USB: EHCI: fix obscure race in ehci_endpoint_disable
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / ksm.c
blob79cd773faa8545930cd5a2282453f6ffdb971c6a
1 /*
2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
37 #include <asm/tlbflush.h>
38 #include "internal.h"
41 * A few notes about the KSM scanning process,
42 * to make it easier to understand the data structures below:
44 * In order to reduce excessive scanning, KSM sorts the memory pages by their
45 * contents into a data structure that holds pointers to the pages' locations.
47 * Since the contents of the pages may change at any moment, KSM cannot just
48 * insert the pages into a normal sorted tree and expect it to find anything.
49 * Therefore KSM uses two data structures - the stable and the unstable tree.
51 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
52 * by their contents. Because each such page is write-protected, searching on
53 * this tree is fully assured to be working (except when pages are unmapped),
54 * and therefore this tree is called the stable tree.
56 * In addition to the stable tree, KSM uses a second data structure called the
57 * unstable tree: this tree holds pointers to pages which have been found to
58 * be "unchanged for a period of time". The unstable tree sorts these pages
59 * by their contents, but since they are not write-protected, KSM cannot rely
60 * upon the unstable tree to work correctly - the unstable tree is liable to
61 * be corrupted as its contents are modified, and so it is called unstable.
63 * KSM solves this problem by several techniques:
65 * 1) The unstable tree is flushed every time KSM completes scanning all
66 * memory areas, and then the tree is rebuilt again from the beginning.
67 * 2) KSM will only insert into the unstable tree, pages whose hash value
68 * has not changed since the previous scan of all memory areas.
69 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
70 * colors of the nodes and not on their contents, assuring that even when
71 * the tree gets "corrupted" it won't get out of balance, so scanning time
72 * remains the same (also, searching and inserting nodes in an rbtree uses
73 * the same algorithm, so we have no overhead when we flush and rebuild).
74 * 4) KSM never flushes the stable tree, which means that even if it were to
75 * take 10 attempts to find a page in the unstable tree, once it is found,
76 * it is secured in the stable tree. (When we scan a new page, we first
77 * compare it against the stable tree, and then against the unstable tree.)
80 /**
81 * struct mm_slot - ksm information per mm that is being scanned
82 * @link: link to the mm_slots hash list
83 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
84 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
85 * @mm: the mm that this information is valid for
87 struct mm_slot {
88 struct hlist_node link;
89 struct list_head mm_list;
90 struct rmap_item *rmap_list;
91 struct mm_struct *mm;
94 /**
95 * struct ksm_scan - cursor for scanning
96 * @mm_slot: the current mm_slot we are scanning
97 * @address: the next address inside that to be scanned
98 * @rmap_list: link to the next rmap to be scanned in the rmap_list
99 * @seqnr: count of completed full scans (needed when removing unstable node)
101 * There is only the one ksm_scan instance of this cursor structure.
103 struct ksm_scan {
104 struct mm_slot *mm_slot;
105 unsigned long address;
106 struct rmap_item **rmap_list;
107 unsigned long seqnr;
111 * struct stable_node - node of the stable rbtree
112 * @node: rb node of this ksm page in the stable tree
113 * @hlist: hlist head of rmap_items using this ksm page
114 * @kpfn: page frame number of this ksm page
116 struct stable_node {
117 struct rb_node node;
118 struct hlist_head hlist;
119 unsigned long kpfn;
123 * struct rmap_item - reverse mapping item for virtual addresses
124 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
125 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
126 * @mm: the memory structure this rmap_item is pointing into
127 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
128 * @oldchecksum: previous checksum of the page at that virtual address
129 * @node: rb node of this rmap_item in the unstable tree
130 * @head: pointer to stable_node heading this list in the stable tree
131 * @hlist: link into hlist of rmap_items hanging off that stable_node
133 struct rmap_item {
134 struct rmap_item *rmap_list;
135 struct anon_vma *anon_vma; /* when stable */
136 struct mm_struct *mm;
137 unsigned long address; /* + low bits used for flags below */
138 unsigned int oldchecksum; /* when unstable */
139 union {
140 struct rb_node node; /* when node of unstable tree */
141 struct { /* when listed from stable tree */
142 struct stable_node *head;
143 struct hlist_node hlist;
148 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
149 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
150 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
152 /* The stable and unstable tree heads */
153 static struct rb_root root_stable_tree = RB_ROOT;
154 static struct rb_root root_unstable_tree = RB_ROOT;
156 #define MM_SLOTS_HASH_HEADS 1024
157 static struct hlist_head *mm_slots_hash;
159 static struct mm_slot ksm_mm_head = {
160 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
162 static struct ksm_scan ksm_scan = {
163 .mm_slot = &ksm_mm_head,
166 static struct kmem_cache *rmap_item_cache;
167 static struct kmem_cache *stable_node_cache;
168 static struct kmem_cache *mm_slot_cache;
170 /* The number of nodes in the stable tree */
171 static unsigned long ksm_pages_shared;
173 /* The number of page slots additionally sharing those nodes */
174 static unsigned long ksm_pages_sharing;
176 /* The number of nodes in the unstable tree */
177 static unsigned long ksm_pages_unshared;
179 /* The number of rmap_items in use: to calculate pages_volatile */
180 static unsigned long ksm_rmap_items;
182 /* Number of pages ksmd should scan in one batch */
183 static unsigned int ksm_thread_pages_to_scan = 100;
185 /* Milliseconds ksmd should sleep between batches */
186 static unsigned int ksm_thread_sleep_millisecs = 20;
188 #define KSM_RUN_STOP 0
189 #define KSM_RUN_MERGE 1
190 #define KSM_RUN_UNMERGE 2
191 static unsigned int ksm_run = KSM_RUN_STOP;
193 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
194 static DEFINE_MUTEX(ksm_thread_mutex);
195 static DEFINE_SPINLOCK(ksm_mmlist_lock);
197 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
198 sizeof(struct __struct), __alignof__(struct __struct),\
199 (__flags), NULL)
201 static int __init ksm_slab_init(void)
203 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
204 if (!rmap_item_cache)
205 goto out;
207 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
208 if (!stable_node_cache)
209 goto out_free1;
211 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
212 if (!mm_slot_cache)
213 goto out_free2;
215 return 0;
217 out_free2:
218 kmem_cache_destroy(stable_node_cache);
219 out_free1:
220 kmem_cache_destroy(rmap_item_cache);
221 out:
222 return -ENOMEM;
225 static void __init ksm_slab_free(void)
227 kmem_cache_destroy(mm_slot_cache);
228 kmem_cache_destroy(stable_node_cache);
229 kmem_cache_destroy(rmap_item_cache);
230 mm_slot_cache = NULL;
233 static inline struct rmap_item *alloc_rmap_item(void)
235 struct rmap_item *rmap_item;
237 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
238 if (rmap_item)
239 ksm_rmap_items++;
240 return rmap_item;
243 static inline void free_rmap_item(struct rmap_item *rmap_item)
245 ksm_rmap_items--;
246 rmap_item->mm = NULL; /* debug safety */
