btrfs: cleanup duplicate bio allocating functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode_item.c
blobfe00777e2796317146ce1e20142cc7f4e3679635
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
37 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
41 return container_of(lip, struct xfs_inode_log_item, ili_item);
46 * This returns the number of iovecs needed to log the given inode item.
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
52 STATIC uint
53 xfs_inode_item_size(
54 struct xfs_log_item *lip)
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58 uint nvecs = 2;
61 * Only log the data/extents/b-tree root if there is something
62 * left to log.
64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
66 switch (ip->i_d.di_format) {
67 case XFS_DINODE_FMT_EXTENTS:
68 iip->ili_format.ilf_fields &=
69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 XFS_ILOG_DEV | XFS_ILOG_UUID);
71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 (ip->i_d.di_nextents > 0) &&
73 (ip->i_df.if_bytes > 0)) {
74 ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 nvecs++;
76 } else {
77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
79 break;
81 case XFS_DINODE_FMT_BTREE:
82 ASSERT(ip->i_df.if_ext_max ==
83 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
84 iip->ili_format.ilf_fields &=
85 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
86 XFS_ILOG_DEV | XFS_ILOG_UUID);
87 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
88 (ip->i_df.if_broot_bytes > 0)) {
89 ASSERT(ip->i_df.if_broot != NULL);
90 nvecs++;
91 } else {
92 ASSERT(!(iip->ili_format.ilf_fields &
93 XFS_ILOG_DBROOT));
94 #ifdef XFS_TRANS_DEBUG
95 if (iip->ili_root_size > 0) {
96 ASSERT(iip->ili_root_size ==
97 ip->i_df.if_broot_bytes);
98 ASSERT(memcmp(iip->ili_orig_root,
99 ip->i_df.if_broot,
100 iip->ili_root_size) == 0);
101 } else {
102 ASSERT(ip->i_df.if_broot_bytes == 0);
104 #endif
105 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
107 break;
109 case XFS_DINODE_FMT_LOCAL:
110 iip->ili_format.ilf_fields &=
111 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
112 XFS_ILOG_DEV | XFS_ILOG_UUID);
113 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
114 (ip->i_df.if_bytes > 0)) {
115 ASSERT(ip->i_df.if_u1.if_data != NULL);
116 ASSERT(ip->i_d.di_size > 0);
117 nvecs++;
118 } else {
119 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
121 break;
123 case XFS_DINODE_FMT_DEV:
124 iip->ili_format.ilf_fields &=
125 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
126 XFS_ILOG_DEXT | XFS_ILOG_UUID);
127 break;
129 case XFS_DINODE_FMT_UUID:
130 iip->ili_format.ilf_fields &=
131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 XFS_ILOG_DEXT | XFS_ILOG_DEV);
133 break;
135 default:
136 ASSERT(0);
137 break;
141 * If there are no attributes associated with this file,
142 * then there cannot be anything more to log.
143 * Clear all attribute-related log flags.
145 if (!XFS_IFORK_Q(ip)) {
146 iip->ili_format.ilf_fields &=
147 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
148 return nvecs;
152 * Log any necessary attribute data.
154 switch (ip->i_d.di_aformat) {
155 case XFS_DINODE_FMT_EXTENTS:
156 iip->ili_format.ilf_fields &=
157 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
158 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
159 (ip->i_d.di_anextents > 0) &&
160 (ip->i_afp->if_bytes > 0)) {
161 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
162 nvecs++;
163 } else {
164 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
166 break;
168 case XFS_DINODE_FMT_BTREE:
169 iip->ili_format.ilf_fields &=
170 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
171 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
172 (ip->i_afp->if_broot_bytes > 0)) {
173 ASSERT(ip->i_afp->if_broot != NULL);
174 nvecs++;
175 } else {
176 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
178 break;
180 case XFS_DINODE_FMT_LOCAL:
181 iip->ili_format.ilf_fields &=
182 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
183 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
184 (ip->i_afp->if_bytes > 0)) {
185 ASSERT(ip->i_afp->if_u1.if_data != NULL);
186 nvecs++;
187 } else {
188 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
190 break;
192 default:
193 ASSERT(0);
194 break;
197 return nvecs;
201 * This is called to fill in the vector of log iovecs for the
202 * given inode log item. It fills the first item with an inode
203 * log format structure, the second with the on-disk inode structure,
204 * and a possible third and/or fourth with the inode data/extents/b-tree
205 * root and inode attributes data/extents/b-tree root.
