[PATCH] bcm43xx: fix pctl slowclock limit calculation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / serial / jsm / jsm_neo.c
bloba5fc589d6ef5d8f3cf015fb692e8d539bfe5bafb
1 /************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE. See the GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19 * MA 02111-1307, USA.
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Wendy Xiong <wendyx@us.ibm.com>
25 ***********************************************************************/
26 #include <linux/delay.h> /* For udelay */
27 #include <linux/serial_reg.h> /* For the various UART offsets */
28 #include <linux/tty.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
32 #include "jsm.h" /* Driver main header file */
34 static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
37 * This function allows calls to ensure that all outstanding
38 * PCI writes have been completed, by doing a PCI read against
39 * a non-destructive, read-only location on the Neo card.
41 * In this case, we are reading the DVID (Read-only Device Identification)
42 * value of the Neo card.
44 static inline void neo_pci_posting_flush(struct jsm_board *bd)
46 readb(bd->re_map_membase + 0x8D);
49 static void neo_set_cts_flow_control(struct jsm_channel *ch)
51 u8 ier, efr;
52 ier = readb(&ch->ch_neo_uart->ier);
53 efr = readb(&ch->ch_neo_uart->efr);
55 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
57 /* Turn on auto CTS flow control */
58 ier |= (UART_17158_IER_CTSDSR);
59 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
61 /* Turn off auto Xon flow control */
62 efr &= ~(UART_17158_EFR_IXON);
64 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
65 writeb(0, &ch->ch_neo_uart->efr);
67 /* Turn on UART enhanced bits */
68 writeb(efr, &ch->ch_neo_uart->efr);
70 /* Turn on table D, with 8 char hi/low watermarks */
71 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
73 /* Feed the UART our trigger levels */
74 writeb(8, &ch->ch_neo_uart->tfifo);
75 ch->ch_t_tlevel = 8;
77 writeb(ier, &ch->ch_neo_uart->ier);
80 static void neo_set_rts_flow_control(struct jsm_channel *ch)
82 u8 ier, efr;
83 ier = readb(&ch->ch_neo_uart->ier);
84 efr = readb(&ch->ch_neo_uart->efr);
86 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
88 /* Turn on auto RTS flow control */
89 ier |= (UART_17158_IER_RTSDTR);
90 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
92 /* Turn off auto Xoff flow control */
93 ier &= ~(UART_17158_IER_XOFF);
94 efr &= ~(UART_17158_EFR_IXOFF);
96 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
97 writeb(0, &ch->ch_neo_uart->efr);
99 /* Turn on UART enhanced bits */
100 writeb(efr, &ch->ch_neo_uart->efr);
102 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
103 ch->ch_r_watermark = 4;
105 writeb(56, &ch->ch_neo_uart->rfifo);
106 ch->ch_r_tlevel = 56;
108 writeb(ier, &ch->ch_neo_uart->ier);
111 * From the Neo UART spec sheet:
112 * The auto RTS/DTR function must be started by asserting
113 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
114 * it is enabled.
116 ch->ch_mostat |= (UART_MCR_RTS);
120 static void neo_set_ixon_flow_control(struct jsm_channel *ch)
122 u8 ier, efr;
123 ier = readb(&ch->ch_neo_uart->ier);
124 efr = readb(&ch->ch_neo_uart->efr);
126 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
128 /* Turn off auto CTS flow control */
129 ier &= ~(UART_17158_IER_CTSDSR);
130 efr &= ~(UART_17158_EFR_CTSDSR);
132 /* Turn on auto Xon flow control */
133 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
135 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
136 writeb(0, &ch->ch_neo_uart->efr);
138 /* Turn on UART enhanced bits */
139 writeb(efr, &ch->ch_neo_uart->efr);
141 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
142 ch->ch_r_watermark = 4;
144 writeb(32, &ch->ch_neo_uart->rfifo);
145 ch->ch_r_tlevel = 32;
147 /* Tell UART what start/stop chars it should be looking for */
148 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
149 writeb(0, &ch->ch_neo_uart->xonchar2);
151 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
152 writeb(0, &ch->ch_neo_uart->xoffchar2);
154 writeb(ier, &ch->ch_neo_uart->ier);
157 static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
159 u8 ier, efr;
160 ier = readb(&ch->ch_neo_uart->ier);
161 efr = readb(&ch->ch_neo_uart->efr);
163 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
165 /* Turn off auto RTS flow control */
166 ier &= ~(UART_17158_IER_RTSDTR);
167 efr &= ~(UART_17158_EFR_RTSDTR);
169 /* Turn on auto Xoff flow control */
170 ier |= (UART_17158_IER_XOFF);
171 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
