btrfs: Fix bugs in zlib workspace
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / workqueue.txt
blobe4498a2872c37a0b3b156ddc7ad7135d030d224d
2 Concurrency Managed Workqueue (cmwq)
4 September, 2010         Tejun Heo <tj@kernel.org>
5                         Florian Mickler <florian@mickler.org>
7 CONTENTS
9 1. Introduction
10 2. Why cmwq?
11 3. The Design
12 4. Application Programming Interface (API)
13 5. Example Execution Scenarios
14 6. Guidelines
17 1. Introduction
19 There are many cases where an asynchronous process execution context
20 is needed and the workqueue (wq) API is the most commonly used
21 mechanism for such cases.
23 When such an asynchronous execution context is needed, a work item
24 describing which function to execute is put on a queue.  An
25 independent thread serves as the asynchronous execution context.  The
26 queue is called workqueue and the thread is called worker.
28 While there are work items on the workqueue the worker executes the
29 functions associated with the work items one after the other.  When
30 there is no work item left on the workqueue the worker becomes idle.
31 When a new work item gets queued, the worker begins executing again.
34 2. Why cmwq?
36 In the original wq implementation, a multi threaded (MT) wq had one
37 worker thread per CPU and a single threaded (ST) wq had one worker
38 thread system-wide.  A single MT wq needed to keep around the same
39 number of workers as the number of CPUs.  The kernel grew a lot of MT
40 wq users over the years and with the number of CPU cores continuously
41 rising, some systems saturated the default 32k PID space just booting
42 up.
44 Although MT wq wasted a lot of resource, the level of concurrency
45 provided was unsatisfactory.  The limitation was common to both ST and
46 MT wq albeit less severe on MT.  Each wq maintained its own separate
47 worker pool.  A MT wq could provide only one execution context per CPU
48 while a ST wq one for the whole system.  Work items had to compete for
49 those very limited execution contexts leading to various problems
50 including proneness to deadlocks around the single execution context.
52 The tension between the provided level of concurrency and resource
53 usage also forced its users to make unnecessary tradeoffs like libata
54 choosing to use ST wq for polling PIOs and accepting an unnecessary
55 limitation that no two polling PIOs can progress at the same time.  As
56 MT wq don't provide much better concurrency, users which require
57 higher level of concurrency, like async or fscache, had to implement
58 their own thread pool.
60 Concurrency Managed Workqueue (cmwq) is a reimplementation of wq with
61 focus on the following goals.
63 * Maintain compatibility with the original workqueue API.
65 * Use per-CPU unified worker pools shared by all wq to provide
66   flexible level of concurrency on demand without wasting a lot of
67   resource.
69 * Automatically regulate worker pool and level of concurrency so that
70   the API users don't need to worry about such details.
73 3. The Design
75 In order to ease the asynchronous execution of functions a new
76 abstraction, the work item, is introduced.
78 A work item is a simple struct that holds a pointer to the function
79 that is to be executed asynchronously.  Whenever a driver or subsystem
80 wants a function to be executed asynchronously it has to set up a work
81 item pointing to that function and queue that work item on a
82 workqueue.
84 Special purpose threads, called worker threads, execute the functions
85 off of the queue, one after the other.  If no work is queued, the
86 worker threads become idle.  These worker threads are managed in so
87 called thread-pools.
89 The cmwq design differentiates between the user-facing workqueues that
90 subsystems and drivers queue work items on and the backend mechanism
91 which manages thread-pool and processes the queued work items.
93 The backend is called gcwq.  There is one gcwq for each possible CPU
94 and one gcwq to serve work items queued on unbound workqueues.
96 Subsystems and drivers can create and queue work items through special
97 workqueue API functions as they see fit. They can influence some
98 aspects of the way the work items are executed by setting flags on the
99 workqueue they are putting the work item on. These flags include
100 things like CPU locality, reentrancy, concurrency limits and more. To
101 get a detailed overview refer to the API description of
102 alloc_workqueue() below.
104 When a work item is queued to a workqueue, the target gcwq is
105 determined according to the queue parameters and workqueue attributes
106 and appended on the shared worklist of the gcwq.  For example, unless
107 specifically overridden, a work item of a bound workqueue will be
108 queued on the worklist of exactly that gcwq that is associated to the
109 CPU the issuer is running on.
111 For any worker pool implementation, managing the concurrency level
112 (how many execution contexts are active) is an important issue.  cmwq
113 tries to keep the concurrency at a minimal but sufficient level.
114 Minimal to save resources and sufficient in that the system is used at
115 its full capacity.