207 STATIC void
208 xfs_inode_item_format(
209 struct xfs_log_item *lip,
210 struct xfs_log_iovec *vecp)
212 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
213 struct xfs_inode *ip = iip->ili_inode;
214 uint nvecs;
215 size_t data_bytes;
216 xfs_bmbt_rec_t *ext_buffer;
217 xfs_mount_t *mp;
219 vecp->i_addr = &iip->ili_format;
220 vecp->i_len = sizeof(xfs_inode_log_format_t);
221 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
222 vecp++;
223 nvecs = 1;
226 * Make sure the linux inode is dirty. We do this before
227 * clearing i_update_core as the VFS will call back into
228 * XFS here and set i_update_core, so we need to dirty the
229 * inode first so that the ordering of i_update_core and
230 * unlogged modifications still works as described below.
232 xfs_mark_inode_dirty_sync(ip);
235 * Clear i_update_core if the timestamps (or any other
236 * non-transactional modification) need flushing/logging
237 * and we're about to log them with the rest of the core.
239 * This is the same logic as xfs_iflush() but this code can't
240 * run at the same time as xfs_iflush because we're in commit
241 * processing here and so we have the inode lock held in
242 * exclusive mode. Although it doesn't really matter
243 * for the timestamps if both routines were to grab the
244 * timestamps or not. That would be ok.
246 * We clear i_update_core before copying out the data.
247 * This is for coordination with our timestamp updates
248 * that don't hold the inode lock. They will always
249 * update the timestamps BEFORE setting i_update_core,
250 * so if we clear i_update_core after they set it we
251 * are guaranteed to see their updates to the timestamps
252 * either here. Likewise, if they set it after we clear it
253 * here, we'll see it either on the next commit of this
254 * inode or the next time the inode gets flushed via
255 * xfs_iflush(). This depends on strongly ordered memory
256 * semantics, but we have that. We use the SYNCHRONIZE
257 * macro to make sure that the compiler does not reorder
258 * the i_update_core access below the data copy below.
260 if (ip->i_update_core) {
261 ip->i_update_core = 0;
262 SYNCHRONIZE();
266 * Make sure to get the latest timestamps from the Linux inode.
268 xfs_synchronize_times(ip);
270 vecp->i_addr = &ip->i_d;
271 vecp->i_len = sizeof(struct xfs_icdinode);
272 vecp->i_type = XLOG_REG_TYPE_ICORE;
273 vecp++;
274 nvecs++;
275 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
278 * If this is really an old format inode, then we need to
279 * log it as such. This means that we have to copy the link
280 * count from the new field to the old. We don't have to worry
281 * about the new fields, because nothing trusts them as long as
282 * the old inode version number is there. If the superblock already
283 * has a new version number, then we don't bother converting back.
285 mp = ip->i_mount;
286 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
287 if (ip->i_d.di_version == 1) {
288 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
290 * Convert it back.
292 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
293 ip->i_d.di_onlink = ip->i_d.di_nlink;
294 } else {
296 * The superblock version has already been bumped,
297 * so just make the conversion to the new inode
298 * format permanent.
300 ip->i_d.di_version = 2;
301 ip->i_d.di_onlink = 0;
302 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
306 switch (ip->i_d.di_format) {
307 case XFS_DINODE_FMT_EXTENTS:
308 ASSERT(!(iip->ili_format.ilf_fields &
309 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
310 XFS_ILOG_DEV | XFS_ILOG_UUID)));
311 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
312 ASSERT(ip->i_df.if_bytes > 0);
313 ASSERT(ip->i_df.if_u1.if_extents != NULL);
314 ASSERT(ip->i_d.di_nextents > 0);
315 ASSERT(iip->ili_extents_buf == NULL);
316 ASSERT((ip->i_df.if_bytes /
317 (uint)sizeof(xfs_bmbt_rec_t)) > 0);
318 #ifdef XFS_NATIVE_HOST
319 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
320 (uint)sizeof(xfs_bmbt_rec_t)) {
322 * There are no delayed allocation
323 * extents, so just point to the
324 * real extents array.