173 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
174 writeb(0, &ch->ch_neo_uart->efr);
176 /* Turn on UART enhanced bits */
177 writeb(efr, &ch->ch_neo_uart->efr);
179 /* Turn on table D, with 8 char hi/low watermarks */
180 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
182 writeb(8, &ch->ch_neo_uart->tfifo);
183 ch->ch_t_tlevel = 8;
185 /* Tell UART what start/stop chars it should be looking for */
186 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
187 writeb(0, &ch->ch_neo_uart->xonchar2);
189 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
190 writeb(0, &ch->ch_neo_uart->xoffchar2);
192 writeb(ier, &ch->ch_neo_uart->ier);
195 static void neo_set_no_input_flow_control(struct jsm_channel *ch)
197 u8 ier, efr;
198 ier = readb(&ch->ch_neo_uart->ier);
199 efr = readb(&ch->ch_neo_uart->efr);
201 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
203 /* Turn off auto RTS flow control */
204 ier &= ~(UART_17158_IER_RTSDTR);
205 efr &= ~(UART_17158_EFR_RTSDTR);
207 /* Turn off auto Xoff flow control */
208 ier &= ~(UART_17158_IER_XOFF);
209 if (ch->ch_c_iflag & IXON)
210 efr &= ~(UART_17158_EFR_IXOFF);
211 else
212 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
214 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
215 writeb(0, &ch->ch_neo_uart->efr);
217 /* Turn on UART enhanced bits */
218 writeb(efr, &ch->ch_neo_uart->efr);
220 /* Turn on table D, with 8 char hi/low watermarks */
221 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
223 ch->ch_r_watermark = 0;
225 writeb(16, &ch->ch_neo_uart->tfifo);
226 ch->ch_t_tlevel = 16;
228 writeb(16, &ch->ch_neo_uart->rfifo);
229 ch->ch_r_tlevel = 16;
231 writeb(ier, &ch->ch_neo_uart->ier);
234 static void neo_set_no_output_flow_control(struct jsm_channel *ch)
236 u8 ier, efr;
237 ier = readb(&ch->ch_neo_uart->ier);
238 efr = readb(&ch->ch_neo_uart->efr);
240 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
242 /* Turn off auto CTS flow control */
243 ier &= ~(UART_17158_IER_CTSDSR);
244 efr &= ~(UART_17158_EFR_CTSDSR);
246 /* Turn off auto Xon flow control */
247 if (ch->ch_c_iflag & IXOFF)
248 efr &= ~(UART_17158_EFR_IXON);
249 else
250 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
252 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
253 writeb(0, &ch->ch_neo_uart->efr);
255 /* Turn on UART enhanced bits */
256 writeb(efr, &ch->ch_neo_uart->efr);
258 /* Turn on table D, with 8 char hi/low watermarks */
259 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
261 ch->ch_r_watermark = 0;
263 writeb(16, &ch->ch_neo_uart->tfifo);
264 ch->ch_t_tlevel = 16;
266 writeb(16, &ch->ch_neo_uart->rfifo);
267 ch->ch_r_tlevel = 16;
269 writeb(ier, &ch->ch_neo_uart->ier);
272 static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
275 /* if hardware flow control is set, then skip this whole thing */
276 if (ch->ch_c_cflag & CRTSCTS)
277 return;
279 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
281 /* Tell UART what start/stop chars it should be looking for */
282 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
283 writeb(0, &ch->ch_neo_uart->xonchar2);
285 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
286 writeb(0, &ch->ch_neo_uart->xoffchar2);
289 static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
291 int qleft = 0;
292 u8 linestatus = 0;
293 u8 error_mask = 0;
294 int n = 0;
295 int total = 0;
296 u16 head;
297 u16 tail;
299 if (!ch)
300 return;
302 /* cache head and tail of queue */
303 head = ch->ch_r_head & RQUEUEMASK;
304 tail = ch->ch_r_tail & RQUEUEMASK;
306 /* Get our cached LSR */
307 linestatus = ch->ch_cached_lsr;
308 ch->ch_cached_lsr = 0;
310 /* Store how much space we have left in the queue */
311 if ((qleft = tail - head - 1) < 0)
312 qleft += RQUEUEMASK + 1;
315 * If the UART is not in FIFO mode, force the FIFO copy to
316 * NOT be run, by setting total to 0.
318 * On the other hand, if the UART IS in FIFO mode, then ask
319 * the UART to give us an approximation of data it has RX'ed.
321 if (!(ch->ch_flags & CH_FIFO_ENABLED))
322 total = 0;
323 else {
324 total = readb(&ch->ch_neo_uart->rfifo);
327 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
329 * This resolves a problem/bug with the Exar chip that sometimes
330 * returns a bogus value in the rfifo register.
331 * The count can be any where from 0-3 bytes "off".
332 * Bizarre, but true.
334 total -= 3;
338 * Finally, bound the copy to make sure we don't overflow
339 * our own queue...
340 * The byte by byte copy loop below this loop this will
341 * deal with the queue overflow possibility.