117 Each gcwq bound to an actual CPU implements concurrency management by
118 hooking into the scheduler.  The gcwq is notified whenever an active
119 worker wakes up or sleeps and keeps track of the number of the
120 currently runnable workers.  Generally, work items are not expected to
121 hog a CPU and consume many cycles.  That means maintaining just enough
122 concurrency to prevent work processing from stalling should be
123 optimal.  As long as there are one or more runnable workers on the
124 CPU, the gcwq doesn't start execution of a new work, but, when the
125 last running worker goes to sleep, it immediately schedules a new
126 worker so that the CPU doesn't sit idle while there are pending work
127 items.  This allows using a minimal number of workers without losing
128 execution bandwidth.
130 Keeping idle workers around doesn't cost other than the memory space
131 for kthreads, so cmwq holds onto idle ones for a while before killing
132 them.
134 For an unbound wq, the above concurrency management doesn't apply and
135 the gcwq for the pseudo unbound CPU tries to start executing all work
136 items as soon as possible.  The responsibility of regulating
137 concurrency level is on the users.  There is also a flag to mark a
138 bound wq to ignore the concurrency management.  Please refer to the
139 API section for details.
141 Forward progress guarantee relies on that workers can be created when
142 more execution contexts are necessary, which in turn is guaranteed
143 through the use of rescue workers.  All work items which might be used
144 on code paths that handle memory reclaim are required to be queued on
145 wq's that have a rescue-worker reserved for execution under memory
146 pressure.  Else it is possible that the thread-pool deadlocks waiting
147 for execution contexts to free up.
150 4. Application Programming Interface (API)
152 alloc_workqueue() allocates a wq.  The original create_*workqueue()
153 functions are deprecated and scheduled for removal.  alloc_workqueue()
154 takes three arguments - @name, @flags and @max_active.  @name is the
155 name of the wq and also used as the name of the rescuer thread if
156 there is one.
158 A wq no longer manages execution resources but serves as a domain for
159 forward progress guarantee, flush and work item attributes.  @flags
160 and @max_active control how work items are assigned execution
161 resources, scheduled and executed.
163 @flags:
165   WQ_NON_REENTRANT
167         By default, a wq guarantees non-reentrance only on the same
168         CPU.  A work item may not be executed concurrently on the same
169         CPU by multiple workers but is allowed to be executed
170         concurrently on multiple CPUs.  This flag makes sure
171         non-reentrance is enforced across all CPUs.  Work items queued
172         to a non-reentrant wq are guaranteed to be executed by at most
173         one worker system-wide at any given time.
175   WQ_UNBOUND
177         Work items queued to an unbound wq are served by a special
178         gcwq which hosts workers which are not bound to any specific
179         CPU.  This makes the wq behave as a simple execution context
180         provider without concurrency management.  The unbound gcwq
181         tries to start execution of work items as soon as possible.
182         Unbound wq sacrifices locality but is useful for the following
183         cases.
185         * Wide fluctuation in the concurrency level requirement is
186           expected and using bound wq may end up creating large number
187           of mostly unused workers across different CPUs as the issuer
188           hops through different CPUs.
190         * Long running CPU intensive workloads which can be better
191           managed by the system scheduler.
193   WQ_FREEZEABLE
195         A freezeable wq participates in the freeze phase of the system
196         suspend operations.  Work items on the wq are drained and no
197         new work item starts execution until thawed.
199   WQ_RESCUER
201         All wq which might be used in the memory reclaim paths _MUST_
202         have this flag set.  This reserves one worker exclusively for
203         the execution of this wq under memory pressure.
205   WQ_HIGHPRI
207         Work items of a highpri wq are queued at the head of the
208         worklist of the target gcwq and start execution regardless of
209         the current concurrency level.  In other words, highpri work
210         items will always start execution as soon as execution
211         resource is available.
213         Ordering among highpri work items is preserved - a highpri
214         work item queued after another highpri work item will start
215         execution after the earlier highpri work item starts.
217         Although highpri work items are not held back by other
218         runnable work items, they still contribute to the concurrency
219         level.  Highpri work items in runnable state will prevent
220         non-highpri work items from starting execution.
222         This flag is meaningless for unbound wq.
224   WQ_CPU_INTENSIVE
226         Work items of a CPU intensive wq do not contribute to the
227         concurrency level.  In other words, runnable CPU intensive
228         work items will not prevent other work items from starting
229         execution.  This is useful for bound work items which are
230         expected to hog CPU cycles so that their execution is
231         regulated by the system scheduler.
233         Although CPU intensive work items don't contribute to the
234         concurrency level, start of their executions is still
235         regulated by the concurrency management and runnable
236         non-CPU-intensive work items can delay execution of CPU
237         intensive work items.
239         This flag is meaningless for unbound wq.
241   WQ_HIGHPRI | WQ_CPU_INTENSIVE
243         This combination makes the wq avoid interaction with
244         concurrency management completely and behave as a simple
245         per-CPU execution context provider.  Work items queued on a
246         highpri CPU-intensive wq start execution as soon as resources
247         are available and don't affect execution of other work items.