326 vecp->i_addr = ip->i_df.if_u1.if_extents;
327 vecp->i_len = ip->i_df.if_bytes;
328 vecp->i_type = XLOG_REG_TYPE_IEXT;
329 } else
330 #endif
333 * There are delayed allocation extents
334 * in the inode, or we need to convert
335 * the extents to on disk format.
336 * Use xfs_iextents_copy()
337 * to copy only the real extents into
338 * a separate buffer. We'll free the
339 * buffer in the unlock routine.
341 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
342 KM_SLEEP);
343 iip->ili_extents_buf = ext_buffer;
344 vecp->i_addr = ext_buffer;
345 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
346 XFS_DATA_FORK);
347 vecp->i_type = XLOG_REG_TYPE_IEXT;
349 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
350 iip->ili_format.ilf_dsize = vecp->i_len;
351 vecp++;
352 nvecs++;
354 break;
356 case XFS_DINODE_FMT_BTREE:
357 ASSERT(!(iip->ili_format.ilf_fields &
358 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
359 XFS_ILOG_DEV | XFS_ILOG_UUID)));
360 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
361 ASSERT(ip->i_df.if_broot_bytes > 0);
362 ASSERT(ip->i_df.if_broot != NULL);
363 vecp->i_addr = ip->i_df.if_broot;
364 vecp->i_len = ip->i_df.if_broot_bytes;
365 vecp->i_type = XLOG_REG_TYPE_IBROOT;
366 vecp++;
367 nvecs++;
368 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
370 break;
372 case XFS_DINODE_FMT_LOCAL:
373 ASSERT(!(iip->ili_format.ilf_fields &
374 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
375 XFS_ILOG_DEV | XFS_ILOG_UUID)));
376 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
377 ASSERT(ip->i_df.if_bytes > 0);
378 ASSERT(ip->i_df.if_u1.if_data != NULL);
379 ASSERT(ip->i_d.di_size > 0);
381 vecp->i_addr = ip->i_df.if_u1.if_data;
383 * Round i_bytes up to a word boundary.
384 * The underlying memory is guaranteed to
385 * to be there by xfs_idata_realloc().
387 data_bytes = roundup(ip->i_df.if_bytes, 4);
388 ASSERT((ip->i_df.if_real_bytes == 0) ||
389 (ip->i_df.if_real_bytes == data_bytes));
390 vecp->i_len = (int)data_bytes;
391 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
392 vecp++;
393 nvecs++;
394 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
396 break;
398 case XFS_DINODE_FMT_DEV:
399 ASSERT(!(iip->ili_format.ilf_fields &
400 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
401 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
402 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
403 iip->ili_format.ilf_u.ilfu_rdev =
404 ip->i_df.if_u2.if_rdev;
406 break;
408 case XFS_DINODE_FMT_UUID:
409 ASSERT(!(iip->ili_format.ilf_fields &
410 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
411 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
412 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
413 iip->ili_format.ilf_u.ilfu_uuid =
414 ip->i_df.if_u2.if_uuid;
416 break;
418 default:
419 ASSERT(0);
420 break;
424 * If there are no attributes associated with the file,
425 * then we're done.
426 * Assert that no attribute-related log flags are set.
428 if (!XFS_IFORK_Q(ip)) {
429 ASSERT(nvecs == lip->li_desc->lid_size);
430 iip->ili_format.ilf_size = nvecs;
431 ASSERT(!(iip->ili_format.ilf_fields &
432 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
433 return;
436 switch (ip->i_d.di_aformat) {
437 case XFS_DINODE_FMT_EXTENTS:
438 ASSERT(!(iip->ili_format.ilf_fields &
439 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
440 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
441 #ifdef DEBUG
442 int nrecs = ip->i_afp->if_bytes /
443 (uint)sizeof(xfs_bmbt_rec_t);
444 ASSERT(nrecs > 0);
445 ASSERT(nrecs == ip->i_d.di_anextents);
446 ASSERT(ip->i_afp->if_bytes > 0);
447 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
448 ASSERT(ip->i_d.di_anextents > 0);
449 #endif
450 #ifdef XFS_NATIVE_HOST
452 * There are not delayed allocation extents
453 * for attributes, so just point at the array.