247 kmem_cache_free(rmap_item_cache, rmap_item);
250 static inline struct stable_node *alloc_stable_node(void)
252 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
255 static inline void free_stable_node(struct stable_node *stable_node)
257 kmem_cache_free(stable_node_cache, stable_node);
260 static inline struct mm_slot *alloc_mm_slot(void)
262 if (!mm_slot_cache) /* initialization failed */
263 return NULL;
264 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
267 static inline void free_mm_slot(struct mm_slot *mm_slot)
269 kmem_cache_free(mm_slot_cache, mm_slot);
272 static int __init mm_slots_hash_init(void)
274 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
275 GFP_KERNEL);
276 if (!mm_slots_hash)
277 return -ENOMEM;
278 return 0;
281 static void __init mm_slots_hash_free(void)
283 kfree(mm_slots_hash);
286 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
288 struct mm_slot *mm_slot;
289 struct hlist_head *bucket;
290 struct hlist_node *node;
292 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
293 % MM_SLOTS_HASH_HEADS];
294 hlist_for_each_entry(mm_slot, node, bucket, link) {
295 if (mm == mm_slot->mm)
296 return mm_slot;
298 return NULL;
301 static void insert_to_mm_slots_hash(struct mm_struct *mm,
302 struct mm_slot *mm_slot)
304 struct hlist_head *bucket;
306 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
307 % MM_SLOTS_HASH_HEADS];
308 mm_slot->mm = mm;
309 hlist_add_head(&mm_slot->link, bucket);
312 static inline int in_stable_tree(struct rmap_item *rmap_item)
314 return rmap_item->address & STABLE_FLAG;
317 static void hold_anon_vma(struct rmap_item *rmap_item,
318 struct anon_vma *anon_vma)
320 rmap_item->anon_vma = anon_vma;
321 atomic_inc(&anon_vma->external_refcount);
324 static void drop_anon_vma(struct rmap_item *rmap_item)
326 struct anon_vma *anon_vma = rmap_item->anon_vma;
328 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
329 int empty = list_empty(&anon_vma->head);
330 spin_unlock(&anon_vma->lock);
331 if (empty)
332 anon_vma_free(anon_vma);
337 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
338 * page tables after it has passed through ksm_exit() - which, if necessary,
339 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
340 * a special flag: they can just back out as soon as mm_users goes to zero.
341 * ksm_test_exit() is used throughout to make this test for exit: in some
342 * places for correctness, in some places just to avoid unnecessary work.
344 static inline bool ksm_test_exit(struct mm_struct *mm)
346 return atomic_read(&mm->mm_users) == 0;
350 * We use break_ksm to break COW on a ksm page: it's a stripped down
352 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
353 * put_page(page);
355 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
356 * in case the application has unmapped and remapped mm,addr meanwhile.
357 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
358 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
360 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
362 struct page *page;
363 int ret = 0;
365 do {
366 cond_resched();
367 page = follow_page(vma, addr, FOLL_GET);
368 if (IS_ERR_OR_NULL(page))
369 break;
370 if (PageKsm(page))
371 ret = handle_mm_fault(vma->vm_mm, vma, addr,
372 FAULT_FLAG_WRITE);
373 else
374 ret = VM_FAULT_WRITE;
375 put_page(page);
376 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
378 * We must loop because handle_mm_fault() may back out if there's
379 * any difficulty e.g. if pte accessed bit gets updated concurrently.
381 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
382 * COW has been broken, even if the vma does not permit VM_WRITE;
383 * but note that a concurrent fault might break PageKsm for us.
385 * VM_FAULT_SIGBUS could occur if we race with truncation of the
386 * backing file, which also invalidates anonymous pages: that's
387 * okay, that truncation will have unmapped the PageKsm for us.
389 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
390 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
391 * current task has TIF_MEMDIE set, and will be OOM killed on return
392 * to user; and ksmd, having no mm, would never be chosen for that.
394 * But if the mm is in a limited mem_cgroup, then the fault may fail
395 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
396 * even ksmd can fail in this way - though it's usually breaking ksm
397 * just to undo a merge it made a moment before, so unlikely to oom.
399 * That's a pity: we might therefore have more kernel pages allocated
400 * than we're counting as nodes in the stable tree; but ksm_do_scan
401 * will retry to break_cow on each pass, so should recover the page
402 * in due course. The important thing is to not let VM_MERGEABLE
403 * be cleared while any such pages might remain in the area.
405 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
408 static void break_cow(struct rmap_item *rmap_item)
410 struct mm_struct *mm = rmap_item->mm;
411 unsigned long addr = rmap_item->address;
412 struct vm_area_struct *vma;
415 * It is not an accident that whenever we want to break COW
416 * to undo, we also need to drop a reference to the anon_vma.
418 drop_anon_vma(rmap_item);
420 down_read(&mm->mmap_sem);
421 if (ksm_test_exit(mm))
422 goto out;
423 vma = find_vma(mm, addr);
424 if (!vma || vma->vm_start > addr)
425 goto out;
426 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
427 goto out;
428 break_ksm(vma, addr);
429 out:
430 up_read(&mm->mmap_sem);
433 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
435 struct mm_struct *mm = rmap_item->mm;
436 unsigned long addr = rmap_item->address;
437 struct vm_area_struct *vma;
438 struct page *page;
440 down_read(&mm->mmap_sem);
441 if (ksm_test_exit(mm))
442 goto out;
443 vma = find_vma(mm, addr);
444 if (!vma || vma->vm_start > addr)
445 goto out;
446 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
447 goto out;
449 page = follow_page(vma, addr, FOLL_GET);
450 if (IS_ERR_OR_NULL(page))
451 goto out;
452 if (PageAnon(page)) {
453 flush_anon_page(vma, page, addr);
454 flush_dcache_page(page);
455 } else {
456 put_page(page);
457 out: page = NULL;
459 up_read(&mm->mmap_sem);
460 return page;
463 static void remove_node_from_stable_tree(struct stable_node *stable_node)
465 struct rmap_item *rmap_item;
466 struct hlist_node *hlist;
468 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
469 if (rmap_item->hlist.next)
470 ksm_pages_sharing--;
471 else
472 ksm_pages_shared--;
473 drop_anon_vma(rmap_item);
474 rmap_item->address &= PAGE_MASK;
475 cond_resched();
478 rb_erase(&stable_node->node, &root_stable_tree);
479 free_stable_node(stable_node);
483 * get_ksm_page: checks if the page indicated by the stable node
484 * is still its ksm page, despite having held no reference to it.
485 * In which case we can trust the content of the page, and it
486 * returns the gotten page; but if the page has now been zapped,
487 * remove the stale node from the stable tree and return NULL.
489 * You would expect the stable_node to hold a reference to the ksm page.
490 * But if it increments the page's count, swapping out has to wait for
491 * ksmd to come around again before it can free the page, which may take
492 * seconds or even minutes: much too unresponsive. So instead we use a
493 * "keyhole reference": access to the ksm page from the stable node peeps
494 * out through its keyhole to see if that page still holds the right key,
495 * pointing back to this stable node. This relies on freeing a PageAnon
496 * page to reset its page->mapping to NULL, and relies on no other use of
497 * a page to put something that might look like our key in page->mapping.