343 total = min(total, qleft);
345 while (total > 0) {
347 * Grab the linestatus register, we need to check
348 * to see if there are any errors in the FIFO.
350 linestatus = readb(&ch->ch_neo_uart->lsr);
353 * Break out if there is a FIFO error somewhere.
354 * This will allow us to go byte by byte down below,
355 * finding the exact location of the error.
357 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
358 break;
360 /* Make sure we don't go over the end of our queue */
361 n = min(((u32) total), (RQUEUESIZE - (u32) head));
364 * Cut down n even further if needed, this is to fix
365 * a problem with memcpy_fromio() with the Neo on the
366 * IBM pSeries platform.
367 * 15 bytes max appears to be the magic number.
369 n = min((u32) n, (u32) 12);
372 * Since we are grabbing the linestatus register, which
373 * will reset some bits after our read, we need to ensure
374 * we don't miss our TX FIFO emptys.
376 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
377 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
379 linestatus = 0;
381 /* Copy data from uart to the queue */
382 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
384 * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed
385 * that all the data currently in the FIFO is free of
386 * breaks and parity/frame/orun errors.
388 memset(ch->ch_equeue + head, 0, n);
390 /* Add to and flip head if needed */
391 head = (head + n) & RQUEUEMASK;
392 total -= n;
393 qleft -= n;
394 ch->ch_rxcount += n;
398 * Create a mask to determine whether we should
399 * insert the character (if any) into our queue.
401 if (ch->ch_c_iflag & IGNBRK)
402 error_mask |= UART_LSR_BI;
405 * Now cleanup any leftover bytes still in the UART.
406 * Also deal with any possible queue overflow here as well.
408 while (1) {
411 * Its possible we have a linestatus from the loop above
412 * this, so we "OR" on any extra bits.
414 linestatus |= readb(&ch->ch_neo_uart->lsr);
417 * If the chip tells us there is no more data pending to
418 * be read, we can then leave.
419 * But before we do, cache the linestatus, just in case.
421 if (!(linestatus & UART_LSR_DR)) {
422 ch->ch_cached_lsr = linestatus;
423 break;
426 /* No need to store this bit */
427 linestatus &= ~UART_LSR_DR;
430 * Since we are grabbing the linestatus register, which
431 * will reset some bits after our read, we need to ensure
432 * we don't miss our TX FIFO emptys.
434 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
435 linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
436 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
440 * Discard character if we are ignoring the error mask.
442 if (linestatus & error_mask) {
443 u8 discard;
444 linestatus = 0;
445 memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
446 continue;
450 * If our queue is full, we have no choice but to drop some data.
451 * The assumption is that HWFLOW or SWFLOW should have stopped
452 * things way way before we got to this point.
454 * I decided that I wanted to ditch the oldest data first,
455 * I hope thats okay with everyone? Yes? Good.
457 while (qleft < 1) {
458 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
459 "Queue full, dropping DATA:%x LSR:%x\n",
460 ch->ch_rqueue[tail], ch->ch_equeue[tail]);
462 ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
463 ch->ch_err_overrun++;
464 qleft++;
467 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
468 ch->ch_equeue[head] = (u8) linestatus;
470 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
471 "DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
473 /* Ditch any remaining linestatus value. */
474 linestatus = 0;
476 /* Add to and flip head if needed */
477 head = (head + 1) & RQUEUEMASK;
479 qleft--;
480 ch->ch_rxcount++;
484 * Write new final heads to channel structure.
486 ch->ch_r_head = head & RQUEUEMASK;
487 ch->ch_e_head = head & EQUEUEMASK;
488 jsm_input(ch);
491 static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
493 u16 head;
494 u16 tail;
495 int n;
496 int s;
497 int qlen;
498 u32 len_written = 0;
500 if (!ch)
501 return;
503 /* No data to write to the UART */
504 if (ch->ch_w_tail == ch->ch_w_head)
505 return;
507 /* If port is "stopped", don't send any data to the UART */
508 if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
509 return;
511 * If FIFOs are disabled. Send data directly to txrx register
513 if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
514 u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
516 ch->ch_cached_lsr |= lsrbits;
517 if (ch->ch_cached_lsr & UART_LSR_THRE) {
518 ch->ch_cached_lsr &= ~(UART_LSR_THRE);
520 writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx);
521 jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
522 "Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]);
523 ch->ch_w_tail++;
524 ch->ch_w_tail &= WQUEUEMASK;
525 ch->ch_txcount++;
527 return;
531 * We have to do it this way, because of the EXAR TXFIFO count bug.