455 vecp->i_addr = ip->i_afp->if_u1.if_extents;
456 vecp->i_len = ip->i_afp->if_bytes;
457 #else
458 ASSERT(iip->ili_aextents_buf == NULL);
460 * Need to endian flip before logging
462 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
463 KM_SLEEP);
464 iip->ili_aextents_buf = ext_buffer;
465 vecp->i_addr = ext_buffer;
466 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
467 XFS_ATTR_FORK);
468 #endif
469 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
470 iip->ili_format.ilf_asize = vecp->i_len;
471 vecp++;
472 nvecs++;
474 break;
476 case XFS_DINODE_FMT_BTREE:
477 ASSERT(!(iip->ili_format.ilf_fields &
478 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
479 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
480 ASSERT(ip->i_afp->if_broot_bytes > 0);
481 ASSERT(ip->i_afp->if_broot != NULL);
482 vecp->i_addr = ip->i_afp->if_broot;
483 vecp->i_len = ip->i_afp->if_broot_bytes;
484 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
485 vecp++;
486 nvecs++;
487 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
489 break;
491 case XFS_DINODE_FMT_LOCAL:
492 ASSERT(!(iip->ili_format.ilf_fields &
493 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
494 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
495 ASSERT(ip->i_afp->if_bytes > 0);
496 ASSERT(ip->i_afp->if_u1.if_data != NULL);
498 vecp->i_addr = ip->i_afp->if_u1.if_data;
500 * Round i_bytes up to a word boundary.
501 * The underlying memory is guaranteed to
502 * to be there by xfs_idata_realloc().
504 data_bytes = roundup(ip->i_afp->if_bytes, 4);
505 ASSERT((ip->i_afp->if_real_bytes == 0) ||
506 (ip->i_afp->if_real_bytes == data_bytes));
507 vecp->i_len = (int)data_bytes;
508 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
509 vecp++;
510 nvecs++;
511 iip->ili_format.ilf_asize = (unsigned)data_bytes;
513 break;
515 default:
516 ASSERT(0);
517 break;
520 ASSERT(nvecs == lip->li_desc->lid_size);
521 iip->ili_format.ilf_size = nvecs;
526 * This is called to pin the inode associated with the inode log
527 * item in memory so it cannot be written out.
529 STATIC void
530 xfs_inode_item_pin(
531 struct xfs_log_item *lip)
533 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
535 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
537 trace_xfs_inode_pin(ip, _RET_IP_);
538 atomic_inc(&ip->i_pincount);
543 * This is called to unpin the inode associated with the inode log
544 * item which was previously pinned with a call to xfs_inode_item_pin().
546 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
548 STATIC void
549 xfs_inode_item_unpin(
550 struct xfs_log_item *lip,
551 int remove)
553 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
555 trace_xfs_inode_unpin(ip, _RET_IP_);
556 ASSERT(atomic_read(&ip->i_pincount) > 0);
557 if (atomic_dec_and_test(&ip->i_pincount))
558 wake_up(&ip->i_ipin_wait);
562 * This is called to attempt to lock the inode associated with this
563 * inode log item, in preparation for the push routine which does the actual
564 * iflush. Don't sleep on the inode lock or the flush lock.
566 * If the flush lock is already held, indicating that the inode has
567 * been or is in the process of being flushed, then (ideally) we'd like to
568 * see if the inode's buffer is still incore, and if so give it a nudge.
569 * We delay doing so until the pushbuf routine, though, to avoid holding
570 * the AIL lock across a call to the blackhole which is the buffer cache.
571 * Also we don't want to sleep in any device strategy routines, which can happen
572 * if we do the subsequent bawrite in here.