499 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
500 * but this is different - made simpler by ksm_thread_mutex being held, but
501 * interesting for assuming that no other use of the struct page could ever
502 * put our expected_mapping into page->mapping (or a field of the union which
503 * coincides with page->mapping). The RCU calls are not for KSM at all, but
504 * to keep the page_count protocol described with page_cache_get_speculative.
506 * Note: it is possible that get_ksm_page() will return NULL one moment,
507 * then page the next, if the page is in between page_freeze_refs() and
508 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
509 * is on its way to being freed; but it is an anomaly to bear in mind.
511 static struct page *get_ksm_page(struct stable_node *stable_node)
513 struct page *page;
514 void *expected_mapping;
516 page = pfn_to_page(stable_node->kpfn);
517 expected_mapping = (void *)stable_node +
518 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
519 rcu_read_lock();
520 if (page->mapping != expected_mapping)
521 goto stale;
522 if (!get_page_unless_zero(page))
523 goto stale;
524 if (page->mapping != expected_mapping) {
525 put_page(page);
526 goto stale;
528 rcu_read_unlock();
529 return page;
530 stale:
531 rcu_read_unlock();
532 remove_node_from_stable_tree(stable_node);
533 return NULL;
537 * Removing rmap_item from stable or unstable tree.
538 * This function will clean the information from the stable/unstable tree.
540 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
542 if (rmap_item->address & STABLE_FLAG) {
543 struct stable_node *stable_node;
544 struct page *page;
546 stable_node = rmap_item->head;
547 page = get_ksm_page(stable_node);
548 if (!page)
549 goto out;
551 lock_page(page);
552 hlist_del(&rmap_item->hlist);
553 unlock_page(page);
554 put_page(page);
556 if (stable_node->hlist.first)
557 ksm_pages_sharing--;
558 else
559 ksm_pages_shared--;
561 drop_anon_vma(rmap_item);
562 rmap_item->address &= PAGE_MASK;
564 } else if (rmap_item->address & UNSTABLE_FLAG) {
565 unsigned char age;
567 * Usually ksmd can and must skip the rb_erase, because
568 * root_unstable_tree was already reset to RB_ROOT.
569 * But be careful when an mm is exiting: do the rb_erase
570 * if this rmap_item was inserted by this scan, rather
571 * than left over from before.
573 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
574 BUG_ON(age > 1);
575 if (!age)
576 rb_erase(&rmap_item->node, &root_unstable_tree);
578 ksm_pages_unshared--;
579 rmap_item->address &= PAGE_MASK;
581 out:
582 cond_resched(); /* we're called from many long loops */
585 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
586 struct rmap_item **rmap_list)
588 while (*rmap_list) {
589 struct rmap_item *rmap_item = *rmap_list;
590 *rmap_list = rmap_item->rmap_list;
591 remove_rmap_item_from_tree(rmap_item);
592 free_rmap_item(rmap_item);
597 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
598 * than check every pte of a given vma, the locking doesn't quite work for
599 * that - an rmap_item is assigned to the stable tree after inserting ksm
600 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
601 * rmap_items from parent to child at fork time (so as not to waste time
602 * if exit comes before the next scan reaches it).
604 * Similarly, although we'd like to remove rmap_items (so updating counts
605 * and freeing memory) when unmerging an area, it's easier to leave that
606 * to the next pass of ksmd - consider, for example, how ksmd might be
607 * in cmp_and_merge_page on one of the rmap_items we would be removing.
609 static int unmerge_ksm_pages(struct vm_area_struct *vma,
610 unsigned long start, unsigned long end)
612 unsigned long addr;
613 int err = 0;
615 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
616 if (ksm_test_exit(vma->vm_mm))
617 break;
618 if (signal_pending(current))
619 err = -ERESTARTSYS;
620 else
621 err = break_ksm(vma, addr);
623 return err;
626 #ifdef CONFIG_SYSFS
628 * Only called through the sysfs control interface:
630 static int unmerge_and_remove_all_rmap_items(void)
632 struct mm_slot *mm_slot;
633 struct mm_struct *mm;
634 struct vm_area_struct *vma;
635 int err = 0;
637 spin_lock(&ksm_mmlist_lock);
638 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
639 struct mm_slot, mm_list);
640 spin_unlock(&ksm_mmlist_lock);
642 for (mm_slot = ksm_scan.mm_slot;
643 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
644 mm = mm_slot->mm;
645 down_read(&mm->mmap_sem);
646 for (vma = mm->mmap; vma; vma = vma->vm_next) {
647 if (ksm_test_exit(mm))
648 break;
649 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
650 continue;
651 err = unmerge_ksm_pages(vma,
652 vma->vm_start, vma->vm_end);
653 if (err)
654 goto error;
657 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
659 spin_lock(&ksm_mmlist_lock);
660 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
661 struct mm_slot, mm_list);
662 if (ksm_test_exit(mm)) {
663 hlist_del(&mm_slot->link);
664 list_del(&mm_slot->mm_list);
665 spin_unlock(&ksm_mmlist_lock);
667 free_mm_slot(mm_slot);
668 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
669 up_read(&mm->mmap_sem);
670 mmdrop(mm);
671 } else {
672 spin_unlock(&ksm_mmlist_lock);
673 up_read(&mm->mmap_sem);
677 ksm_scan.seqnr = 0;
678 return 0;
680 error:
681 up_read(&mm->mmap_sem);
682 spin_lock(&ksm_mmlist_lock);
683 ksm_scan.mm_slot = &ksm_mm_head;
684 spin_unlock(&ksm_mmlist_lock);
685 return err;
687 #endif /* CONFIG_SYSFS */
689 static u32 calc_checksum(struct page *page)
691 u32 checksum;
692 void *addr = kmap_atomic(page, KM_USER0);
693 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
694 kunmap_atomic(addr, KM_USER0);
695 return checksum;
698 static int memcmp_pages(struct page *page1, struct page *page2)
700 char *addr1, *addr2;
701 int ret;
703 addr1 = kmap_atomic(page1, KM_USER0);
704 addr2 = kmap_atomic(page2, KM_USER1);
705 ret = memcmp(addr1, addr2, PAGE_SIZE);
706 kunmap_atomic(addr2, KM_USER1);
707 kunmap_atomic(addr1, KM_USER0);
708 return ret;
711 static inline int pages_identical(struct page *page1, struct page *page2)
713 return !memcmp_pages(page1, page2);
716 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
717 pte_t *orig_pte)
719 struct mm_struct *mm = vma->vm_mm;
720 unsigned long addr;
721 pte_t *ptep;
722 spinlock_t *ptl;
723 int swapped;
724 int err = -EFAULT;
726 addr = page_address_in_vma(page, vma);
727 if (addr == -EFAULT)
728 goto out;
730 ptep = page_check_address(page, mm, addr, &ptl, 0);
731 if (!ptep)
732 goto out;
734 if (pte_write(*ptep) || pte_dirty(*ptep)) {
735 pte_t entry;
737 swapped = PageSwapCache(page);
738 flush_cache_page(vma, addr, page_to_pfn(page));
740 * Ok this is tricky, when get_user_pages_fast() run it doesnt
741 * take any lock, therefore the check that we are going to make
742 * with the pagecount against the mapcount is racey and
743 * O_DIRECT can happen right after the check.