533 if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
534 return;
536 len_written = 0;
537 n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
539 /* cache head and tail of queue */
540 head = ch->ch_w_head & WQUEUEMASK;
541 tail = ch->ch_w_tail & WQUEUEMASK;
542 qlen = (head - tail) & WQUEUEMASK;
544 /* Find minimum of the FIFO space, versus queue length */
545 n = min(n, qlen);
547 while (n > 0) {
549 s = ((head >= tail) ? head : WQUEUESIZE) - tail;
550 s = min(s, n);
552 if (s <= 0)
553 break;
555 memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s);
556 /* Add and flip queue if needed */
557 tail = (tail + s) & WQUEUEMASK;
558 n -= s;
559 ch->ch_txcount += s;
560 len_written += s;
563 /* Update the final tail */
564 ch->ch_w_tail = tail & WQUEUEMASK;
566 if (len_written >= ch->ch_t_tlevel)
567 ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
569 if (!jsm_tty_write(&ch->uart_port))
570 uart_write_wakeup(&ch->uart_port);
573 static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
575 u8 msignals = signals;
577 jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
578 "neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
580 if (!ch)
581 return;
583 /* Scrub off lower bits. They signify delta's, which I don't care about */
584 msignals &= 0xf0;
586 if (msignals & UART_MSR_DCD)
587 ch->ch_mistat |= UART_MSR_DCD;
588 else
589 ch->ch_mistat &= ~UART_MSR_DCD;
591 if (msignals & UART_MSR_DSR)
592 ch->ch_mistat |= UART_MSR_DSR;
593 else
594 ch->ch_mistat &= ~UART_MSR_DSR;
596 if (msignals & UART_MSR_RI)
597 ch->ch_mistat |= UART_MSR_RI;
598 else
599 ch->ch_mistat &= ~UART_MSR_RI;
601 if (msignals & UART_MSR_CTS)
602 ch->ch_mistat |= UART_MSR_CTS;
603 else
604 ch->ch_mistat &= ~UART_MSR_CTS;
606 jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
607 "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
608 ch->ch_portnum,
609 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
610 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
611 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
612 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
613 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
614 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
617 /* Make the UART raise any of the output signals we want up */
618 static void neo_assert_modem_signals(struct jsm_channel *ch)
620 u8 out;
622 if (!ch)
623 return;
625 out = ch->ch_mostat;
627 writeb(out, &ch->ch_neo_uart->mcr);
629 /* flush write operation */
630 neo_pci_posting_flush(ch->ch_bd);
634 * Flush the WRITE FIFO on the Neo.
636 * NOTE: Channel lock MUST be held before calling this function!
638 static void neo_flush_uart_write(struct jsm_channel *ch)
640 u8 tmp = 0;
641 int i = 0;
643 if (!ch)
644 return;
646 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
648 for (i = 0; i < 10; i++) {
650 /* Check to see if the UART feels it completely flushed the FIFO. */
651 tmp = readb(&ch->ch_neo_uart->isr_fcr);
652 if (tmp & 4) {
653 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
654 "Still flushing TX UART... i: %d\n", i);
655 udelay(10);
657 else
658 break;
661 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
666 * Flush the READ FIFO on the Neo.
668 * NOTE: Channel lock MUST be held before calling this function!
670 static void neo_flush_uart_read(struct jsm_channel *ch)
672 u8 tmp = 0;
673 int i = 0;
675 if (!ch)
676 return;
678 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
680 for (i = 0; i < 10; i++) {
682 /* Check to see if the UART feels it completely flushed the FIFO. */
683 tmp = readb(&ch->ch_neo_uart->isr_fcr);
684 if (tmp & 2) {
685 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
686 "Still flushing RX UART... i: %d\n", i);
687 udelay(10);
689 else
690 break;
695 * No locks are assumed to be held when calling this function.
697 static void neo_clear_break(struct jsm_channel *ch, int force)
699 unsigned long lock_flags;
701 spin_lock_irqsave(&ch->ch_lock, lock_flags);
703 /* Turn break off, and unset some variables */
704 if (ch->ch_flags & CH_BREAK_SENDING) {
705 u8 temp = readb(&ch->ch_neo_uart->lcr);
706 writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
708 ch->ch_flags &= ~(CH_BREAK_SENDING);
709 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
710 "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
712 /* flush write operation */
713 neo_pci_posting_flush(ch->ch_bd);
715 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
719 * Parse the ISR register.