574 STATIC uint
575 xfs_inode_item_trylock(
576 struct xfs_log_item *lip)
578 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
579 struct xfs_inode *ip = iip->ili_inode;
581 if (xfs_ipincount(ip) > 0)
582 return XFS_ITEM_PINNED;
584 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
585 return XFS_ITEM_LOCKED;
587 if (!xfs_iflock_nowait(ip)) {
589 * inode has already been flushed to the backing buffer,
590 * leave it locked in shared mode, pushbuf routine will
591 * unlock it.
593 return XFS_ITEM_PUSHBUF;
596 /* Stale items should force out the iclog */
597 if (ip->i_flags & XFS_ISTALE) {
598 xfs_ifunlock(ip);
600 * we hold the AIL lock - notify the unlock routine of this
601 * so it doesn't try to get the lock again.
603 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
604 return XFS_ITEM_PINNED;
607 #ifdef DEBUG
608 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
609 ASSERT(iip->ili_format.ilf_fields != 0);
610 ASSERT(iip->ili_logged == 0);
611 ASSERT(lip->li_flags & XFS_LI_IN_AIL);
613 #endif
614 return XFS_ITEM_SUCCESS;
618 * Unlock the inode associated with the inode log item.
619 * Clear the fields of the inode and inode log item that
620 * are specific to the current transaction. If the
621 * hold flags is set, do not unlock the inode.
623 STATIC void
624 xfs_inode_item_unlock(
625 struct xfs_log_item *lip)
627 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
628 struct xfs_inode *ip = iip->ili_inode;
629 unsigned short lock_flags;
631 ASSERT(iip->ili_inode->i_itemp != NULL);
632 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
635 * Clear the transaction pointer in the inode.
637 ip->i_transp = NULL;
640 * If the inode needed a separate buffer with which to log
641 * its extents, then free it now.
643 if (iip->ili_extents_buf != NULL) {
644 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
645 ASSERT(ip->i_d.di_nextents > 0);
646 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
647 ASSERT(ip->i_df.if_bytes > 0);
648 kmem_free(iip->ili_extents_buf);
649 iip->ili_extents_buf = NULL;
651 if (iip->ili_aextents_buf != NULL) {
652 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
653 ASSERT(ip->i_d.di_anextents > 0);
654 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
655 ASSERT(ip->i_afp->if_bytes > 0);
656 kmem_free(iip->ili_aextents_buf);
657 iip->ili_aextents_buf = NULL;
660 lock_flags = iip->ili_lock_flags;
661 iip->ili_lock_flags = 0;
662 if (lock_flags) {
663 xfs_iunlock(iip->ili_inode, lock_flags);
664 IRELE(iip->ili_inode);
669 * This is called to find out where the oldest active copy of the
670 * inode log item in the on disk log resides now that the last log
671 * write of it completed at the given lsn. Since we always re-log
672 * all dirty data in an inode, the latest copy in the on disk log
673 * is the only one that matters. Therefore, simply return the
674 * given lsn.
676 STATIC xfs_lsn_t
677 xfs_inode_item_committed(
678 struct xfs_log_item *lip,
679 xfs_lsn_t lsn)
681 return lsn;
685 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
686 * failed to get the inode flush lock but did get the inode locked SHARED.
687 * Here we're trying to see if the inode buffer is incore, and if so whether it's
688 * marked delayed write. If that's the case, we'll promote it and that will
689 * allow the caller to write the buffer by triggering the xfsbufd to run.
691 STATIC void
692 xfs_inode_item_pushbuf(
693 struct xfs_log_item *lip)
695 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
696 struct xfs_inode *ip = iip->ili_inode;
697 struct xfs_buf *bp;
699 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
702 * If a flush is not in progress anymore, chances are that the
703 * inode was taken off the AIL. So, just get out.