744 * So we clear the pte and flush the tlb before the check
745 * this assure us that no O_DIRECT can happen after the check
746 * or in the middle of the check.
748 entry = ptep_clear_flush(vma, addr, ptep);
750 * Check that no O_DIRECT or similar I/O is in progress on the
751 * page
753 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
754 set_pte_at(mm, addr, ptep, entry);
755 goto out_unlock;
757 if (pte_dirty(entry))
758 set_page_dirty(page);
759 entry = pte_mkclean(pte_wrprotect(entry));
760 set_pte_at_notify(mm, addr, ptep, entry);
762 *orig_pte = *ptep;
763 err = 0;
765 out_unlock:
766 pte_unmap_unlock(ptep, ptl);
767 out:
768 return err;
772 * replace_page - replace page in vma by new ksm page
773 * @vma: vma that holds the pte pointing to page
774 * @page: the page we are replacing by kpage
775 * @kpage: the ksm page we replace page by
776 * @orig_pte: the original value of the pte
778 * Returns 0 on success, -EFAULT on failure.
780 static int replace_page(struct vm_area_struct *vma, struct page *page,
781 struct page *kpage, pte_t orig_pte)
783 struct mm_struct *mm = vma->vm_mm;
784 pgd_t *pgd;
785 pud_t *pud;
786 pmd_t *pmd;
787 pte_t *ptep;
788 spinlock_t *ptl;
789 unsigned long addr;
790 int err = -EFAULT;
792 addr = page_address_in_vma(page, vma);
793 if (addr == -EFAULT)
794 goto out;
796 pgd = pgd_offset(mm, addr);
797 if (!pgd_present(*pgd))
798 goto out;
800 pud = pud_offset(pgd, addr);
801 if (!pud_present(*pud))
802 goto out;
804 pmd = pmd_offset(pud, addr);
805 if (!pmd_present(*pmd))
806 goto out;
808 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
809 if (!pte_same(*ptep, orig_pte)) {
810 pte_unmap_unlock(ptep, ptl);
811 goto out;
814 get_page(kpage);
815 page_add_anon_rmap(kpage, vma, addr);
817 flush_cache_page(vma, addr, pte_pfn(*ptep));
818 ptep_clear_flush(vma, addr, ptep);
819 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
821 page_remove_rmap(page);
822 put_page(page);
824 pte_unmap_unlock(ptep, ptl);
825 err = 0;
826 out:
827 return err;
831 * try_to_merge_one_page - take two pages and merge them into one
832 * @vma: the vma that holds the pte pointing to page
833 * @page: the PageAnon page that we want to replace with kpage
834 * @kpage: the PageKsm page that we want to map instead of page,
835 * or NULL the first time when we want to use page as kpage.
837 * This function returns 0 if the pages were merged, -EFAULT otherwise.
839 static int try_to_merge_one_page(struct vm_area_struct *vma,
840 struct page *page, struct page *kpage)
842 pte_t orig_pte = __pte(0);
843 int err = -EFAULT;
845 if (page == kpage) /* ksm page forked */
846 return 0;
848 if (!(vma->vm_flags & VM_MERGEABLE))
849 goto out;
850 if (!PageAnon(page))
851 goto out;
854 * We need the page lock to read a stable PageSwapCache in
855 * write_protect_page(). We use trylock_page() instead of
856 * lock_page() because we don't want to wait here - we
857 * prefer to continue scanning and merging different pages,
858 * then come back to this page when it is unlocked.
860 if (!trylock_page(page))
861 goto out;
863 * If this anonymous page is mapped only here, its pte may need
864 * to be write-protected. If it's mapped elsewhere, all of its
865 * ptes are necessarily already write-protected. But in either
866 * case, we need to lock and check page_count is not raised.
868 if (write_protect_page(vma, page, &orig_pte) == 0) {
869 if (!kpage) {
871 * While we hold page lock, upgrade page from
872 * PageAnon+anon_vma to PageKsm+NULL stable_node:
873 * stable_tree_insert() will update stable_node.
875 set_page_stable_node(page, NULL);
876 mark_page_accessed(page);
877 err = 0;
878 } else if (pages_identical(page, kpage))
879 err = replace_page(vma, page, kpage, orig_pte);
882 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
883 munlock_vma_page(page);
884 if (!PageMlocked(kpage)) {
885 unlock_page(page);
886 lock_page(kpage);
887 mlock_vma_page(kpage);
888 page = kpage; /* for final unlock */
892 unlock_page(page);
893 out:
894 return err;
898 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
899 * but no new kernel page is allocated: kpage must already be a ksm page.
901 * This function returns 0 if the pages were merged, -EFAULT otherwise.
903 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
904 struct page *page, struct page *kpage)
906 struct mm_struct *mm = rmap_item->mm;
907 struct vm_area_struct *vma;
908 int err = -EFAULT;
910 down_read(&mm->mmap_sem);
911 if (ksm_test_exit(mm))
912 goto out;
913 vma = find_vma(mm, rmap_item->address);
914 if (!vma || vma->vm_start > rmap_item->address)
915 goto out;
917 err = try_to_merge_one_page(vma, page, kpage);
918 if (err)
919 goto out;
921 /* Must get reference to anon_vma while still holding mmap_sem */
922 hold_anon_vma(rmap_item, vma->anon_vma);
923 out:
924 up_read(&mm->mmap_sem);
925 return err;
929 * try_to_merge_two_pages - take two identical pages and prepare them
930 * to be merged into one page.
932 * This function returns the kpage if we successfully merged two identical
933 * pages into one ksm page, NULL otherwise.
935 * Note that this function upgrades page to ksm page: if one of the pages
936 * is already a ksm page, try_to_merge_with_ksm_page should be used.
938 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
939 struct page *page,
940 struct rmap_item *tree_rmap_item,
941 struct page *tree_page)
943 int err;
945 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
946 if (!err) {
947 err = try_to_merge_with_ksm_page(tree_rmap_item,
948 tree_page, page);
950 * If that fails, we have a ksm page with only one pte
951 * pointing to it: so break it.
953 if (err)
954 break_cow(rmap_item);
956 return err ? NULL : page;
960 * stable_tree_search - search for page inside the stable tree
962 * This function checks if there is a page inside the stable tree
963 * with identical content to the page that we are scanning right now.
965 * This function returns the stable tree node of identical content if found,
966 * NULL otherwise.
968 static struct page *stable_tree_search(struct page *page)
970 struct rb_node *node = root_stable_tree.rb_node;
971 struct stable_node *stable_node;
973 stable_node = page_stable_node(page);
974 if (stable_node) { /* ksm page forked */
975 get_page(page);
976 return page;
979 while (node) {
980 struct page *tree_page;
981 int ret;
983 cond_resched();
984 stable_node = rb_entry(node, struct stable_node, node);
985 tree_page = get_ksm_page(stable_node);
986 if (!tree_page)
987 return NULL;
989 ret = memcmp_pages(page, tree_page);
991 if (ret < 0) {
992 put_page(tree_page);
993 node = node->rb_left;
994 } else if (ret > 0) {
995 put_page(tree_page);
996 node = node->rb_right;
997 } else
998 return tree_page;
1001 return NULL;
1005 * stable_tree_insert - insert rmap_item pointing to new ksm page
1006 * into the stable tree.