721 static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
723 struct jsm_channel *ch;
724 u8 isr;
725 u8 cause;
726 unsigned long lock_flags;
728 if (!brd)
729 return;
731 if (port > brd->maxports)
732 return;
734 ch = brd->channels[port];
735 if (!ch)
736 return;
738 /* Here we try to figure out what caused the interrupt to happen */
739 while (1) {
741 isr = readb(&ch->ch_neo_uart->isr_fcr);
743 /* Bail if no pending interrupt */
744 if (isr & UART_IIR_NO_INT)
745 break;
748 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
750 isr &= ~(UART_17158_IIR_FIFO_ENABLED);
752 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
753 "%s:%d isr: %x\n", __FILE__, __LINE__, isr);
755 if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
756 /* Read data from uart -> queue */
757 neo_copy_data_from_uart_to_queue(ch);
759 /* Call our tty layer to enforce queue flow control if needed. */
760 spin_lock_irqsave(&ch->ch_lock, lock_flags);
761 jsm_check_queue_flow_control(ch);
762 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
765 if (isr & UART_IIR_THRI) {
766 /* Transfer data (if any) from Write Queue -> UART. */
767 spin_lock_irqsave(&ch->ch_lock, lock_flags);
768 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
769 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
770 neo_copy_data_from_queue_to_uart(ch);
773 if (isr & UART_17158_IIR_XONXOFF) {
774 cause = readb(&ch->ch_neo_uart->xoffchar1);
776 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
777 "Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
780 * Since the UART detected either an XON or
781 * XOFF match, we need to figure out which
782 * one it was, so we can suspend or resume data flow.
784 spin_lock_irqsave(&ch->ch_lock, lock_flags);
785 if (cause == UART_17158_XON_DETECT) {
786 /* Is output stopped right now, if so, resume it */
787 if (brd->channels[port]->ch_flags & CH_STOP) {
788 ch->ch_flags &= ~(CH_STOP);
790 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
791 "Port %d. XON detected in incoming data\n", port);
793 else if (cause == UART_17158_XOFF_DETECT) {
794 if (!(brd->channels[port]->ch_flags & CH_STOP)) {
795 ch->ch_flags |= CH_STOP;
796 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
797 "Setting CH_STOP\n");
799 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
800 "Port: %d. XOFF detected in incoming data\n", port);
802 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
805 if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
807 * If we get here, this means the hardware is doing auto flow control.
808 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
810 cause = readb(&ch->ch_neo_uart->mcr);
812 /* Which pin is doing auto flow? RTS or DTR? */
813 spin_lock_irqsave(&ch->ch_lock, lock_flags);
814 if ((cause & 0x4) == 0) {
815 if (cause & UART_MCR_RTS)
816 ch->ch_mostat |= UART_MCR_RTS;
817 else
818 ch->ch_mostat &= ~(UART_MCR_RTS);
819 } else {
820 if (cause & UART_MCR_DTR)
821 ch->ch_mostat |= UART_MCR_DTR;
822 else
823 ch->ch_mostat &= ~(UART_MCR_DTR);
825 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
828 /* Parse any modem signal changes */
829 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
830 "MOD_STAT: sending to parse_modem_sigs\n");
831 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
835 static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
837 struct jsm_channel *ch;
838 int linestatus;
839 unsigned long lock_flags;
841 if (!brd)
842 return;
844 if (port > brd->maxports)
845 return;
847 ch = brd->channels[port];
848 if (!ch)
849 return;
851 linestatus = readb(&ch->ch_neo_uart->lsr);
853 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
854 "%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
856 ch->ch_cached_lsr |= linestatus;
858 if (ch->ch_cached_lsr & UART_LSR_DR) {
859 /* Read data from uart -> queue */
860 neo_copy_data_from_uart_to_queue(ch);
861 spin_lock_irqsave(&ch->ch_lock, lock_flags);
862 jsm_check_queue_flow_control(ch);
863 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
867 * This is a special flag. It indicates that at least 1
868 * RX error (parity, framing, or break) has happened.
869 * Mark this in our struct, which will tell me that I have
870 *to do the special RX+LSR read for this FIFO load.
872 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
873 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
874 "%s:%d Port: %d Got an RX error, need to parse LSR\n",
875 __FILE__, __LINE__, port);
878 * The next 3 tests should *NOT* happen, as the above test
879 * should encapsulate all 3... At least, thats what Exar says.
882 if (linestatus & UART_LSR_PE) {
883 ch->ch_err_parity++;
884 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
885 "%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
888 if (linestatus & UART_LSR_FE) {
889 ch->ch_err_frame++;
890 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
891 "%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
894 if (linestatus & UART_LSR_BI) {
895 ch->ch_err_break++;
896 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
897 "%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
900 if (linestatus & UART_LSR_OE) {
902 * Rx Oruns. Exar says that an orun will NOT corrupt
903 * the FIFO. It will just replace the holding register
904 * with this new data byte. So basically just ignore this.
905 * Probably we should eventually have an orun stat in our driver...
907 ch->ch_err_overrun++;
908 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
909 "%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
912 if (linestatus & UART_LSR_THRE) {
913 spin_lock_irqsave(&ch->ch_lock, lock_flags);
914 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
915 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
917 /* Transfer data (if any) from Write Queue -> UART. */
918 neo_copy_data_from_queue_to_uart(ch);
920 else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
921 spin_lock_irqsave(&ch->ch_lock, lock_flags);
922 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
923 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
925 /* Transfer data (if any) from Write Queue -> UART. */
926 neo_copy_data_from_queue_to_uart(ch);
931 * neo_param()
932 * Send any/all changes to the line to the UART.
