xfs_buf_t *agibp;
3958 xfs_agnumber_t agno;
3959 __uint64_t freeblks;
3960 __uint64_t itotal;
3961 __uint64_t ifree;
3962 int error;
3964 mp = log->l_mp;
3966 freeblks = 0LL;
3967 itotal = 0LL;
3968 ifree = 0LL;
3969 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3970 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3971 if (error) {
3972 xfs_fs_cmn_err(CE_ALERT, mp,
3973 "xlog_recover_check_summary(agf)"
3974 "agf read failed agno %d error %d",
3975 agno, error);
3976 } else {
3977 agfp = XFS_BUF_TO_AGF(agfbp);
3978 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3979 be32_to_cpu(agfp->agf_flcount);
3980 xfs_buf_relse(agfbp);
3983 error = xfs_read_agi(mp, NULL, agno, &agibp);
3984 if (!error) {
3985 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3987 itotal += be32_to_cpu(agi->agi_count);
3988 ifree += be32_to_cpu(agi->agi_freecount);
3989 xfs_buf_relse(agibp);
3993 #endif /* DEBUG */