1008 * This function returns the stable tree node just allocated on success,
1009 * NULL otherwise.
1011 static struct stable_node *stable_tree_insert(struct page *kpage)
1013 struct rb_node **new = &root_stable_tree.rb_node;
1014 struct rb_node *parent = NULL;
1015 struct stable_node *stable_node;
1017 while (*new) {
1018 struct page *tree_page;
1019 int ret;
1021 cond_resched();
1022 stable_node = rb_entry(*new, struct stable_node, node);
1023 tree_page = get_ksm_page(stable_node);
1024 if (!tree_page)
1025 return NULL;
1027 ret = memcmp_pages(kpage, tree_page);
1028 put_page(tree_page);
1030 parent = *new;
1031 if (ret < 0)
1032 new = &parent->rb_left;
1033 else if (ret > 0)
1034 new = &parent->rb_right;
1035 else {
1037 * It is not a bug that stable_tree_search() didn't
1038 * find this node: because at that time our page was
1039 * not yet write-protected, so may have changed since.
1041 return NULL;
1045 stable_node = alloc_stable_node();
1046 if (!stable_node)
1047 return NULL;
1049 rb_link_node(&stable_node->node, parent, new);
1050 rb_insert_color(&stable_node->node, &root_stable_tree);
1052 INIT_HLIST_HEAD(&stable_node->hlist);
1054 stable_node->kpfn = page_to_pfn(kpage);
1055 set_page_stable_node(kpage, stable_node);
1057 return stable_node;
1061 * unstable_tree_search_insert - search for identical page,
1062 * else insert rmap_item into the unstable tree.
1064 * This function searches for a page in the unstable tree identical to the
1065 * page currently being scanned; and if no identical page is found in the
1066 * tree, we insert rmap_item as a new object into the unstable tree.
1068 * This function returns pointer to rmap_item found to be identical
1069 * to the currently scanned page, NULL otherwise.
1071 * This function does both searching and inserting, because they share
1072 * the same walking algorithm in an rbtree.
1074 static
1075 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1076 struct page *page,
1077 struct page **tree_pagep)
1080 struct rb_node **new = &root_unstable_tree.rb_node;
1081 struct rb_node *parent = NULL;
1083 while (*new) {
1084 struct rmap_item *tree_rmap_item;
1085 struct page *tree_page;
1086 int ret;
1088 cond_resched();
1089 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1090 tree_page = get_mergeable_page(tree_rmap_item);
1091 if (IS_ERR_OR_NULL(tree_page))
1092 return NULL;
1095 * Don't substitute a ksm page for a forked page.
1097 if (page == tree_page) {
1098 put_page(tree_page);
1099 return NULL;
1102 ret = memcmp_pages(page, tree_page);
1104 parent = *new;
1105 if (ret < 0) {
1106 put_page(tree_page);
1107 new = &parent->rb_left;
1108 } else if (ret > 0) {
1109 put_page(tree_page);
1110 new = &parent->rb_right;
1111 } else {
1112 *tree_pagep = tree_page;
1113 return tree_rmap_item;
1117 rmap_item->address |= UNSTABLE_FLAG;
1118 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1119 rb_link_node(&rmap_item->node, parent, new);
1120 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1122 ksm_pages_unshared++;
1123 return NULL;
1127 * stable_tree_append - add another rmap_item to the linked list of
1128 * rmap_items hanging off a given node of the stable tree, all sharing
1129 * the same ksm page.
1131 static void stable_tree_append(struct rmap_item *rmap_item,
1132 struct stable_node *stable_node)
1134 rmap_item->head = stable_node;
1135 rmap_item->address |= STABLE_FLAG;
1136 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1138 if (rmap_item->hlist.next)
1139 ksm_pages_sharing++;
1140 else
1141 ksm_pages_shared++;
1145 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1146 * if not, compare checksum to previous and if it's the same, see if page can
1147 * be inserted into the unstable tree, or merged with a page already there and
1148 * both transferred to the stable tree.
1150 * @page: the page that we are searching identical page to.
1151 * @rmap_item: the reverse mapping into the virtual address of this page
1153 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1155 struct rmap_item *tree_rmap_item;
1156 struct page *tree_page = NULL;
1157 struct stable_node *stable_node;
1158 struct page *kpage;
1159 unsigned int checksum;
1160 int err;
1162 remove_rmap_item_from_tree(rmap_item);
1164 /* We first start with searching the page inside the stable tree */
1165 kpage = stable_tree_search(page);
1166 if (kpage) {
1167 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1168 if (!err) {
1170 * The page was successfully merged:
1171 * add its rmap_item to the stable tree.
1173 lock_page(kpage);
1174 stable_tree_append(rmap_item, page_stable_node(kpage));
1175 unlock_page(kpage);
1177 put_page(kpage);
1178 return;
1182 * If the hash value of the page has changed from the last time
1183 * we calculated it, this page is changing frequently: therefore we
1184 * don't want to insert it in the unstable tree, and we don't want
1185 * to waste our time searching for something identical to it there.
1187 checksum = calc_checksum(page);
1188 if (rmap_item->oldchecksum != checksum) {
1189 rmap_item->oldchecksum = checksum;
1190 return;
1193 tree_rmap_item =
1194 unstable_tree_search_insert(rmap_item, page, &tree_page);
1195 if (tree_rmap_item) {
1196 kpage = try_to_merge_two_pages(rmap_item, page,
1197 tree_rmap_item, tree_page);
1198 put_page(tree_page);
1200 * As soon as we merge this page, we want to remove the
1201 * rmap_item of the page we have merged with from the unstable
1202 * tree, and insert it instead as new node in the stable tree.
1204 if (kpage) {
1205 remove_rmap_item_from_tree(tree_rmap_item);
1207 lock_page(kpage);
1208 stable_node = stable_tree_insert(kpage);
1209 if (stable_node) {
1210 stable_tree_append(tree_rmap_item, stable_node);
1211 stable_tree_append(rmap_item, stable_node);
1213 unlock_page(kpage);
1216 * If we fail to insert the page into the stable tree,
1217 * we will have 2 virtual addresses that are pointing
1218 * to a ksm page left outside the stable tree,
1219 * in which case we need to break_cow on both.