934 static void neo_param(struct jsm_channel *ch)
936 u8 lcr = 0;
937 u8 uart_lcr = 0;
938 u8 ier = 0;
939 u32 baud = 9600;
940 int quot = 0;
941 struct jsm_board *bd;
943 bd = ch->ch_bd;
944 if (!bd)
945 return;
948 * If baud rate is zero, flush queues, and set mval to drop DTR.
950 if ((ch->ch_c_cflag & (CBAUD)) == 0) {
951 ch->ch_r_head = ch->ch_r_tail = 0;
952 ch->ch_e_head = ch->ch_e_tail = 0;
953 ch->ch_w_head = ch->ch_w_tail = 0;
955 neo_flush_uart_write(ch);
956 neo_flush_uart_read(ch);
958 ch->ch_flags |= (CH_BAUD0);
959 ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
960 neo_assert_modem_signals(ch);
961 ch->ch_old_baud = 0;
962 return;
964 } else if (ch->ch_custom_speed) {
965 baud = ch->ch_custom_speed;
966 if (ch->ch_flags & CH_BAUD0)
967 ch->ch_flags &= ~(CH_BAUD0);
968 } else {
969 int i;
970 unsigned int cflag;
971 static struct {
972 unsigned int rate;
973 unsigned int cflag;
974 } baud_rates[] = {
975 { 921600, B921600 },
976 { 460800, B460800 },
977 { 230400, B230400 },
978 { 115200, B115200 },
979 { 57600, B57600 },
980 { 38400, B38400 },
981 { 19200, B19200 },
982 { 9600, B9600 },
983 { 4800, B4800 },
984 { 2400, B2400 },
985 { 1200, B1200 },
986 { 600, B600 },
987 { 300, B300 },
988 { 200, B200 },
989 { 150, B150 },
990 { 134, B134 },
991 { 110, B110 },
992 { 75, B75 },
993 { 50, B50 },
996 cflag = C_BAUD(ch->uart_port.info->tty);
997 baud = 9600;
998 for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
999 if (baud_rates[i].cflag == cflag) {
1000 baud = baud_rates[i].rate;
1001 break;
1005 if (ch->ch_flags & CH_BAUD0)
1006 ch->ch_flags &= ~(CH_BAUD0);
1009 if (ch->ch_c_cflag & PARENB)
1010 lcr |= UART_LCR_PARITY;
1012 if (!(ch->ch_c_cflag & PARODD))
1013 lcr |= UART_LCR_EPAR;
1016 * Not all platforms support mark/space parity,
1017 * so this will hide behind an ifdef.
1019 #ifdef CMSPAR
1020 if (ch->ch_c_cflag & CMSPAR)
1021 lcr |= UART_LCR_SPAR;
1022 #endif
1024 if (ch->ch_c_cflag & CSTOPB)
1025 lcr |= UART_LCR_STOP;
1027 switch (ch->ch_c_cflag & CSIZE) {
1028 case CS5:
1029 lcr |= UART_LCR_WLEN5;
1030 break;
1031 case CS6:
1032 lcr |= UART_LCR_WLEN6;
1033 break;
1034 case CS7:
1035 lcr |= UART_LCR_WLEN7;
1036 break;
1037 case CS8:
1038 default:
1039 lcr |= UART_LCR_WLEN8;
1040 break;
1043 ier = readb(&ch->ch_neo_uart->ier);
1044 uart_lcr = readb(&ch->ch_neo_uart->lcr);
1046 if (baud == 0)
1047 baud = 9600;
1049 quot = ch->ch_bd->bd_dividend / baud;
1051 if (quot != 0) {
1052 ch->ch_old_baud = baud;
1053 writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1054 writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1055 writeb((quot >> 8), &ch->ch_neo_uart->ier);
1056 writeb(lcr, &ch->ch_neo_uart->lcr);
1059 if (uart_lcr != lcr)
1060 writeb(lcr, &ch->ch_neo_uart->lcr);
1062 if (ch->ch_c_cflag & CREAD)
1063 ier |= (UART_IER_RDI | UART_IER_RLSI);
1065 ier |= (UART_IER_THRI | UART_IER_MSI);
1067 writeb(ier, &ch->ch_neo_uart->ier);
1069 /* Set new start/stop chars */
1070 neo_set_new_start_stop_chars(ch);
1072 if (ch->ch_c_cflag & CRTSCTS)
1073 neo_set_cts_flow_control(ch);
1074 else if (ch->ch_c_iflag & IXON) {
1075 /* If start/stop is set to disable, then we should disable flow control */
1076 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1077 neo_set_no_output_flow_control(ch);
1078 else
1079 neo_set_ixon_flow_control(ch);
1081 else
1082 neo_set_no_output_flow_control(ch);
1084 if (ch->ch_c_cflag & CRTSCTS)
1085 neo_set_rts_flow_control(ch);
1086 else if (ch->ch_c_iflag & IXOFF) {
1087 /* If start/stop is set to disable, then we should disable flow control */
1088 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1089 neo_set_no_input_flow_control(ch);
1090 else
1091 neo_set_ixoff_flow_control(ch);
1093 else
1094 neo_set_no_input_flow_control(ch);
1096 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1097 * Not exactly elegant, but this is needed because of the Exar chip's
1098 * delay on firing off the RX FIFO interrupt on slower baud rates.