249 @max_active:
251 @max_active determines the maximum number of execution contexts per
252 CPU which can be assigned to the work items of a wq.  For example,
253 with @max_active of 16, at most 16 work items of the wq can be
254 executing at the same time per CPU.
256 Currently, for a bound wq, the maximum limit for @max_active is 512
257 and the default value used when 0 is specified is 256.  For an unbound
258 wq, the limit is higher of 512 and 4 * num_possible_cpus().  These
259 values are chosen sufficiently high such that they are not the
260 limiting factor while providing protection in runaway cases.
262 The number of active work items of a wq is usually regulated by the
263 users of the wq, more specifically, by how many work items the users
264 may queue at the same time.  Unless there is a specific need for
265 throttling the number of active work items, specifying '0' is
266 recommended.
268 Some users depend on the strict execution ordering of ST wq.  The
269 combination of @max_active of 1 and WQ_UNBOUND is used to achieve this
270 behavior.  Work items on such wq are always queued to the unbound gcwq
271 and only one work item can be active at any given time thus achieving
272 the same ordering property as ST wq.
275 5. Example Execution Scenarios
277 The following example execution scenarios try to illustrate how cmwq
278 behave under different configurations.
280  Work items w0, w1, w2 are queued to a bound wq q0 on the same CPU.
281  w0 burns CPU for 5ms then sleeps for 10ms then burns CPU for 5ms
282  again before finishing.  w1 and w2 burn CPU for 5ms then sleep for
283  10ms.
285 Ignoring all other tasks, works and processing overhead, and assuming
286 simple FIFO scheduling, the following is one highly simplified version
287 of possible sequences of events with the original wq.
289  TIME IN MSECS  EVENT
290  0              w0 starts and burns CPU
291  5              w0 sleeps
292  15             w0 wakes up and burns CPU
293  20             w0 finishes
294  20             w1 starts and burns CPU
295  25             w1 sleeps
296  35             w1 wakes up and finishes
297  35             w2 starts and burns CPU
298  40             w2 sleeps
299  50             w2 wakes up and finishes
301 And with cmwq with @max_active >= 3,
303  TIME IN MSECS  EVENT
304  0              w0 starts and burns CPU
305  5              w0 sleeps
306  5              w1 starts and burns CPU
307  10             w1 sleeps
308  10             w2 starts and burns CPU
309  15             w2 sleeps
310  15             w0 wakes up and burns CPU
311  20             w0 finishes
312  20             w1 wakes up and finishes
313  25             w2 wakes up and finishes
315 If @max_active == 2,
317  TIME IN MSECS  EVENT
318  0              w0 starts and burns CPU
319  5              w0 sleeps
320  5              w1 starts and burns CPU
321  10             w1 sleeps
322  15             w0 wakes up and burns CPU
323  20             w0 finishes
324  20             w1 wakes up and finishes
325  20             w2 starts and burns CPU
326  25             w2 sleeps
327  35             w2 wakes up and finishes
329 Now, let's assume w1 and w2 are queued to a different wq q1 which has
330 WQ_HIGHPRI set,
332  TIME IN MSECS  EVENT
333  0              w1 and w2 start and burn CPU
334  5              w1 sleeps
335  10             w2 sleeps
336  10             w0 starts and burns CPU
337  15             w0 sleeps
338  15             w1 wakes up and finishes
339  20             w2 wakes up and finishes
340  25             w0 wakes up and burns CPU
341  30             w0 finishes
343 If q1 has WQ_CPU_INTENSIVE set,
345  TIME IN MSECS  EVENT
346  0              w0 starts and burns CPU
347  5              w0 sleeps
348  5              w1 and w2 start and burn CPU
349  10             w1 sleeps
350  15             w2 sleeps
351  15             w0 wakes up and burns CPU
352  20             w0 finishes
353  20             w1 wakes up and finishes
354  25             w2 wakes up and finishes
357 6. Guidelines
359 * Do not forget to use WQ_RESCUER if a wq may process work items which
360   are used during memory reclaim.  Each wq with WQ_RESCUER set has one
361   rescuer thread reserved for it.  If there is dependency among
362   multiple work items used during memory reclaim, they should be
363   queued to separate wq each with WQ_RESCUER.
365 * Unless strict ordering is required, there is no need to use ST wq.
367 * Unless there is a specific need, using 0 for @max_active is
368   recommended.  In most use cases, concurrency level usually stays
369   well under the default limit.
371 * A wq serves as a domain for forward progress guarantee (WQ_RESCUER),
372   flush and work item attributes.  Work items which are not involved
373   in memory reclaim and don't need to be flushed as a part of a group
374   of work items, and don't require any special attribute, can use one
375   of the system wq.  There is no difference in execution
376   characteristics between using a dedicated wq and a system wq.
378 * Unless work items are expected to consume a huge amount of CPU
379   cycles, using a bound wq is usually beneficial due to the increased
380   level of locality in wq operations and work item execution.