1221 if (!stable_node) {
1222 break_cow(tree_rmap_item);
1223 break_cow(rmap_item);
1229 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1230 struct rmap_item **rmap_list,
1231 unsigned long addr)
1233 struct rmap_item *rmap_item;
1235 while (*rmap_list) {
1236 rmap_item = *rmap_list;
1237 if ((rmap_item->address & PAGE_MASK) == addr)
1238 return rmap_item;
1239 if (rmap_item->address > addr)
1240 break;
1241 *rmap_list = rmap_item->rmap_list;
1242 remove_rmap_item_from_tree(rmap_item);
1243 free_rmap_item(rmap_item);
1246 rmap_item = alloc_rmap_item();
1247 if (rmap_item) {
1248 /* It has already been zeroed */
1249 rmap_item->mm = mm_slot->mm;
1250 rmap_item->address = addr;
1251 rmap_item->rmap_list = *rmap_list;
1252 *rmap_list = rmap_item;
1254 return rmap_item;
1257 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1259 struct mm_struct *mm;
1260 struct mm_slot *slot;
1261 struct vm_area_struct *vma;
1262 struct rmap_item *rmap_item;
1264 if (list_empty(&ksm_mm_head.mm_list))
1265 return NULL;
1267 slot = ksm_scan.mm_slot;
1268 if (slot == &ksm_mm_head) {
1269 root_unstable_tree = RB_ROOT;
1271 spin_lock(&ksm_mmlist_lock);
1272 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1273 ksm_scan.mm_slot = slot;
1274 spin_unlock(&ksm_mmlist_lock);
1275 next_mm:
1276 ksm_scan.address = 0;
1277 ksm_scan.rmap_list = &slot->rmap_list;
1280 mm = slot->mm;
1281 down_read(&mm->mmap_sem);
1282 if (ksm_test_exit(mm))
1283 vma = NULL;
1284 else
1285 vma = find_vma(mm, ksm_scan.address);
1287 for (; vma; vma = vma->vm_next) {
1288 if (!(vma->vm_flags & VM_MERGEABLE))
1289 continue;
1290 if (ksm_scan.address < vma->vm_start)
1291 ksm_scan.address = vma->vm_start;
1292 if (!vma->anon_vma)
1293 ksm_scan.address = vma->vm_end;
1295 while (ksm_scan.address < vma->vm_end) {
1296 if (ksm_test_exit(mm))
1297 break;
1298 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1299 if (!IS_ERR_OR_NULL(*page) && PageAnon(*page)) {
1300 flush_anon_page(vma, *page, ksm_scan.address);
1301 flush_dcache_page(*page);
1302 rmap_item = get_next_rmap_item(slot,
1303 ksm_scan.rmap_list, ksm_scan.address);
1304 if (rmap_item) {
1305 ksm_scan.rmap_list =
1306 &rmap_item->rmap_list;
1307 ksm_scan.address += PAGE_SIZE;
1308 } else
1309 put_page(*page);
1310 up_read(&mm->mmap_sem);
1311 return rmap_item;
1313 if (!IS_ERR_OR_NULL(*page))
1314 put_page(*page);
1315 ksm_scan.address += PAGE_SIZE;
1316 cond_resched();
1320 if (ksm_test_exit(mm)) {
1321 ksm_scan.address = 0;
1322 ksm_scan.rmap_list = &slot->rmap_list;
1325 * Nuke all the rmap_items that are above this current rmap:
1326 * because there were no VM_MERGEABLE vmas with such addresses.
1328 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1330 spin_lock(&ksm_mmlist_lock);
1331 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1332 struct mm_slot, mm_list);
1333 if (ksm_scan.address == 0) {
1335 * We've completed a full scan of all vmas, holding mmap_sem
1336 * throughout, and found no VM_MERGEABLE: so do the same as
1337 * __ksm_exit does to remove this mm from all our lists now.
1338 * This applies either when cleaning up after __ksm_exit
1339 * (but beware: we can reach here even before __ksm_exit),
1340 * or when all VM_MERGEABLE areas have been unmapped (and
1341 * mmap_sem then protects against race with MADV_MERGEABLE).
1343 hlist_del(&slot->link);
1344 list_del(&slot->mm_list);
1345 spin_unlock(&ksm_mmlist_lock);
1347 free_mm_slot(slot);
1348 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1349 up_read(&mm->mmap_sem);
1350 mmdrop(mm);
1351 } else {
1352 spin_unlock(&ksm_mmlist_lock);
1353 up_read(&mm->mmap_sem);
1356 /* Repeat until we've completed scanning the whole list */
1357 slot = ksm_scan.mm_slot;
1358 if (slot != &ksm_mm_head)
1359 goto next_mm;
1361 ksm_scan.seqnr++;
1362 return NULL;
1366 * ksm_do_scan - the ksm scanner main worker function.
1367 * @scan_npages - number of pages we want to scan before we return.
1369 static void ksm_do_scan(unsigned int scan_npages)
1371 struct rmap_item *rmap_item;
1372 struct page *uninitialized_var(page);
1374 while (scan_npages--) {
1375 cond_resched();
1376 rmap_item = scan_get_next_rmap_item(&page);
1377 if (!rmap_item)
1378 return;
1379 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1380 cmp_and_merge_page(page, rmap_item);
1381 put_page(page);
1385 static int ksmd_should_run(void)
1387 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1390 static int ksm_scan_thread(void *nothing)
1392 set_user_nice(current, 5);
1394 while (!kthread_should_stop()) {
1395 mutex_lock(&ksm_thread_mutex);
1396 if (ksmd_should_run())
1397 ksm_do_scan(ksm_thread_pages_to_scan);
1398 mutex_unlock(&ksm_thread_mutex);
1400 if (ksmd_should_run()) {
1401 schedule_timeout_interruptible(
1402 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1403 } else {
1404 wait_event_interruptible(ksm_thread_wait,
1405 ksmd_should_run() || kthread_should_stop());
1408 return 0;
1411 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1412 unsigned long end, int advice, unsigned long *vm_flags)
1414 struct mm_struct *mm = vma->vm_mm;
1415 int err;
1417 switch (advice) {
1418 case MADV_MERGEABLE:
1420 * Be somewhat over-protective for now!
1422 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1423 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1424 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1425 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1426 return 0; /* just ignore the advice */
1428 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1429 err = __ksm_enter(mm);
1430 if (err)
1431 return err;
1434 *vm_flags |= VM_MERGEABLE;
1435 break;
1437 case MADV_UNMERGEABLE:
1438 if (!(*vm_flags & VM_MERGEABLE))
1439 return 0; /* just ignore the advice */
1441 if (vma->anon_vma) {
1442 err = unmerge_ksm_pages(vma, start, end);
1443 if (err)
1444 return err;
1447 *vm_flags &= ~VM_MERGEABLE;
1448 break;
1451 return 0;
1454 int __ksm_enter(struct mm_struct *mm)
1456 struct mm_slot *mm_slot;
1457 int needs_wakeup;
1459 mm_slot = alloc_mm_slot();
1460 if (!mm_slot)
1461 return -ENOMEM;
1463 /* Check ksm_run too? Would need tighter locking */
1464 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1466 spin_lock(&ksm_mmlist_lock);
1467 insert_to_mm_slots_hash(mm, mm_slot);
1469 * Insert just behind the scanning cursor, to let the area settle
1470 * down a little; when fork is followed by immediate exec, we don't
1471 * want ksmd to waste time setting up and tearing down an rmap_list.
1473 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1474 spin_unlock(&ksm_mmlist_lock);
1476 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1477 atomic_inc(&mm->mm_count);
1479 if (needs_wakeup)
1480 wake_up_interruptible(&ksm_thread_wait);
1482 return 0;
1485 void __ksm_exit(struct mm_struct *mm)
1487 struct mm_slot *mm_slot;
1488 int easy_to_free = 0;
1491 * This process is exiting: if it's straightforward (as is the
1492 * case when ksmd was never running), free mm_slot immediately.