1100 if (baud < 9600) {
1101 writeb(1, &ch->ch_neo_uart->rfifo);
1102 ch->ch_r_tlevel = 1;
1105 neo_assert_modem_signals(ch);
1107 /* Get current status of the modem signals now */
1108 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1109 return;
1113 * jsm_neo_intr()
1115 * Neo specific interrupt handler.
1117 static irqreturn_t neo_intr(int irq, void *voidbrd, struct pt_regs *regs)
1119 struct jsm_board *brd = (struct jsm_board *) voidbrd;
1120 struct jsm_channel *ch;
1121 int port = 0;
1122 int type = 0;
1123 int current_port;
1124 u32 tmp;
1125 u32 uart_poll;
1126 unsigned long lock_flags;
1127 unsigned long lock_flags2;
1128 int outofloop_count = 0;
1130 brd->intr_count++;
1132 /* Lock out the slow poller from running on this board. */
1133 spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1136 * Read in "extended" IRQ information from the 32bit Neo register.
1137 * Bits 0-7: What port triggered the interrupt.
1138 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1140 uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1142 jsm_printk(INTR, INFO, &brd->pci_dev,
1143 "%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
1145 if (!uart_poll) {
1146 jsm_printk(INTR, INFO, &brd->pci_dev,
1147 "Kernel interrupted to me, but no pending interrupts...\n");
1148 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1149 return IRQ_NONE;
1152 /* At this point, we have at least SOMETHING to service, dig further... */
1154 current_port = 0;
1156 /* Loop on each port */
1157 while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1159 tmp = uart_poll;
1160 outofloop_count++;
1162 /* Check current port to see if it has interrupt pending */
1163 if ((tmp & jsm_offset_table[current_port]) != 0) {
1164 port = current_port;
1165 type = tmp >> (8 + (port * 3));
1166 type &= 0x7;
1167 } else {
1168 current_port++;
1169 continue;
1172 jsm_printk(INTR, INFO, &brd->pci_dev,
1173 "%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
1175 /* Remove this port + type from uart_poll */
1176 uart_poll &= ~(jsm_offset_table[port]);
1178 if (!type) {
1179 /* If no type, just ignore it, and move onto next port */
1180 jsm_printk(INTR, ERR, &brd->pci_dev,
1181 "Interrupt with no type! port: %d\n", port);
1182 continue;
1185 /* Switch on type of interrupt we have */
1186 switch (type) {
1188 case UART_17158_RXRDY_TIMEOUT:
1190 * RXRDY Time-out is cleared by reading data in the
1191 * RX FIFO until it falls below the trigger level.
1194 /* Verify the port is in range. */
1195 if (port > brd->nasync)
1196 continue;
1198 ch = brd->channels[port];
1199 neo_copy_data_from_uart_to_queue(ch);
1201 /* Call our tty layer to enforce queue flow control if needed. */
1202 spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1203 jsm_check_queue_flow_control(ch);
1204 spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1206 continue;
1208 case UART_17158_RX_LINE_STATUS:
1210 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1212 neo_parse_lsr(brd, port);
1213 continue;
1215 case UART_17158_TXRDY:
1217 * TXRDY interrupt clears after reading ISR register for the UART channel.
1221 * Yes, this is odd...
1222 * Why would I check EVERY possibility of type of
1223 * interrupt, when we know its TXRDY???
1224 * Becuz for some reason, even tho we got triggered for TXRDY,
1225 * it seems to be occassionally wrong. Instead of TX, which
1226 * it should be, I was getting things like RXDY too. Weird.
1228 neo_parse_isr(brd, port);
1229 continue;
1231 case UART_17158_MSR:
1233 * MSR or flow control was seen.
1235 neo_parse_isr(brd, port);
1236 continue;
1238 default:
1240 * The UART triggered us with a bogus interrupt type.
1241 * It appears the Exar chip, when REALLY bogged down, will throw
1242 * these once and awhile.
1243 * Its harmless, just ignore it and move on.
1245 jsm_printk(INTR, ERR, &brd->pci_dev,
1246 "%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
1247 continue;
1251 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1253 jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
1254 return IRQ_HANDLED;
1258 * Neo specific way of turning off the receiver.