705 if (completion_done(&ip->i_flush) ||
706 !(lip->li_flags & XFS_LI_IN_AIL)) {
707 xfs_iunlock(ip, XFS_ILOCK_SHARED);
708 return;
711 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
712 iip->ili_format.ilf_len, XBF_TRYLOCK);
714 xfs_iunlock(ip, XFS_ILOCK_SHARED);
715 if (!bp)
716 return;
717 if (XFS_BUF_ISDELAYWRITE(bp))
718 xfs_buf_delwri_promote(bp);
719 xfs_buf_relse(bp);
723 * This is called to asynchronously write the inode associated with this
724 * inode log item out to disk. The inode will already have been locked by
725 * a successful call to xfs_inode_item_trylock().
727 STATIC void
728 xfs_inode_item_push(
729 struct xfs_log_item *lip)
731 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
732 struct xfs_inode *ip = iip->ili_inode;
734 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
735 ASSERT(!completion_done(&ip->i_flush));
738 * Since we were able to lock the inode's flush lock and
739 * we found it on the AIL, the inode must be dirty. This
740 * is because the inode is removed from the AIL while still
741 * holding the flush lock in xfs_iflush_done(). Thus, if
742 * we found it in the AIL and were able to obtain the flush
743 * lock without sleeping, then there must not have been
744 * anyone in the process of flushing the inode.
746 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
747 iip->ili_format.ilf_fields != 0);
750 * Push the inode to it's backing buffer. This will not remove the
751 * inode from the AIL - a further push will be required to trigger a
752 * buffer push. However, this allows all the dirty inodes to be pushed
753 * to the buffer before it is pushed to disk. THe buffer IO completion
754 * will pull th einode from the AIL, mark it clean and unlock the flush
755 * lock.
757 (void) xfs_iflush(ip, 0);
758 xfs_iunlock(ip, XFS_ILOCK_SHARED);
762 * XXX rcc - this one really has to do something. Probably needs
763 * to stamp in a new field in the incore inode.
765 STATIC void
766 xfs_inode_item_committing(
767 struct xfs_log_item *lip,
768 xfs_lsn_t lsn)
770 INODE_ITEM(lip)->ili_last_lsn = lsn;
774 * This is the ops vector shared by all buf log items.
776 static struct xfs_item_ops xfs_inode_item_ops = {
777 .iop_size = xfs_inode_item_size,
778 .iop_format = xfs_inode_item_format,
779 .iop_pin = xfs_inode_item_pin,
780 .iop_unpin = xfs_inode_item_unpin,
781 .iop_trylock = xfs_inode_item_trylock,
782 .iop_unlock = xfs_inode_item_unlock,
783 .iop_committed = xfs_inode_item_committed,
784 .iop_push = xfs_inode_item_push,
785 .iop_pushbuf = xfs_inode_item_pushbuf,
786 .iop_committing = xfs_inode_item_committing
791 * Initialize the inode log item for a newly allocated (in-core) inode.
793 void
794 xfs_inode_item_init(
795 struct xfs_inode *ip,
796 struct xfs_mount *mp)
798 struct xfs_inode_log_item *iip;
800 ASSERT(ip->i_itemp == NULL);
801 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
803 iip->ili_inode = ip;
804 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
805 &xfs_inode_item_ops);
806 iip->ili_format.ilf_type = XFS_LI_INODE;
807 iip->ili_format.ilf_ino = ip->i_ino;
808 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
809 iip->ili_format.ilf_len = ip->i_imap.im_len;
810 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
814 * Free the inode log item and any memory hanging off of it.
816 void
817 xfs_inode_item_destroy(
818 xfs_inode_t *ip)
820 #ifdef XFS_TRANS_DEBUG
821 if (ip->i_itemp->ili_root_size != 0) {
822 kmem_free(ip->i_itemp->ili_orig_root);
824 #endif
825 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
830 * This is the inode flushing I/O completion routine. It is called
831 * from interrupt level when the buffer containing the inode is
832 * flushed to disk. It is responsible for removing the inode item
833 * from the AIL if it has not been re-logged, and unlocking the inode's
834 * flush lock.