1493 * But if it's at the cursor or has rmap_items linked to it, use
1494 * mmap_sem to synchronize with any break_cows before pagetables
1495 * are freed, and leave the mm_slot on the list for ksmd to free.
1496 * Beware: ksm may already have noticed it exiting and freed the slot.
1499 spin_lock(&ksm_mmlist_lock);
1500 mm_slot = get_mm_slot(mm);
1501 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1502 if (!mm_slot->rmap_list) {
1503 hlist_del(&mm_slot->link);
1504 list_del(&mm_slot->mm_list);
1505 easy_to_free = 1;
1506 } else {
1507 list_move(&mm_slot->mm_list,
1508 &ksm_scan.mm_slot->mm_list);
1511 spin_unlock(&ksm_mmlist_lock);
1513 if (easy_to_free) {
1514 free_mm_slot(mm_slot);
1515 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1516 mmdrop(mm);
1517 } else if (mm_slot) {
1518 down_write(&mm->mmap_sem);
1519 up_write(&mm->mmap_sem);
1523 struct page *ksm_does_need_to_copy(struct page *page,
1524 struct vm_area_struct *vma, unsigned long address)
1526 struct page *new_page;
1528 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1529 if (new_page) {
1530 copy_user_highpage(new_page, page, address, vma);
1532 SetPageDirty(new_page);
1533 __SetPageUptodate(new_page);
1534 SetPageSwapBacked(new_page);
1535 __set_page_locked(new_page);
1537 if (page_evictable(new_page, vma))
1538 lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1539 else
1540 add_page_to_unevictable_list(new_page);
1543 return new_page;
1546 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1547 unsigned long *vm_flags)
1549 struct stable_node *stable_node;
1550 struct rmap_item *rmap_item;
1551 struct hlist_node *hlist;
1552 unsigned int mapcount = page_mapcount(page);
1553 int referenced = 0;
1554 int search_new_forks = 0;
1556 VM_BUG_ON(!PageKsm(page));
1557 VM_BUG_ON(!PageLocked(page));
1559 stable_node = page_stable_node(page);
1560 if (!stable_node)
1561 return 0;
1562 again:
1563 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1564 struct anon_vma *anon_vma = rmap_item->anon_vma;
1565 struct anon_vma_chain *vmac;
1566 struct vm_area_struct *vma;
1568 spin_lock(&anon_vma->lock);
1569 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1570 vma = vmac->vma;
1571 if (rmap_item->address < vma->vm_start ||
1572 rmap_item->address >= vma->vm_end)
1573 continue;
1575 * Initially we examine only the vma which covers this
1576 * rmap_item; but later, if there is still work to do,
1577 * we examine covering vmas in other mms: in case they
1578 * were forked from the original since ksmd passed.
1580 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1581 continue;
1583 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1584 continue;
1586 referenced += page_referenced_one(page, vma,
1587 rmap_item->address, &mapcount, vm_flags);
1588 if (!search_new_forks || !mapcount)
1589 break;
1591 spin_unlock(&anon_vma->lock);
1592 if (!mapcount)
1593 goto out;
1595 if (!search_new_forks++)
1596 goto again;
1597 out:
1598 return referenced;
1601 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1603 struct stable_node *stable_node;
1604 struct hlist_node *hlist;
1605 struct rmap_item *rmap_item;
1606 int ret = SWAP_AGAIN;
1607 int search_new_forks = 0;
1609 VM_BUG_ON(!PageKsm(page));
1610 VM_BUG_ON(!PageLocked(page));
1612 stable_node = page_stable_node(page);
1613 if (!stable_node)
1614 return SWAP_FAIL;
1615 again:
1616 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1617 struct anon_vma *anon_vma = rmap_item->anon_vma;
1618 struct anon_vma_chain *vmac;
1619 struct vm_area_struct *vma;
1621 spin_lock(&anon_vma->lock);
1622 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1623 vma = vmac->vma;
1624 if (rmap_item->address < vma->vm_start ||
1625 rmap_item->address >= vma->vm_end)
1626 continue;
1628 * Initially we examine only the vma which covers this
1629 * rmap_item; but later, if there is still work to do,
1630 * we examine covering vmas in other mms: in case they
1631 * were forked from the original since ksmd passed.
1633 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1634 continue;
1636 ret = try_to_unmap_one(page, vma,
1637 rmap_item->address, flags);
1638 if (ret != SWAP_AGAIN || !page_mapped(page)) {
1639 spin_unlock(&anon_vma->lock);
1640 goto out;
1643 spin_unlock(&anon_vma->lock);
1645 if (!search_new_forks++)
1646 goto again;
1647 out:
1648 return ret;
1651 #ifdef CONFIG_MIGRATION
1652 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1653 struct vm_area_struct *, unsigned long, void *), void *arg)
1655 struct stable_node *stable_node;
1656 struct hlist_node *hlist;
1657 struct rmap_item *rmap_item;
1658 int ret = SWAP_AGAIN;
1659 int search_new_forks = 0;
1661 VM_BUG_ON(!PageKsm(page));
1662 VM_BUG_ON(!PageLocked(page));
1664 stable_node = page_stable_node(page);
1665 if (!stable_node)
1666 return ret;
1667 again:
1668 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1669 struct anon_vma *anon_vma = rmap_item->anon_vma;
1670 struct anon_vma_chain *vmac;
1671 struct vm_area_struct *vma;
1673 spin_lock(&anon_vma->lock);
1674 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1675 vma = vmac->vma;
1676 if (rmap_item->address < vma->vm_start ||
1677 rmap_item->address >= vma->vm_end)
1678 continue;
1680 * Initially we examine only the vma which covers this
1681 * rmap_item; but later, if there is still work to do,
1682 * we examine covering vmas in other mms: in case they
1683 * were forked from the original since ksmd passed.
1685 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1686 continue;
1688 ret = rmap_one(page, vma, rmap_item->address, arg);
1689 if (ret != SWAP_AGAIN) {
1690 spin_unlock(&anon_vma->lock);
1691 goto out;
1694 spin_unlock(&anon_vma->lock);
1696 if (!search_new_forks++)
1697 goto again;
1698 out:
1699 return ret;
1702 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1704 struct stable_node *stable_node;
1706 VM_BUG_ON(!PageLocked(oldpage));
1707 VM_BUG_ON(!PageLocked(newpage));
1708 VM_BUG_ON(newpage->mapping != oldpage->mapping);
1710 stable_node = page_stable_node(newpage);
1711 if (stable_node) {
1712 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1713 stable_node->kpfn = page_to_pfn(newpage);
1716 #endif /* CONFIG_MIGRATION */
1718 #ifdef CONFIG_MEMORY_HOTREMOVE
1719 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1720 unsigned long end_pfn)
1722 struct rb_node *node;
1724 for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1725 struct stable_node *stable_node;
1727 stable_node = rb_entry(node, struct stable_node, node);
1728 if (stable_node->kpfn >= start_pfn &&
1729 stable_node->kpfn < end_pfn)
1730 return stable_node;
1732 return NULL;
1735 static int ksm_memory_callback(struct notifier_block *self,
1736 unsigned long action, void *arg)
1738 struct memory_notify *mn = arg;
1739 struct stable_node *stable_node;
1741 switch (action) {
1742 case MEM_GOING_OFFLINE:
1744 * Keep it very simple for now: just lock out ksmd and
1745 * MADV_UNMERGEABLE while any memory is going offline.