1259 * Used as a way to enforce queue flow control when in
1260 * hardware flow control mode.
1262 static void neo_disable_receiver(struct jsm_channel *ch)
1264 u8 tmp = readb(&ch->ch_neo_uart->ier);
1265 tmp &= ~(UART_IER_RDI);
1266 writeb(tmp, &ch->ch_neo_uart->ier);
1268 /* flush write operation */
1269 neo_pci_posting_flush(ch->ch_bd);
1274 * Neo specific way of turning on the receiver.
1275 * Used as a way to un-enforce queue flow control when in
1276 * hardware flow control mode.
1278 static void neo_enable_receiver(struct jsm_channel *ch)
1280 u8 tmp = readb(&ch->ch_neo_uart->ier);
1281 tmp |= (UART_IER_RDI);
1282 writeb(tmp, &ch->ch_neo_uart->ier);
1284 /* flush write operation */
1285 neo_pci_posting_flush(ch->ch_bd);
1288 static void neo_send_start_character(struct jsm_channel *ch)
1290 if (!ch)
1291 return;
1293 if (ch->ch_startc != __DISABLED_CHAR) {
1294 ch->ch_xon_sends++;
1295 writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1297 /* flush write operation */
1298 neo_pci_posting_flush(ch->ch_bd);
1302 static void neo_send_stop_character(struct jsm_channel *ch)
1304 if (!ch)
1305 return;
1307 if (ch->ch_stopc != __DISABLED_CHAR) {
1308 ch->ch_xoff_sends++;
1309 writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1311 /* flush write operation */
1312 neo_pci_posting_flush(ch->ch_bd);
1317 * neo_uart_init
1319 static void neo_uart_init(struct jsm_channel *ch)
1321 writeb(0, &ch->ch_neo_uart->ier);
1322 writeb(0, &ch->ch_neo_uart->efr);
1323 writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1325 /* Clear out UART and FIFO */
1326 readb(&ch->ch_neo_uart->txrx);
1327 writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1328 readb(&ch->ch_neo_uart->lsr);
1329 readb(&ch->ch_neo_uart->msr);
1331 ch->ch_flags |= CH_FIFO_ENABLED;
1333 /* Assert any signals we want up */
1334 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1338 * Make the UART completely turn off.
1340 static void neo_uart_off(struct jsm_channel *ch)
1342 /* Turn off UART enhanced bits */
1343 writeb(0, &ch->ch_neo_uart->efr);
1345 /* Stop all interrupts from occurring. */
1346 writeb(0, &ch->ch_neo_uart->ier);
1349 static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1351 u8 left = 0;
1352 u8 lsr = readb(&ch->ch_neo_uart->lsr);
1354 /* We must cache the LSR as some of the bits get reset once read... */
1355 ch->ch_cached_lsr |= lsr;
1357 /* Determine whether the Transmitter is empty or not */
1358 if (!(lsr & UART_LSR_TEMT))
1359 left = 1;
1360 else {
1361 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1362 left = 0;
1365 return left;
1368 /* Channel lock MUST be held by the calling function! */
1369 static void neo_send_break(struct jsm_channel *ch)
1372 * Set the time we should stop sending the break.
1373 * If we are already sending a break, toss away the existing
1374 * time to stop, and use this new value instead.
1377 /* Tell the UART to start sending the break */
1378 if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1379 u8 temp = readb(&ch->ch_neo_uart->lcr);
1380 writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1381 ch->ch_flags |= (CH_BREAK_SENDING);
1383 /* flush write operation */
1384 neo_pci_posting_flush(ch->ch_bd);
1389 * neo_send_immediate_char.
1391 * Sends a specific character as soon as possible to the UART,
1392 * jumping over any bytes that might be in the write queue.
1394 * The channel lock MUST be held by the calling function.
1396 static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1398 if (!ch)
1399 return;
1401 writeb(c, &ch->ch_neo_uart->txrx);
1403 /* flush write operation */
1404 neo_pci_posting_flush(ch->ch_bd);
1407 struct board_ops jsm_neo_ops = {
1408 .intr = neo_intr,
1409 .uart_init = neo_uart_init,
1410 .uart_off = neo_uart_off,
1411 .param = neo_param,
1412 .assert_modem_signals = neo_assert_modem_signals,
1413 .flush_uart_write = neo_flush_uart_write,
1414 .flush_uart_read = neo_flush_uart_read,
1415 .disable_receiver = neo_disable_receiver,
1416 .enable_receiver = neo_enable_receiver,
1417 .send_break = neo_send_break,
1418 .clear_break = neo_clear_break,
1419 .send_start_character = neo_send_start_character,
1420 .send_stop_character = neo_send_stop_character,
1421 .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart,
1422 .get_uart_bytes_left = neo_get_uart_bytes_left,
1423 .send_immediate_char = neo_send_immediate_char