836 void
837 xfs_iflush_done(
838 struct xfs_buf *bp,
839 struct xfs_log_item *lip)
841 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
842 xfs_inode_t *ip = iip->ili_inode;
843 struct xfs_ail *ailp = lip->li_ailp;
846 * We only want to pull the item from the AIL if it is
847 * actually there and its location in the log has not
848 * changed since we started the flush. Thus, we only bother
849 * if the ili_logged flag is set and the inode's lsn has not
850 * changed. First we check the lsn outside
851 * the lock since it's cheaper, and then we recheck while
852 * holding the lock before removing the inode from the AIL.
854 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) {
855 spin_lock(&ailp->xa_lock);
856 if (lip->li_lsn == iip->ili_flush_lsn) {
857 /* xfs_trans_ail_delete() drops the AIL lock. */
858 xfs_trans_ail_delete(ailp, lip);
859 } else {
860 spin_unlock(&ailp->xa_lock);
864 iip->ili_logged = 0;
867 * Clear the ili_last_fields bits now that we know that the
868 * data corresponding to them is safely on disk.
870 iip->ili_last_fields = 0;
873 * Release the inode's flush lock since we're done with it.
875 xfs_ifunlock(ip);
879 * This is the inode flushing abort routine. It is called
880 * from xfs_iflush when the filesystem is shutting down to clean
881 * up the inode state.
882 * It is responsible for removing the inode item
883 * from the AIL if it has not been re-logged, and unlocking the inode's
884 * flush lock.
886 void
887 xfs_iflush_abort(
888 xfs_inode_t *ip)
890 xfs_inode_log_item_t *iip = ip->i_itemp;
892 iip = ip->i_itemp;
893 if (iip) {
894 struct xfs_ail *ailp = iip->ili_item.li_ailp;
895 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
896 spin_lock(&ailp->xa_lock);
897 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
898 /* xfs_trans_ail_delete() drops the AIL lock. */
899 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
900 } else
901 spin_unlock(&ailp->xa_lock);
903 iip->ili_logged = 0;
905 * Clear the ili_last_fields bits now that we know that the
906 * data corresponding to them is safely on disk.
908 iip->ili_last_fields = 0;
910 * Clear the inode logging fields so no more flushes are
911 * attempted.
913 iip->ili_format.ilf_fields = 0;
916 * Release the inode's flush lock since we're done with it.
918 xfs_ifunlock(ip);
921 void
922 xfs_istale_done(
923 struct xfs_buf *bp,
924 struct xfs_log_item *lip)
926 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
930 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
931 * (which can have different field alignments) to the native version
934 xfs_inode_item_format_convert(
935 xfs_log_iovec_t *buf,
936 xfs_inode_log_format_t *in_f)
938 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
939 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
941 in_f->ilf_type = in_f32->ilf_type;
942 in_f->ilf_size = in_f32->ilf_size;
943 in_f->ilf_fields = in_f32->ilf_fields;
944 in_f->ilf_asize = in_f32->ilf_asize;
945 in_f->ilf_dsize = in_f32->ilf_dsize;
946 in_f->ilf_ino = in_f32->ilf_ino;
947 /* copy biggest field of ilf_u */
948 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
949 in_f32->ilf_u.ilfu_uuid.__u_bits,
950 sizeof(uuid_t));
951 in_f->ilf_blkno = in_f32->ilf_blkno;
952 in_f->ilf_len = in_f32->ilf_len;
953 in_f->ilf_boffset = in_f32->ilf_boffset;
954 return 0;
955 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
956 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
958 in_f->ilf_type = in_f64->ilf_type;
959 in_f->ilf_size = in_f64->ilf_size;
960 in_f->ilf_fields = in_f64->ilf_fields;
961 in_f->ilf_asize = in_f64->ilf_asize;
962 in_f->ilf_dsize = in_f64->ilf_dsize;
963 in_f->ilf_ino = in_f64->ilf_ino;
964 /* copy biggest field of ilf_u */
965 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
966 in_f64->ilf_u.ilfu_uuid.__u_bits,
967 sizeof(uuid_t));
968 in_f->ilf_blkno = in_f64->ilf_blkno;
969 in_f->ilf_len = in_f64->ilf_len;
970 in_f->ilf_boffset = in_f64->ilf_boffset;
971 return 0;
973 return EFSCORRUPTED;