1747 mutex_lock(&ksm_thread_mutex);
1748 break;
1750 case MEM_OFFLINE:
1752 * Most of the work is done by page migration; but there might
1753 * be a few stable_nodes left over, still pointing to struct
1754 * pages which have been offlined: prune those from the tree.
1756 while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1757 mn->start_pfn + mn->nr_pages)) != NULL)
1758 remove_node_from_stable_tree(stable_node);
1759 /* fallthrough */
1761 case MEM_CANCEL_OFFLINE:
1762 mutex_unlock(&ksm_thread_mutex);
1763 break;
1765 return NOTIFY_OK;
1767 #endif /* CONFIG_MEMORY_HOTREMOVE */
1769 #ifdef CONFIG_SYSFS
1771 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1774 #define KSM_ATTR_RO(_name) \
1775 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1776 #define KSM_ATTR(_name) \
1777 static struct kobj_attribute _name##_attr = \
1778 __ATTR(_name, 0644, _name##_show, _name##_store)
1780 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1781 struct kobj_attribute *attr, char *buf)
1783 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1786 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1787 struct kobj_attribute *attr,
1788 const char *buf, size_t count)
1790 unsigned long msecs;
1791 int err;
1793 err = strict_strtoul(buf, 10, &msecs);
1794 if (err || msecs > UINT_MAX)
1795 return -EINVAL;
1797 ksm_thread_sleep_millisecs = msecs;
1799 return count;
1801 KSM_ATTR(sleep_millisecs);
1803 static ssize_t pages_to_scan_show(struct kobject *kobj,
1804 struct kobj_attribute *attr, char *buf)
1806 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1809 static ssize_t pages_to_scan_store(struct kobject *kobj,
1810 struct kobj_attribute *attr,
1811 const char *buf, size_t count)
1813 int err;
1814 unsigned long nr_pages;
1816 err = strict_strtoul(buf, 10, &nr_pages);
1817 if (err || nr_pages > UINT_MAX)
1818 return -EINVAL;
1820 ksm_thread_pages_to_scan = nr_pages;
1822 return count;
1824 KSM_ATTR(pages_to_scan);
1826 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1827 char *buf)
1829 return sprintf(buf, "%u\n", ksm_run);
1832 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1833 const char *buf, size_t count)
1835 int err;
1836 unsigned long flags;
1838 err = strict_strtoul(buf, 10, &flags);
1839 if (err || flags > UINT_MAX)
1840 return -EINVAL;
1841 if (flags > KSM_RUN_UNMERGE)
1842 return -EINVAL;
1845 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1846 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1847 * breaking COW to free the pages_shared (but leaves mm_slots
1848 * on the list for when ksmd may be set running again).
1851 mutex_lock(&ksm_thread_mutex);
1852 if (ksm_run != flags) {
1853 ksm_run = flags;
1854 if (flags & KSM_RUN_UNMERGE) {
1855 current->flags |= PF_OOM_ORIGIN;
1856 err = unmerge_and_remove_all_rmap_items();
1857 current->flags &= ~PF_OOM_ORIGIN;
1858 if (err) {
1859 ksm_run = KSM_RUN_STOP;
1860 count = err;
1864 mutex_unlock(&ksm_thread_mutex);
1866 if (flags & KSM_RUN_MERGE)
1867 wake_up_interruptible(&ksm_thread_wait);
1869 return count;
1871 KSM_ATTR(run);
1873 static ssize_t pages_shared_show(struct kobject *kobj,
1874 struct kobj_attribute *attr, char *buf)
1876 return sprintf(buf, "%lu\n", ksm_pages_shared);
1878 KSM_ATTR_RO(pages_shared);
1880 static ssize_t pages_sharing_show(struct kobject *kobj,
1881 struct kobj_attribute *attr, char *buf)
1883 return sprintf(buf, "%lu\n", ksm_pages_sharing);
1885 KSM_ATTR_RO(pages_sharing);
1887 static ssize_t pages_unshared_show(struct kobject *kobj,
1888 struct kobj_attribute *attr, char *buf)
1890 return sprintf(buf, "%lu\n", ksm_pages_unshared);
1892 KSM_ATTR_RO(pages_unshared);
1894 static ssize_t pages_volatile_show(struct kobject *kobj,
1895 struct kobj_attribute *attr, char *buf)
1897 long ksm_pages_volatile;
1899 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1900 - ksm_pages_sharing - ksm_pages_unshared;
1902 * It was not worth any locking to calculate that statistic,
1903 * but it might therefore sometimes be negative: conceal that.
1905 if (ksm_pages_volatile < 0)
1906 ksm_pages_volatile = 0;
1907 return sprintf(buf, "%ld\n", ksm_pages_volatile);
1909 KSM_ATTR_RO(pages_volatile);
1911 static ssize_t full_scans_show(struct kobject *kobj,
1912 struct kobj_attribute *attr, char *buf)
1914 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1916 KSM_ATTR_RO(full_scans);
1918 static struct attribute *ksm_attrs[] = {
1919 &sleep_millisecs_attr.attr,
1920 &pages_to_scan_attr.attr,
1921 &run_attr.attr,
1922 &pages_shared_attr.attr,
1923 &pages_sharing_attr.attr,
1924 &pages_unshared_attr.attr,
1925 &pages_volatile_attr.attr,
1926 &full_scans_attr.attr,
1927 NULL,
1930 static struct attribute_group ksm_attr_group = {
1931 .attrs = ksm_attrs,
1932 .name = "ksm",
1934 #endif /* CONFIG_SYSFS */
1936 static int __init ksm_init(void)
1938 struct task_struct *ksm_thread;
1939 int err;
1941 err = ksm_slab_init();
1942 if (err)
1943 goto out;
1945 err = mm_slots_hash_init();
1946 if (err)
1947 goto out_free1;
1949 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1950 if (IS_ERR(ksm_thread)) {
1951 printk(KERN_ERR "ksm: creating kthread failed\n");
1952 err = PTR_ERR(ksm_thread);
1953 goto out_free2;
1956 #ifdef CONFIG_SYSFS
1957 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1958 if (err) {
1959 printk(KERN_ERR "ksm: register sysfs failed\n");
1960 kthread_stop(ksm_thread);
1961 goto out_free2;
1963 #else
1964 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
1966 #endif /* CONFIG_SYSFS */
1968 #ifdef CONFIG_MEMORY_HOTREMOVE
1970 * Choose a high priority since the callback takes ksm_thread_mutex:
1971 * later callbacks could only be taking locks which nest within that.
1973 hotplug_memory_notifier(ksm_memory_callback, 100);
1974 #endif
1975 return 0;
1977 out_free2:
1978 mm_slots_hash_free();
1979 out_free1:
1980 ksm_slab_free();
1981 out:
1982 return err;
1984 module_init(ksm_init)